WorldWideScience

Sample records for interrupted creep behaviour

  1. Numerical description of creep of highly creep resistant alloys

    International Nuclear Information System (INIS)

    Preussler, T.

    1991-01-01

    Fatigue tests have been performed with a series of highly creep resistant materials for gas turbines and related applications for gaining better creep data up to long-term behaviour. The investigations were performed with selected individual materials in the area of the main applications down to strains and stresses relevant to design, and have attained trial durations of 25000 to 60000 h. In continuing former research, creep equations for a selection of characterizing individual materials have been improved and partly newly developed on the basis of a differentiated evaluation. Concerning the single materials, there are: one melt each of the materials IN-738 LC, IN-939, IN-100, FSX-414 and Inconel 617. The applied differentiated evaluation is based on the elastoplastical behaviour from the hot-drawing test, the creep behaviour from the non interrupted or the interrupted fatigue test, and the contraction behaviour from the annealing test. The creep equations developed describe the high temperature deformation behaviour taking into account primary, secondary and partly the tertiary creep dependent of temperature, stress and time. These equations are valid for the whole application area of the respective material. (orig./MM) [de

  2. Constitutive modelling of creep-ageing behaviour of peak-aged aluminium alloy 7050

    Directory of Open Access Journals (Sweden)

    Yang Yo-Lun

    2015-01-01

    Full Text Available The creep-ageing behaviour of a peak-aged aluminium alloy 7050 was investigated under different stress levels at 174 ∘C for up to 8 h. Interrupted creep tests and tensile tests were performed to investigate the influences of creep-ageing time and applied stress on yield strength. The mechanical testing results indicate that the material exhibits an over-ageing behaviour which increases with the applied stress level during creep-ageing. As creep-ageing time approaches 8 h, the material's yield strength under different stress levels gradually converge, which suggests that the difference in mechanical properties under different stress conditions can be minimised. This feature can be advantageous in creep-age forming to the formed components such that uniformed mechanical properties across part area can be achieved. A set of constitutive equations was calibrated using the mechanical test results and the alloy-specific material constants were obtained. A good agreement is observed between the experimental and calibrated results.

  3. Correlation between microstructure and the creep behaviour at high temperature of Alloy 800 H

    International Nuclear Information System (INIS)

    Spiradek, K.; Degischer, H.P.; Lahodny, H.

    1989-01-01

    A systematic metallographic study was performed to identify the nature of the microstructural changes occurring during high temperature creep deformation of Alloy 800 H. Creep tests were carried out at 800 deg. C under constant load conditions corresponding to the initial stresses between 25 and 80 MPa. Some tests were interrupted after certain elongations to provide the samples for electron microscopy. Emphasis was put on the creep periods relevant to design where only a few per cent of deformation are tolerable. The influence of the initial material conditions on the creep behaviour was examined. Variations of the initial microstructures were achieved by different solution treatments (980/1250) deg. C, preageing at 800 deg. C (0/6400) h and cold deformation up to 10% followed by ageing at 800 deg. C. The results of the microstructural examinations were correlated with the creep curves that provide a basis for identification of the creep mechanisms operating at the test conditions. (author). 14 refs, 17 figs

  4. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  5. Creep behaviour and creep mechanisms of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  6. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  7. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  8. Investigations on creep and creep fatigue crack behaviour for component assessment

    International Nuclear Information System (INIS)

    Gengenbach, T.; Klenk, A.; Maile, K.

    2004-01-01

    There are various methods to assess crack initiation and crack growth behaviour of components under creep and creep fatigue loading. The programme system HT-Riss has been developed to support calculations aimed to determine the behaviour of a crack under creep or creep-fatigue loading using methods based on stress-intensity factor K (e.g. the Two-Criteria-Diagram) or C*-Integral. This paper describes the steps which have to be performed to assess crack initiation and growth of a component using this programme system. First the size of the maximum initial defect in a specimen or in a component has to be estimated and the necessary fracture mechanics parameters have to be determined. Then the time for creep crack initiation and creep crack growth is calculated. Using these values a prediction of life time and necessary inspection intervals is possible. For exemplification the crack assessment of a component-like specimen and a component is shown. (orig.)

  9. Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye; Gunneskov, O.

    1985-01-01

    to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...

  10. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  11. Some factors influencing the creep behaviour of alloy 800

    International Nuclear Information System (INIS)

    Asbury, F.E.; Willoughby, G.

    1975-01-01

    Studies have been made of the stability of the creep behaviour of two commercial casts of Incoloy 800, one high carbon and the other low carbon. The effects of pre-ageing, of prolonged creep up to 10 4 hours duration, and of grain size were investigated. Three factors were found to excercise a major influence on creep behaviour. Firstly, when the high carbon alloy was heat treated at 1150degC super-saturation effects, ascribed principally to carbon, gave some initial strengthening which would not, however, persist for the duration of service life in nuclear power plant applications above 600degC. Secondly, a gamma-dash type phase precipitated readily at 550 to 600degC, giving a marked increase in creep strength. Nucleation was sluggish at higher temperatures but once established, this form of strengthening could persist up to at least 650degC. Creep under non-isothermal conditions at 600 to 700degC would be complex on account of the behaviour of this phase. The hardening associated with its precipitation was greater in the low carbon alloy. Finally it was demonstrated that, in spite of gamma-dash precipitation, fine grained low carbon material was weak in creep at low stresses and temperatures. This was ascribed to the occurrence of grain boundary diffusion creep. It appears that this source of weakening would persist in service, and severely restrict the maximum temperature of usage for fined grained high tensile material. (author)

  12. Study of creep behaviour in P-doped copper with slow strain rate tensile tests

    International Nuclear Information System (INIS)

    Xuexing Yao; Sandstroem, Rolf

    2000-08-01

    Pure copper with addition of phosphorous is planned to be used to construct the canisters for spent nuclear fuel. The copper canisters can be exposed to a creep deformation up to 2-4% at temperatures in services. The ordinary creep strain tests with dead weight loading are generally employed to study the creep behaviour; however, it is reported that an initial plastic deformation of 5-15% takes place when loading the creep specimens at lower temperatures. The slow strain rate tensile test is an alternative to study creep deformation behaviour of materials. Ordinary creep test and slow strain rate tensile test can give the same information in the secondary creep stage. The advantage of the tensile test is that the starting phase is much more controlled than in a creep test. In a tensile test the initial deformation behaviour can be determined and the initial strain of less than 5% can be modelled. In this study slow strain rate tensile tests at strain rate of 10 -4 , 10 -5 , 10 -6 , and 10 -7 /s at 75, 125 and 175 degrees C have been performed on P-doped pure Cu to supplement creep data from conventional creep tests. The deformation behaviour has successfully been modelled. It is shown that the slow strain rate tensile tests can be implemented to study the creep deformation behaviours of pure Cu

  13. Creep behaviour of thin walled composite tubes

    International Nuclear Information System (INIS)

    Thiebaud, F.; Muzic, B.; Perreux, D.; Varchon, D.; Oytana, C.; Lebras, J.

    1993-01-01

    Fiber reinforced composites are more and more employed in high performance structure for nuclear power plant, mainly as water piping tubes. The increase of the use of composites is due to the advantages that they give : high stiffness, large ultimate strength, corrosion resistance. This last advantage is sought for the pieces in contact with water, and it's one of the reason why the composite can be preferred to metal. However the mechanical behaviour of composite is actually poorly known. The high anisotropy is the main difficulty to obtain a realistic model of behaviour. This problem implies that the safety factor used in the design of structure is often too large. In this article a general overview of the mechanical behaviour of tube made in glass epoxy material is proposed. We discuss especially the creep behaviour under biaxial loadings. The form of the proposed model presently allows predicting a nonlinearity of the behaviour and provides a good correlation with the experimental data of several tests not described in this paper. It accounts for the change of the Poisson ratio during creep and cyclic tests. However the complete identification requires long time testings and consequently the model must be corrected to take into account the damage which occurs in these cases

  14. Influence of microstructural parameters on the deformation and failure behaviour of the ODS alloy PM 2000 under creep and creep-fatigue loading

    International Nuclear Information System (INIS)

    Bothe, K.; Kussmaul, K.; Maile, K.

    1999-01-01

    The influence of grain size, manufacturing type and specimen direction (anisotropy) with respect to deformation and failure behaviour under creep, fatigue and creep-fatigue load was investigated. Thus, a basis for the correlation between microstructure and mechanical behaviour has been established. The specific damage and failure behaviour could be explained by means of the different microstructures observed. (orig.)

  15. International RILEM Workshop on Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete

    CERN Document Server

    Llano-Torre, Aitor; Cavalaro, Sergio

    2017-01-01

    This is the first publication ever focusing strictly on the creep behaviour in cracked sections of Fibre Reinforced Concrete (FRC). These proceedings contain the latest scientific papers about new testing methodologies, results and conclusions of multiple experimental campaigns and recommendations about significant factors of long-term behaviour, experiences from more than ten years of creep testing and some reflections about future perspectives on this topic. This book is an essential reference for all researchers of creep behaviour on FRC. This volume is the result of the efforts of the RILEM TC 261-CCF, that has been working since 2014 to develop standardized methodologies and guidelines to compare results from different laboratories and get a better understanding of the significant parameters related to creep of FRC.

  16. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  17. Oxidation and creep behaviour of dense silicon nitride materials with different compositions

    International Nuclear Information System (INIS)

    Ernstberger, U.

    1985-09-01

    The study was intended to yield information on the oxidation and creep behaviour of Si 3 N 4 materials of different composition and microstructure, and produced by different processes. The experiments carried out in a vast temperature and load range showed that the chemical grain boundary composition is the key parameter affecting the materials' high-temperature properties. Significant correlations could be established between oxidation and creep behaviour on the one hand, and between microstructure and the behaviour on the other. (orig./IHOE) [de

  18. Creep behaviour of modified 9Cr-1Mo ferritic steel

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Isaac Samuel, E.

    2011-01-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  19. Material pre-conditioning effects on the creep behaviour of 316H stainless steel

    International Nuclear Information System (INIS)

    Mehmanparast, A.; Davies, C.M.; Dean, D.W.; Nikbin, K.

    2013-01-01

    Material pre-conditioning by, for example, pre-strain through component bending and welding is known to alter the creep deformation and creep crack growth (CCG) behaviour of 316H stainless steel. Experimental test data on the creep deformation and crack growth behaviour of 316H weldment compact tension specimens at 550 °C, where the starter defect was introduced into the heat affected zone (HAZ), have been compared to those of obtained from similar specimens manufactured from parent material, which had been subjected to 8% compressive plastic pre-strain at room temperature. Similar degrees of accelerated cracking behaviour compared to parent material, for given values of C*, were exhibited in both 316H HAZ and pre-compressed parent materials. This acceleration has been attributed to the influence of material hardening effects and the reduction of creep ductility in the pre-conditioned materials. These results are discussed in terms of the potential for using material pre-conditioning to assist in predicting the long term cracking behaviour of high temperature 316H stainless steel plant components from shorter term laboratory CCG tests

  20. Evaluation of long-term creep behaviour on K-cladding tubes

    International Nuclear Information System (INIS)

    Bang, J. G.; Jeong, Y. H.; Jeong, Y. H.

    2003-01-01

    KAERI has developed new zirconium alloys for high burnup fuel cladding. To evaluate the performance of these alloys, various out-pile tests are conducting. At high burnup, the creep resistance as well as corrosion resistance is one of the major factors determining nuclear fuel performance. Long-term creep test was performed at 350 .deg. C and 400 .deg. C and 100, 120, 135, and 150 MPa of applied hoop stress to evaluate the creep properties. The creep resistance was strongly affected by the final heat treatment conditions, while there was no effect of intermediate heat treatment. The creep strain of the recrystallized alloys is higher than that of the stress-relieved alloys by a factor of 3. The alloying elements also influenced the creep behaviour. Increase of Sn content enhanced the creep resistance, while Nb decreased the creep resistance. As a result of texture analysis, basal pole was directed to normal direction, while prism pole was to rolling direction. The development of the deformation texture and the ammealing texture showed almost similar process to Zircaloy cladding

  1. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  2. Effect of simulated sampling disturbance on creep behaviour of rock salt

    Science.gov (United States)

    Guessous, Z.; Gill, D. E.; Ladanyi, B.

    1987-10-01

    This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.

  3. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  4. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Anomalous creep behaviour of 316 stainless steel at 550 deg C

    International Nuclear Information System (INIS)

    Hyde, T.H.

    1986-01-01

    The results of fifteen constant-load creep tests at 550 0 C, with nominal stresses in the range 200 to 360 MPa and with test durations of up to 14000h, are presented. The usual primary, secondary and tertiary creep behaviour was exhibited for nominal stresses greater than about 330 MPa. At lower stresses, 'renewed' primary and secondary creep regions were observed. The renewed secondary creep strain rates were found to be about an order of magnitude greater than the initial secondary creep strain rates. The results indicate that the occurence of the renewed primary and secondary creep regions is associated with time-dependent exposure to a temperature of 550 0 C. The presence or magnitude of the prior stress level does not appear to have any significant effect. The results are relevant to design procedures because extrapolation of short duration or high stress data to long-term design lifetimes is often required. Unless the possibility of the occurence of renewed primary and secondary creep is taken into account, gross errors in strain predictions could occur. (author)

  6. Boundary element method for modelling creep behaviour

    International Nuclear Information System (INIS)

    Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

    2002-01-01

    A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

  7. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    Science.gov (United States)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  8. Microstructure stability and creep behaviour of advanced high chromium ferritic steels

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Kudrman, J.; Svoboda, Milan; Kloc, Luboš

    43 2005, č. 1 (2005), s. 20-33 ISSN 0023-432X R&D Projects: GA ČR(CZ) GA106/02/0608; GA AV ČR(CZ) IAA2041101; GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : 9-12%Cr steels * microstructure stability * creep behaviour * nonsteady creep loading Subject RIV: JG - Metallurgy Impact factor: 0.973, year: 2005

  9. Creep behaviour and microstructure of the ferritic material No. 1-6770 under irradiation

    International Nuclear Information System (INIS)

    Herschbach, K.; Ehrlich, K.; Materna, E.

    Creep behaviour under irradiation of the ferritic steel-DIN-1-6770 is quite different of austenitic steel behaviour, in particular temperature sensitivity is important and response to stress is non linear. The microstructure stays unchanged

  10. Crack growth under combined creep and fatigue conditions in alloy 800

    International Nuclear Information System (INIS)

    Pfaffelhuber, M.; Roedig, M.; Schubert, F.; Nickel, H.

    1989-08-01

    To investigate the crack growth behaviour under combined creep-fatigue loading, CT 25 mm-specimens of X10NiCrAlTi 32 20 (Alloy 800) have been tested in experiments with cyclic loadings and hold times, with static loadings and short stress rekief interrupts, with ramp type loadings and with sequences of separate fatigue and creep crack growth periods. The test temperature of 700deg C was selected because only in this temperature range this alloy provides similar amounts of crack growth under creep and fatigue conditions due to equivalent stress levels. For the estimation of crack growth under combined loading conditions a linear accumulation of increase in crack length was proved using the crack growth laws of pure creep and fatigue crack growth. Hold time and ramp loadings lead to a higher crack growth rate compared with pure creep or pure fatigue crack growth tests. In hold time experiments the crack growth rate is higher than ramp tests of the same period time. The results of hold time tests can be fairly enough predicted by linear damage accumulation rules. (orig.) [de

  11. Investigations on the creep-rupture behaviour of the austenitic stainless steel AISI 316 NET

    International Nuclear Information System (INIS)

    Schirra, M.; Ritter, B.

    1988-12-01

    The report describes the creep-rupture tests carried out with a 17/13/2 CrNiMo-steel in the frame of the German-Spanish collaboration (KfK-CIEMAT). The material studied is the austenitic steel AISI 316(L) selected as potential first-wall material for NET (Next European Torus). The test programme on base material with a NET specified batch encompasses until now in the temperature range 500-750 0 C the rupture-time-range till 20 000 h. The results permit statements to the creep- and creep-rupture behaviour and ductility. Metallography examinations give information about fracture behaviour and demonstrate the complex precipitation happening. The results are compared with the literature and own test results from two batches of the Fast-Breeder-Program. (orig.) [de

  12. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@monash.edu [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M.A. [CAST Cooperative Research Centre, CSIRO Process Science and Engineering, Clayton, Victoria 3169 (Australia); Dargusch, M.S. [Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4075 (Australia); Defence Materials Technology Centre, The University of Queensland, Queensland 4075 (Australia); Nie, J.F. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2013-08-20

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism.

  13. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    International Nuclear Information System (INIS)

    Zhu, S.M.; Easton, M.A.; Gibson, M.A.; Dargusch, M.S.; Nie, J.F.

    2013-01-01

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism

  14. Creep damage behaviour of modified 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Sakthivel, T.; Laha, K.; Vasudevan, M.; Panneer Selvi, S.

    2016-01-01

    Creep deformation and rupture behaviour of modified 9Cr-1Mo steel weld joints fabricated by single-pass activated TIG (A-TIG) and shielded metal arc welding (SMAW) processes have been investigated at 923 K over a stress range of 50 to 110 MPa after post weld heat treatment (PWHT). The weld joints exhibited significantly lower creep rupture lives than the base metal at lower applied stresses. Creep rupture location of the weld joints were found to occur in the ICHAZ. An extensive localized creep deformation, coarsening of M 23 C 6 precipitates in the ICHAZ with creep exposure led to the premature type IV failure of the joints. The coarsening of M 23 C 6 precipitates was extensive in the mid-section of the ICHAZ than the sub-surface of the joints, and was more predominant in the SMAW joint. While A-TIG weld joint exhibited reduced creep cavitation and coarsening of M 23 C 6 precipitates due to lower deformation constraints by adjacent regions in the ICHAZ. Hence, A-TIG weld joint exhibited higher creep rupture life than the SMAW joint. (author)

  15. Creep-fatigue behaviour of the titanium alloy IMI 834 at 600 C

    International Nuclear Information System (INIS)

    Nowack, H.; Kordisch, T.

    1998-01-01

    In the present study the creep-fatigue behaviour of the titanium alloy IMI 834 at 600 C was investigated. A comparison of the crack initiation life behaviour and of the crack propagation as caused by different types of complex creep-fatigue cycles (with hold times into tension and/or into compression direction and with different loading rates into tension and/or into compression direction) showed, that a slow increase of the loadings into tension reduced the life and increased the crack velocity more than hold times at the maximum load. Furthermore, there existed environmental influences. On the basis of the experimental investigations the prediction capability of convenient crack initiation life prediction methods was evaluated. It turned out that the prediction capability of the strain range partitioning method could be improved if it was frequency modified. The prediction capability of the frequency modification method could also be improved, if mean stresses in the cycles were explicitely accounted for. In the short and long crack stage the propagation behaviour could be correlated well if the effective cyclic J-integral was used. This is of importance for damage tolerance considerations. Because the strains and the stresses at the crack tip are most important for the crack propagation behaviour, they were analysed on the basis of the finite element method. It was found that the strains and stresses differed for different types of creep-fatigue cycles. (orig.)

  16. Preliminary analysis of the creep behaviour of nuclear fuel-waste container materials

    International Nuclear Information System (INIS)

    Dutton, R.; Leitch, B.W.; Crosthwaite, J.L.; Kasprick, G.R.

    1996-12-01

    In the Canadian Nuclear Fuel Waste Management Program, it is proposed that nuclear fuel waste be placed in a durable container and disposed of in a deep underground vault. Consideration of various disposal-container designs has identified either titanium or copper as the material suitable for constructing the container shell. As part of the R and D program to examine the structural integrity of the container, creep tests are being conducted on commercially pure titanium and oxygen-free copper. This report presents the preliminary data obtained. It also describes the evaluation of various constitutive equations to represent the creep curves, thus providing the basis for extrapolation of the creep behaviour over the design lifetime of the container. In this regard, a specific focus is placed on equations derived from the 0-Projection Concept. Recognizing that the container lifetime will be determined by the onset of tertiary creep leading to creep rupture, we present the results of the metallographic examination of creep damage. This shows that the tertiary stage in titanium is associated with the formation of transgranular cavities within the region of localized necking of the creep specimens. In contrast, creep damage in copper is in the form of intergranular cavities uniformly distributed throughout the gauge length. These results are analyzed within the context of the extant literature, and their implications for future container design are discussed. (author)

  17. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Seith, B.; Schirra, M.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the german fast breder reactor SNR 300, was creep-tested in a temperature range of 550-650 deg C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continous measuring of the elongation. The test results up to about 4.000 hours is described. Taking into account the results of other programs carried out with the same material between 550 and 600 deg C at similar rupture time, were defined the stresses for the longterm test. The main point of this program (''Extrapolation Program'') lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h for reactor operating temperatures. (author) [es

  18. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R. R.; Schirra, M.; Rivas, M. de la; Seith, B.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h. for reactor operating temperatures. (Author) 14 refs

  19. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1976-10-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German fast breeder reactor SNR 300 was creep-tested in a temperature range of 550-650 0 C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 5.000 hours. Taking into account the results of other programs carried out with the same material between 550 and 600 0 C at similar rupture times, were defined the stresses for the long term tests. The main point of this program ('Extrapolation Program') lies in the knowledge of the creep time and creep behaviour of the structure materials up to 3 x 10 4 h at high temperature in order to extrapolate up to 10 5 h for operating temperatures. (orig.) [de

  20. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  1. Metallurgical and environmental factors influencing creep behaviour of hastelloy-X

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Kondo, Tatsuo

    1979-03-01

    Creep and rupture behaviours of Hastelloy-X and its modified version were examined with special reference to the effect of different test environments; i.e. air, high vacuum and the simulated HTR helium coolant. The respective environments showed different effects. The vacuum environment of about 10 -8 torr. gave best reproducible behaviour with essentially no surface-to-volume ratio effect. Such size effect was significant in the other two environments. The simulated HTR environment was characterized in its potentiality of both oxidizing selected alloy constituents and carburization. The observed behaviour was attributed to the depletion of strengthning solute elements caused by the surface reactions and the associated solid state reactions. (author)

  2. Impression creep behaviour of Mod. 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Ridhin Raj, V.R.; Kottda, Ravi Sankar; Kamaraj, M.; Maduraimuthu, V.M.; Vasudevan, M.

    2016-01-01

    P91 steel (9Cr-1Mo) steel is extensively used in power plants for super heater coils, headers and steam piping. The aim of the present work is to study the creep behaviour of different zones of A-TIG weld joint using impression creep technique and compare it with that of the TIG weld joint. P91 steel weld joints were made by A-TIG welding without using any filler material and multi-pass TIG welding is done using ER90S-B9 filler rods. Welds were subjected to post-weld heat treatment (PWHT). Impression creep tests were carried out at 650 °C on the base metal, weld metal and HAZ regions. Optical Microscope and TEM were used to correlate microstructures with observed creep rates. The FGHAZ showed significantly higher impression creep rate compared to that of the base metal and weld metal. Fine grain size and relatively coarser M 23 C 6 carbide particles are responsible for higher creep rate. The impression creep rate of A-TIG weld metal and coarse grain HAZ was found to be lower than that of base metal. This is attributed to the higher grain size in weld metal and coarse HAZ attributed to the higher grain size in weld metal and to the higher peak temperature observed during A-TIG welding. (author)

  3. Creep behaviour of polyurethanes applied in the offshore industry under dynamic service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabio G.; Sheldrake, Terry; Clevelario, Judimar; Pires, Fabio S. [Wellstream International S/A - Rio de Janeiro, RJ (Brazil)], e-mail: fabio.aquino@wellstream.com; Souza, Miguel L. [Newtech Ltda, Sao Carlos, SP (Brazil)

    2011-07-01

    The oil industry commonly uses flexible pipes to convey oil and gas from wells to platforms that move constantly due to weather and tidal conditions. In this scenario, polymeric components are required to transitioning between the flexible material of the pipelines to the rigid material of the platform; polyurethanes are versatile polymers suitable for performing such services. As this material is subjected to constant loading during working conditions, and it its durability is to be maintained for several decades, it is important to determine the material's creep properties that relate to deformation caused by constant loading, which can represent an indirect measurement of the material's lifetime. In this study, creep behaviour data on the polyurethane samples was collected and an asymmetrical and nonlinear behaviour was observed. Additionally the material presented a creep fracture line with points only above 150% of deformation, considerably exceeding maximum values for its service conditions, which is limited to 10% of deformation considering the worst loading case for design premises of the final artifact. (author)

  4. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  5. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments

    International Nuclear Information System (INIS)

    Gaffard, V.

    2004-12-01

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  6. Creep-fatigue deformation behaviour of OFHC-copper and CuCrZr alloy with different heat treatments and with and without neutron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Johansen, B.S.; Li, M.; Stubbins, J.F.

    2005-08-01

    The creep-fatigue interaction behaviour of a precipitation hardened CuCrZr alloy was investigated at 295 and 573 K. To determine the effect of irradiation a number of fatigue specimens were irradiated at 333 and 573 K to a dose level in the range of 0.2 - 0.3 dpa and were tested at room temperature and 573 K, respectively. The creep-fatigue deformation behaviour of OFHC-copper was also investigated but only in the unirradiated condition and at room temperature. The creep-fatigue interaction was simulated by applying a certain holdtime on both tension and compression sides of the cyclic loading with a frequency of 0.5 Hz. Holdtimes of up to 1000 seconds were used. Creep-fatigue experiments were carried out using strain, load and extension controlled modes of cyclic loading. In addition, a number of 'interrupted' creep-fatigue tests were performed on the prime aged CuCuZr specimens in the strain controlled mode with a strain amplitude of 0.5% and a holdtime of 10 seconds. The lifetimes in terms of the number of cycles to failure were determined at different strain and load amplitudes at each holdtime. Post-deformation microstructures was investigated using a transmission electron microscopy. The main results of these investigations are presented and their implications are briefly discussed in the present report. The central conclusion emerging from the present work is that the application of holdtime generally reduces the number of cycles to failure. The largest reduction was found to be in the case of OFHC-copper. Surprisingly, the magnitude of this reduction is found to be larger at lower levels of strain or stress amplitudes, particularly when the level of the stress amplitude is below the monotonic yield strength of the material. The reduction in the yield strength due to overaging heat treatments causes a substantial decrease in the number of cycles to failure at all holdtimes investigated. The increase in the yield strength due to neutron irradiation at 333 K

  7. Influence of pretreatment on creep-rupture-strength and creep-behaviour of a matrix-hardening Ni-base-alloy

    International Nuclear Information System (INIS)

    Schirra, M.

    1982-01-01

    The creep and time-to-rupture behaviour of the matrix hardening Nickel base alloy Inconel 625 was investigated in the temperature range 650-800 0 C. Three different thermo-mechanical pretreatment were used: I = Hot rolled finish; II = 870 0 C annealed; III = Sol. treatment 1150 0 C 1 h. The temperature range of this study is for samples which have undergone treatment I and II well above the temperatures normally used. The results show an anomalous stress dependence of creep and time-to-rupture at around 750 0 C. The reason is to be found in the very complex precipitation processes occurring while the stress is applied. The results are explained according to findings about precipitation in this type of alloy. (orig.) [de

  8. Effects of bone damage on creep behaviours of human vertebral trabeculae.

    Science.gov (United States)

    O'Callaghan, Paul; Szarko, Matthew; Wang, Yue; Luo, Jin

    2018-01-01

    A subgroup of patients suffering with vertebral fractures can develop progressive spinal deformities over time. The mechanism underlying such clinical observation, however, remains unknown. Previous studies suggested that creep deformation of the vertebral trabeculae may play a role. Using the acoustic emission (AE) technique, this study investigated effects of bone damage (modulus reduction) on creep behaviours of vertebral trabecular bone. Thirty-seven human vertebral trabeculae samples were randomly assigned into five groups (A to E). Bones underwent mechanical tests using similar experimental protocols but varied degree of bone damage was induced. Samples first underwent creep test (static compressive stress of 0.4MPa) for 30min, and then were loaded in compression to a specified strain level (0.4%, 1.0%, 1.5%, 2.5%, and 4% for group A to E, respectively) to induce different degrees of bone damage (0.4%, no damage control; 1.0%, yield strain; 1.5%, beyond yield strain, 2.5% and 4%, post-ultimate strains). Samples were creep loaded (0.4MPa) again for 30min. AE techniques were used to monitor bone damage. Bone damage increased significantly from group A to E (P30% of modulus reduction in group D and E. Before compressive loading, creep deformation was not different among the five groups and AE hits in creep test were rare. After compressive loading, creep deformation was significantly greater in group D and E than those in other groups (Pcreep test were significantly greater in group D and E than in group A, B, and C (Pcreep deformation may occur even when the vertebra was under physiological loads. The boosted creep deformation observed may be attributed to newly created trabecular microfractures. Findings provide a possible explanation as to why some vertebral fracture patients develop progressive spinal deformity over time. Copyright © 2017. Published by Elsevier Inc.

  9. Creep deformation behaviour and microstructural changes in Zr-2.5% Nb alloy

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Singh, R.; Ghosh, R.N.; Sinha, T.K.; Banerjee, S.

    2002-01-01

    Cold worked and stress relieved Zr-2.5% Nb alloy is a well-known material used as pressure tubes in Pressurised Heavy Water Reactors. The pressure tubes, made of a typical Zr-alloy, consisting of 2.54% Nb, 0.1175% oxygen and less than 100 ppm impurities, are expected to withstand 9.5 MPa to 12.5 MPa pressure at 250 degC to 310 degC under fast neutron fluxes of 3.5 x 10 17 nm -2 s -1 . These tubes are made by hot extrusion at 780 degC with an extrusion ratio 8.3:1 and 40% cold pilgering followed by annealing at 550 degC for 3 hours and subsequently by 20-30% cold pilgering and stress relieving at 400 degC for 24 hours. The microstructure of such cold worked and stress relieved alloy consists of Β-Zr precipitates in the matrix of elongated Α-Zr grains. Although various factors such as irradiation creep, thermal creep, irradiation growth etc are responsible for limiting the life of pressure tubes; the thermal creep contributes significantly in overall creep deformation. Keeping this in view as well as due to non-availability of adequate published information including creep database on this alloy, an extensive investigation on the thermal creep behaviour of indigenously produced Zr-2.5% Nb alloy was undertaken. The creep tests in air using Mayes' creep testing machines were carried out in the temperature range of 300 degC to 450 degC under stresses in the range of 50 to 550 MPa. Analysis of data revealed that the mechanism of creep deformation remains the same in this range

  10. Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Fugen Daver

    2016-12-01

    Full Text Available Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i composite composition; (ii compatibilizers content; (iii carbon nanotubes that formed a percolation network.

  11. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 2. Quantitative evaluation of microstructural damage in creep-interrupted specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1998-02-01

    Mod.9Cr-1Mo steel has a martensitic lath structure. Recovery of the lath structure takes place in the course of creep. Microstructural degradation due to the recovery results in the acceleration of creep rate and the subsequent failure of a specimen. Change of lath width during creep of the steel was quantitatively investigated to propose a residual life assessment methodology based on the recovery process. Since the steel was tempered at 1053K, the lath structure is thermally stable at the testing temperatures (848K-923K). However, recovery of lath structure readily takes place during creep, indicating that the recovery is induced by creep deformation. Lath width d increases with creep strain and saturates to a value d s determined by creep stress. The increase of d is faster at a higher stress and temperature. A normalized change in lath width, Δd/Δd s , was introduced to explain the variation of lath growth rate with creep stress and temperature. Δd is the change in lath width from the initial value d 0 , and Δd s is the difference between d s and d 0 . Δd/Δd s is uniquely related to creep strain ε and the relationship is independent of creep stress as well as creep temperature. This Δd/Δd s -ε relationship obtained by an accelerated creep test at a higher temperature or stress is applicable to any creep condition including service conditions of engineering plants. Creep strain can be evaluated from the measurement of Δd/Δd s based on the Δd/Δd s -ε relationship. A creep curve under any creep condition can readily be calculated by creep data of the steel. Combining these information one can assess residual life of a structural component made of the steel. (author)

  12. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  13. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs.

  14. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    International Nuclear Information System (INIS)

    Dutton, R.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs

  15. Creep behaviour of ZrNb1 fuel cans in argon and steam

    International Nuclear Information System (INIS)

    Adam, E.; Stephan, M.; Wetzel, L.

    1988-01-01

    The paper is concerned with experimental investigations on the creep behaviour of fuel cans made of the ZrNb1 alloy. The isobaric-isothermal creep tests were performed in the range of temperatures from 990 K to 1290 K and with differential pressures over the can between 1.0 MPa and 2.5 MPa. They were characterized by linear heating of the test cans with 2 K/s until a given temperature was reached, followed by maintaining the cans at a constant temperature (Δ = ± 3 K) and loading it with purified argon produced internal pressure. The experiments were carried out in both an argon atmosphere surrounding the cans from outside and steam. (author)

  16. Creep behaviour of the alloys NiCr22Co12Mo and 10CrMo9 10 under static and cyclic load conditions

    International Nuclear Information System (INIS)

    Wolf, H.

    1990-01-01

    The creep behaviour of NiCr20Co12Mo is investigated under static strain and at 800deg C, with stresses applied ranging from 105 MPa to 370 MPa. The ferritic steel 10CrMo 9 10 is tested for its creep behaviour under static strain and at the temperatures of 600deg C and 550deg C, with stresses applied between 154 MPa and 326 MPa (at 600deg C), or between 250 MPa and 458 MPa (at 550deg C). The experiments are made to determine the effects of changes in strain on the materials' deformation behaviour, placing emphasis on transient creep and elastic or anelastic response. The mean internal stress is determined from changes in strain. Cyclic creep is analysed as a behaviour directly responding to the pattern of change in strain. Effects of certain strain changes not clarified so far are analysed. The cyclic strain experiments are analysed according to the velocity factor concept. The usual models of creep deformation (theta projection concept) are compared with the model of effective strain, which is based on the fundamental equation of plastic deformation by dislocation motion (Orowan equation). (MM) [de

  17. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  18. The creep-fatigue crack growth behaviour of a 1CrMoV rotor steel

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.; Gladwin, D.N.; Maguire, J.

    1989-01-01

    Crack growth rates under simultaneous creep-fatigue conditions have been quantified for a 1CrMoV rotor steel. Measured growth rates were partitioned into cyclic and hold period contributions and these characterized by the relevant fracture mechanics parameters K and C. Cyclic growth rates measured in the creep-fatigue tests were enhanced compared with pure fatigue rates. This observation is compared with the behaviour of other steels and explained by quantitative metallography. The resulting crack growth equation can be used during integrity assessments for plant components containing cracks which are subject to thermal fatigue

  19. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  20. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  1. Comparative study of the creep behaviour of single crystals and polycrystals of alpha uranium

    International Nuclear Information System (INIS)

    Andre, J.P.

    1964-03-01

    In the first chapter, one describes the creep machine developed to study the deformation of uranium at high temperature in vacuum with a continuous recording. The second chapter presents the results concerning the polycrystals of uranium. The application of the DORN method gives an activation energy for creep of 42 ± 2 Kc, above 550 Celsius degrees, equal to the activation energy for self-diffusion. The study of the variation of the creep rate with the applied stress and the metallographic observations of the deformation induced polygonization allow to conclude that the deformation is controlled by climb of dislocations. In the third chapter, the deformation above 550 Celsius degrees of single crystals of uranium (obtained by β → α change) is studied. The major deformation mode is slip. The preexisting polygonization of these single crystals is very stable and the disorientation between adjacent sub-grains increases with the deformation. The activation energy for creep is higher than that for polycrystals. These results show the influence of the polygonization due to the β → α change on the creep behaviour of α uranium. (authors) [fr

  2. Creep behaviour of heat resistant steels. Pt. 2

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Oehl, M.

    1993-01-01

    Creep data scatter bands of steels 2.25 Cr-1 Mo and 12 Cr-1 Mo-0.3 V were evaluated with the aid of model functions based on time temperature parameters. From the times to reach given strain values, mean isostrain curves in the stress time diagramme were calculated and therefrom, mean creep curves were derived. On this basis, creep equations were established, which include primary-, secondary- and tertiary-creep and are valid in the main range of application of each steel. Further, mean stress strain curves from hot tensile tests were used to describe the initial plastic strain in the creep equations. The values calculated with the established creep equations agreed relatively well with the correspondent original scatter band values from the creep tests. (orig.) [de

  3. Life assessment of Mod.9Cr-1Mo steel. Quantitative evaluation of microstructural damage in creep interrupted specimens and in creep-fatigue specimens

    International Nuclear Information System (INIS)

    Maruyama, Kouichi; Kato, Syoichi; Nagae, Yuji

    1999-02-01

    Boiler and steam turbine components in power generating plants are used under creep and creep-fatigue conditions. It is important to measure both creep and creep-fatigue damage of the components in order to assess the residual life of the components. Modified 9Cr-1Mo steel, a candidate material for steam generator in FBR, has a tempered martensitic lath structure. It was proposed in the second report that lath width in the lath structure is closely related to creep strain, and using this relation one can assess residual creep life of a structural component made of the steel. The objectives of this study are to investigate the change of the lath structure during creep.fatigue deformation, and to estimate creep strain by measuring area of cell composing the lath structure. The area of cell can be a better measure of creep deformation than the lath width. The lath structure is covered during creep-fatigue deformation. The lath structure becomes equiaxed cell structure under creep-fatigue more quickly compared with the lath structure recovered during creep. The lath structure recovered under creep-fatigue has a stationary value of the lath width determined by maximum stress at Nf/2. (Nf: number of cycles) If the recovery process of the lath structure can be investigated under creep-fatigue, the lath width can be a measure of the life assessment under creep-fatigue. Area of cell composing the lath structure increases with creep deformation and reaches a stationary value S s determined by creep stress. The rate of increase in the area is faster at a higher stress and temperature. A normalized change in the area of cell, ΔS/ΔS s , was introduced as a measure of the recovery process of martensitic lath structure. ΔS is the change in area of cell from the initial value S 0 , ΔS s is the difference between S s and S 0 . ΔS/ΔS s is uniquely related to creep strain independent of creep conditions. However, the scatter of data in ΔS/ΔS s -strain relation is wider than

  4. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Mathew, M.D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  5. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  6. Long-term creep test with finite elements

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1975-01-01

    Following a presentation of concrete creep, a brief summary of the direct and incremental calculation methods for long-term creep behaviour is given. In addition, a survey on the methods of the inner state variables is given which, on the one hand, gives a uniform framework for the various formulations of concrete creep, and on the other hand leads to a computable calculation method. Two examples on long-term creep behaviour illustrate the application field of the calculation method. (orig./LH) [de

  7. The investigation of expanded polystyrene creep behaviour

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey

    2017-01-01

    Full Text Available The results obtained in long-term testing under constant compressive stress of the cut from the Slabs EPS 50/100 and EPS 150 with the density ranging from 15 to 24 kg/m3, which were manufactured by the same manufacturer by foaming EPS solid granules (beads in closed volume. The creep strain of the above described specimens was used as a criterion for estimating the deformability of the EPS slabs under long-term compressive stress. It was measured using special stands EN 1606, maintaining constant stress during the fixed time interval tn=122 days. Creep strains were determined by the methods described in EN 1606 for constant stress σc=0.35σ10% (compressive stress σ10% was determined in accordance with EN 826:2013. The long-term compressive stress measurement error did not exceed 1 %, while the creep strain measurement error was not larger than 0,005 mm. The tests were conducted at the ambient temperature of (23±2°С and relative humidity of (50±5 %.The long-term constant compressive load σc=0.35σ10%. The method of mathematical and statistical experimental design optimization models taking into account the thickness of specimens is proposed to determine the creep compliance Ic (tn the creep strain εc (tn and predictive point estimate of creep strain εc (T. Graphical interpretation of the abstained models is also presented. It should be noted that the abstained equations may be used in practice for estimating the creep strains at time tn=122 days and predictive estimates of εc (T for the load time of 10 years.

  8. A phenomenological theory of transient creep

    International Nuclear Information System (INIS)

    Ajaja, O.; Ardell, A.J.

    1979-01-01

    A new creep theory is proposed which takes into account the strain generated during the annihilation of dislocations. This contribution is found to be very significant when recovery is appreciable, and is mainly responsible for the decreasing creep rate associated with the normal primary creep of class II materials. The theory provides excellent semiquantitative rationalization for the types of creep curves presented in the preceding paper. In particular, the theory predicts a change in the shape of the primary creep curve from normal to inverted as recovery becomes less important, i.e. as the applied stress and/or temperature decrease(s). It also predicts a minimum creep rate under certain circumstances, hence pseudo-tertiary behaviour. These different types of creep curves are predicted even though the net dislocation density decreases monotonically with time in all cases. Qualitative rationalization is presented for the inverted transient which always follows a stress drop in class II materials, as well as for the inverted primary and sigmoidal creep behaviour of class I solid solutions. (author)

  9. Creep crack growth in phosphorus alloyed oxygen free copper

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))

    2011-01-15

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  10. Creep crack growth in phosphorus alloyed oxygen free copper

    International Nuclear Information System (INIS)

    Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe

    2011-01-01

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  11. Creep behaviour of a polymer-based underground support liner

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-09-01

    All underground excavations (tunnels, mines, caverns, etc.) need a form of support to ensure that excavations remain safe and stable for the designed service lifetime. In the last decade, a new support material, thin spray-on liner (TSL) has started to take place of traditional underground surface supports of bolts and shotcrete. TSLs are generally cement, latex, polymer-based and also reactive or non-reactive, multi-component materials applied to the rock surface with a layer of few millimeter thickness. They have the advantages of low volume, logistics, rapid application and low operating cost. The majority of current TSLs are two-part products that are mixed on site before spraying onto excavation rock surfaces. Contrary to the traditional brittle supports, the high plastic behaviour of TSLs make them to distribute the loads on larger lining area. In literature, there is a very limited information exist on the creep behavior of TSLs. In this study, the creep behavior of a polymer-based TSL was investigated. For this purpose, 7-day cured dogbone TSL specimens were tested under room temperature and humidity conditions according to ASTM-D2990 creep testing standard. A range of dead weights (80, 60, 40, and 20 % of the tensile strength) were applied up to 1500 hours. As a result of this study, the time-dependent strain behavior of a TSL was presented for different constant load conditions. Moreover, a new equation was derived to estimate tensile failure time of the TSL for a given loading condition. If the tensile stress acting on the TSL is known, the effective permanent support time of the TSL can be estimated by the proposed relationship.

  12. Researches on Nutritional Behaviour in Romanian Black and White Primiparous Cows. Interruptions Number and their Duration in the Ration Consumption Time

    Directory of Open Access Journals (Sweden)

    Silvia Erina

    2012-10-01

    Full Text Available The study was carried out on 9 Romanian Black and White primiparous cows. The aim of this study was todetermine some aspect of nutritional behaviour of the cows. During the experiments, the following behaviour aspectswere determined: interruption number and their duration in the feed consumption time. Results showed that theadministration order of forages had an influence on the interruptions number, which was 0.74 less for hay in fibroussucculentorder (O1. For silage, the interruption number was 0.42 higher in fibrous-succulent order (O1. Betweenportion 1 (P1 and portion 3 (P3, the significant difference (p<0.05 was for interruptions duration, duringconsumption silage, in favour portion P1. Distinct significant differences (p<0.01 was observed for the interruptionnumber during consumption silage (0.95 sec. higher in P1 than in P3, for interruption duration (5.96 sec. higher inP1 than in P3. Between P2 and P3, significant difference (p<0.05 was observed for interruptions number duringconsumption silage and for average interruptions duration during consumption beet in favour to portion P2.Regarding the number of feedings per portion, always the differences were higher in the second feeding F1 than inthe first feeding F2.

  13. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  14. Creep equations for gas turbine materials

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Preussler, T.

    1988-01-01

    The long-term high-temperature deformation behaviour of typical gas turbine materials can be described on the basis of a differentiated evaluation which takes the results from thermal tension tests, short-term creep tests with continuous extension measurement, long-term creep tests with discontinuous extension measurement as well as annealing tests with contraction measurement into account. By this, especially the 'negative creeping' can be controlled. Equations were developed for individual materials of the type IN-738 LC, IN-939, IN-100 and FSX-414, which describe the high-temperature deformation behaviour with consideration to the primary and secondary creeping and partly the tertiary creeping. The equations are valid in the entire application-relevant range, i.e. up to 100 000 h in the case of industrial turbine materials. (orig.) [de

  15. The influence of Boron on creep-rupture behaviour of austenitic unstabilized and Nb-stabilized stainless steel X8CrNi 1613 in unirradiated and irradiated condition

    International Nuclear Information System (INIS)

    Sen, Susant Kumar.

    1976-10-01

    The present study deals with influence of boron on creep-rupture behaviour in unirradiated condition at 650 0 C along with precipitation behaviour, heat-treatment and recrystallization of unstabilized and stabilized steel. The results of creep-rupture tests on unirradiated specimens show that boron exerts a beneficial effect on the rupture life and ductility. Boron losses its beneficial effect on creep properties in unstabilized steel by prolong creeping. The magnitude of beneficial effect of Boron on creep properties depends upon the initial boron distribution which influences the number, size and distribution of the precipitates. Boron promotes the precipitation of type M 23 C 6 Carbides in the grain as well as at the grain boundary. Boron segregates in atomic form during slow cooling from austenitizing temperature. The recrystallization will be delayed by the presence of boron. The results of creep tests at 650 0 C shows that boron exerts a beneficial effect on creep life of irradiated steels. (orig./GSC) [de

  16. Effect of small cold forming on the creep behaviour of gas turbine blades made of Nimonic 90

    International Nuclear Information System (INIS)

    Keienburg, K.H.; Krueger, H.; Pickert, U.; Bautz, G.

    1987-01-01

    In order to obtain information on the material behaviour of Nimonic 90 with and without cold forming at the main temperature of use of 560deg C for large gas turbine blades, creep and relaxation samples were taken from the large volume foot of a gas turbine blade, part of which were tensioned by 3% cold in a tensile test machine. The selected cold forming was obtained as the upper limit from DMS measurements on a gas turbine blade when aligning. The negative effect of cold forming on the creep behaviour known from the literature for other γ hardened nickel base alloys was confirmed. The grain (matrix) is strengthened and the grain boundary is simultaneously weakened by cold forming. The material is also sensitized, so that fine separation occurs in the grain at the sliding bands and at the grain boundaries. Both circumstances contribute to the worsening of the creep behaviour, significantly for stresses below the technical elastic limit in the cold formed state. It follows, relative to large gas turbine blades, that: 1) Aligning operations must be restricted to the absolute minimum necessary and should be avoided completely if possible. 2) Aligned blades should be subjected to renewed solution annealing and separation hardening. 3.) Blades deformed in operation should also be subjected to renewed complete heat treatment. (orig.) [de

  17. Mechanisms of transient radiation-induced creep

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  18. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  19. Orthotropic creep in polyethylene glycol impregnated archaeological oak from the Vasa ship - Results of creep experiments in a museum-like climate

    Science.gov (United States)

    Vorobyev, Alexey; van Dijk, Nico P.; Kristofer Gamstedt, E.

    2018-02-01

    Creep in archaeological oak samples and planks from the Vasa ship impregnated with polyethylene glycol (PEG) has been studied in museum-like climate. Creep studies of duration up to three years have been performed in nearly constant relative humidity and temperature of the controlled museum climate. Cubic samples were subjected to compressive creep tests in all orthotropic directions. Additionally, the creep behaviour of planks with and without PEG and of recent oak was tested in four-point bending. The experimental results have been summarised and also compared with reference results from recent oak wood. The effect of variable ambient conditions on creep and mass changes is discussed. The experimental results of creep in the longitudinal direction showed deformations even for the low stresses. There is relatively much more scatter in creep behaviour, and not all samples showed linear viscoelastic response. The creep in radial and tangential directions of the cubes and the plank samples showed a strong dependency on the ambient conditions. Some samples showed expansion for decreasing moisture content, possibly caused by the thermal expansion of the PEG component. For the planks, increasing creep deformation was observed induced by changing ambient conditions. Such behaviour may be related to e.g. oscillations in ambient conditions and presence of PEG in the wood cell wall and cell lumen. The behaviour of PEG archaeological wood depends on the level of deterioration that occurred over centuries. However, although the findings presented here apply to this specific case, they provide a unique view on such wood.

  20. Creep characterization of type 316LN and HT-9 stainless steels by the K-R creep damage model

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sung Ho; Ryu, Woo Seog

    2001-01-01

    The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, k, m, λ, γ, and q were determined for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ=ε R /ε * and λ f =ε/ε R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depicted well the experimental data to the full lifetime and its damage curve showed a good agreement when γ=24. However for the HT-9 stainless steel, the values of λ and λ f were different as λ=6.2 and λ f =8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages

  1. Effect of heat treatment, with and without mechanical work, on the tensile and creep behaviour at 6000C of austenitic stainless steel stabilised with titanium

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1983-01-01

    The effect of various heat treatments, with and without mechanical work, on the microstructure and the tensile and creep behaviour at 600 0 C of the titanium stabilised austenitic stainless steel DIN 1.4970, as well as the effects of aging temperature, pre-strain and small boron additions on the creep behaviour of these steels are discussed. The most probable mechanism is suggested. (Author) [pt

  2. Recovery and Precipitate Analysis of 9 Pct Cr-1 Pct MoVNb Steel during Creep

    NARCIS (Netherlands)

    Kabadwal, A.; Tamura, M.; Shinozuka, K.; Esaka, H.

    The effect of tempering temperature and creep exposure on the microstructure of a modified 9Cr steel was investigated. Creep-interrupted specimens, including the grip portion, were investigated precisely using mainly X-ray and inductively coupled plasma (ICP) spectroscopy. After saturation of

  3. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...

  4. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  5. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  6. Critical survey of the neutron-induced creep behaviour of steel alloys for the fusion reactor materials programme

    International Nuclear Information System (INIS)

    Hausen, H.

    1985-01-01

    The differences between the irradiation environment of a fission reactor and that of a fusion reactor are respectively described in relation to the radiation damage found and expected in the two types of nuclear reactor. It is shown that the microstructure developing for instance in stainless steel alloys is almost invariant to whether the production rate of helium is high or low. The finding is valid up to neutron doses corresponding to about 60 dpa. For this reason, irradiation creep data obtained in fission reactors may be used, with caution, for predicting creep behaviour in fusion reactors.It was further recognized that irradiation creep performed with high energy particles from an accelerator, yields results which are comparable to those obtained in fission reactors. For this reason, simulation creep experiments are found to be valuable for the development of irradiation creep resistant materials using, for example, high energy electrons or protons. Such kind of experiments are performed in many laboratories. For irradiation doses larger than 60 dpa, predictions with respect to creep rates in fission and fusion reactors are difficult. In end-of-life tests, which concern swelling, ductility, tensile properties, rupture, fatigue and embrittlement, the presence of helium, due to its production rate being much higher in most materials exposed to 14 MeV neutrons than to fission neutrons, may be of great importance

  7. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  8. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  9. Effect of carbon activity on the creep behaviour of 21/4Cr, 1Mo steel in sodium

    International Nuclear Information System (INIS)

    Cordwell, J.E.; Charnock, W.; Nicholson, R.D.

    1979-02-01

    The creep endurance and creep cracking behaviour of 2 1/4Cr, 1Mo steel in sodium at 475 0 C have been studied at three different sodium carbon activities. Creep endurance was found to increase with increasing carbon activity of the sodium. Tests carried out in high carbon activity sodium were discontinued before fracture. Creep crack initiation displacement at notches decreased with increasing carbon activity, presumably as a result of notch tip carburisation. The plastic zones at the tips of blunt notches in specimens exposed in high carbon activity sodium were preferentially carburised. These observations were similar to those made previously on 9Cr, 1Mo steel. One difference detected metallographically was that in a high carburising environment uniform carburisation was obtained in the 2 1/4Cr, 1Mo steel specimens whereas carburisation gradients were observed in the 9Cr, 1Mo steel. Creep crack propagation rates for given notch opening displacement rates in low and intermediate carbon activity sodium were indistinguishable. However, the strenthening that resulted from the mild carburisation of the specimen in the intermediate carbon activity sodium caused slower notch opening displacement rates and crack propagation rates than in the low carbon activity sodium, when the rates were compared at the same crack length. (author)

  10. The influence of long-term annealing at room temperature on creep behaviour of ECAP-processed copper

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Kvapilová, Marie; Blum, W.; Sklenička, Václav

    2017-01-01

    Roč. 188, FEB (2017), s. 235-238 ISSN 0167-577X R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Equal-channel angular pressing (ECAP) * Ultrafine-grained microstructure * Creep behaviour * Microstructure stability Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.572, year: 2016

  11. Influence of dynamic sodium environment on the creep-fatigue behaviour of Modified 9Cr-1Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Kannan, R.; Ganesan, V.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Mathew, M.D.; Bhanu Sankara Rao, K.

    2011-01-01

    Highlights: → The effects of dynamic sodium on the CFI behaviour of Mod. 9Cr-1Mo steel has investigated. → The cyclic stress response of Mod. 9Cr-1Mo steel under flowing sodium environment is similar to that of air environment. → The creep-fatigue endurance of the alloy is found to decrease with introduction of hold time and with increase in the duration of hold time and the factor of life increase in sodium compared to air environment is reduced with increase in hold time. → In contrast to air environment, tensile holds were found to be more damaging than compression hold in sodium environment. → Design rules based on air environment can be safely applied for the components operating in sodium environment. - Abstract: The use of liquid sodium as a heat transfer medium for sodium-cooled fast reactors (SFRs) necessitates a clear understanding of the effects of dynamic sodium on low cycle fatigue (LCF), creep and creep-fatigue interaction (CFI) behaviour of reactor structural materials. Mod. 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of sodium cooled fast reactors. The steam generator has a design life of 30-40 years. The effects of dynamic sodium on the LCF and CFI behaviour of Mod. 9Cr-1Mo steel have been investigated at 823 and 873 K. The CFI life of the steel showed marginal increase under flowing sodium environment when compared to air environment. Hence, the design rules for creep-fatigue interaction based on air tests can be safely applied for components operating in sodium environment. This paper attempts to explain the observed LCF and CFI results based on the detailed metallography and fractography conducted on the failed samples.

  12. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  13. Regenerative heat treatments for the extension of the creep life of the superalloy IN-738

    International Nuclear Information System (INIS)

    Stevens, R.A.; Flewitt, P.E.J.

    1979-01-01

    Uniaxial creep tests have been performed on the cast nickel-base superalloy IN-738 at 1023K and 1123K. Microstructural damage occurring during creep has been characterised using transmission electron microscopy of surface and extraction replicas. Considerable coarsening of the γ' precipitates occurs during creep causing a progressive loss of creep strength. Intermediate heat treatment of interrupted specimens regenerates a microstructure similar to the original, and on re-testing significant creep life extensions are observed. These heat treatments do not completely recover the creep life due to the development of grain boundary cavitation. Additional heat treatments were performed under a superimposed hydrostatic pressure of 138 MPa to remove these cavities. (orig.) [de

  14. Creep deformation and rupture behaviour of 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Mythili, R.; Chandravathi, K.S.; Saroja, S.; Mathew, M.D.

    2012-01-01

    Highlights: ► Creep tests on broad temperature and stress ranges were carried out. ► Microstructural instability on creep and thermal exposures were studied using TEM. ► Creep damage tolerance factor of the material was estimated. - Abstract: This paper presents the creep deformation and rupture behaviour of indigenously produced 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic (RAFM) steel for fusion reactor application. Creep studies were carried out at 773, 823 and 873 K over a stress range of 100–300 MPa. The creep deformation of the steel was found to proceed with relatively shorter primary regime followed by an extended tertiary regime with virtually no secondary regime. The variation of minimum creep rate of the material with applied stress followed a power law relation, ε m = Aσ n , with stress exponent value ‘n’ decreasing with increase in temperature. The product of minimum creep rate and creep rupture life was found to obey the modified Monkman–Grant relation. The time to onset of tertiary stage of deformation was directly proportional to rupture life. TEM studies revealed relatively large changes in martensitic sub-structure and coarsening of precipitates in the steel on creep exposure as compared to thermal exposure. Microstructural degradation was considered as the prime cause of extended tertiary stage of creep deformation, which was also reflected in the damage tolerance factor λ with a value more than 2.5. In view of the microstructural instability of the material on creep exposure, the variation of minimum creep rate with stress and temperature did not obey Dorn's equation modified by invoking Lagneborg and Bergman's concepts of back stress.

  15. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  16. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  17. Effects of product form and boron addition on the creep damage in the modified Hastelloy X alloys in a simulated HTGR helium gas environment

    International Nuclear Information System (INIS)

    Nakasone, Yuji; Tanabe, Tatsuhiko; Tsuji, Hirokazu; Nakajima, Hajime.

    1992-01-01

    The present paper investigates early-stage-creep damage of Hastelloy XR and XR-II alloys, modified versions of Hastelloy X alloy, which have been developed in Japan as most promising candidate structural alloys for Japanese high-temperature gas-cooled reactors (HTGRs). Creep tests were made on Hastelloy XR forging, tube and XR-II tube at 1,123 to 1,273 K in a simulated HTGR helium gas environment. The tests were interrupted at different strain levels of up to 5 % in order to evaluate creep damage via intergranular voids. The void sizes along grain boundaries and the A-parameter, the ratio of the number of damaged grain boundaries, on which one or more voids are found, to that of the total grain boundaries observed are used in order to evaluate creep damage. Statistical analysis of the A-parameter as well as the void sizes reveals that the values of the parameter show wide variations and follow the Weibull distribution, reflecting spatial randomness of the voids. The void sizes along grain boundaries, on the other hand, follow the log-normal distribution. The maximum void size d max and the mean value of the A-parameter A m are calculated and plotted against interruption creep strain ε int . The resultant d max vs. ε int and A m vs. ε int diagrams show that Hastelloy XR forging had suffered more damage than Hastelloy XR tube; nevertheless, the forging has longer interruption life, or the time to reach a given interruption creep strain. The result indicates that grains may have been deformed more easily in Hastelloy XR in the form of tube than in the form of forging. The diagrams also imply that the addition of boron has suppressed the nucleation as well as the growth of voids and thus has brought about longer interruption life of Hastelloy XR-II. (author)

  18. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  19. Towards self-healing creep resistant steels

    NARCIS (Netherlands)

    Van der Zwaag, S.; Zhang, S.; Fang, H.; Bruck, E.; Van Dijk, N.H.

    2016-01-01

    We report the main findings of our work on the behaviour of binary Fe-Cu and Fe-Au model alloys designed to explore routes to create new creep resistant steels having an in-built ability to autonomously fill creep induced porosity at grain boundaries. The alloying elements were selected on the basis

  20. Recent Advances in Creep Modelling of the Nickel Base Superalloy, Alloy 720Li.

    Science.gov (United States)

    Harrison, William; Whittaker, Mark; Williams, Steve

    2013-03-20

    Recent work in the creep field has indicated that the traditional methodologies involving power law equations are not sufficient to describe wide ranging creep behaviour. More recent approaches such as the Wilshire equations however, have shown promise in a wide range of materials, particularly in extrapolation of short term results to long term predictions. In the aerospace industry however, long term creep behaviour is not critical and more focus is required on the prediction of times to specific creep strains. The current paper illustrates the capability of the Wilshire equations to recreate full creep curves in a modern nickel superalloy. Furthermore, a finite-element model based on this method has been shown to accurately predict stress relaxation behaviour allowing more accurate component lifing.

  1. Examination of the creep behaviour of microstructurally unstable ferritic steels

    International Nuclear Information System (INIS)

    Williams, K.R.

    1981-01-01

    The inherent microstructural instability of 1/2Cr 1/2Mo 1/4V; 21/4Cr 1Mo and carbon steels creep tested or service exposed at low stresses is demonstrated. Measurements of important dispersion parameters have been made during creep life and have been found to follow normal coarsening kinetics. Using the measured time dependent change of the dispersion parameters, a dislocation source controlled model for recovery creep is used and further developed. The model allows the calculation of the Manson-Haferd plot of log (time to failure) against temperature for unstable steels. In addition, a classification of material stability is proposed, based on the ratio of time to fracture, t(sub f), and time to tertiary creep, tsub(t). This classification enables estimates of remaining creep life to be based either on well established criteria for stable materials or modifications of these criteria for unstable steels. (author)

  2. Multiaxial creep of tubes of Alloy 800 and Alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Schubert, F.; Nickel, H.

    1989-01-01

    The deformation behaviour under multiaxial loading at temperature higher than 800 deg. C is strongly controlled by creep. For dimensioning and inelastic analysis the use of v. Mises theory and Norton's creep law for stationary creep are demonstrated for different combination of internal pressure and axial or torsional stress or strains. The experimental results are in satisfactory agreement with the theoretical predicted deformation behaviour if values for the coefficient k and n in Norton's creep law are used, which are close to the real creep resistance in the component. (author). 11 refs, 12 figs, 2 tabs

  3. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  4. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  5. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  6. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948); Comportamiento a la fluencia lenta del acero X6CrNi 1811 (1.4948)

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R R; Schirra, M; Rivas, M de la; Seith, B

    1977-07-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10{sup 4}h at high temperature in order to extrapolate up to 10{sup 5} h. for reactor operating temperatures. (Author) 14 refs.

  7. The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2007-12-01

    Full Text Available The study gives a summary of the results of industrial and laboratory investigations regarding an assessment of the thermal fatigue behaviour of creep-resistant austenitic cast steel. The first part of the study was devoted to the problem of textural stresses forming in castings during service, indicating them as a cause of crack formation and propagation. Stresses are forming in carbides and in matrix surrounding these carbides due to considerable differences in the values of the coefficients of thermal expansion of these phases. The second part of the study shows the results of investigations carried out to assess the effect of carbon, chromium and nickel on crack resistance of austenitic cast steel. As a criterion of assessment the amount and propagation rate of cracks forming in the specimens as a result of rapid heating followed by cooling in running water was adopted. Tests were carried out on specimens made from 11 alloys. The chemical composition of these alloys was comprised in a range of the following values: (wt-%: 18-40 %Ni, 17-30 %Cr, 1.2-1.6%Si and 0.05-0.6 %C. The specimens were subjected to 75 cycles of heating to a temperature of 900oC followed by cooling in running water. After every 15 cycles the number of the cracks was counted and their length was measured. The results of the measurements were mathematically processed. It has been proved that the main factor responsible for an increase in the number of cracks is carbon content in the alloy. In general assessment of the results of investigations, the predominant role of carbon and of chromium in the next place in shaping the crack behaviour of creep-resistant austenitic cast steel should be stressed. Attention was also drawn to the effect of high-temperature corrosion as a factor definitely deteriorating the cast steel resistance to thermal fatigue.

  8. Creep and stress rupture behaviour of zircaloy-2 and Zr-2.5% Nb alloy tubes at 573 K

    International Nuclear Information System (INIS)

    Laha, K.; Bhanu Sankara Rao, K.; Chandravathi, K.S.; Mannan, S.L.

    1992-01-01

    Zirconium alloys are extensively used for coolant tubes of pressurised heavy water reactors. The choice of these materials is based on their good corrosion resistance in water, low capture cross section for thermal neutrons and good mechanical properties. In this paper the results of an investigation performed on the creep and rupture behaviour of indigenously produced zircaloy-2 and Zr-2.5% Nb alloy are presented. Samples for creep testing were cut longitudinally from finished pressure tubes. Creep rupture tests were carried out in air under constant load conditions at 300 C employing five stress levels in the range 300-360 MPa. Zr-2.5% Nb alloy displayed higher rupture lives at all stress levels compared to zircaloy-2. Steady state creep rate of Zr-2.5%Nb was lower than that zircaloy-2 at identical stress levels. In the stress range of the experiments, the dependence of the steady state creep rate (ε s ) on applied stress (σ) for both the alloys could be represented by a power law, ε s =A σ n The stress sensitivity (n) for Zr-2.5% Nb was lower than that of zircaloy-2. For both the alloys the time to creep rupture t r was found related to the steady state creep rate through the modified Monkman-Grant relation (ε s ) α . t r = constant. Similar value of α was obtained for both the materials. Zr-2.5%Nb exhibited higher ductility (% elongation to rupture) compared to zircaloy-2 at stress levels ≥ 320 MPa. At lower stresses significant difference in ductility was not noticed. Percentage reduction in area was lower in Zr-2.5%Nb at all stress levels indicating better resistance for necking. The time for onset of tertiary was longer for Zr-2.5% Nb alloy. The proportion of life spent by Zr-2.5% Nb in steady state creep regime was higher compared to that of zircaloy-2. Metallographic investigations on longitudinal sections in both the alloys showed large number of intragranular pores close to the fracture surface. A few number of cracks which are characteristic of

  9. Low stress creep of stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.; Baker, C.

    1976-06-01

    The creep of 20%Cr, 25%Ni, Nb stainless steel has been examined at temperatures from 675 to 775 0 C at sheer stressed below 13 MPa and grain sizes from 6 to 20μm. The results have indicated that the initial creep rates were linearly dependent upon stress but with a threshold stress below which no creep occurred, i.e. Bingham behaviour; in addition, the creep activation energy at small strains was substantially lower than the lattice self-diffusion value and the initial creep rates were approximately related to the grain size through an inverse cube relation. It has been concluded that at low strains (approaching the initial elastic deflection) the creep mechanism was probably that of grain boundary diffusion creep (Coble, 1963) and this is further supported by the close agreement between the observed and theoretically predicted creep rate values. Steady-state creep rates were not observed; initially the creep rates fell rapidly with strain after which a more gradual decrease occurred. Whilst the creep rate - stress relationship continued to be of a Bingham form, the progressive reduction in creep rate with strain was found to be mainly attributable to an increase in the effective viscosity, threshold stress effects being generally of secondary importance. A model has been proposed which explains the initial creep rates as being due to Cable creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. (author)

  10. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  11. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  12. Interrupting long periods of sitting: good STUFF

    Directory of Open Access Journals (Sweden)

    Rutten Geert M

    2013-01-01

    Full Text Available Abstract There is increasing evidence that sedentary behaviour is in itself a health risk, regardless of the daily amount of moderate to vigorous physical activity. Therefore, sedentary behaviour should be targeted as important health behaviour. It is known that even relatively small changes of health behaviour often require serious efforts from an individual and from people in their environment to become part of their lifestyle. Therefore, interventions to promote healthy behaviours should ideally be simple, easy to perform and easily available. Since sitting is likely to be highly habitual, confrontation with an intervention should almost automatically elicit a reaction of getting up, and thus break up and reduce sitting time. One important prerequisite for successful dissemination of such an intervention could be the use of a recognisable term relating to sedentary behaviour, which should have the characteristics of an effective brand name. To become wide spread, this term may need to meet three criteria: the “Law of the few”, the “Stickiness factor”, and the “Power of context”. For that purpose we introduce STUFF: Stand Up For Fitness. STUFF can be defined as “interrupting long sitting periods by short breaks”, for instance, interrupting sitting every 30 min by standing for at least five minutes. Even though we still need evidence to test the health-enhancing effects of interrupted sitting, we hope that the introduction of STUFF will facilitate the testing of the social, psychological and health effects of interventions to reduce sitting time.

  13. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere....

  14. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  15. Creep modelling of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Kim, D. H.; Ryu, W. S.

    2000-01-01

    Creep curve for type 316LN stainless steel was modelled by using the K-R damage equations. Seven coefficients used in the model, i. e., A, B, κ, m, λ, r, and q were determined from theoretical and calculated data, and their meanings were also analyzed. To quantify damage formation parameter(ω), cavity amount was measured on the crept specimen taken from an interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ which is regarded as a creep tolerance feature of a material increased with increase of creep strain. Theoretical curve in λ= 3.0 well coincided with an experimental one to the full level of lifetime. Master curve between damage parameter and life fraction matched with the theoretical one in exponent γ= 24 value, which decreased with increase of parameter ω which increased rapidly after 80% life fraction. It is concluded that K-R equation was reliable as the modelling equation for 316LN stainless steel. Coefficient data obtained from 316LN stainless steel can be utilized for remaining life prediction of operating material

  16. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandan, E-mail: chandanpy.1989@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Mahapatra, M.M. [School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751013 (India); Kumar, Pradeep; Vidyrathy, R.S. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Srivastava, A. [Senior Engineer, HEEP Section, BHEL Haridwar (India)

    2017-05-17

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  17. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    International Nuclear Information System (INIS)

    Pandey, Chandan; Mahapatra, M.M.; Kumar, Pradeep; Vidyrathy, R.S.; Srivastava, A.

    2017-01-01

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  18. Diffusion creep and its inhibition in a stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.

    1977-01-01

    The creep of 20% Cr, 25% Ni, Nb stainless steel was examined at low stresses and temperatures around 0.55 T/sub m/. The initial creep behaviour was consistent with the Coble theory of grain boundary diffusion creep; however, steady state creep was not observed and the creep rates quickly fell below the Coble theoretical values although they still remained greater than the Herring--Nabarro predictions. This reduction in creep rate was attributable to an increase in the effective viscosity of the steel rather than to any change in threshold stress. A model is proposed which explains the initial creep rates as being due to Coble creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. 11 figures

  19. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  20. In-pile creep behaviour of Zry-4 and ZrNb3Sn1 cladding under uniaxial and biaxial stress

    International Nuclear Information System (INIS)

    Boehner, G.; Wildhagen, B.; Wilhelm, H.

    1987-01-01

    An irradiation programme - started in 1977 - was performed at the research reactor FRG-2 at Geesthacht, Germany, as a joint project of GKSS and KWU in order to study the in-pile creep behaviour of zirconium alloy cladding tubes of PWR fuel rods. The test objective was to establish a data base which allows refined modelling of the in-pile creep phenomenon. A wide test matrix was realized in which each of the precisely monitored test conditions (hoop stress, temperature, fast neutron flux) was varied separately. Different cladding materials (Zircaloy-4 and Zirconium-Niob-Tin alloy ZrNb3Sn1) were subjected to those varying test conditions. Cladding tube specimens of 10.75 mm outer diameter were irradiated in test capsules under various stress conditions and levels up to approx. 6000 h, at temperatures ranging from 300 0 C to 400 0 C and fast neutron flux (E > 1 MeV) of approx. 3x10 13 cm -2 .s -1 . Diametrical and/or axial creep deformation of all tubes were measured in the Hot Cells several times in the course of the tests. In order to extract the irradiation induced creep strain some out-pile experiments were carried out under the very same test conditions as the in-pile tests concerned. (orig./GL)

  1. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  2. A Study of the Creep Effect in Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Thorborg, Knud; Tinggaard, Carsten

    2008-01-01

    This paper investigates the creep effect, the visco elastic behaviour of loudspeaker suspension parts, which can be observed as an increase in displacement far below the resonance frequency. The creep effect means that the suspension cannot be modelled as a simple spring. The need for an accurate...... creep model is even larger as the validity of loudspeaker models are now sought extended far into the nonlinear domain of the loudspeaker. Different creep models are investigated and implemented both in simple lumped parameter models as well as time domain non-linear models, the simulation results...

  3. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  4. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  5. The role of particle ripening on the creep acceleration of Nimonic 263 superalloy

    Directory of Open Access Journals (Sweden)

    Angella Giuliano

    2014-01-01

    Full Text Available Physically based constitutive equations need to incorporate the most relevant microstructural features of materials to adequately describe their mechanical behaviour. To accurately model the creep behaviour of precipitation hardened alloys, the value and the evolution of strengthening particle size are important parameters to be taken into account. In the present work, creep tests have been run on virgin and overaged (up to 3500 h at 800 ∘C Nimonic 263, a polycrystalline nickel base superalloy used for combustion chambers of gas turbines. The experimental results suggest that the reinforcing particle evolution is not the main reason for the creep acceleration that seems to be better described by a strain correlated damage, such as the accumulation of mobile dislocations or the grain boundary cavitation. The coarsened microstructure, obtained by overageing the alloy at high temperature before creep testing, mainly influences the initial stage of the creep, resulting in a higher minimum creep rate and a corresponding reduction of the creep resistance.

  6. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  7. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  8. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J H; Hurst, R C [EC JRC IAM, Petten (Netherlands); Bregani, F [ENEL, Milan (Italy)

    1999-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  9. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J.H.; Hurst, R.C. [EC JRC IAM, Petten (Netherlands); Bregani, F. [ENEL, Milan (Italy)

    1998-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  10. An analysis of irradiation creep in nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Hacker, P.J.

    2002-01-01

    Nuclear graphite under load shows remarkably high creep ductility with neutron irradiation, well in excess of any strain experienced in un-irradiated graphite (and additional to any dimensional changes that would occur without stress). As this behaviour compensates, to some extent, some other irradiation effects such as thermal shutdown stresses, it is an important property. This paper briefly reviews the approach to irradiation creep in the UK, described by the UK Creep Law. It then offers an alternative analysis of irradiation creep applicable to most situations, including HTR systems, using AGR moderator graphite as an example, to high values of neutron fluence, applied stress and radiolytic weight loss. (authors)

  11. Long term creep strength of silver alloyed copper

    International Nuclear Information System (INIS)

    Auerkari, P.; Sandlin, S.

    1988-12-01

    The long term creep strength of silver alloyed copper has been estimated using literature creep data for materials with less than 0.1% Ag. The available data was very limited, and it was necessary to test the differences between various data sets and extrapolation methods. Assuming constant stress level and constant or changing temperature, the creep behaviour has been assessed using mainly Larson-Miller and theta-projection approaches. The calculations indicate that the different extrapolation methods and data sources can yield strongly different life estimates. With the available incomplete data the theta projection method may give the conservative life predictions, whereas the Larson-Miller approach grossly overestimates creep life. It is recommended that supplementary data is acquired to better assess the long term creep properties of canisters in repository conditions

  12. Novel experiments to characterise creep-fatigue degradation in VHTR alloys

    International Nuclear Information System (INIS)

    Simpson, J.A.; Wright, J.K.; Wright, R.N.

    2015-01-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterise creep-fatigue behaviour of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasise the fatigue portion of the total damage and does not necessarily represent the behaviour of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950 deg. C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasise the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds. (authors)

  13. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  14. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  15. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  16. Creep properties of welded joints in OFHC copper for nuclear waste containment

    International Nuclear Information System (INIS)

    Ivarsson, B.; Oesterberg, J.O.

    1988-08-01

    In Sweden it has been suggested that copper canisters are used for containment of spent nuclear fuel. These canisters will be subjected to temperatures up to 100 degrees C and external pressures up to 15 MPa. Since the material is pure (OFHC) copper, creep properties must be considered when the canisters are dimensioned. The canisters are sealed by electron beam welding which will affect the creep properties. Literature data for copper - especially welded joints - at the temperatures of interest is very scare. Therefore uniaxial creep tests of parent metal, weld metal, and simulated HAZ structures have been performed at 110 degrees C. These tests revealed considerable differences in creep deformation and rupture strength. The weld metal showed creep rates and rupture times ten times higher and ten times shorter, respectively, than those of the parent metal. The simulated HAZ was equally strongen than the parent metal. These differences were to some extent verified by results from creep tests of cross-welded specimens which, however, showed even shorter rupture times. Constitutive equations were derived from the uniaxial test results. To check the applicability of these equations to multiaxial conditions, a few internal pressure creep tests of butt-welded tubes were performed. Attemps were made to simulate their creep behaviour by constitutive equations were used. These calculations failed due to too great differences in creep deformation behaviour across the welded joint. (authors)

  17. Relationship between strain and central deflection in small punch creep specimens

    International Nuclear Information System (INIS)

    Yang Zhen; Wang Zhiwen

    2003-01-01

    Acquiring information about creep strain directly from small punch creep tests is difficult because the deformation behaviour of the small punch specimen is complicated. A routine is suggested in the present paper to treat this problem indirectly. Based on a finite element analysis, it is proposed that the relationship of central deflection δ to central creep strain ε c of a specimen subjected to creep can be represented approximately by the relationship of central deflection δ to central (elastic-plastic) strain ε of a specimen not subjected to creep. With this hypothesis, the δ∼ε c relation of the small punch creep specimen is obtained by resorting to a rigid-plastic membrane stretch forming model. Finally, small punch creep test results are used to evaluate creep strain and creep strain rate by taking advantage of this δ∼ε c relation

  18. Creep buckling: an experiment, an 'exact' solution and some simple thoughts

    International Nuclear Information System (INIS)

    Heller, P.; Anderson, R.G.

    1986-01-01

    The paper presents attempts to analyse and understand a carefully conducted creep buckling experiment. The analysis was conducted using the ABAQUS Finite Element Code coupled to a number of plausible creep laws. The results show good agreement between ABAQUS runs and experimental deflections but it is difficult to reproduce the early loads. A simple model of buckling analysis for n-power creep laws is derived as an aid to understanding the development of the deflections for non-linear creep laws. In particular, the model suggests why deflections develop so rapidly and how the creep deflection development relates to the elastic behaviour. (author)

  19. Unaxial stress relaxation and creep behaviour in weldments of the pressure vessel steel A533B between 600 and 640 degree C

    International Nuclear Information System (INIS)

    Otterberg, R.

    1979-10-01

    In order to predict the stress reduction during stress relief heat treatment in welded joints of the pressure vessel steel A533B, uniaxial stress relaxation as well as creep tests have been performed. The specimens were isothermally stress relaxed between 600 and 640 degree C from initial stresses corresponding to specimen elongations of 0.25, 0.5 and 0.2 percent. The stress relaxation results are excellently described by a Norton relationship. The magnitude of the initial stress has been found to affect the stress relaxation in the beginning of the tests, but at times longer than one hour the effect is very small. Creep strain data from creep tests in the actual temperature interval was converted to describe stress relaxation behaviour as well. The results will be used in a forthcoming study to predict the multiaxial stress reduction in thick weldments of A533B. (author)

  20. On the derivation of a creep law from isothermal bore hole convergence

    International Nuclear Information System (INIS)

    Prij, J.; Mengelers, J.H.J.

    1981-01-01

    Some analytical as well as numerical aspects relevant to the creep behaviour of cavity-like structures in salt domes are presented. Two finite element models are presented for the modelling of the bore hole configuration, both dealing with the problem of a correct choice of the amount of salts which must be taken into account. A numerical procedure is suggested to derive a material creep law from measured bore hole convergence. This procedure is applied on convergence measurement in the ASSE mine (Germany) leading to a secondary creep law (depsilon/dt)sup(c)=8.8x10 -11 sigmasup(5.5) (sigma in MPa, (depsilon/dt)sup(c) in days -1 ) which describes the transient convergence behaviour correctly. Some questions concerning the uniqueness of the derived creep law are discussed

  1. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  2. Behavior of X 6 CrNi 18 11 under sequential testing of creep and fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Husslage, W [TNO, Apeldoorn (Netherlands); Breitling, H [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    The behaviour of the austenitic stainless steel X 6 CrNi 18 11 with about 0.05% C, 18% Cr and 11% Ni was investigated under combined creep and cyclic loading at 550 degrees C. Base metal specimens and specimens containing a weld were tested by: prior cyclic loading followed by creep loading to rupture; prior creep loading followed by cyclic loading to rupture; alternating periods of creep and cyclic loading to rupture. The results were evaluated using the linear cumulative fatigue and creep damage rule. The damage factor D determined on basis of the respective behaviour of base material and welds varied between 0.5 and 1.6 if specimens containing a weld defect were not taken into consideration. Weld defects, which had predominantly an influence on fatigue, lowered the damage factor D up to 0.2. Evaluation of the results on welds with the pure creep and fatigue behaviour of base material shows damage factors between 0.4 and 0.9. By the high margins between allowable creep and fatigue life and life measured with specimens, the cumulative damages of base material and welded joints are much better than the allowable values according to CCI 1592 of the ASME Boiler and Pressure Vessel Code. (author)

  3. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  4. Micromechanics of intergranular creep failure under cyclic loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    boundaries are modelled individually. The model incorporates power-law creep of the grains, viscous grain boundary sliding between grains as well as the nucleation and growth of grain boundary cavities until they coalesce and form microcracks. Study of a limiting case with a facet-size microcrack reveals....... The analyses provide some new understanding that helps to explain the sometimes peculiar behaviour under balanced cyclic creep. Copyright (C) 1996 Acta Metallurgica Inc....

  5. A comparative study of creep rupture behaviour of modified 316L(N) base metal and 316L(N)/16-8-2 weldment in air and liquid sodium environments

    International Nuclear Information System (INIS)

    Mishra, M.P.; Mathew, M.D.; Mannan, S.L.; Rodriguez, P.; Borgstedt, H.U.

    1997-01-01

    Creep rupture behaviour of modified type 316L(N) stainless steel base metal and weldments prepared with 16-8-2 filler wire has been investigated in air and flowing sodium environments at 823 K. No adverse environmental effects have been noticed due to sodium on the creep rupture behaviour of these weldments for tests up to 10 000 h. Rupture lives of the weldment were higher in the sodium environment than those in air. Rupture lives of the weldments were found to be lower than those of the base metal by a factor of two to five in both air and sodium environments. Minimum creep rates were essentially the same for the weldment as well as for the base metal in both the environments, whereas rupture strain was usually lower for the weldment than that of the base metal. The reduction in area of the weldment specimens increased with increase in stress. Failures in the specimens of weldments were in the weld metal region. Microstructural studies carried out on failed weldment specimens after the creep rupture tests revealed extensive cavitation in the weld metal region in air tested specimens predominantly at the austerite/δ-ferrite interphase. However, no cavitation was observed in specimens tested in sodium. (author)

  6. Creep crack growth verification testing in alloy 800H tubular components

    International Nuclear Information System (INIS)

    Hunter, C.P.; Hurst, R.C.

    1992-01-01

    A method for determining the creep crack growth, CCG, and stress rupture behaviour of Alloy 800H tubular components containing longitudinal notches at 800deg C is described. The presence of the notch is found to systematically weaken the tube, the degree of weaking dependent upon the notch length and depth. The creep crack growth rates, determined from a specially adapted potential drop technique are compared with those obtained from conventional compact tension type specimens. Using the stress intensity factor, K 1 , and the C * parameter as the basis of comparison it is found that the latter gives excellent correlation between the specimen and component behaviour. Finally attention is drawn to the potential dangers of predicting the component creep crack growth behaviour from the data obtained using conventional specimens for a structure sensitive material such as Alloy 800H and conversely to the advantages of the component type CCG tests developed in the present work. (orig.)

  7. Contribution of uranium diffusion on creep behaviour of uranium dicarbide

    International Nuclear Information System (INIS)

    Kurasawa, T.; Kikuchi, T.

    1976-01-01

    Compressive creep tests of uranium dicarbide (UC 2 ) have been conducted. The general equation best describing the creep rate over the temperature range 1200-1400 0 C and over the stress range 2000-15000psi is represented by the sum of two exponential terms d(epsilon)/dt=A(sigma/E)sup(0.9) exp(-39.6+- 1.0/RT) + B(sigma/E)sup(4.5) exp(-120.6+-1.7/RT), where pre-exponential factors are A(sigma/E)sup(0.9)=12.3/h at low stress region (3000 psi) and B(sigma/E)sup(4.5)=3.17x10 13 /h at high stress region (9000 psi), and the activation energy is given in kcal/mol. Each term of this experimental equation indicates that important processes occurring during the steady state creep are grain-boundary diffusion of the Coble model at low stress region and the Weertman dislocation climb model at high stress region. Both mechanisms are related to migration of uranium vacancies. (Auth.)

  8. The anisotropic creep behaviour of zircaloy-4 fuel cladding at 1073 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Bowden, J.; Shewfelt, R.S.W.

    1982-04-01

    The anisotropy coefficients (F, G and H) of Hill's equation, suitably modified for creep deformation, have been determined for Zircaloy-4 fuel cladding from steady-state creep tests at an elevated temperature. Creep specimens were subjected to both uniaxial and biaxial loads (via internal pressure) at 1073 K and the strain measured concurrently in the axial and tangential directions. It has been found that Zircaloy-4 fuel cladding is almost, but not completely, isotropic at 1073 K; the values of F, G and H are 0.57, 0.48 and 0.45 respectively

  9. Creep-rupture properties of type 304 austenitic stainless steel at elevated temperatures

    International Nuclear Information System (INIS)

    Zulkifli Ahyak; Esah Hamzah; Abdul Aziz Mohamad.

    1987-08-01

    The creep behaviour of a type 304 stainless steel has been examined at temperatures of 450 to 750 0 C under uniaxial initial stress of 200 Mpa. It was found that carbide precipitation within grain boundary, recrystallization and grain growth occured during creep at above 550 0 C. It is apparent that the creep-resistant of the steel is influenced by grain boundaries. (author)

  10. The influence of thermomechanical treatment on the creep behaviour of DIN 1.4970 austenitic stainless steel at 973 K

    International Nuclear Information System (INIS)

    Zahra, A.A.A.; Schroeder, H.

    1981-04-01

    The creep-rupture behaviour of a Type DIN 1.4970 austenitic stainless steel has been investigated at 973 K (700 0 C) in a high vacuum for three conditions of thermomechanical treatment and a wide range of applied stresses. This type of steel is a candidate for use in the German SNR-300 Fast Breeder Reactor where it shall be used after a 13% cold-working treatment and subsequent aging at 1073 K (800 0 C) for 24 hours ( standard condition ). As an alternative, two other conditions were also investigated, namely aged at 1073 K (800 0 C) for 24 hours before the cold-working (condition 2) and cold worked only (condition 1). Because of various experimental efforts in this laboratory and elsewhere to study helium induced embrittlement effects in α-implanted foil specimens, all tests were performed using foil specimens of 105 μm thickness which were solution annealed at 1373 K (1100 0 C) before the above thermomechanical treatments were applied. The rupture lives and the minimum creep rates were found to be highly dependent on the applied stresses. The treatment of condition 1 material yielded a product as strong as the standard condition 3, while the condition 2 material was less creep resistant. Structural changes as well as fractography were followed using metallographic, transmission and scanning electron microscope techniques. Transgranular ductile fracture was clearly observed in all three conditions. TEM investigations showed that dispersive TiC precipitates were present in the matrix of condition 3 material before creep testing contrary to condition 1 and 2 material. In condition 1 the TiC dispersion was already found after short creep times, while no dispersive TiC precipitates were found in condition 2 material in every test condition. (orig.) [de

  11. A constitutive equation for creep fracture under constant, variable or cyclic positive stress

    International Nuclear Information System (INIS)

    Snedden, J.D.

    1977-01-01

    Prediction of creep fracture of metals under variable stress is one of the most difficult problems of applied mechanics. At NEL this problem is under investigation using an approach in which creep is represented by two macroscopic components: an anelastic (reversible) component and a plastic (irreversible) component. Under variable loading conditions, the anelastic component's behaviour will be most important and, if an experimental programme is logically planned, the structural processes responsible will be implicit in the resulting constitutive equation describing the material's behaviour. The present paper deals with the development and application of a constitutive equation for creep fracture of RR58 Aluminium alloy at 180 0 C under variable stress and such a constitutive equation can be extrapolated to cover long-time behaviour just as with conventional constant stress creep fracture equations. Constant stress, in fact, is one of the boundary conditions of the general constitutive equation, representing zero prior damage. The other boundary condition is that of 'cadence loading' in which the stress is completely removed and then re-applied in a cyclic fashion. (Auth.)

  12. New results in the limit analysis by secondary modified creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Zouain, N.

    1982-03-01

    Two methods for computing upper and lower bounds of colapse loads are proposed by means of generalized creep constitutive relations. The actual material behaviour is rigid-perfectly plastic and the techniques here analized consist in the substitution of this material by a fictitious one which presents steady state creep response. Some analytical examples are also presented. (Author) [pt

  13. Engineering C-integral estimates for generalised creep behaviour and finite element validation

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Kim, Jin-Su; Huh, Nam-Su; Kim, Young-Jin

    2002-01-01

    This paper proposes an engineering method to estimate the creep C-integral for realistic creep laws to assess defective components operating at elevated temperatures. The proposed estimation method is mainly for the steady-state C * -integral, but a suggestion is also given for estimating the transient C(t)-integral. The reference stress approach is the basis of the proposed equation, but an enhancement in terms of accuracy is made through the definition of the reference stress. The proposed estimation equations are compared with extensive elastic-creep FE results employing various creep-deformation constitutive laws for six different geometries, including two-dimensional, axi-symmetric and three-dimensional geometries. Overall good agreement between the proposed method and the FE results provides confidence in the use of the proposed method for defect assessment of components at elevated temperatures. Moreover, it is shown that for surface cracks the proposed method can be used to estimate C * at any location along the crack front

  14. Advances in the assessment of creep data

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, S.R.

    2010-07-01

    Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s, and their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the capability of the analytical tools available at the time. The formation of ECCC (the European Creep Collaborative Committee) in 1991, with a main objective of providing reliable peer reviewed long-time creep property values for European Design and Product Standards, led to the development of rigorous assessment procedures such as PD6605 and DESA incorporating post assessment tests to verify: physical realism, effectiveness of model-fit within the range of the source experimental data, and extrapolation credibility. The first ECCC assessment recommendations published in 1996 undoubtedly provided a catalyst for others to exploit the availability of low cost, powerful desktop computers to develop rigorous methodologies for the physically realistic analysis of uniaxial and multi-axial data for the reliable and accurate characterisation of creep strain, and rupture strength and ductility properties. More recent improvements in data assessment methodologies have been driven by the need to effectively model the creep deformation and rupture characteristics of the complex new generation alloys and fabrications being designed to cater for the continually evolving requirements of modern advanced power plant. These advances in the assessment of creep data are reviewed. (orig.)

  15. An axisymmetric method of creep analysis for primary and secondary creep

    International Nuclear Information System (INIS)

    Jahed, Hamid; Bidabadi, Jalal

    2003-01-01

    A general axisymmetric method for elastic-plastic analysis was previously proposed by Jahed and Dubey [ASME J Pressure Vessels Technol 119 (1997) 264]. In the present work the method is extended to the time domain. General rate type governing equations are derived and solved in terms of rate of change of displacement as a function of rate of change in loading. Different types of loading, such as internal and external pressure, centrifugal loading and temperature gradient, are considered. To derive specific equations and employ the proposed formulation, the problem of an inhomogeneous non-uniform rotating disc is worked out. Primary and secondary creep behaviour is predicted using the proposed method and results are compared to FEM results. The problem of creep in pressurized vessels is also solved. Several numerical examples show the effectiveness and robustness of the proposed method

  16. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  17. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  18. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    is based on numerical unit cell analyses for a planar polycrystal model with the grains and grain boundaries modeled individually, in order to investigate the interactions between the mechanisms involved and to account for the build-up of residual stress fields during cycling. The behaviour of a limiting......This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study...

  19. Coping with interruptions in clinical nursing - a qualitative study

    DEFF Research Database (Denmark)

    Laustsen, Sussie; Brahe, Liselotte

    2018-01-01

    phenomenological approach. METHODS: Observations were performed combined with semi-structured qualitative interviews. RESULTS: Managing interruptions depend on level of competence, working environment, dialogue and matching of expectations, collegial roles and implicit rules. Working procedures impact on how......AIMS AND OBJECTIVES: To gain knowledge on how nurses' cope with interruptions in clinical practice. BACKGROUND: Interruptions may delay work routines and result in wasted time, disorganised planning and ineffective working procedures, affecting nurses' focus and overview in different ways. Research......: Culture work and matching of expectations are important to reflect on and discuss personal- and group behaviour caused by interruptions. We need to focus on the role of each nurse in the professional team, types of personality and unspoken rules. Professional competencies for example prioritising, keeping...

  20. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  1. Substructure evolution of Zircaloy-4 during creep and implications for the Modified Jogged-Screw model

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, B.M., E-mail: morrow@lanl.gov [The Ohio State University, 2041 College Rd., 477 Watts Hall, Columbus, OH 43210 (United States); Los Alamos National Laboratory, P.O. Box 1663, MS G755, Los Alamos, NM 87545 (United States); Kozar, R.W.; Anderson, K.R. [Bettis Laboratory, Bechtel Marine Propulsion Corp., West Mifflin, PA 15122 (United States); Mills, M.J., E-mail: millsmj@mse.osu.edu [The Ohio State University, 2041 College Rd., 477 Watts Hall, Columbus, OH 43210 (United States)

    2016-05-17

    Several specimens of Zircaloy-4 were creep tested at a single stress-temperature condition, and interrupted at different accumulated strain levels. Substructural observations were performed using bright field scanning transmission electron microscopy (BF STEM). The dislocation substructure was characterized to ascertain how creep strain evolution impacts the Modified Jogged-Screw (MJS) model, which has previously been utilized to predict steady-state strain rates in Zircaloy-4. Special attention was paid to the evolution of individual model parameters with increasing strain. Results of model parameter measurements are reported and discussed, along with possible extensions to the MJS model.

  2. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.

    2005-01-01

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  3. Creep damage of 12% CrMoV weldments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Maile, K.; Theofel, H.

    1989-01-01

    Creep tests were performed to determine the creep behaviour of similar welded joints of 12% CrMoV-steels which had been made using various heat inputs. The specimens were taken transverse to the seam. The transition from the coarse-grained to the fine-grained area of the heat affected zone (HAZ) proved to be the location of failure after longer rupture times. All tested specimens lie in the +-20% scatterband of the material standard DIN 17175. Creep rupture was initiated by the nucleation and growth of cavities. The appearance of the damage zone near the fracture face depends on testing conditions and heat input. The nucleation of cavities can be detected at an early stage of lifetime

  4. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  5. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  6. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Creep of uranium dioxide: bending test and mechanical behaviour; Etude du fluage du dioxyde d'uranium: caracterisation par essais de flexion et modelisation mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Ch

    2003-09-01

    These PhD work in the frame of Pellet-Cladding Interactions studies, in the fuel assemblies of nuclear plants. Electricite de France (EDF) must well demonstrate and insure the integrity of the cladding. For that purpose, the viscoplastic behaviour of the nuclear fuel has to be known and, if possible, controlled. This PhD work aimed to characterize the creep of uranium dioxide, in conditions of transient power regime. First, a literature survey on mechanical behaviour of UO{sub 2} revealed that the ceramic was essentially studied with compressive tests, and that its creep behaviour is characterized by two domains, depending on the stress level. To estimate the loadings in a fuel pellet, EDF and CEA developed specific global codes. A simulation during a power ramp allowed the order of magnitude of the loadings in the pellet to be determined (temperature, thermal gradients, strains, strain rate...). The stress calculation using a finite element simulation requires the identification of behaviour laws, able to describe the behaviour under small strains, low strain rates, and under tensile stresses. Starting from this observation, three point bending method has been chosen to test the uranium dioxide. As, for representativeness reasons, testing specimens cut in actual fuel pads was required in our study; a ten millimeters span has been used. For this study, a specific three-point testing device has been developed, that can tests specimens up to 2 000 C in a controlled atmosphere (Ar + 5% H{sub 2}). A special care has been taken for the measurement of the deflexion of the sample, which is measured using a laser beam, that allow an accuracy of {+-}2{mu}m to be reached at high temperature. Specimens with 0,5 to 1 mm thickness have been tested using this jig. A Norton's law describe, with respective stress exponent and activation energy values of 1.73 and 540 kJ.mole-1, provided a good description of the stationary creep rate. Then, the mechanical behaviour of the fuel

  8. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1975-01-01

    The chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behaviour of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  9. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments; Etude experimentale et modelisation, du comportement, de l'endommagement et de la rupture en fluage a haute temperature de joint soudes en acier 9Cr1Mo-NbV

    Energy Technology Data Exchange (ETDEWEB)

    Gaffard, V

    2004-12-15

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  11. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade

    International Nuclear Information System (INIS)

    Mourad, A.-H.I.; Fouad, H.; Elleithy, Rabeh

    2009-01-01

    The present work was undertaken to examine the effect of some environmental media (sodium hydroxide NaOH solution, water, ice, UV irradiation dose and pre-heat treatment) on the mechanical (quasi-static tensile creep-recovery and relaxation) and physical/thermal (melting and crystallinity) behaviour of the ultra high molecular weight polyethylene (UHMWPE-GUR 410-medical grade), that has several biomedical and engineering applications. The results show changes in the mechanical properties due to these environmental effects. The pre-heat treatment has significantly enhanced the tensile properties compared to virgin specimens' properties. Improvement due to pre-heat treatment at 100 o C is more than that at 50 o C. Specimens' storing in ice, NaOH and water has not affected significantly the tensile properties. All properties except fracture strain have enhanced due to specimens exposure to UV irradiation. The differential scanning calorimetry results indicate that environmental media have not any noticeable effects on the melting temperature. However, a significant increase in the degree of crystallinity was observed for all specimens versus that for virgin specimens. The creep and permanent strains of the tested virgin material increase with temperature and lineally increase with applied load. The specimens' exposure to environmental media has improved the creep resistance and the permanent creep strain when compared with that for virgin ones. Remarkable increase was observed in the initial relaxation and residual stress of the exposed specimens against that for virgin specimens.

  12. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  13. Revision of Drucker-Prager cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.; Hermsmeyer, S.

    2004-01-01

    A continuum model commonly used in soil mechanics analysis is compiled by use of a finite element software and has been used to simulate the thermomechanical behaviour of pebble beds. The Drucker-Prager Cap theory accounts for inelastic volume change, cap hardening, nonlinear elasticity and pressure dependent shear failure. The hardening mechanism allows for defining the hydrostatic pressure yield stress as a function of the volumetric inelastic strain. Volumetric creep is considered in order to simulate the pebble bed behaviour at high temperatures. Here, the strain hardening option has been used for the consolidation creep mechanism. The model has been calibrated using the fitting curves of the oedometric test given by Reimann et al. The fitted data has been used to calculate a pebble bed with simplified boundary conditions loaded by non-uniform volumetric heating. This calculation demonstrated that the model is capable of representing creep behaviour under volumetric heating conditions. (author)

  14. Creep strength of 10 CrMo 9 10 welding material

    International Nuclear Information System (INIS)

    Maile, K.; Theofel, H.

    1993-01-01

    Samples from different welding materials of the heat-resistant steel 10 Cr Mo 10 were subjected to creep tests. The maximum duration of stressing was 36,000 hours. At a text temperature of 450 C, the creep behaviour is considerably affected by different initial strengths. At 500 and 550 C, the creep fracture points for most of the welding materials in the long term range lie scattered in a relatively narrow band. This range is at or just below the lower scatteer band limit of the basic material (corresponding to DIN 17175, mean value ± 20%. (orig.) [de

  15. Radiation creep of graphite. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blackstone, R [Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center

    1977-03-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted.

  16. Study of the concrete tensile creep: application for the containment vessel of the nuclear power plants (PWR)

    International Nuclear Information System (INIS)

    Reviron, Nanthilde

    2009-01-01

    The aim of this work is to study experimentally and to conduct numerical simulations on the creep of concrete subjected to tensile stresses. The main purpose is to predict the behaviour of containment vessels of nuclear power plants (PWR) in the case of decennial test or accident. In order to satisfy to these industrial needs, it is necessary to characterize the behaviour of concrete under uniaxial tension. Thus, an important experimental study of tensile creep in concrete has been performed for different loading levels (50%, 70% and 90% of the tensile strength). In these tests, load was kept constant during 3 days. Several tests were performed: measurements of elastic properties and strength (in tension and in compression), monitoring of drying, shrinkage, basic creep and drying creep strains. Moreover, compressive creep tests were also performed and showed a difference with tensile creep. Furthermore, decrease of tensile strength and failure under tensile creep for large loading levels were observed. A numerical model has been proposed and developed in Cast3m finite element code. (author)

  17. Final Report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. [Risoe National Lab. - DTU, Materials Research Dept., Roskilde (Denmark); Taehtinen, S.; Moilanen, P. [VTT Industrial Systems (Finland); Jacquet, P.; Dekeyser, J. [SCK-CEN, Reactor Technology Design Dept., Mol (Belgium); Edwards, D.J. [Pacific Northwest National Lab., Reactor Technology Design Dept., Richland (United States); Li, M. [Oak Ridge National Lab., Materials Science and Technology Div., Oak Ridge, Tennessee (United States); Stubbins, J.F. [Univ. of Illinois, Dept. of Nuclear, Plasma and Radiological Engineering, Urbane, Illinois (United States)

    2007-08-15

    At present, practically nothing is known about the deformation behaviour of materials subjected simultaneously to external cyclic force and neutron irradiation. The main objective of the present work is to determine experimentally the mechanical response and resulting microstructural changes in CuCrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol (Belgium). In the present report we first describe the experimental facilities and the details of the in-reactor creep-fatigue experiments carried out at 363 and 343K at a strain amplitude of 0.5% with hold-times of 10 and 100s, respectively. For comparison purposes, similar creep-fatigue tests were performed outside of the reactor. (i.e. in the absence of neutron irradiation). During in-reactor tests, the mechanical response was continuously registered throughout the whole test. The results are first presented in the form of hysteresis loops confirming that the nature of deformation during these tests was truly cyclic. The temporal evolution of the stress response in the specimens is presented in the form of the average maximum stress amplitude as a function of the number of cycles as well as a function of displacement dose accumulated during the tests. The results illustrate the nature and magnitude of cyclic hardening as well as softening as a function of the number of cycles and displacement dose. Details of the microstructure were investigated using TEM and STEM techniques. The fracture surface morphology was investigated using SEM technique. Both mechanical and microstructural results are briefly discussed. The main conclusion emerging from the limited amount of present results is that neither the irradiation nor the duration of the hold-time have any significant

  18. Creep properties of Hastelloy X and their application to structural design

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Murase, Koichi; Fujioka, Junzo; Shimizu, Shigeki; Satoh, Keisuke

    1977-01-01

    Creep and stress rupture tests on three heats of Hastelloy X differing in the manufacturing process were carried out at 800 0 C, 900 0 C and 1000 0 C. Interpretation of the observed creep properties was made, and a method for predicting necessary design data from the experimentally obtained results was discussed. The results are as follows. (1) It was difficult to separate the primary, secondary and tertiary creep stages in the creep curve of Hastelloy X of the present tests. However, those were made distinguishable by plotting the results in a double-logarithmic coordinates. From these creep rate curves, the primary and secondary creep rates and the times to the initiation of secondary and tertiary creeps were derived. (2) It is considered that the same stress and temperature dependences between the primary and secondary creep rates exist in the creep behaviour of Hastelloy X of the present tests. (3) All the creep data, except the isochronous stress-strain curve, required for the design such as stress vs. rupture time, stress vs. secondary creep rate and stress vs. time to initiation of tertiary creep could be arranged through the Larson-Miller parameter. On the other hand, the isochronous stress-strain curve was figured out by estimating creep curves. The constitutive equations of creep for a heat of Hastelloy X proposed in this paper and the isochronous stress-strain curves derived from these constitutive equations were consistent with the experimental data obtained for the corresponding material. (auth.)

  19. Critical review of creep FRAPCON-3 model under dry storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)

    2009-06-15

    There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under

  20. Creep in rock salt with temperature. Testing methods and results

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Berest, P.

    1985-01-01

    The growing interest shown in the delayed behaviour of rocks at elevated temperature has led the Solid Mechanics Laboratory to develop specific equipment designed for creep tests. The design and dimensioning of these units offer the possibility of investigating a wide range of materials. The article describes the test facilities used (uni-axial and tri-axial creep units) and presents the experimental results obtained on samples of Bresse salt [fr

  1. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  2. Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep

    International Nuclear Information System (INIS)

    Voese, Markus

    2015-01-01

    In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse

  3. High-resolution TEM microscopy study of the creep behaviour of carbon-based cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwlyzwkj@126.com [College of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China); Chen, Weijie [College of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China); Gu, Wanduo [Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China)

    2017-02-27

    Creep is in close relationship with the materials deterioration and deformation of the cathodes in aluminum reduction cells. The purpose of this work is to obtain the creep mechanism of the carbon cathode for aluminum electrolysis. A modified Rapoport equipment was used for measuring the creep strain of the semi-graphitic cathodes during aluminum electrolysis with CR=2.5 and at temperature of 945 ℃. The arrangement of carbon atom has been studied after hexagonal graphite converting into rhombohedral graphite during aluminum electrolysis by XRD and high-resolution transmission electron microscopy (HRTEM). The creep deformation of the carbon cathode has a close relationship with the mobile dislocation walls. These results will be helpful in controlling the cathode quality and its performance in aluminum reduction cells.

  4. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  5. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    Science.gov (United States)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  6. Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-04-01

    Full Text Available In creep age forming (CAF, large integral panel components of high-strength aluminum alloy can be shaped and strengthened under external elastic loading at an elevated temperature through creep deformation and age hardening, simultaneously. However, the high ribbed structure on panel may induce stress concentration, inhomogeneous plastic deformation and even damage evolution on the bending rib, leading to the difficulty in controlling forming precision and material properties. Therefore, the generation and evolution of damage are necessary to be considered in the design of CAF. Taking 7050 aluminum alloy as the case material, the continuous and interrupted creep aging tests at 165 °C and three stress levels (300, 325, and 350 MPa were conducted, and the corresponding material properties, precipitate, and damage microstructures were studied by mechanical properties tests, transmission electron microscope (TEM and scanning electron microscope (SEM characterizations. With the increase of stress level, the creep deformation occurs easier, the precipitates grow up faster, the creep damage occurs earlier, the growth rate and the size of microvoids increase, the mechanical properties decrease more rapidly, and the dominant mechanism of creep fracture changes from shear to microvoid coalescence. To simulate creep aging behavior with damage, a continuum damage mechanics (CDM based model is calibrated and numerically implemented into ABAQUS solver via CREEP subroutine. The CAF of 7050 aluminum alloy panels with different height ribs were conducted by experiment and FE simulation. The forming process presents a typical stress relaxation phenomenon. The creep damage mainly occurs on the bending rib due to the severe stress concentration. With the increase of rib height, the creep strain and damage degree increase, but the springback decreases.

  7. Interrupting behaviour: Minimizing decision costs via temporal commitment and low-level interrupts

    Science.gov (United States)

    Dayan, Peter

    2018-01-01

    Ideal decision-makers should constantly assess all sources of information about opportunities and threats, and be able to redetermine their choices promptly in the face of change. However, perpetual monitoring and reassessment impose inordinate sensing and computational costs, making them impractical for animals and machines alike. The obvious alternative of committing for extended periods of time to limited sensory strategies associated with particular courses of action can be dangerous and wasteful. Here, we explore the intermediate possibility of making provisional temporal commitments whilst admitting interruption based on limited broader observation. We simulate foraging under threat of predation to elucidate the benefits of such a scheme. We relate our results to diseases of distractibility and roving attention, and consider mechanistic substrates such as noradrenergic neuromodulation. PMID:29338004

  8. Interrupting behaviour: Minimizing decision costs via temporal commitment and low-level interrupts.

    Science.gov (United States)

    Lloyd, Kevin; Dayan, Peter

    2018-01-01

    Ideal decision-makers should constantly assess all sources of information about opportunities and threats, and be able to redetermine their choices promptly in the face of change. However, perpetual monitoring and reassessment impose inordinate sensing and computational costs, making them impractical for animals and machines alike. The obvious alternative of committing for extended periods of time to limited sensory strategies associated with particular courses of action can be dangerous and wasteful. Here, we explore the intermediate possibility of making provisional temporal commitments whilst admitting interruption based on limited broader observation. We simulate foraging under threat of predation to elucidate the benefits of such a scheme. We relate our results to diseases of distractibility and roving attention, and consider mechanistic substrates such as noradrenergic neuromodulation.

  9. Interrupting behaviour: Minimizing decision costs via temporal commitment and low-level interrupts.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2018-01-01

    Full Text Available Ideal decision-makers should constantly assess all sources of information about opportunities and threats, and be able to redetermine their choices promptly in the face of change. However, perpetual monitoring and reassessment impose inordinate sensing and computational costs, making them impractical for animals and machines alike. The obvious alternative of committing for extended periods of time to limited sensory strategies associated with particular courses of action can be dangerous and wasteful. Here, we explore the intermediate possibility of making provisional temporal commitments whilst admitting interruption based on limited broader observation. We simulate foraging under threat of predation to elucidate the benefits of such a scheme. We relate our results to diseases of distractibility and roving attention, and consider mechanistic substrates such as noradrenergic neuromodulation.

  10. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted. (Auth.)

  11. Creep behavior and evolution of microstructure of modified Grade 91 welded joint after short term exposure at 500 deg C

    International Nuclear Information System (INIS)

    Vivier, F.

    2009-03-01

    With the increase in worldwide energy demand, the nuclear industry is a way of producing electricity on a large scale and to answer to this need. For the design of a new generation of fission nuclear reactors and among six chosen fission reactor systems, France develops in particularly the Very High Temperature Reactor (VHTR) concept. This implies the use of materials that are more and more resistant to high temperature for long-term exposure. AREVA focuses on materials already used in fossil-fuel power plant, so that the mechanical behaviour of Grade 91 (Fe 9 Cr 1 MoNbV) has to be investigated. This ferritic-martensitic steel is considered to be a potential candidate for welded components. Such structures are combined with welded joints, which have to be studied. Three industrial partners (AREVA, CEA, EDF) have launched a study with the Centre des Materiaux in order to investigate the creep of welded joint of Grade 91. The aim of this work is to complete the available database about the mechanical behaviour of Grade 91, base metal and welded joint, during creep tests performed at 500 C up to 4500 h exposure. Thermal aging tests, tensile tests, and creep tests were performed at 450 C and 500 C using both base metal and cross-weld samples. Several geometries of cross-weld creep specimens were tested. The microstructure has not remarkably changed after tests concerning both nature and size of precipitates, and the characteristic size of the matrix sub-structure. The creep damage is not developed in the ruptured specimens after creep tests. Only little damage by cavity nucleation and growth was found in the creep specimens. Creep fracture at 500 C takes places by viscoplastic flow, contrary to tests performed at 625 C where the creep-induced damage governs the creep rupture at least for long-term lifetime. From creep curves of base metal and cross-weld specimens, a phenomenological model is proposed. The flow rule is a Norton power law with a stress exponent of 19 in

  12. Prediction of Creep Behaviour of the Hybrid Composite Material Using the Accelerated Characterisation Method

    International Nuclear Information System (INIS)

    Larbi, S.; Berradj, M.; Djebbar, A.; Bilek, A.

    2011-01-01

    We present in this study a creep behavior in flexure of a hybrid composite consisting of a polyester matrix containing methyl methacrylate reinforced by two bidirectional fabrics. The first one is made with E-glass fibers and the second one is made of a knitted polyamide 66. The mass fractions are 13% for the glass fabric and 9% for the polyamide fabric. The specimens, of dimensions (L = 60, l = 15 and h = 2.3 mm) containing 06 alternating layers (2P/2V/2P) were fabricated by using the vacuum bag molding method. Bending tests performed at different temperatures allowed us first to determine the load levels for the creep tests. Creep tests at different loads (5 to 43 MPa) and different temperatures (23'deg' to 80'deg' C) show a noticeable increase of creep deformation for both tests under the same load and different temperatures just as those carried out at different loads under the same temperature. The initial deformation varies significantly with the load but very little with temperature. The application of the Findley model shows good correlation with experimental results. Model parameters were identified. Creep deformation satisfies the principle of superposition time-temperature-stress (TTSSP). Findley's model has subsequently been coupled with the principle of superposition of time-temperature-stress to plot master curves at different stresses and temperatures; this enables prediction of creep deformation in the long term. (author)

  13. In-pile creep test technique for zirconium alloys examination in BR-10 reactor channels

    International Nuclear Information System (INIS)

    Pevchikh, Yu.M.; Kruglov, A.S.; Troyanov, V.M.

    2002-01-01

    The irradiation enhanced creep phenomenon was discovered in stainless steels as a specific physical process accompanying high-intensity neutron flux irradiation in fast reactors. IPPE is also experienced in irradiation creep test activities, studying different types of materials under irradiation in BR-10 fast reactor. Series of in-channel type test facilities were constructed and tested in BR-10 reactor's 'dry' channels in order to carry out full-scale instrumented examination regarded to in-pile creep behaviour of different reactor materials. As a result, a specific test technique, named 'Tensometric method', has been developed and experimentally proved to be power enough in order to investigate irradiation creep of materials right in situ under neutron irradiation. The main peculiarity of test facility, which is constructed to apply the tensometric method, consists in absence of any special deformation-measurement cell at all. The in-pile creep strain measurement technique developed at IPPE is based on the non-direct measurement of specimen's deformation (either linear tensile strain or angular twisting one), which directly affects the loaded draws' tension parameters. Starting from 1993, in-pile creep experiments to investigate in-reactor creep behaviour of E110 and E635 zirconium alloys were carried out in BR-10. Experimental results and data collected during more than 20-year of BR-10 in-reactor creep test experience can be assumed as a strong evidence that the tensometric technique is a powerful instrument, which can give a chance to study different irradiation effects on reactor materials directly under irradiation. (author)

  14. Effects of mechanical-thermal treatments on the creep behaviour of a niobium stabilized stainless steel

    International Nuclear Information System (INIS)

    Rossi, J.L.

    1987-01-01

    The influence of microstructural variables controlled by mechanical-thermal treatments on the creep behavior of DIN-Werkstoff Nr. 1,4981 stainless steel a material candidate for use as cladding of fast breeder reactor fuel elements, was studied. The effect of the solution treatment, predeformation, predeformation plus aging and cycles of predeformation-aging, on the creep results obtained at 990 K, for applied stresses in the range 70 MPa - 310 MPa, are analysed. The results show: this material presents a creep strength superior to that show by AISI 316 stainless steel; a transition on the creep behavior is observed at a certain stress; the mechanical-thermal treatments were seen to be ineffective on the improvement of the creep strength; the pre-deformation and pre-deformation plus aging treatments were seen to induce material embrittlement whereas the cyclic treatments induced increased ductility. Transmission electron microscopy, X ray diffraction of extracted precipitates, and microanalysis were use to characterize the microstructure of this material. (author)

  15. Creep in jointed rock masses. State of knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune (Golder Associates AB (Sweden)); Hoekmark, Harald (Clay Technology AB, Lund (Sweden))

    2010-06-15

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature.

  16. Creep in jointed rock masses. State of knowledge

    International Nuclear Information System (INIS)

    Glamheden, Rune; Hoekmark, Harald

    2010-06-01

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature

  17. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  18. An analysis of the creep/fatigue behaviour of type 316 weld metal

    International Nuclear Information System (INIS)

    Wood, D.S.; Wynn, J.

    The document presents creep/fatigue results obtained at UKAEA Risley Nuclear Labs. on type 316 weld metal and the associated stress rupture data and analyses them in the same way as that currently favoured for wrought material. The continuous cycling fatigue results are shown; the lower temperature is seen to give a higher endurance. The creep/fatigue results indicate that lower endurances are obtained at 625 deg. C and that with increasing hold time there is a tendency for the endurance to be lowered. The weld metal creep/fatigue endurances are compared with published UK data on wrought material for strain ranges of up to 3%. Under the conditions examined, it can be seen that the weld metal endurance is towards the top of the scatter band, the results at 550 deg. C forming the upper bound. The stress rupture data note that the ductility is reasonable at short times but fall to relatively low values at long times (10,000h)

  19. Magnetic flux creep in HTSC and Anderson-Kim theory

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2014-01-01

    The theoretical and experimental data on flux creep in high-temperature superconductors (HTSC) were analyzed in the review paper. On the one hand, the main attention is paid to the most striking experimental results which have had a significant influence on the investigations of flux creep in HTSC. On the other hand, the analysis of theoretical studies is concentrated on the works, which explain the features of flux creep on the basis of the Anderson-Kim (AK) theory modifications, and received previously unsufficient attention. However, it turned out that the modified AK theory could explain a lot of features of flux creep in HTSC: the scaling behaviour of current-voltage curves of HTSC, the finite rate of flux creep at ultra low temperatures, the logarithmic dependence of effective pinning potential as a function of transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately the both problems: viscous vortex motion and flux creep in this field. Moreover the distribution of pinning potential and the interaction of vortices with each other are taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its detailed elaboration and approaching to real situations in superconductors

  20. Predominantly elastic crack growth under combined creep-fatigue cycling

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1979-01-01

    A rationalization of the various observed effects of combined creep-fatigue cycling upon predominantly elastic fatigue-crack propagation in austenitic steel is presented. Existing and new evidence is used to show two main groups of behaviour: (i) material and cycling conditions which lead to modest increases (6-8 times) in the rate of crack growth are associated with relaxation-induced changes in the material deformation characteristics, and (ii) material and cycling conditions severe enough to generate internal fracture damage lead to significant (up to a factor of 30) increases in crack growth rate when compared with fast-cycling crack propagation rates at the same temperature. A working hypothesis is presented to show that the boundary between the two groups occurs when the scale of the nucleated creep damage is of the same magnitude as the crack tip opening displacement. This leads to the possibility of unstable crack advance. Creep crack growth rates are shown to provide an upper bound to creep-fatigue crack growth rates when crack advance is unstable. If the deformation properties only are affected by the creep-fatigue cycling then creep crack growth rates provide a lower bound. The role of intergranular oxygen corrosion in very low frequency crack growth tests is also briefly discussed. (author)

  1. Microstructural evolution and creep behaviour of the modified 9% Cr steel with boron and cobalt

    International Nuclear Information System (INIS)

    Nowakowski, P.; Spiradek-Hahn, K.; Brabetz, M.; Zeiler, G.

    1998-01-01

    In the present study the microstructural evolution of the new 9% Cr with boron and cobalt is shown during creep at 650 o C. The minimum creep rates of the new alloy are significantly lower than those of conventional 12 % Cr steel. This is due to the high stability of M 23 C 6 precipitates with respect to the coarsening and the preservation of high dislocation density in the course of creep exposure. (author)

  2. Creep crack growth behaviour of an AISI 316 steel plate for fast reactor structures

    International Nuclear Information System (INIS)

    D'Angelo, D.; Regis, V.

    1985-01-01

    The paper presents and analyses creep crack growth data obtained at 550, 600 and 650 0 C in air with SENT and CT specimens on type 316 stainless steel plate for LMFBR applications. Crack initiation and crack growth are tentatively correlated to K, sigmasub(net) and J* taking into account the constraint conditions due to specimen geometry. The validity of these parameters is discussed following the concept of transition time from small scale creep at the crack tip to extensive creep within the ligament. Post exposure microstructural and fractographic investigations do evidence that grain deformation processes are mainly responsible for cavity evolution. (orig.)

  3. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  4. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  5. A contribution to the question of creep and relaxation of concrete under high temperatures

    International Nuclear Information System (INIS)

    Schneider, U.

    1979-01-01

    It was initially shown that, in dealing with the high temperature problem, it is expedient to distinguish certain material properties in terms of isothermal and non-isothermal conditions. A general equation of state could be derived to describe the key question complex relating to deformation behaviour of concrete under high temperatures. For the case of an isothermal temperature load under 100 0 C numerous measurement results are available from the literature. The creep behaviour of light and normal concrete up to 450 0 C was investigated and discussed. Pre-storage, concrete utilization, inelastic deformation and the influence of conditions of stress in the heat-up phase on high-temperature creep were treated. It could be shown on the basis of numerous evaluations and computer studies that also under high temperature conditions the creep behaviour of concrete is best described in terms of exponential functions. Preliminary experimental results on creep behaviour under transient temperature conditions have already been published within the framework of the sub-project ''fire properties of components''. These results, together with new measurement values have been subjected to theoretical analysis. The creep functions (phi-functions) for light and normal concrete developed for the transient temperature state constitute an important part of this work. Various suggestions have been made for criteria of failure for concrete at high tempratures. For the transient state a critical concrete temperature can be specified. Investigations on rates of deformation at the time of failure have shown that a so-called high level and low level is possible. The question of high temperature relaxation of conrete was studied both experimentally and theoretically. The constraining force problem was considered in detail in this research for comparison purposes since it offers a number of possibilities for new approaches and solutions particularly from a theoretical viewpoint. (orig

  6. Creep properties of discontinuous fibre composites with partly creeping fibres

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  7. Creep behaviour of a short-fibre C/PPS composite

    Czech Academy of Sciences Publication Activity Database

    Fíla, T.; Koudelka_ml., Petr; Kytýř, Daniel; Hos, J.; Šleichrt, J.

    2016-01-01

    Roč. 50, č. 3 (2016), s. 413-417 ISSN 1580-2949 R&D Projects: GA TA ČR(CZ) TA03010209 Institutional support: RVO:68378297 Keywords : creep * short fibre composite * C/PPS * Findley’s model * DIC Subject RIV: JI - Composite Materials Impact factor: 0.436, year: 2016 http://mit.imt.si/Revija/izvodi/mit163/fila.pdf

  8. Effect of microstructure and environment on the crack growth behaviour on Inconel 718 alloy at 650/sup 0/C under fatigue, creep and combined loading

    Energy Technology Data Exchange (ETDEWEB)

    Pedron, J P; Pineau, A

    1982-11-01

    The crack growth properties of various microstructures developed in one heat of Inconel 718 alloy were investigated at 650/sup 0/C under air and vacuum environments. The microstructures included fine-grained material (ASTM grain sizes 6-8), coarse-grained material (ASTM grain sizes 3-4) and material of a necklace structure (ASTM grain sizes 3-4 and 8-10). The effect of grain boundary ..beta.. (Ni/sub 3/Nb) phase precipitation was also studied. Continuous fatigue, creep and creep-fatigue conditions were examined. For continuous fatigue the influence of frequency was investigated over the range between 5x10/sup -2/ and 20 Hz. For creep-fatigue conditions, hold times of 10 and 300 s were superimposed on a 5x10/sup -2/ Hz triangular wave shape signal. It was shown that the grain boundary microstructure had a very strong effect when the fatigue crack propagation behaviour was essentially time dependent. This effect is associated with the occurrence of brittle intergranular fracture and dramatic increases in crack growth rate. The microstructure had no effect under vacuum testing.

  9. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  10. Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading

    Science.gov (United States)

    Rossi, P.; Boulay, C.; Tailhan, J.-L.; Martin, E.

    2013-07-01

    Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure), can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.

  11. What Interrupts Suicide Attempts in Men: A Qualitative Study.

    Directory of Open Access Journals (Sweden)

    Michael J Player

    Full Text Available Despite higher rates of suicide in men, there is a dearth of research examining the perspectives and experiences of males at risk of suicide, particularly in terms of understanding how interventions can be tailored to men's specific needs. The current study aimed to examine factors assisting, complicating or inhibiting interventions for men at risk, as well as outlining the roles of family, friends and others in male suicide prevention. Thirty-five male suicide survivors completed one-to-one interviews, and forty-seven family and friends of male suicide survivors participated in eight focus groups. Thematic analysis revealed five major themes: (1 development of suicidal behaviours tends to follow a common path associated with specific types of risk factors (disrupted mood, unhelpful stoic beliefs and values, avoidant coping strategies, stressors, (2 men at risk of suicide tend to systematically misinterpret changes in their behaviour and thinking, (3 understanding mood and behavioural changes in men enables identification of opportunities to interrupt suicide progression, (4 distraction, provision of practical and emotional supports, along with professional intervention may effectively interrupt acute risk of harm, and (5 suicidal ideation may be reduced through provision of practical help to manage crises, and helping men to focus on obligations and their role within families. Findings suggest that interventions for men at risk of suicidal behaviours need to be tailored to specific risk indicators, developmental factors, care needs and individuals' preferences. To our knowledge this is the first qualitative study to explore the experiences of both suicidal men and their family/friends after a suicide attempt, with the view to improve understanding of the processes which are effective in interrupting suicide and better inform interventions for men at risk.

  12. What Interrupts Suicide Attempts in Men: A Qualitative Study

    Science.gov (United States)

    Player, Michael J.; Proudfoot, Judy; Fogarty, Andrea; Whittle, Erin; Spurrier, Michael; Shand, Fiona; Christensen, Helen; Hadzi-Pavlovic, Dusan; Wilhelm, Kay

    2015-01-01

    Despite higher rates of suicide in men, there is a dearth of research examining the perspectives and experiences of males at risk of suicide, particularly in terms of understanding how interventions can be tailored to men’s specific needs. The current study aimed to examine factors assisting, complicating or inhibiting interventions for men at risk, as well as outlining the roles of family, friends and others in male suicide prevention. Thirty-five male suicide survivors completed one-to-one interviews, and forty-seven family and friends of male suicide survivors participated in eight focus groups. Thematic analysis revealed five major themes: (1) development of suicidal behaviours tends to follow a common path associated with specific types of risk factors (disrupted mood, unhelpful stoic beliefs and values, avoidant coping strategies, stressors), (2) men at risk of suicide tend to systematically misinterpret changes in their behaviour and thinking, (3) understanding mood and behavioural changes in men enables identification of opportunities to interrupt suicide progression, (4) distraction, provision of practical and emotional supports, along with professional intervention may effectively interrupt acute risk of harm, and (5) suicidal ideation may be reduced through provision of practical help to manage crises, and helping men to focus on obligations and their role within families. Findings suggest that interventions for men at risk of suicidal behaviours need to be tailored to specific risk indicators, developmental factors, care needs and individuals’ preferences. To our knowledge this is the first qualitative study to explore the experiences of both suicidal men and their family/friends after a suicide attempt, with the view to improve understanding of the processes which are effective in interrupting suicide and better inform interventions for men at risk. PMID:26090794

  13. Creep-rupture-tests on thestainless steel X6 CrNi1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program'' Pt. 2

    International Nuclear Information System (INIS)

    Solano, R.R.; Barroso, S.; Rivas, M. de las; Schirra, M.; Seith, B.

    1979-01-01

    The austenitic stainless steel X6 CrNi 1811 (DIN 1.4948) that is used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the cree-rupture-strength and creep-behaviour up to 3X10 - 4 hours at higher temperatures in order to extrapolate up to (>=)10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out over temperature range 550 deg - 750 deg C. The present report describes the state in the running program with test-time up to 35.000 hours. Besides the cree-rupture behaviour it is possible to make a distinct quantitative statement for the creep-behaviour and ductility. Extensive metallographic examinations show the fracture behaviour and changes in structure. (author)

  14. Accommodating interruptions: A grounded theory of young people with asthma.

    Science.gov (United States)

    Hughes, Mary; Savage, Eileen; Andrews, Tom

    2018-01-01

    The aim of this study was to develop an explanatory theory on the lives of young people with asthma, issues affecting them and the impact of asthma on their day-to-day lives. Accommodating Interruptions is a theory that explains young people's concerns about living with asthma. Although national and international asthma management guidelines exist, it is accepted that the symptom control of asthma among the young people population is poor. This study was undertaken using Classic Grounded Theory. Data were collected through in-depth interviews and clinic consultations with young people aged 11-16 years who had asthma for over 1 year. Data were also collected from participant diaries. Constant comparative analysis, theoretical coding and memo writing were used to develop the substantive theory. The theory explains how young people resolve their main concern of being restricted by Accommodating Interruptions in their lives. They do this by assimilating behaviours in balance finding, moderating influence, fitting in and assuming control minimising the effects of asthma on their everyday lives. The theory of Accommodating Interruptions explains young people's asthma management behaviours in a new way. It allows us to understand how and why young people behave the way they do because they want to participate and be included in everyday activities, events and relationships. The theory adds to the body of knowledge on how young people with asthma live their day-to-day lives and it challenges some existing viewpoints in the literature regarding their behaviours. The findings have implications for developing services to support young people in a more meaningful way as they accommodate the interruptions associated with asthma in their lives. © 2017 John Wiley & Sons Ltd.

  15. Modeling of creep-fatigue interaction of zirconium α under cyclic loading at 200 C

    International Nuclear Information System (INIS)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author)

  16. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  17. Creep-fatigue evaluation method for type 304 and 316FR SS

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.; Ueno, F.

    1997-01-01

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant in the case of significant life reduction. It is considered that this phenomenon has its origin in the grain boundary sliding as observed in cavity-type creep-rupture. Accordingly a simplified procedure to estimate intergranular damages caused by the grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, failure ductility includes plastic strain, and damage estimation is based on the primary creep strain, which is recoverable during strain cycling. Therefore the accumulated creep strain becomes a very large value, and quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the product of secondary creep rate and time to rupture (Monkman-Grant product) is applied to fracture ductility, and grain boundary sliding strain is approximately estimated using the accumulated secondary creep strain. From the new concept it was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, cyclic creep strain behaviour is also softened. An unrecoverable accumulated primary creep strain causes hardening of the primary creep, and the reduction of deformation resistance to the secondary creep caused by thermal softening accelerates grain boundary sliding rate. As the results creep damages depend not on applied stress but on effective stress. The new concept ductility exhaustion method based on the above consideration leads up to simplified time fraction estimation method only by continuous cycling fatigue and monotonic creep which was already developed in PNC for Monju design guide. This method gave good life prediction for the intergranular failure mode and is convenient for design use on the elastic

  18. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage; Fatigue-fluage des aciers martensitiques a 9-12% Cr: comportement et endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, B

    2007-09-15

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  19. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  20. Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Jayakumar, T.

    2014-02-15

    Highlights: • Design of a lever type creep machine for carrying out creep test in flowing sodium. • Leveling of lever during creep was achieved by automated movement of fulcrum. • Design of creep chamber for providing constant sodium flow rate across creep specimen. • Minimum use of bellow in chamber for sodium containment and mechanical isolation. • Mini-lever mechanism to counter balance load reduction on specimen due to bellow stiffness. - Abstract: A creep testing system has been designed, fabricated, installed and validated for carrying out creep tests in flowing liquid sodium. The testing system consists of two sections namely creep testing machine and an environmental chamber. The testing system has the ability of (i) applying tensile load to the test specimen through a lever, (ii) monitoring continuously the creep elongation and (iii) allowing sodium to flow around the creep specimen at constant velocity. The annular space between the creep specimen and the environmental chamber has been suitably designed to maintain constant sodium flow velocity. Primary and secondary bellows are employed in the environmental chamber to (i) mechanically isolate the creep specimen, (ii) prevent the flowing sodium in contact with air and (iii) maintain an argon gas cover to the leaking sodium if any from primary bellow, with a provision to an alarm get activated by a spark plug. The lever-horizontality during creep test has been maintained by automatically lifting up the fulcrum instead of lowering down the pull rod as conventionally used. A mini lever mechanism has been incorporated in the load train to counter balance the load reduction on specimen from the changing stiffness of the bellows. The validation of the testing system has been established by carrying out creep tests on 316L(N) stainless steel at 873 K over a wide stress range and comparing the results with those obtained in air by employing the developed and conventional creep testing machines.

  1. Some observations on the relationship between microstructures, fatigue and creep behaviours in a type 316 stainless steel

    International Nuclear Information System (INIS)

    Horton, C.A.P.; Lai, J.K.L.; Skelton, R.P.

    Comparisons have been made between microstructures in Type 316 steel after high strain fatigue or creep at 625 deg. C and which had been subjected to various pre-test ageing treatments. The microstructures observed in the specimens generally consisted of a three dimensional dislocation network together with 'cells' delineated by dislocation sub-boundaries. In fatigue, under strain control conditions, pre-ageing reduced the dislocation density and coarsened the cell structure produced during test. This was related to less solute hardening and strain induced precipitation after pre-ageing and was accompanied by a lower rate of cyclic strain hardening. During fatigue with dwell, the dislocations introduced led to five times more precipitation than that observed during stress free ageing solution treated material. The 'cell' structure produced by fatigue was retained even after solution treatment at 1050 deg. C. In creep, under constant loads, a coarser and more clearly defined dislocation sub-grain structure developed and its size was not influenced by pre-ageing. However, creep testing after various pre-treatments, including fatigue, demonstrated that the creep resistance was dependent on a combination of solution strengthening, cell size and dislocation density. Consequently prior fatigue considerably increased the creep resistance. The work has demonstrated the microstructural aspects of creep-fatigue interaction and that the use of creep data obtained from solution treated material is likely to lead to errors in creep-fatigue life fraction summations

  2. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  3. Description of Concrete Creep under Time-Varying Stress Using Parallel Creep Curve

    OpenAIRE

    Park, Yeong-Seong; Lee, Yong-Hak; Lee, Youngwhan

    2016-01-01

    An incremental format of creep model was presented to take account of the development of concrete creep due to loading at different ages. The formulation was attained by introducing a horizontal parallel assumption of creep curves and combining it with the vertical parallel creep curve of the rate of creep method to remedy the disadvantage of the rate of creep method that significantly underestimates the amount of creep strain, regardless of its simple format. Two creep curves were combined b...

  4. Comparative study of creep behaviour in three Cr Ni 15/15 steel stabilized with Ti and with different contents in W, Mn, Mo and Bor

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1975-01-01

    The main difference between the three steels which are tested at temperature range from 650 0 C to 750 0 C is due to the hardening elements pf the matrix and the Boron content: 1. 12R72HV (X10NiCrMoTiB 1515) 2% Mn 1,5% Mo 80 ppmB 2. Vaccutherm (X12CrNiWTi 1613) 3% W 2,5 ppmB 3. RGT 21 (X12CrNiWTi 1613) 3% W 50 ppm B. The investigations of all casts are carried out in two different heat treatments which are suitable for the conditions required for the operation of the reactor. Cond. I: 1150 0 C 30 min, water quenced; 800 0 32 hour, air; 10% cold work. Cond. II: 1150 0 C 30 min, water quenched; 10% cold work. In connection with creep test the condition I irrespective of 3 steels show no remarkable difference. The observation at 750 0 C test temperature and also at condition II above 650 0 C on Boron-free Vaccutherm cast shows an unfavourable behaviour. There is no significant difference in the stress dependence of secondary creep rate and also absolute creep rate. A definite superiority is to be found for 12R72HV when considering the values for time-yield-limit-ratio and ductility compared to the W-steels. The test results shows different fracture behaviour. Transcrystalline fracture is found on cast 12R72HV, whereas RGT 21 and Vaccutherm show transition from transcrystalline to intercrystalline fracture, depending on the rupture time and test temperature. The long term rupture specimens show intercrystalline fracture. (author)

  5. Multiaxial creep of tubes from Incoloy 800 H and Inconel 617 under static and cyclic loading conditions

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Nickel, H.; Schubert, F.

    1989-01-01

    At temperatures above 800 0 C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)

  6. Design and fabrication of a dead weight equipment to perform creep measurements on highly irradiated beryllium specimens

    International Nuclear Information System (INIS)

    Scibetta, M.; Pellettieri, A.; Wouters, P.; Leenaerts, A.; Verpoucke, G.

    2005-01-01

    Beryllium is an important material to be used in the blanket of fusion reactors. It acts as a neutron multiplier that allows tritium production. In order to use this material effectively, some data on creep and swelling behaviour are needed. This paper describes preliminary microstructural investigations and the qualification of a creep set-up that will be used to measure creep of highly irradiated beryllium from the BR2 research reactor matrix. (Author)

  7. Secondary Creep Response of Hand Lay-Up GRP Composites ...

    African Journals Online (AJOL)

    Glass Reinforced Plastics (GRP) composite load bearing components are now in common use, quite often at temperatures above the ambient, where creep behaviour may be significant, as in pressurized industrial containers. This is especially true of those composites produced by the Hand Lay-Up Contact Moulding ...

  8. Thinking aloud in the presence of interruptions and time constraints

    DEFF Research Database (Denmark)

    Hertzum, Morten; Holmegaard, Kristin Due

    2013-01-01

    and time constraints, two frequent elements of real-world activities. We find that the presence of auditory, visual, audiovisual, or no interruptions interacts with thinking aloud for task solution rate, task completion time, and participants’ fixation rate. Thinking-aloud participants also spend longer......Thinking aloud is widely used for usability evaluation and its reactivity is therefore important to the quality of evaluation results. This study investigates whether thinking aloud (i.e., verbalization at levels 1 and 2) affects the behaviour of users who perform tasks that involve interruptions...... responding to interruptions than control participants. Conversely, the absence or presence of time constraints does not interact with thinking aloud, suggesting that time pressure is less likely to make thinking aloud reactive than previously assumed. Our results inform practitioners faced with the decision...

  9. Creep in single crystals of γ single phase Ni-20Cr alloy and evolution of dynamic recrystallization

    International Nuclear Information System (INIS)

    Matsuo, T.; Terada, Y.; Takahashi, S.; Ishiwari, Y.

    2000-01-01

    The creep rate - time and the creep rate - strain curves of the single crystals of γ single phase Ni-20 mass%Cr alloy have been investigated at 1173 K under the wide stress range of 19.6 to 98 MPa, and compared with those of polycrystals. The orientation corresponding to the stress axis of the single crystals were chosen within the standard stereographic triangle. The creep curve in the Ni-20 mass%Cr single crystal consists of a transient stage and an accelerating stage without a steady state stage. The transient stage has two steps. In the first step, the creep rate slightly decreases, and in the second step, the decrease in creep rate becomes prominent with increasing the testing time. With decreasing the stress, the extension of transient stage becomes prominent, and by this extension, the decreasing ratio of the creep rate in transient stage is enlarged. At the lowest stress of 19.6 MPa, the most prominent extension of transient stage and the more than two order decrease in creep rate in transient stage are detected. The creep interrupting tests have been conducted at the stress of 29.4 MPa in the strain range of 0.1 to 0.6 to examine the appearance of dynamically recrystallized grains. At the strain of 0.1 corresponding to the end of the first step in transient stage, a straight subboundary parallel to slip plane appears in a wide distance of a few hundreds micrometers. With increasing the strain, the straight subboundary turns to waved one. At the strain showing the minimum creep rate, a lot of evolved subgrains appear. At the strain corresponding to the early stage of accelerating creep, dynamically recrystallized grains appear. It is confirmed that the onset of accelerating creep well corresponds to the appearance of dynamically recrystallized grains. In the single crystal creep ruptured, the whole gage portion turns to polycrystal with equiaxed grains having a diameter of 150 μm. (orig.)

  10. Contribution of the Acoustic Emission technique in the understanding and the modelling of the coupling between creep and damage in concrete

    International Nuclear Information System (INIS)

    Saliba, J.

    2012-01-01

    In order to design reliable concrete structures, prediction of long term behaviour of concrete is important. In fact, creep deformation can cause mechanical deterioration and cracking, stress redistribution, loss in prestressed members and rarely ruin the structure. The aim of this research is to have a better understanding of the interaction between creep and crack growth in concrete. An experimental investigation on the fracture properties of concrete beams submitted to creep bending tests with high levels of sustained load is reported. The influence of creep on residual capacity and fracture energy of concrete is studied. In parallel, the acoustic emission technique (AE) was used to monitor crack development. The results give wealth information on damage evolution and show a decrease in the width of the fracture process zone (FPZ) characterizing a more brittle behaviour for beams subjected to creep. The AE shows that this may be due to the development of microcracking detected under creep. Based on those experimental results, a mesoscopic numerical study was proposed by coupling a damage model based on the micro-plan theory and a viscoelastic creep model defined by several Kelvin-voigt chains. The numerical results on concrete specimens in tension and in bending confirm the development of microcracks during creep at the mortar-aggregate interface. (author)

  11. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  12. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.

    1982-01-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10 4 hours higher temperatures in order to extrapolated up to ≥10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  13. Vacuum interrupters used for the interruption of high dc currents

    International Nuclear Information System (INIS)

    Warren, R.W.

    1977-01-01

    Conventional ac vacuum interrupters are being used to interrupt currents in pulsed energy storage systems. They have been tested with dc currents of up to 37 kA. The limit to the current which can be successfully interrupted has been measured as a function of various parameters. Among these are (1) the size of the interrupter, (2) the magnitude of the counterpulse current, (3) the nature and flux rating of the saturable reactor used, and (4) the kind of ''snubber'' circuit used. Fragmentary data have also been collected on electrode erosion rates and on mechanical failure of the bellows. A description is given of the circuits used in these tests and of the results found for a representative selection of the commercially available domestic interrupters. More recently efforts have been made to increase the values found for the maximum interruptible current. The techniques used have included connecting interrupters in parallel and operating them in an impressed axial magnetic field. The results of this work are discussed

  14. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Inoue, Tadashi

    2005-01-01

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  15. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    Science.gov (United States)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  16. The creep-rupture behaviour of the martensitic steel X18CrMoVNb 121 (no.1.4914) in liquid Pb-17 Li at 550 and 6000C

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.; Schirra, M.

    1988-01-01

    One of the candidate structural materials for the NET blanket is the martensitic steel X18 CrMoVNb 12 1 (no.1.4914). Its compatibility with the molten eutectic Pb-17Li, which might be used as liquid breeder and coolant in a self-cooled liquid metal blanket, should be satisfying even under superimposed mechanical stress. The mechanical high-temperature strength of the steel should not be significantly reduced by the interaction with the liquid metal which is in close contact with the surface of the components of such a blanket. The corrosion behaviour of this steel in flowing Pb-17Li eutectic is also studied, results will be presented at this conference. A certain influence of a liquid metal environment on the creep-rupture behaviour of steels was observed earlier in a study on the mechanical properties of austenitic stainless steel in liquid sodium. Therefore, a test programme was initiated to evaluate the effects of liquid Pb-17Li alloy on the creep strength of the steel no. 1.4914. Liquid lithium environment showed an influence on the fracture of this material in short time tests at moderate temperature

  17. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  18. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  19. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  20. Deformation by grain boundary sliding and slip creep versus diffusional creep

    International Nuclear Information System (INIS)

    Ruano, O A; Sherby, O D; Wadsworth, J.

    1998-01-01

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called diffusional creep region are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called diffusional creep regions

  1. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Science.gov (United States)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  2. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  3. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Nandagopal, M.; Mannan, S.L.

    2011-01-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  4. Quantitative analysis of microstructure deformation in creep fenomena of ferritic SA-213 T22 and austenitic SA-213 TP304H material

    Science.gov (United States)

    Mulyana, Cukup; Taufik, Ahmad; Gunawan, Agus Yodi; Siregar, Rustam Efendi

    2013-09-01

    The failure of critical component of fossil fired power plant that operated in creep range (high stress, high temperature and in the long term) depends on its microstructure characteristics. Ferritic low carbon steel (2.25Cr-1Mo) and Austenitic stainless alloy (18Cr-8Ni) are used as a boiler tube in the secondary superheater outlet header to deliver steam before entering the turbin. The tube failure is occurred in a form of rupture, resulting trip that disrupts the continuity of the electrical generation. The research in quantification of the microstructure deformation has been done in predicting the remaining life of the tube through interrupted accelerated creep test. For Austenitic Stainless Alloy (18Cr-8Ni), creep test was done in 550°C with the stress 424.5 MPa and for Ferritic Low Carbon Steel (2.25Cr-1Mo) in 570°C with the stress 189 MPa. The interrupted accelerated creep test was done by stopping the observation in condition 60%, 70%, 80% and 90% of remaining life, the creep test fracture was done before. Then the micro hardness test, photo micro, SEM and EDS were obtained from those samples. Refer to ASTM E122, microstructure parameters were calculated. The results indicated that there are a consistency of decreasing their grain diameters, increasing their grain size numbers, micro hardness, and the length of crack or void number per unit area with the decreasing of remaining life. While morphology of grain (stated in parameter α=LV/LH) relatively constant for austenitic. However, for ferritic the change of morphology revealed significantly. Fracture mode propagation of ferritic material is growth with voids transgranular and intergranular crack, and for austenitic material the fracture growth with intergranular creep fracture void and wedge crack. In this research, it was proposed a formulation of mathematical model for creep behavior corresponding their curve fitting resulted for the primary, secondary and tertiary in accelerated creep test. In

  5. Comparing creep in two stainless steels AISI 316

    International Nuclear Information System (INIS)

    Silveira, T.L. da; Monteiro, S.N.

    1976-07-01

    Two AISI 316 stainless steels, one of Brazilian fabrication (Villares), the other of foreign fabrication (Uddeholm) were submitted to creep tests with temperature ranging from 600 to 800 0 C. Some important differences in the mechanical behaviour of the two steels are pointed out. These differences are due to the particular thermomechanical history of the materials under consideration. (Author) [pt

  6. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  7. Role of small amount of MgO and ZrO 2 on creep behaviour of high ...

    Indian Academy of Sciences (India)

    Small levels of various dopants have a significant effect on creep in polycrystalline alumina. While most previous studies have examined the effect of ionic size, the influence of valency of dopants on creep has not yet been completely characterized. The present detailed experimental study, utilizing magnesia and zirconia ...

  8. Study of stress-reduction effects on creep behaviour of AISI-316 stainless steel

    International Nuclear Information System (INIS)

    Alegria, R.V.

    1984-01-01

    Creep tests were performed in 316 austenitic stainless steel at 1006 0 K in both solution treated and in 15% pre-deformed samples. The dislocation substructure in the steady state stage was analysed for the applied stresses 109,30 MPa and 208,23 MPa. The influence of the prestraining conditions was verified. The strutural modifications occurring after a stress reduction were analysed in stress reduction tests. The results are discussed in terms of current ideas and its shown that the increase in creep resistance, introduced by a 15% pre-strain, is due to the presence of a subgrain structure and carbides which act as obstacles to dislocation motion. (E.G.) [pt

  9. Evaluation of Permanent Deformation of Unmodified and Rubber-Reinforced SMA Asphalt Mixtures Using Dynamic Creep Test

    Directory of Open Access Journals (Sweden)

    Herda Yati Katman

    2015-01-01

    Full Text Available This paper presents the evaluation of permanent deformation of rubber-reinforced SMA asphalt mixtures by using dynamic creep test. The effect of trans-polyoctenamer as a cross-linking agent in permanent deformation of rubberized mixtures was also evaluated. Dynamic creep test was conducted at different stress levels (200 kPa, 400 kPa and temperatures (40°C, 50°C. Permanent deformation parameters such as dynamic creep curve, ultimate strain, and creep strain slope (CSS were used to analyse the results. Finally, the creep behaviour of the specimens was estimated by the Zhou three-stage creep model. The results show that crumb rubber and trans-polyoctenamer significantly affected the parameters especially at high stress and temperatures. Consistent findings were observed for all permanent deformation parameters. Moreover, based on Zhou model, it was concluded that resistance to permanent deformation was improved by application of crumb rubber and trans-polyoctenamer.

  10. Compressive Creep Behaviour of Extruded Mg Alloys at 150 °C

    Science.gov (United States)

    Fletcher, M.; Bichler, L.; Sediako, D.; Klassen, R.

    Wrought magnesium alloy bars, sections and tubes have been extensively used in the aerospace, electronics and automotive industries, where component weight is of concern. The operating temperature of these components is typically limited to below 100°C, since appreciable creep relaxation of the wrought alloys takes place above this temperature.

  11. A method of creep rupture data extrapolation based on physical processes

    International Nuclear Information System (INIS)

    Leinster, M.G.

    2008-01-01

    There is a need for a reliable method to extrapolate generic creep rupture data to failure times in excess of the currently published times. A method based on well-understood and mathematically described physical processes is likely to be stable and reliable. Creep process descriptions have been developed based on accepted theory, to the extent that good fits with published data have been obtained. Methods have been developed to apply these descriptions to extrapolate creep rupture data to stresses below the published values. The relationship creep life parameter=f(ln(sinh(stress))) has been shown to be justifiable over the stress ranges of most interest, and gives realistic results at high temperatures and long times to failure. In the interests of continuity with past and present practice, the suggested method is intended to extend existing polynomial descriptions of life parameters at low stress. Where no polynomials exist, the method can be used to describe the behaviour of life parameters throughout the full range of a particular failure mode in the published data

  12. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  13. Characterising physician listening behaviour during hospitalist handoffs using the HEAR checklist.

    Science.gov (United States)

    Greenstein, Elizabeth A; Arora, Vineet M; Staisiunas, Paul G; Banerjee, Stacy S; Farnan, Jeanne M

    2013-03-01

    The increasing fragmentation of healthcare has resulted in more patient handoffs. Many professional groups, including the Accreditation Council on Graduate Medical Education and the Society of Hospital Medicine, have made recommendations for safe and effective handoffs. Despite the two-way nature of handoff communication, the focus of these efforts has largely been on the person giving information. To observe and characterise the listening behaviours of handoff receivers during hospitalist handoffs. Prospective observational study of shift change and service change handoffs on a non-teaching hospitalist service at a single academic tertiary care institution. The 'HEAR Checklist', a novel tool created based on review of effective listening behaviours, was used by third party observers to characterise active and passive listening behaviours and interruptions during handoffs. In 48 handoffs (25 shift change, 23 service change), active listening behaviours (eg, read-back (17%), note-taking (23%) and reading own copy of the written signout (27%)) occurred less frequently than passive listening behaviours (eg, affirmatory statements (56%) nodding (50%) and eye contact (58%)) (pRead-back occurred only eight times (17%). In 11 handoffs (23%) receivers took notes. Almost all (98%) handoffs were interrupted at least once, most often by side conversations, pagers going off, or clinicians arriving. Handoffs with more patients, such as service change, were associated with more interruptions (r=0.46, plistening behaviours. While passive listening behaviours are common, active listening behaviours that promote memory retention are rare. Handoffs are often interrupted, most commonly by side conversations. Future handoff improvement efforts should focus on augmenting listening and minimising interruptions.

  14. Modifications on the behaviour of AISI 304 stainless steel submitted to creep caused by intermediate treatment of annealing

    International Nuclear Information System (INIS)

    Barreto, L.F.P.; Monteiro, S.N.

    1982-01-01

    Type AISI 304 austenitic stainless steel samples which have been previously creep deformed at 750 0 C, were annealed at 1100 0 C. The effects of this heat treatment in the mechanical behavior of this material when retested in creep were investigated. The results were analysed by taking into account the structural modifications observed and the controlling mechanisms which operate during the deformation and fracture occurring in the creep process. (Author) [pt

  15. Creep theories compared by means of high sensitivity tensile creep data

    International Nuclear Information System (INIS)

    Salim, A.

    1987-01-01

    Commonly used creep theories include time-hardening, strain-hardening and Rabotnov's modified strain-hardening. In the paper they are examined by using high sensitivity tensile creep data produced on 1% CrMoV steel at a temperatue of 565 0 C. A special creep machine designed and developed by the author is briefly described and is compared with other existing machines. Tensile creep data reported cover a stress range of 100-260 MN m -2 ; four variable-creep tests each in duplicate are also reported. Test durations are limited to 3000 h, or failure, whichever occurs earlier. The strain-hardening theory and Rabotnov's modified strain-hardening theory are found to give good prediction of creep strain under variable stress conditions. The time-hardening theory shows a relatively poor agreement and considerably underestimates the accumulated inelastic strain under increasing stress condition. This discrepancy increases with the increased stress rate. The theories failed to predict the variable stress results towards the later part of the test where tertiary effects were significant. The use of creep equations which could account for creep strain at higher stress levels seems to improve the situation considerably. Under conditions of variable stress, it is suggested that a theory based on continuous damage mechanics concepts might give a better prediction. (author)

  16. Interrupt Handlers in Java

    DEFF Research Database (Denmark)

    Korsholm, Stephan; Schoeberl, Martin; Ravn, Anders Peter

    2008-01-01

    An important part of implementing device drivers is to control the interrupt facilities of the hardware platform and to program interrupt handlers. Current methods for handling interrupts in Java use a server thread waiting for the VM to signal an interrupt occurrence. It means that the interrupt...... is handled at a later time, which has some disadvantages. We present constructs that allow interrupts to be handled directly and not at a later point decided by a scheduler. A desirable feature of our approach is that we do not require a native middleware layer but can handle interrupts entirely with Java...... code. We have implemented our approach using an interpreter and a Java processor, and give an example demonstrating its use....

  17. The creep analysis of shell structures using generalised models

    International Nuclear Information System (INIS)

    Boyle, J.T.; Spence, J.

    1981-01-01

    In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)

  18. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  19. Development of a Zircaloy creep and failure model for LOCA conditions

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1981-01-01

    The present status of NORA model for zircaloy-4 creep and failure in the high temperature region (from 600 deg C up to 1200 deg C) is described. Temperature dependence, strain hardening and oxygen content are found to be the most important features of the strain rate creep equation. The failure criterion is based on a modified strain fraction rule. Variables of this criterion are temperature, strain rate or applied stress respectively and oxygen content. Concerning the application of the deformation model, deduced from uniaxial tests, to tube deformation calculation the axial ballooning shape has to be taken into account. Its influence on the tube stress components and therefore on strain rate is discussed. A further improvement of the deformation model concerning yield drop and irregular creep behaviour aims at the enlargement of the range of applicability and reduction of the error band of the model

  20. Concrete for PCRVs: strength of concrete under triaxial loading and creep at elevated temperatures

    International Nuclear Information System (INIS)

    Linse, D.; Aschl, H.; Stoeckl, S.

    1975-01-01

    To provide detailed information for the calculation of prestressed concrete reactor vessels, investigations of the behaviour of concrete under multiaxial loading and on creep at elevated temperatures were made at the Institut fuer Massivbau of the Technical University of Munich. The strength of concrete under triaxial compression is dependent on the stress ratio. The less the stresses differ from hydrostatic compression the more strength increases. Triaxial compression increases very much the deformability of concrete. Plastic deformations of +-10% and more (all stresses compression, but not equal, strains compression or tension) are possible without large cracks. The creep deformations are considerably dependent on the temperature. Creep at 80 0 C is about three to four times higher than at 20 0 C. The Poisson's ratio of creep at elevated temperature seems to be bigger than at normal temperatures at a rate of loading of 35% and 50% of the ultimate strength. (Auth.)

  1. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  2. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 2

    International Nuclear Information System (INIS)

    Singh, B.N.; Johansen, B.S.; Taehtinen, S.; Moilanen, P.; Saarela, S.; Jacquet, P.; Dekeyser, J.; Stubbins, J.F.

    2008-01-01

    The main objective of the present work was to determine experimentally the mechanical response and resulting microstructural changes in CuCrZr (HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Using specially designed test facilities for this purpose, in-reactor creep-fatigue tests have been performed at strain amplitudes of 0.25 and 0.35 % with a holdtime of 10s in the BR-2 reactor at Mol (Belgium). These tests were performed at the ambient temperatures of 326K and 323K. For comparison purposes corresponding out-of-reactor creep-fatigue tests were also carried out. In the following we first describe the details of the creep-fatigue experiments. We then present the main results on the mechanical response of the material in the form of hysteresis loops and the maximum stress amplitude as a function of the number of creep-fatigue cycles during the out-of-reactor and the in-reactor tests carried out at different strain amplitudes. Finally, the dependence of the number of cycles to failure (i.e. creep-fatigue lifetime) on the strain amplitudes is shown. The details of microstructure of the specimens tested out-of-reactor as well as in the reactor were investigated using transmission electron microscopy. The main results on the mechanical response as well as changes in the microstructure are briefly discussed. The main conclusion emerging from the present work is that the lifetime of the in-reactor tested specimens is by a factor of about two longer than in the case of corresponding out-of-reactor tests. (au)

  3. Self-consistent calculation of steady-state creep and growth in textured zirconium

    International Nuclear Information System (INIS)

    Tome, C.N.; So, C.B.; Woo, C.H.

    1993-01-01

    Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic axis in each individual grain. Several methods have been attempted to model such dimensional changes, taking into account the development of intergranular stresses. In this paper, we compare the predictions of several such models, namely the upper-bound, the lower-bound, the isotropic K* self-consistent (analytical) and the fully self-consistent (numerical) models. For given single-crystal creep compliances and growth factors, the polycrystal compliances predicted by the upper- and lower-bound models are unreliable. The predictions of the two self-consistent approaches are usually similar. The analytical isotropic K* approach is simple to implement and can be used to estimate the creep and growth rates of the polycrystal in many cases. The numerical fully self-consistent approach should be used when an accurate prediction of polycrystal creep is required, particularly for the important case of a closed-end internally pressurized tube. In most cases, the variations in grain shape introduce only minor corrections to the behaviour of polycrystalline materials. (author)

  4. Pseudo-creep in Shape Memory Alloy Wires and Sheets

    Science.gov (United States)

    Russalian, V. R.; Bhattacharyya, A.

    2017-10-01

    Interruption of loading during reorientation and isothermal pseudoelasticity in shape memory alloys with a strain arrest ( i.e., holding strain constant) results in a time-dependent evolution in stress or with a stress arrest ( i.e., holding stress constant) results in a time-dependent evolution in strain. This phenomenon, which we term as pseudo-creep, is similar to what was reported in the literature three decades ago for some traditional metallic materials undergoing plastic deformation. In a previous communication, we reported strain arrest of isothermal pseudoelastic loading, isothermal pseudoelastic unloading, and reorientation in NiTi wires as well as a rate-independent phase diagram. In this paper, we provide experimental results of the pseudo-creep phenomenon during stress arrest of isothermal pseudoelasticity and reorientation in NiTi wires as well as strain arrest of isothermal pseudoelasticity and reorientation in NiTi sheets. Stress arrest in NiTi wires accompanied by strain accumulation or recovery is studied using the technique of multi-video extensometry. The experimental results were used to estimate the amount of mechanical energy needed to evolve the wire from one microstructural state to another during isothermal pseudoelastic deformation and the difference in energies between the initial and the final rest state between which the aforementioned evolution has occurred.

  5. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Tähtinen, S.; Moilanen, P.

    CrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol...

  6. PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Mishina Alexandra Vasil'evna

    2012-12-01

    Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.

  7. Experiments with vacuum interrupters used for large dc-current interruption

    International Nuclear Information System (INIS)

    Warren, R.W.

    1977-10-01

    Vacuum interrupters have been tested in circuits similar to those used in theta-pinch and Tokamak fusion devices. The effects on performance of auxiliary circuit components and axial magnetic fields have been determined, and limits to lifetime caused by mechanical and electrical wear have been measured. Results show that the upper reliable limit of interruption is independent of the auxiliary components but quite dependent on interrupter size and on the axial field

  8. Applications of tensor functions in creep mechanics

    International Nuclear Information System (INIS)

    Betten, J.

    1991-01-01

    Within this contribution a short survey is given of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The mechanical behaviour of anisotropic solids requires a suitable mathematical modelling. The properties of tensor functions with several argument tensors constitute a rational basis for a consistent mathematical modelling of complex material behaviour. This paper presents certain principles, methods, and recent successfull applications of tensor functions in solid mechanics. The rules for specifying irreducible sets of tensor invariants and tensor generators for material tensors of rank two and four are also discussed. Furthermore, it is very important that the scalar coefficients in constitutive and evolutional equations are determined as functions of the integrity basis and experimental data. It is explained in detail that these coefficients can be determined by using tensorial interpolation methods. Some examples for practical use are discussed. (orig./RHM)

  9. Development of evaluation technique of high temperature creep characteristics by small punch-creep test method (I)

    International Nuclear Information System (INIS)

    Baek, Seung Se; Na, Sung Hun; Yu, Hyo Sun; Na, Eui Gyun

    2001-01-01

    In this study, a Small Punch Creep(SP-Creep) test using miniaturized specimen(10 x 10 x 0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-1Mo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600 .deg. C. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decrease with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation of SP-Creep rate for 2.25Cr-1Mo steel is suggested, and a good agreement between experimental and calculated data has been found

  10. Prediction of the creep properties of discontinuous fibre composites from the matrix creep law

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Boecker Pedersen, O.; Lilholt, H.

    1975-02-01

    Existing theories for predicting the creep properties of discontinuous fibre composites with non-creeping fibres from matrix creep properties, originally based on a power law, are extended to include an exponential law, and in principle a general matrixlaw. An analysis shows that the composite creep curve can be obtained by a simple displacement of the matrix creep curve in a log sigma vs. log epsilon diagram. This principle, that each point on the matrix curve has a corresponding point on the composite curve,is given a physical interpretation. The direction of displacement is such that the transition from a power law toan exponential law occurs at a lower strain rate for the composite than for the unreinforced matrix. This emphasizes the importance of the exponential creep range in the creep of fibre composites. The combined use of matrix and composite data may allow the creep phenomenon to be studied over a larger range of strain rates than otherwise possible. A method for constructing generalized composite creep diagrams is suggested. Creep properties predicted from matrix data by the present analysis are compared with experimental data from the literature. (author)

  11. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  12. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  13. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  14. High-temperature compressive creep behaviour of perovskite-type oxides SrTi1-xFexO3-δ

    NARCIS (Netherlands)

    ten Donkelaar, S.F.P.; Stournari, V.; Malzbender, J.; Nijmeijer, Arian; Bouwmeester, Henricus J.M.

    2015-01-01

    Compressive creep tests have been performed on mixed ionic-electronic conducting perovskite-type oxides SrTi1-xFexO3- (STF, x = 0.3, 0.5 and 0.7). Observed activation energies and stress exponents, at 800–1000 ◦C and in the stress range 10 100 MPa, indicate that the steady-state creep rate of STF

  15. Realistically Rendering SoC Traffic Patterns with Interrupt Awareness

    DEFF Research Database (Denmark)

    Angiolini, Frederico; Mahadevan, Sharkar; Madsen, Jan

    2005-01-01

    to generate realistic test traffic. This paper presents a selection of applications using interrupt-based synchronization; a reference methodology to split such applications in execution subflows and to adjust the overall execution stream based upon hardware events; a reactive simulation device capable...... of correctly replicating such software behaviours in the MPSoC design phase. Additionally, we validate the proposed concept by showing cycle-accurate reproduction of a previously traced application flow....

  16. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  17. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  18. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  19. Anisotropic creep damage in the framework of continuum damage mechanics

    International Nuclear Information System (INIS)

    Caboche, J.L.

    1983-01-01

    For some years, various works have shown the possibility of applying continuum mechanics to model the evolution of the damage variable, initially introduced by Kachanov. Of interest here are the complex problems posed by the anisotropy which affects both the elastic behaviour and the viscoplastic one, and also the rupture phenomenon. The main concepts of the Continuum Damage Mechanics are briefly reviewed together with some classical ways to introduce anisotropy of damage in the particular case of proportional loadings. Based on previous works, two generalizations are presented and discussed, which use different kinds of tensors to describe the anisotropy of creep damage: - The first one, by Murakami and Ohno introduces a second rank damage tensor and a net stress tensor through a net area definition. The effective stress-strain behaviour is then obtained by a fourth rank tensor. - The second theory, by the author, uses one effective stress tensor only, defined in terms of the macroscopic strain behaviour, through a fourth-order non-symmetrical damage tensor. The two theories are compared at several levels: difference and similarities are pointed out for the damage evolution during tensile creep as well as for anisotropy effects. The possibilities are discussed and compared on the basis of some existing experimental results, which leads to a partial validation of the two approaches. (orig.)

  20. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  1. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  2. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  3. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  4. Reducing the moisture effect on the creep deformation of wood by an irradiation-induced polymer impregnation method

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Boey, F.Y.C.; Teoh, S.H.

    1988-01-01

    This paper reports an attempt to reduce the sensitivity of creep deformation to moisture adsorption by impregnating a tropical wood with methyl-methacrylate and subsequent polymerization by γ-irradiation. Beam specimens both of untreated wood and polymer impregnated wood were subjected to a three-point bend creep test under a constant load of 300 N at 23 ± 1 0 C, at three different humidity levels of 50 ± 5, 65 ± 5 and 85 ± 5%. A Norton-Bailey (power law) mathematical model successfully described the creep behaviour, with the creep components determined by a non-linear regression analysis. A significant reduction in the sensitivity of creep deformation to the humidity level was attained for the polymer impregnated wood. This could be explained by the ability of the impregnated polymer to form a strongly adhesive interface with the wood cell material, thereby acting as a physical barrier to reduce the movement of water to and from the wood cell material. (author)

  5. Contribution to concrete modelling towards aging and durability: interactions between creep deformations and non-linear behaviour of the material

    International Nuclear Information System (INIS)

    Berthollet, A.

    2003-10-01

    Concrete structures are examined during their lifetime and often present important cracking states, which can progress with time and lead to change the structural behavior. The civil engineering works that the main function corresponds to protection's wall are very sensitive to this damage and its evolution. The growth of the time - dependent cracks represents an aging pathology linked with interaction between creep mechanism and the non-linear behavior of the material. In this thesis, a modeling for these mechanisms and their coupling are proposed. It based on creep strains analysis under different load levels, on the influence of the rate effect to the mechanical behavior. A stress limit is put on prominent manner, where beyond it, the creep - cracking interaction becomes important with the introduction of the ultimate tertiary creep kinetic. This level of strength is identified for infinitely slow loading rates and is also called intrinsic strength. It defines the limit on this side the viscous behavior of the cement paste limits the irreversibility processes as cracking. Thus, a constitutive law of viscoelastic - viscoplastic behavior with a high coupling between the cracking mechanism and the creep strains is proposed. The developments of the model are built on DUVAUT - LIONS approach integrated a generalized MAXWELL chain model. For one part, the viscoelastic behavior translates the creep mechanism under low stresses. For a second part, it associated with the viscoplastic behavior, which allows introducing both creep effect under high stresses and rate effect acting on micro-cracked zones. The cracking mechanism is described throughout a plasticity theory with multi-criteria, which induce a property of anisotropy for hardening. Qualitatively, ails of the creep kinetics are reproduced. An additional validation is based on experimental tests in compression, traction and flexion where the main parameters of the modeling are detailed. Thus, we can conclude on the

  6. The Effects of Interruption Task Complexity and Interruptions on Student Multitasking

    OpenAIRE

    Tan, Jiun Yi

    2013-01-01

    Students commonly multitask while studying. The ubiquitous use of laptops and computers has facilitated this phenomenon and even changed the nature of multitasking in studying environments. Interruptions have an undeniable presence in these everyday studying environments and there are growing concerns about their potential to disrupt both performance and the learning process. Since interruptions are unavoidable, it is useful to identify the features that make some interruptions more disruptiv...

  7. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms

    Science.gov (United States)

    Morscher, Greg; Gowayed, yasser; Miller, Robert; Ojard, Greg; Ahmad, Jalees; Santhosh, Unni; John, Reji

    2008-01-01

    An understanding of the elevated temperature tensile creep, fatigue, rupture, and retained properties of ceramic matrix composites (CMC) envisioned for use in gas turbine engine applications are essential for component design and life-prediction. In order to quantify the effect of stress, time, temperature, and oxidation for a state-of-the-art composite system, a wide variety of tensile creep, dwell fatigue, and cyclic fatigue experiments were performed in air at 1204 C for the SiC/SiC CMC system consisting of Sylramic-iBN SiC fibers, BN fiber interphase coating, and slurry-cast melt-infiltrated (MI) SiC-based matrix. Tests were either taken to failure or interrupted. Interrupted tests were then mechanically tested at room temperature to determine the residual properties. The retained properties of most of the composites subjected to tensile creep or fatigue were usually within 20% of the as-produced strength and 10% of the as-produced elastic modulus. It was observed that during creep, residual stresses in the composite are altered to some extent which results in an increased compressive stress in the matrix upon cooling and a subsequent increased stress required to form matrix cracks. Microscopy of polished sections and the fracture surfaces of specimens which failed during stressed-oxidation or after the room-temperature retained property test was performed on some of the specimens in order to quantify the nature and extent of damage accumulation that occurred during the test. It was discovered that the distribution of stress-dependent matrix cracking at 1204 C was similar to the as-produced composites at room temperature; however, matrix crack growth occurred over time and typically did not appear to propagate through thickness except at final failure crack. Failure of the composites was due to either oxidation-induced unbridged crack growth, which dominated the higher stress regime (> 179 MPa) or controlled by degradation of the fibers, probably caused by

  8. Effect of cobalt on microstructure and creep deformation behaviour of tempered martensitic 9% Cr steel for USC power

    Energy Technology Data Exchange (ETDEWEB)

    Helis, L.; Toda, Y.; Abe, F. [NIMS, Tsukuba (Japan). Structural Metals Center; Hara, T. [NIMS, Tsukuba (Japan). Advanced Nano Characterization Center; Miyazaki, H. [NIMS, Tokyo (Japan). Materials Data Sheet Station

    2008-07-01

    Four ingots with chemical composition 9Cr-3W-0/5Co-0.2V-0.05Nb-0.08C-0.05N, varying in the amount of Co addition were studied. Creep tests were conducted at temperature of 923K. Steels with 3% and 5% Co showed creep resistance superior to those with 1% and 0% Co at stresses above 140MPa. On the other hand 5% Co steel showed a significant deterioration in long term creep properties at 80MPa. Calculation by Thermo-Calc. suggested and observation of microstructure before the creep test confirmed the presence of about 6% and 0.4% of delta-ferrite in Co free and 1% Co steel, respectively. ICP mass spectrometry measurement showed that the amount of precipitation in steels after heat treatment increased with increase in Co addition, especially significant gap was found between 1% and 3% Co steels. Distribution of precipitation was studied by SEM and TEM. Particles of M{sub 23}C{sub 6} and MX carbonitrides preferentially precipitated around prior austenitic grain boundaries. Density of precipitation around these boundaries was found to depend on prior austenitic grain size, which is affected by the presence of anti o-ferrite and precipitation at normalizing temperature. Particles of Laves phase precipitated in the microstructure during the creep tests at 923K at all stresses. Its precipitation at the early stage was also enhanced by the addition of Co. It is known that creep properties of steels with fine grain deteriorate faster than those with coarse grains, due to the faster recovering during the keep at high temperatures. Combination of larger prior austenitic grains and higher precipitation contributes to the prolonged life of steels with higher amount of Co after testing at 923K and 160MPa. Deterioration in long term creep strength of steels with high amount of Co can be attributed to the precipitation Cr(V,Nb)N particles known as Z-phase, which is associated with dissolution of MX carbonitrides. (orig.)

  9. Influence of grain size on the tensile and creep properties of a type 316 stainless steel

    International Nuclear Information System (INIS)

    Mannan, S.L.; Samuel, K.G.; Rodriguez, P.

    The influence of grain size, on the tensile deformation behaviour in the temperature range 300-1223 K and on the creep rate at 873 and 973 K over a wide range of applied stresses, in a type 316 stainless steel has been investigated. For the tensile results, the Hall-Petch relation was found to be valid up to 1023 K. The variations of flow stress and work hardening rate with temperature and grain size have been found to be influenced by dynamic strain aging which occurs in the temperature range 523-923 K. The creep experiments revealed that grain boundaries contribute to strengthening at high stresses (180-260 MPa) at 873 K but this strengthening does not correlate with the available models which attempt to incorporate the Hall-Petch strengthening effect into creep rate equations. At 973 K the creep rate was generally constant but increased at small grain sizes and at lower stresses due to increased contribution from grain boundary sliding. The difference in the grain size effects on creep at the two temperatures is attributed to the difference in the substructures developed during creep. (author)

  10. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Schubert, F.

    1990-08-01

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, ε min = k.σ n . The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.) [de

  11. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    Science.gov (United States)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to

  12. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  13. Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I., E-mail: eg375@cam.ac.uk; Rae, C.M.F.

    2016-01-10

    A new approach for modelling dislocation creep during primary and secondary creep in FCC metals is proposed. The Orowan equation and dislocation behaviour at the grain scale are revisited to include the effects of different microstructures such as the grain size and solute atoms. Dislocation activity is proposed to follow a jog-diffusion law. It is shown that the activation energy for cross-slip E{sub cs} controls dislocation mobility and the strain increments during secondary creep. This is confirmed by successfully comparing E{sub cs} with the experimentally determined activation energy during secondary creep in 5 FCC metals. It is shown that the inverse relationship between the grain size and dislocation creep is attributed to the higher number of strain increments at the grain level dominating their magnitude as the grain size decreases. An alternative approach describing solid solution strengthening effects in nickel alloys is presented, where the dislocation mobility is reduced by dislocation pinning around solute atoms. An analysis on the solid solution strengthening effects of typical elements employed in Ni-base superalloys is also discussed. The model results are validated against measurements of Cu, Ni, Ti and 4 Ni-base alloys for wide deformation conditions and different grain sizes.

  14. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  15. Mechanical behaviour of AISI 304/307 weldments creep tested at 7000C

    International Nuclear Information System (INIS)

    Pope, A.M.; Monteiro, S.N.; Silveira, T.L.

    Preliminary observations on the mechanical behavior of AISI 304/347 weldments creep tested at 700 0 C are presented. The results are compared with those of similar welded joints isothermally treated at the same temperature for different times. The peculiar aspects in the mechanical behavior are discussed based on precipitation reactions which occur in the joint materials [pt

  16. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  17. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  18. Creep of titanium--silicon alloys

    International Nuclear Information System (INIS)

    Paton, N.E.; Mahoney, M.W.

    1976-01-01

    Operative creep mechanisms in laboratory melts of Ti-5Zr-0.5Si and Ti-5Zr-0.5Si have been investigated as a function of microstructure, creep stress, and temperature. From creep rate data and transmission electron microscopy results, it has been shown that an important creep strengthening mechanism at 811 0 K in Si-bearing Ti alloys is clustering of solute atoms on dislocations. All of the alloys investigated showed anomalously high apparent activation energies and areas for creep and a high exponent (n) in the Dorn equation. In addition, the effect of heat treatment was investigated and it is shown that the highest creep strength was obtained by using a heat treatment which retained the maximum amount of silicon in solution. This is consistent with the proposed creep strengthening mechanism. An investigation of the creep behavior of several other Si containing alloys including two commercial alloys, Ti-11 and IMI-685 indicated similar results. 12 fig., 6 tables

  19. Microstructure in Zircaloy Creep Tested in the R2 Reactor

    International Nuclear Information System (INIS)

    Pettersson, Kjell

    2004-12-01

    Tubular specimens of Zircaloy-4 have been creep tested in bending in the R2 reactor in Studsvik. The creep deformation in the reactor core is accelerated in comparison with creep deformation outside the reactor core. The possible mechanisms behind this behaviour are described briefly. In order to determine which the actual mechanism is, the microstructure of the material creep tested in the R2 reactor has been examined by transmission electron microscopy. Due to the bending, material subjected to both tensile and compressive stress during creep was available. Since some of the proposed mechanisms might give microstructures which are different when the material is subjected to compressive or tensile stress it was assumed that examination of both types of material would give valuable information with regard to the operating mechanism. The result of the examination was that in the as-irradiated condition there were no obvious differences detected between materials which had been deformed in tension or compression. After a heat treatment to coarsen the irradiation induced microstructure there were still no significant differences between the two types of material. However it was now observed that in addition to dislocation loops the microstructure also contained network dislocations which presumably had been invisible in the electron microscope before heat treatment due to the high density of small dislocation loops in this state. It is therefore concluded that the most probable mechanism for irradiation creep in this case is climb and glide of the network dislocations. The role of irradiation is two-fold: It accelerates climb due to the production of point defects of which more interstitials than vacancies arrive to the network dislocations stopped at an obstacles. This leads to a net climb after which a dislocation is released from the obstacle and an amount of glide takes place. The second effect is the production of loops which serve as an increasing density of

  20. Creep recovery behaviour of bituminous binders - relevance to permanent deformation of asphalt pavements

    CSIR Research Space (South Africa)

    Mturi, GAJ

    2012-05-01

    Full Text Available different modifiers has expanded the range of PMBs to select from when designing pavements in order to avoid pavement deformation. The new binder selection criterion using the Multiple Stress Creep and Recovery (MSCR) protocol as per ASTM D7405 is meant...

  1. Analysis of irradiation creep and the structural integrity of fusion in-vessel components

    International Nuclear Information System (INIS)

    Karditsas, Panayiotis J.

    2000-01-01

    This paper presents a brief review of the irradiation creep mechanism, analyses of the effect on the performance and behaviour of fusion in-vessel components, and discusses procedures for the estimation of in-service time (or lifetime) of components under combined creep-fatigue. The irradiation creep models and proposed theories are examined and analysed to produce a creep law relevant to fusion conditions. The necessary material data, constitutive equations and other parameters needed for estimation of in-service time from the combination of creep and fatigue damage are identified. Wherever possible, design curves are proposed for stress and strain. Time dependent non-linear elastoplastic example calculations are performed, for a typical first wall structure under power plant loading conditions, assuming austenitic and martensitic steel as structural materials, including material irradiation creep. The results of calculations for the stress and strain history of the first wall are used together with the proposed cumulative damage expressions derived in this study to estimate the in-service time, including the effects of stress relaxation due to creep, reduction of ductility (or fracture strain) and helium-to-displacement-damage ratio. The calculations give a displacement damage of ∼70 dpa for the 316 austenitic steel and ∼110-130 dpa for the martensitic steel. Provided there are no power transients, for a design strain of 0.5%, the in-service time is estimated to be ∼3 years for the 316 steel case (at 2.2 MW/m 2 wall load) and the high wall loading martensitic steel (5.0 MW/m 2 case), and ∼5.3 years for the martensitic steel at lower wall load (2.2 MW/m 2 case). The difficulty in defending these results lies in the uncertainty arising from the limited database and experience of the material properties, especially the creep constitutive law, when exposed to fusion environments

  2. Prediction of long-term creep curves

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Maruyama, Kouichi

    1992-01-01

    This paper aims at discussing how to predict long-term irradiation enhanced creep properties from short-term tests. The predictive method based on the θ concept was examined by using creep data of ferritic steels. The method was successful in predicting creep curves including the tertiary creep stage as well as rupture lifetimes. Some material constants involved in the method are insensitive to the irradiation environment, and their values obtained in thermal creep are applicable to irradiation enhanced creep. The creep mechanisms of most engineering materials definitely change at the athermal yield stress in the non-creep regime. One should be aware that short-term tests must be carried out at stresses lower than the athermal yield stress in order to predict the creep behavior of structural components correctly. (orig.)

  3. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  4. Changes in creep of polymethylmetacrylate after irradiation

    International Nuclear Information System (INIS)

    Peschanskaya, N.N.; Smolyanskij, A.S.; Suvorova, V.Yu.

    1992-01-01

    A study was made on PMMA, irradiated by different doses of 60 Co γ-radiation in vacuum under creep during compression. It is shown that occurence of tendency to failure at +20 degC is observed at doses of D > 100 kGy (> 10 Mrad), whereas sufficient decrease of deformation before failure takes place at D > 350 kGy. Peculiarities of behaviour of irradiated and nonirradiated PMMA under compression and tension were correlated. It is noted that critical irradiation doses may differ sufficiently for different loading conditions, deformation and longevity characteristics

  5. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  6. Metallurgical principles of creep processes

    International Nuclear Information System (INIS)

    Bolton, C.J.

    1977-12-01

    A brief review is presented of current theories of a number of the physical processes which can be involved in deformation and fracture under creep conditions. The processes considered are power law creep, diffusion creep, grain boundary sliding, cavitation and other modes of failure, and creep crack growth. The note concludes with some suggestions for future work. (author)

  7. Microstructure-based assessment of creep rupture strength in 9Cr steels

    International Nuclear Information System (INIS)

    Spigarelli, S.

    2013-01-01

    A microstructure-based model to assess the long-term creep strength in 9Cr steels is proposed. The model takes into account a number of different key issues, including the presence and evolution of the most important families of precipitates (M 23 C 6 , MX, Laves and Z phases), the subgrain recovery process, the different strengthening mechanisms (solid solution strengthening and particle strengthening), and is able to give realistic values of the long-term creep strength in P9, P91 and P911 steels. If properly tuned to describe the mid/long-term precipitation of the Z-phase, and the concurrent dissolution of MX precipitates, the model can also predict the sigmoidal behaviour which leads to the early rupture of single heats of P91 steel. Highlights: ► Creep response at 600 °C of 9% Cr steels. ► Important effect of the different families of precipitates. ► The effect is described by introducing the grain size term in a previously developed model. ► Degradation of particle strengthening effect is considered by calculating the coarsening of the particles.

  8. Irradiation creep models - an overview

    International Nuclear Information System (INIS)

    Matthews, J.R.; Finnis, M.W.

    1988-01-01

    The modelling of irradiation creep is now highly developed but many of the basic processes underlying the models are poorly understood. A brief introduction is given to the theory of cascade interactions, point defect clustering and dislocation climb. The range of simple irradiation creep models is reviewed including: preferred nucleation of interstitial loops; preferred absorption of point defects by dislocations favourably orientated to an applied stress; various climb-enhanced glide and recovery mechanisms, and creep driven by internal stresses produced by irradiation growth. A range of special topics is discussed including: cascade effects; creep transients; structural and induced anisotropy; and the effect of impurities. The interplay between swelling and growth with thermal and irradiation creep is emphasized. A discussion is given on how irradiation creep theory should best be developed to assist the interpretation of irradiation creep observations and the requirements of reactor designers. (orig.)

  9. Creep analysis by the path function method

    International Nuclear Information System (INIS)

    Akin, J.E.; Pardue, R.M.

    1977-01-01

    The finite element method has become a common analysis procedure for the creep analysis of structures. The most recent programs are designed to handle a general class of material properties and are able to calculate elastic, plastic, and creep components of strain under general loading histories. The constant stress approach is too crude a model to accurately represent the actual behaviour of the stress for large time steps. The true path of a point in the effective stress-effective strain (sigmasup(e)-epsilonsup(c)) plane is often one in which the slope is rapidly changing. Thus the stress level quickly moves away from the initial stress level and then gradually approaches the final one. The result is that the assumed constant stress level quickly becomes inaccurate. What is required is a better method of approximation of the true path in the sigmasup(e)-epsilonsup(c) space. The method described here is called the path function approach because it employs an assumed function to estimate the motion of points in the sigmasup(e)-epsilonsup(c) space. (Auth.)

  10. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  11. Creep-rupture-test on the stainless steel X6CRNI1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program''. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Las Rivas, M. de; Barroso, S.

    1982-01-01

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the creep-rupture-strength and creepbehaviour up to 3 x 10 4 hours at higher temperatures in order to extrapolate up to >=10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 deg - 750 deg C. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 deg C. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (author)

  12. Creep and fatigue of alloy 800 in helium

    International Nuclear Information System (INIS)

    Cook, R.H.

    1975-01-01

    Proposals for use of Alloy 800 as a H.T.R. boiler material have prompted studies of its creep and high temperature fatigue properties in impure helium with comparative tests in air. In impure helium, as expected in a H.T.R., reactions of potential importance are selective oxidation (of chromium, aluminium and titanium) and possibly carburisation from carbon monoxide or methane. In air, general oxidation will occur, possibly accompanied by nitridation. The effects of these reactions will depend on specimen geometry and the nature of the deformation. Two important possibilities are: (i) that environment affects the structure and properties of a surface zone of material undegoing uniform deformation (this may modify creep rate and crack nucleation); and (ii) that environment affects behaviour of a small region (e.g. at the root of a notch or ahead of a crack) in a specimen undergoing non-uniform deformation (this will modify crack growth and hence rupture life or fatigue endurance). This paper summarises experimental work demonstrating an influence of the above reactions on mechanical properties of austenitic steels and nickel-based alloys, drawing examples where possible from the limited data available on Alloy 800. Whilst nitridation and carburisation may simply increase creep resistance at the expense of ductility (and possibly of fatigue resistance), the effects of oxidation are complex. A high oxygen pressures (as in air) oxygen may reduce creep and fatigue resistance by promoting cavitation but formation of oxide in cracks can reduce their propagation rate. At low oxygen pressures, as expected in H.T.R. helium, oxygen enhanced cavitation is less likely, but selective oxidation along grain boundaries can sometimes assist crack nucleation. (author)

  13. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  14. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  15. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  16. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  17. Assessment of creep-fatigue damage using the UK strain based procedure

    International Nuclear Information System (INIS)

    Bate, S.K.

    1997-01-01

    The UK strain based procedures have been developed for the evaluation of damage in structures, arising from fatigue cycles and creep processes. The fatigue damage is assessed on the basis of modelling crack growth from about one grain depth to an allowable limit which represents an engineering definition of crack formation. Creep damage is based up on the exhaustion of available ductility by creep strain accumulation. The procedures are applicable only when level A and B service conditions apply, as defined in RCC-MR or ASME Code Case N47. The procedures require the components of strain to be evaluated separately, thus they may be used with either full inelastic analysis or simplified methods. To support the development of the UK strain based creep-fatigue procedures an experimental program was undertaken by NNC to study creep-fatigue interaction of structures operating at high temperature. These tests, collectively known as the SALTBATH tests considered solid cylinder and tube-plate specimens, manufactured from Type 316 stainless steel. These specimens were subjected to thermal cycles between 250 deg. C and 600 deg. C. In all the cases the thermal cycle produces tensile residual stresses during dwells at 600 deg. C. One of the tube-plate specimens was used as a benchmark for validating the strain based creep fatigue procedures and subsequently as part of a CEC co-operative study. This benchmark work is described in this paper. A thermal and inelastic stress analysis was carried out using the finite element code ABAQUS. The inelastic behaviour of the material was described using the ORNL constitutive equations. A creep fatigue assessment using the strain based procedures has been compared with an assessment using the RCC-MR inelastic rules. The analyses indicated that both the UK strain based procedures and the RCC-MR rules were conservative, but the conservatism was greater for the RCC-MR rules. (author). 8 refs, 8 figs, 4 tabs

  18. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  19. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  20. Transient behaviour of deep underground salt caverns

    International Nuclear Information System (INIS)

    Karimi-Jafari, M.

    2007-11-01

    This work deals with the transient behaviour of deep underground salt caverns. It has been shown that a cavern is a complex system, in which there are mechanical, thermal, chemical and hydraulic evolutions. The importance of the transient evolutions, particularly the role of the 'reverse' creep in the interpretation of the tightness test in a salt cavern is revealed. Creep is characterized by a formulation of the behaviour law which presents the advantage, in a practical point of view, to only have a reduced number of parameters while accounting of the essential of what it is observed. The initiation of the rupture in the effective traction in a salt cavern rapidly pressurized is discussed. A model fitted to a very long term behaviour (after abandonment) is developed too. In this case too, a lot of phenomena, more or less coupled, occur, when the existing literature took only into account some phenomena. (O.M.)

  1. Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bettles, C.J. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton 3800, Vic. (Australia); CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton 3169, Vic. (Australia)], E-mail: colleen.bettles@eng.monash.edu.au; Gibson, M.A. [CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton 3169, Vic. (Australia); Zhu, S.M. [CAST CRC, Department of Materials Engineering, Monash University, Clayton 3800, Vic. (Australia)

    2009-04-15

    AM-SC1 is a heat treatable magnesium alloy that has been specifically developed to achieve the elevated temperature strength and creep properties necessary for engine block applications. This paper describes the interrelationship between the microstructure and the mechanical properties of AM-SC1. The compressive and tensile strengths are relatively insensitive to temperature up to and including 450 K and the tensile yield behaviour deviates from a standard Hall-Petch relationship at grain sizes below 200 {mu}m. The microstructural features contributing to the creep resistance are both inter- and intra-granular in nature and are on length scales from nanometers to micrometers. The creep behaviour at 423 K and 450 K is diffusion controlled, with any contribution from the grain boundaries being negligible.

  2. A study on stress analysis of small punch-creep test and its experimental correlations with uniaxial-creep test

    International Nuclear Information System (INIS)

    Lee, Song In; Baek, Seoung Se; Kwon, Il Hyun; Yu, Hyo Sun

    2002-01-01

    A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9CrlMoVNb steel. It was shown that the initial maximum equivalent stress, σ eq · max from FE analysis was correlated with steady-state equivalent creep strain rate, ε qf-ss , rupture time, t r , activation energy, Q and Larson-Miller parameter, LMP during SP-creep deformation. The simple correlation laws, σ SP - σ TEN , P SP -σ TEN and Q SP -Q TEN adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at 650 deg. C as follows : Q SP-P =1.37 Q TEN , Q SP-σ =1.53 Q TEN

  3. Measuring irradiation creep

    International Nuclear Information System (INIS)

    Pelah, I.

    1981-03-01

    Simulation of fusion-neutron induced damage by beams of light ions is discussed. It is suggested that accelerated creep measurements to determine ''end of life'' of materials may be done by the application of thermal treatment and thermal creep measurements. (author)

  4. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    Science.gov (United States)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  5. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  6. Description of creep-plasticity interaction with non-unified constitutive equations: Application to an austenitic stainless steel

    International Nuclear Information System (INIS)

    Contesti, E.; Cailletaud, G.

    1989-01-01

    We present constitutive equations able to account for time independent plasticity together with creep and creep-plasticity interaction. A classical decomposition of the inelastic strain into a time independent plastic strain and a time dependent viscoplastic part is assumed. The coupling between both deformation modes (i.e. creep and plasticity) is obtained through an interaction between the plastic and viscoplastic state variables. In a first part, the capabilities of the model are described, and qualitative identifications are given in order to characterize the behaviour of the model. The practical applicability of the model is then tested, mainly using test results from the literature, but also specific data including creep, relaxation and tensile tests with various loading rates, as reported in the paper. The model is found able to discriminate between the increase of hardening produced by plasticity or creep. The effect of the loading rate on the subsequent amount of relaxation is correctly described and a good general agreement is observed between experiment and model predictions, even for complex loading paths (monotonic with temporary unloading periods, multiaxial loading paths in the stress space). (orig.)

  7. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  8. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  9. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  10. Life prediction of simple structures subject to cyclic primary and secondary loading resulting in creep and platicity

    International Nuclear Information System (INIS)

    Otter, N.R.; Jones, R.T.

    1979-01-01

    High temperature reactors are subject to cyclic mechanical and thermal loadings resulting from start up and shut down operations. The design must therefore guard against structural failure resulting from excessive deformation and creep-fatigue damage. Before any simplified inelastic analysis techniques can be applied, their validity needs to be examined under situations representative of the reactor. For this to be carried out it is necessary to determine the behaviour of components, initially geometrically simple, subject to loadings, cyclic primary and secondary in nature, which result in creep and plasticity. Beam-like structures have been investigated on a finite element basis with the aim of determining how cyclic plasticity, creep enhancement and plastic ratchetting vary in relationship with modified shakedown criteria, magnitude of loading and hold time. (orig.)

  11. Release of fission products and post-pile creep behaviour of irradiated fuel rods stored under dry conditions

    International Nuclear Information System (INIS)

    Kaspar, G.; Peehs, M.; Bokelmann, R.; Jorde, D.; Schoenfeld, H.; Haas, W.; Bleier, A.; Rutsch, F.

    1985-06-01

    The release of moisture and fission products (Kr-85, H-3 and I-129) under dry storage conditions has been examined on six fuel rods which have become defective in the reactor. During the examinations, inert conditions prevailed and limited air inlet was allowed temporarily. The storage temperature was 400 0 C. The residual moisture content of the fuel rods was approx. 5 g. At the beginning of the test, the total moisture content and 0,05% (max.) of the fission gas inventory were released. Under inert conditions, fission gas was not released during a prolonged period of time. Under oxidizing conditions, however, fission gas was released in the course of UO 2 oxidation. Post-pile creep of Zircaloy cladding tubes was measured at temperatures between 350 and 395 0 C and interval gauge pressures between 69 and 110 bar. The creep curves indicate that the irradiated cladding tube specimens still bear internal residual stresses which contribute through their relaxation to the post-pile creep. (orig.) [de

  12. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  13. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  14. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-08-01

    Creep is a cause of deformation; it may also result in rupture in time. Although LMFBR structures are not heavily loaded, they are subjected to large thermal transients. Can structure lifetime be shortened by such transients. Several proposals have been made to assist adesigners with thermal ratcheting in the creep range. Unfortunately these methods are not validated by experiments, and they take only inelastic distorsion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies in providing an experimental basis to ratcheting analysis rules in the creep range, and in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimen made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture

  15. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-01-01

    Several proposals have been made to assist adesigners with thermal ratcheting in the creep range, the more known has been made by O'DONNELL and POROWSKY. Unfortunately these methods are not validated by experiments, and they take only inelastic distortion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies - in providing an experimental basis to ratcheting analysis rules in the creep range, - in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimens made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture. (orig./GL)

  16. Negative creep in nickel base superalloys

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John

    2004-01-01

    Negative creep describes the time dependent contraction of a material as opposed to the elongation seen for a material experiencing normal creep behavior. Negative creep occurs because of solid state transformations that results in lattice contractions. For most applications negative creep will h...

  17. EFAM ETM-CREEP 03 - the engineering flaw assessment method for creep

    International Nuclear Information System (INIS)

    Landes, J.D.; Schwalbe, K.H.

    2002-01-01

    EFAM ETM-CREEP is a document that describes the GKSS procedure for estimating residual lives for structural components that contain crack-like defects and operating in a high temperature regime where they undergo creep deformation. It uses the traditional parameters C t and C * and the ETM parameters δ 5 and δ 5 to characterize the crack extension rates. It relies on input from EFAM ETM 97 for calculating these parameters and from EFAM GTP-CREEP 02 to provide the material property data for crack extension rates and fracture toughness data. (orig.) [de

  18. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui

    2011-06-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated below and above this glass transition temperature using a dynamic mechanical analysis (DMA) machine Q800 from TA instruments at 8 different temperatures: 10, 25, 40, 60, 80, 100, 120 and 150°C. The Burger\\'s model, which is the combined Maxwell model and Kelvin-Voigt model, fits well with our primary and secondary creep data. Accordingly, the results show that there\\'s little or no creep below the glass transition temperature. Above the glass transition temperature, the primary creep and creep rate increases with the temperature, with a retardation time constant around 6 minutes. © 2011 IEEE.

  19. Creep Deformation and Fracture Processes in OF and OFP Copper

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2004-10-01

    The literature on creep processes in many materials, including copper, has been thoroughly reviewed and complemented by Ashby and co-workers. They have provided physical models which describe the deformation and fracture processes with good qualitative and quantitative agreement with experimental data for many cases. A description of the deformation and fracture models is provided and the relevant equations are included in the appendices. Published data from the canister development programme has been compared with the predictions from the models. The purpose was to improve our understanding of (1) a reported benefit to creep performance which arises from additions of 50 ppm phosphorus to oxygen free (OF) copper, and (2) an observed transition from brittle to ductile failure in OF copper. The models adequately describe the general variations in the observed creep behaviour of the experimental materials. Steady state creep rates for OF copper are observed to be up to one order of magnitude higher than the model predicts for pure copper across a wide range of temperatures and stresses in the power law and power law breakdown regimes. For OF copper with 50ppm of phosphorus added (OFP copper), observed steady state creep rates in the power law breakdown regime are up to one order of magnitude lower than the model predicts for pure copper. Creep lives in the experimental OFP material are also higher than creep lives for OF material under similar conditions. The lower creep deformation rates and the longer creep lives of OFP material are attributed the known effects of phosphorus on recovery in copper. The model predicts that the same mechanism will improve creep lives under repository conditions. It is suggested that the factor of improvement under repository conditions will be less than the factor which is observed in the power law breakdown regime. Predicted creep lives, based on measured steady state creep rates and stress exponents ('n' values) are in good agreement

  20. Modeling Creep Processes in Aging Polymers

    Science.gov (United States)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  1. Creep test observation of viscoelastic failure of edible fats

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, C R; Grimson, M J; Wills, P R [Department of Physics, University of Auckland, Private Bag 92019 (New Zealand); Smith, B G, E-mail: cvit002@aucklanduni.ac.nz [Food Science Programmes, Department of Chemistry, University of Auckland, Private Bag 92019 (New Zealand)

    2011-03-01

    A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.

  2. Network interruptions

    CERN Multimedia

    2005-01-01

    On Sunday 12 June 2005, a site-wide security software upgrade will be performed on all CERN network equipment. This maintenance operation will cause at least 2 short network interruptions of 2 minutes on each equipment item. There are hundreds of such items across the CERN site (Meyrin, Prévessin and all SPS and LHC pits), and it will thus take the whole day to treat them all. All network users and services will be affected. Central batch computing services will be interrupted during this period, expected to last from 8 a.m. until late evening. Job submission will still be possible but no jobs will actually be run. It is hoped to complete the computer centre upgrades in the morning so that stable access can be restored to lxplus, afs and nice services as soon as possible; this cannot be guaranteed, however. The opportunity will be used to interrupt and perform upgrades on the CERN Document Servers.

  3. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    Farina, Luis Claudio

    2009-01-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  4. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  5. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    International Nuclear Information System (INIS)

    Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.

    2015-01-01

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

  6. Microstructure and thermomechanical pretreatment effects on creep behaviour of helium-implanted DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Matta, M.K.; Kesternich, W.

    1990-01-01

    Microstructure investigations were carried out on unimplanted and 150 at ppm helium implanted foil specimens of DIN 1.4970 austenitic stainless steel after various thermomechanical pretreatments. Creep test were also carried out for both helium-implanted and unimplanted specimens at 700degC and 800degC. The strength, ductility and rupture time are correalted with the dislocation and precipitate distributions. Helium embrittlement can be reduced in these experiments when dispersive TiC precipitate distributions are produced by proper pretreatments or allowed to form during creep test. (author). 14 refs., 11 figs

  7. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  8. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  10. A numerical approach to predict the long-term creep behaviour and precipitate back-stress evolution of 9-12% chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, I.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Kozeschnik, E. [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Vienna Univ. of Technology (Austria). Christian Doppler Lab. ' Early Stages of Precipitation'

    2010-07-01

    The mechanical properties of modern 9-12% Cr steels are significantly influenced by the presence and stability of different precipitate populations. These secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a remarkable change in the obstacle effect of these precipitates on dislocation movement. In the present work, the experimentally observed creep rupture strength of a modified 9-12% Cr steel developed in the European COST Group is compared to the calculated maximum obstacle effect (Orowan threshold stress) caused by the precipitates present in the investigated alloy for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed. (orig.)

  11. A study on creep properties of laminated rubber bearings. Pt. 1. Creep properties and numerical simulations of thick rubber bearings

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi

    2000-01-01

    In this report, to evaluate creep properties and effects of creep deformation on mechanical properties of thick rubber bearings for three-dimensional isolation system, we show results of compression creep test for rubber bearings of various rubber materials and shapes and development of numerical simulation method. Creep properties of thick rubber bearings were obtained from compression creep tests. The creep strain shows steady creep that have logarithmic relationships between strain and time and accelerated creep that have linear relationships. We make numerical model of a rubber material with nonlinear viscoelastic constitutional equations. Mechanical properties after creep loading test are simulated with enough accuracy. (author)

  12. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  13. Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jyrkama, Mikko I., E-mail: mjyrkama@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Bickel, Grant A., E-mail: grant.bickel@cnl.ca [Canadian Nuclear Laboratories, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-04-15

    Highlights: • New and simple statistical model of pressure tube diametral creep. • Based on surveillance data of 328 pressure tubes from eight different CANDU reactors. • Uses weighted least squares (WLS) to regress out operating conditions. • The shape of the diametral creep profiles are predicted very well. • Provides insight and relative ranking of strain behaviour of in-service tubes. - Abstract: This paper presents the development of a simplified regression approach for modelling the diametral creep over time in Zr-2.5 wt% Nb pressure tubes used in CANDU reactors. The model is based on a large dataset of in-service inspection data of 328 different pressure tubes from eight different CANDU reactor units. The proposed weighted least squares (WLS) regression model is linear in time as a function of flux and temperature, with a temperature-dependent variance function. The model predicts the shape of the observed diametral creep profiles very well, and is useful not merely for prediction, but also for assessing tube-to-tube variability and manufacturing properties among the inspected tubes.

  14. Mechanical behaviour of Br0.5Sr0.5Co0.8Fe0.2O3-δ under uniaxial compression

    International Nuclear Information System (INIS)

    Araki, Wakako; Malzbender, Jürgen

    2013-01-01

    The present study reports on the mechanical behaviour of Br 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ under uniaxial compression at various temperatures. The stress–strain curve at room temperature shows a small but clear creep deformation, along with a hysteresis and a remnant strain, which could be related to a spin transition of cobalt. The hysteresis as well as Young’s modulus decrease with increasing temperature to 473 K, at which temperature the creep behaviour disappears. The material shows conventional high-temperature creep above 673 K

  15. Creep buckling analysis of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents

  16. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids

    Science.gov (United States)

    Sinko, Robert; Bažant, Zdeněk P.; Keten, Sinan

    2018-01-01

    The Pickett effect describes the excess non-additive strain developed during drying of a nanoporous solid material under creep. One explanation for its origins, developed using micromechanical models, is the progressive relaxation of internally developed microprestress. However, these models have not explicitly considered the effects of this microprestress on nanoscale energy barriers that govern the relative motion and displacement between nanopore walls during deformation. Here, we evaluate the nanoscale effects of transverse microprestresses on the drying creep behaviour of a nanoscale slit pore using coarse-grained molecular dynamics. We find that the underlying energy barrier depends exponentially on the transverse microprestress, which is attributed to changes in the effective viscosity and degree of nanoconfinement of molecules in the water interlayer. Specifically, as the transverse microprestress is relaxed (i.e. its magnitude decreases), the activation energy barrier is reduced, thereby leading to an acceleration of the creep behaviour and a stronger Pickett effect. Based on our simulation results, we introduce a new microprestress-dependent energy term into our existing Arrhenius model, which describes the relative displacement of pore walls as a function of the underlying activation energy barriers. Our findings further verify the existing micromechanical theories for the origin of the Pickett effect and establish a quantitative relationship between the transverse microprestress and the intensity of the Pickett effect.

  17. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids.

    Science.gov (United States)

    Sinko, Robert; Bažant, Zdeněk P; Keten, Sinan

    2018-01-01

    The Pickett effect describes the excess non-additive strain developed during drying of a nanoporous solid material under creep. One explanation for its origins, developed using micromechanical models, is the progressive relaxation of internally developed microprestress. However, these models have not explicitly considered the effects of this microprestress on nanoscale energy barriers that govern the relative motion and displacement between nanopore walls during deformation. Here, we evaluate the nanoscale effects of transverse microprestresses on the drying creep behaviour of a nanoscale slit pore using coarse-grained molecular dynamics. We find that the underlying energy barrier depends exponentially on the transverse microprestress, which is attributed to changes in the effective viscosity and degree of nanoconfinement of molecules in the water interlayer. Specifically, as the transverse microprestress is relaxed (i.e. its magnitude decreases), the activation energy barrier is reduced, thereby leading to an acceleration of the creep behaviour and a stronger Pickett effect. Based on our simulation results, we introduce a new microprestress-dependent energy term into our existing Arrhenius model, which describes the relative displacement of pore walls as a function of the underlying activation energy barriers. Our findings further verify the existing micromechanical theories for the origin of the Pickett effect and establish a quantitative relationship between the transverse microprestress and the intensity of the Pickett effect.

  18. Lattice continuum and diffusional creep.

    Science.gov (United States)

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  19. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  20. Numerical investigation of the reactor pressure vessel behaviour under severe accident conditions taking into account the combined processes of the vessel creep and the molten pool natural convection

    International Nuclear Information System (INIS)

    Loktionov, V.D.; Mukhtarov, E.S.; Yaroshenko, N.I.; Orlov, V.E.

    1999-01-01

    Analysis of the WWER lower head behaviour and its failure has been performed for several molten pool structures and internal overpressure levels in a reactor pressure vessel (RPV). The different types of the molten pools (homogeneous, conventionally homogeneous, conventionally stratified, stratified) cover the bounding scenarios during a hypothetical severe accident. The parametric investigations of the failure mode and RPV behaviour for various molten pool types, its heights and internal overpressure levels are presented herein. A coupled treatment in this investigation includes: (i) a 2-D thermohydraulic analysis of a molten pool natural convection. Domestic NARAUFEM code has been used in this detailed analysis for prediction of the heat flux from the molten pool to the RPV inner surface; and (ii) a detailed 3-D transient thermal analysis of the RPV lower head. Domestic 3-D ASHTER-VVR finite element code has been used for the numerical simulations of the high temperature creep and failure of the lower head. The effect of an external RPV cooling, temperature-dependent physical properties of the molten pool and vessel steel, the hydrostatic forces and vessel dead-weight were taken into account in this study. The obtained results show that lower head failure occurs as a result of the vessel creep process which is significantly dependent on both an internal overpressure level and the type of molten pool structure. In particular, it was found that there were combinations of 'overpressure-molten pool structure' when the vessel failure started at the 'hot' layers of the vessel. (orig.)

  1. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  2. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report

    International Nuclear Information System (INIS)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J.

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q K . The influence of a preceding temperature transient up to 800 C (≤Ac 1b ) or 840 C (>Ac 1b ) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [de

  3. The application of miniature disc testing for the assessment of creep damage in CrMoV rotor steel

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J D; Stratford, G C [University of Wales, Swansea (United Kingdom); Shaw, N; Spink, G [National Power plc (United Kingdom); Metcalfe, H [Siemens Power Generation (United Kingdom)

    1999-12-31

    A range of critical experiments has been performed studying the creep and fracture behaviour of a typical CrMoV rotor steel. Initially, uniaxial tests were carried out to provide material with a predetermined level of creep damage. Then, miniature disc tests were undertaken under accelerated conditions in a similar manner to procedures used for post-exposure uniaxial testing of service components. Data analysis demonstrates that the miniature tests accurately reflect the damage present so that this approach can be used to support run/repair/replace decisions. (orig.) 8 refs.

  4. The application of miniature disc testing for the assessment of creep damage in CrMoV rotor steel

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.D.; Stratford, G.C. [University of Wales, Swansea (United Kingdom); Shaw, N.; Spink, G. [National Power plc (United Kingdom); Metcalfe, H. [Siemens Power Generation (United Kingdom)

    1998-12-31

    A range of critical experiments has been performed studying the creep and fracture behaviour of a typical CrMoV rotor steel. Initially, uniaxial tests were carried out to provide material with a predetermined level of creep damage. Then, miniature disc tests were undertaken under accelerated conditions in a similar manner to procedures used for post-exposure uniaxial testing of service components. Data analysis demonstrates that the miniature tests accurately reflect the damage present so that this approach can be used to support run/repair/replace decisions. (orig.) 8 refs.

  5. The creep and stress-rupture behaviour under internal pressure of tubes made from austenitic stainless steel X8 CrNiMoNb 1616 (Material No. 1.4981)

    International Nuclear Information System (INIS)

    Schaefer, L.; Polifka, F.; Kempe, H.

    1979-05-01

    Creep and stress rupture tests have been performed at 600, 650, 700 and 750 0 C on tubes made from three different heats from the austenitic stainless steel X8 CrNiMoNb 1616 (Material No. 1.4981). The tubes were loaded by internal pressure and the tangential (hoop) creep strain was measured continuously. The results are presented in form of creep curves, stress-time to rupture curves and curves for a creep limit. The average and minimum creep rates as a function of the applied stress have been evaluated and are described with a creep law analogous to Norton's creep law. An interpolation and extrapolation of the stress-rupture-strength and the creep strength are possible using the time-temperature-parameter-plot after Larson and Miller. (orig.) [de

  6. The mechanical behaviour of packed particulates

    International Nuclear Information System (INIS)

    Dutton, R.

    1998-01-01

    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container (∼100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide range of stress

  7. The mechanical behaviour of packed particulates

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R

    1998-01-01

    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide

  8. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  9. Transitions in creep mechanisms and creep anisotropy in Zr-1Nb-1Sn-0.2Fe sheet

    International Nuclear Information System (INIS)

    Murty, K.L.; Ravi, J.; Wiratmo

    1995-01-01

    The creep characteristics of a Zr-1Nb-1Sn-0.2Fe alloy sheet were investigated at temperatures from 773 to 923K and at stresses ranging from 9 to 150MPa along both the rolling and transverse directions. Transitions in creep mechansims are noted, with diffusional viscous creep at low stresses, viscous-glide-controlled microcreep in the intermediate stress regime and the climb of edge dislocations at high stresses. The creep anisotropy decreases with a decrease in the stress exponent and the creep rates differ by only 30% in the viscous creep regime, while an order-of-magnitude difference is noted at high stresses. The solute-strengthening effect of Nb addition is evident in the stress regime where appropriate data are available. These transitions in creep mechansims clearly reveal the dangers in blind extrapolation of short-term high stress data to low stresses and long times relevant to in-reactor conditions. The creep behavior of these materials is similar to that noted in Class I alloys, while the transitions in deformation mechanisms in Zircaloy-4 resemble those found in pure metals or Class II alloys with no viscous glide mechanism. ((orig.))

  10. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  11. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  12. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  13. Correlation of creep rate with microstructural changes during high temperature creep

    Science.gov (United States)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  14. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  15. Analysis of Current HT9 Creep Correlations and Modification

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Sohn, Dongseong; Cheon, Jin Sik

    2014-01-01

    It has high thermal conductivity, high mechanical strength and low irradiation induced swelling. However high temperature creep of HT9 has always been a life limiting factor. Above 600 .deg. C, the dislocation density in HT9 is decreased and the M 23 C 6 precipitates coarsen, these processes are accelerated if there is irradiation. Finally microstructural changes at high temperature lead to lower creep strength and large creep strain. For HT9 to be used as a future cladding, creep behavior of the HT9 should be predicted accurately based on the physical understanding of the creep phenomenon. Most of the creep correlations are composed of irradiation creep and thermal creep terms. However, it is certain that in-pile thermal creep and out-of-pile thermal creep are different because of the microstructure changes induced from neutron irradiation. To explain creep behavior more accurately, thermal creep contributions other than neutron irradiation should be discriminated in a creep correlation. To perform this work, existing HT9 creep correlations are analyzed, and the results are used to develop more accurate thermal creep correlation. Then, the differences between in-pile thermal creep and out-of-pile thermal creep are examined

  16. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  17. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  18. Understanding Emergency Medicine Physicians Multitasking Behaviors Around Interruptions.

    Science.gov (United States)

    Fong, Allan; Ratwani, Raj M

    2018-06-11

    Interruptions can adversely impact human performance, particularly in fast-paced and high-risk environments such as the emergency department (ED). Understanding physician behaviors before, during, and after interruptions is important to the design and promotion of safe and effective workflow solutions. However, traditional human factors based interruption models do not accurately reflect the complexities of real-world environments like the ED and may not capture multiple interruptions and multitasking. We present a more comprehensive framework for understanding interruptions that is composed of three phases, each with multiple levels: Interruption Start Transition, Interruption Engagement, and Interruption End Transition. This three-phase framework is not constrained to discrete task transitions, providing a robust method to categorize multitasking behaviors around interruptions. We apply this framework in categorizing 457 interruption episodes. 457 interruption episodes were captured during 36 hours of observation. The interrupted task was immediately suspended 348 (76.1%) times. Participants engaged in new self-initiated tasks during the interrupting task 164 (35.9%) times and did not directly resume the interrupted task in 284 (62.1%) interruption episodes. Using this framework provides a more detailed description of the types of physician behaviors in complex environments. Understanding the different types of interruption and resumption patterns, which may have a different impact on performance, can support the design of interruption mitigation strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Talc-bearing serpentinite and the creeping section of the San Andreas fault.

    Science.gov (United States)

    Moore, Diane E; Rymer, Michael J

    2007-08-16

    The section of the San Andreas fault located between Cholame Valley and San Juan Bautista in central California creeps at a rate as high as 28 mm yr(-1) (ref. 1), and it is also the segment that yields the best evidence for being a weak fault embedded in a strong crust. Serpentinized ultramafic rocks have been associated with creeping faults in central and northern California, and serpentinite is commonly invoked as the cause of the creep and the low strength of this section of the San Andreas fault. However, the frictional strengths of serpentine minerals are too high to satisfy the limitations on fault strength, and these minerals also have the potential for unstable slip under some conditions. Here we report the discovery of talc in cuttings of serpentinite collected from the probable active trace of the San Andreas fault that was intersected during drilling of the San Andreas Fault Observatory at Depth (SAFOD) main hole in 2005. We infer that the talc is forming as a result of the reaction of serpentine minerals with silica-saturated hydrothermal fluids that migrate up the fault zone, and the talc commonly occurs in sheared serpentinite. This discovery is significant, as the frictional strength of talc at elevated temperatures is sufficiently low to meet the constraints on the shear strength of the fault, and its inherently stable sliding behaviour is consistent with fault creep. Talc may therefore provide the connection between serpentinite and creep in the San Andreas fault, if shear at depth can become localized along a talc-rich principal-slip surface within serpentinite entrained in the fault zone.

  20. Magnetothermoelastic creep analysis of functionally graded cylinders

    International Nuclear Information System (INIS)

    Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.

    2010-01-01

    This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.

  1. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  2. Comparative study of the creep behaviour of single crystals and polycrystals of alpha uranium; Etude comparee du comportement au fluage de l'uranium alpha mono et polycristallin

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-01

    In the first chapter, one describes the creep machine developed to study the deformation of uranium at high temperature in vacuum with a continuous recording. The second chapter presents the results concerning the polycrystals of uranium. The application of the DORN method gives an activation energy for creep of 42 {+-} 2 Kc, above 550 Celsius degrees, equal to the activation energy for self-diffusion. The study of the variation of the creep rate with the applied stress and the metallographic observations of the deformation induced polygonization allow to conclude that the deformation is controlled by climb of dislocations. In the third chapter, the deformation above 550 Celsius degrees of single crystals of uranium (obtained by {beta} {yields} {alpha} change) is studied. The major deformation mode is slip. The preexisting polygonization of these single crystals is very stable and the disorientation between adjacent sub-grains increases with the deformation. The activation energy for creep is higher than that for polycrystals. These results show the influence of the polygonization due to the {beta} {yields} {alpha} change on the creep behaviour of {alpha} uranium. (authors) [French] Dans le premier chapitre, on decrit la machine de fluage sous vide a enregistrement continu, mise au point pour etudier le phenomene. Le deuxieme chapitre presente les resultats relatifs aux polycristaux. L'utilisation de la methode de DORN a permis de constater que, au-dessus de 550 degres Celsius, l'energie d'activation pour le fluage avait une valeur constante egale a 42 {+-} 2 Kc, voisine de la chaleur d'autodiffusion. L'etude de l'influence de la contrainte appliquee sur la vitesse de fluage et l'observation micrographique de la polygonisation developpee au cours de la deformation permettent de conclure que le phenomene est controle par la montee des dislocations. Dans le troisieme chapitre, on etudie le comportement au fluage au-dessus de 550 C des monocristaux obtenus par

  3. Creep failure of a spray drier

    CSIR Research Space (South Africa)

    Carter, P

    1998-06-01

    Full Text Available , and creep. The calculations pointed to creep, and no positive metallurgic or physical evidence was discovered to support any of the hypotheses. However, the compression stresses implied that creep deformation could have occurred without inducing discernible...

  4. Mechanical and microstructural behavior of oxide dispersion strengthened 8Cr-2W and 8Cr-1W steels during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K.; Tamura, M.; Esaka, H. [National Defense Academy, Dept. MS and E, Kanagawa (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Oxide dispersion strengthened (ODS) steel is a promising candidate for fusion reactor material because of excellent mechanical properties. However, the ODS steel exhibits some defects, such as mechanical anisotropy and little elongation . To reveal details of these defects, we investigated correlations between mechanical and microstructural behavior of ODS ferritic steels during creep deformation at high temperature. The materials used in this study are two kinds of hot rolled ODS steels: Fe-8Cr-2W-0.2V-0.1Ta-0.2Ti-0.4Y{sub 2}O{sub 3} (J1) and Fe-8Cr-1W-0.2Ti-0.4Y{sub 2}O{sub 3} (J2). Creep tests was carried out on specimens sampling along both the rolling direction and the cross direction at 670, 700 and 730 deg. C. Microstructural analyses were made on the normalized and tempered condition by using OM, SEM, TEM and XRD. Creep ruptured and interrupted specimens were also investigated. Both J1 and J2 existed two phases, namely martensite and {delta}-ferrite which was elongated in the rolling direction. Y-Ti complex oxide particles were finely dispersed in martensite and {delta}- ferrite phases. Results of creep tests indicated that the time-to-rupture of specimens of J1 were much longer than J2, and the time-to-rupture of specimens sampling along the rolling direction were longer than cross direction. Accordingly, J1 sampling along hot rolling direction was the strongest, for instance, the time-to-rupture was 11400 h at 700 deg. C and 162 MPa. All specimens indicated that elongation was less than 1.3 % and the rupture occurred at steady state creep region from creep curves. Internal cracks were propagated in martensite phase along elongated {delta}-ferrite phase in the direction of hot rolling. On the other hand, {delta}-ferrite phases seemed to prevent combining cracks. These results suggest that elongated {delta}-ferrite and internal clacks in martensite strongly affect on the anisotropy and little elongation of creep. (authors)

  5. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-01-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  6. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction...

  7. Effects of Interruptibility-Aware Robot Behavior

    OpenAIRE

    Banerjee, Siddhartha; Silva, Andrew; Feigh, Karen; Chernova, Sonia

    2018-01-01

    As robots become increasingly prevalent in human environments, there will inevitably be times when a robot needs to interrupt a human to initiate an interaction. Our work introduces the first interruptibility-aware mobile robot system, and evaluates the effects of interruptibility-awareness on human task performance, robot task performance, and on human interpretation of the robot's social aptitude. Our results show that our robot is effective at predicting interruptibility at high accuracy, ...

  8. Thermo-visco-plasticity and creep in structural-material response of folded-plate structures

    Directory of Open Access Journals (Sweden)

    Milašinović Dragan D.

    2017-01-01

    Full Text Available Many structural parts are exposed to high temperatures and loading. It is then important to have data about material inelastic behaviour under such exploiting conditions. Influence of temperature on mechanical characteristics of a material may be inserted via the creep coefficient in the range of visco-elasto-plastic (VEP strains. This damage parameter is implemented in this paper in conjunction with mathematical material modelling approach named rheological-dynamical analogy (RDA in order to address structural stiffness reduction due to inelastic material behaviour. The aim of this paper is to define structural-material internal damping based on both the RDA dynamic modulus and modal damping ratio, by modelling critically damped dynamic systems in the steady-state response. These systems are credible base for explanation of the phenomenon of thermo-visco-plasticity and creep in structural-material response due to high temperatures and loading. Though elastic buckling information for folded-plate structures is not a direct predictor of capacity or collapse behaviour on its own, both the mode and the load (moment are important proxies for the actual behaviour. In current design codes, such as AISI S100, New Zealand/Australia, and European Union, the design formulae are calibrated through the calculation of elastic critical buckling loads (or moments to predict the ultimate strength, thus the ability to calculate the associated elastic buckling loads (or moments has great importance. Moreover, the buckling mode shapes are commonly employed into non-linear collapse modelling as initial geometric imperfections and thermal performance of folded-plate structures in fire. To examine the buckling behaviour of folded-plate structures, the main numerical solution methods are used such as the finite element method (FEM and finite strip method (FSM. This paper aims at providing a unified frame for quasi-static inelastic buckling and thermal loading of

  9. Concrete creep and thermal stresses:new creep models and their effects on stress development

    OpenAIRE

    Westman, Gustaf

    1999-01-01

    This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...

  10. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  11. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  12. Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel

    International Nuclear Information System (INIS)

    Raghavender Rao, G.; Gupta, O.P.; Pradhan, B.

    2011-01-01

    Uniaxial isothermal stress relaxation tests (SRT) were performed on a tungsten-alloyed 10% Cr cast steel (G-X12Cr Mo W V Nb N 10 1 1) at temperatures of 580, 600 and 620 o C and initial strain levels of 0.2, 0.5 and 0.8%. Inelastic strain rates for different stresses were estimated from the stress versus time data generated from the tests. Conventional creep tests were also conducted on the same material at 580, 600 and 620 o C and at different stress levels. The strain rate data estimated from SRT were compared with minimum creep rates derived from the creep tests; the strain rates estimated from SRT with 0.8% initial strain level are in better agreement than those estimated from SRT with 0.2 and 0.5% initial strain levels. In order to ascertain the technique, stress relaxation behaviour was estimated from creep test data and compared with the stress relaxation curves obtained from SRT at corresponding temperatures. The stress relaxation curves obtained from SRT with 0.8% initial strain level are in good agreement with the stress relaxation curves estimated from the creep tests. It is concluded that the stress relaxation test with initial strain level of 0.8% could be considered as an appropriate short-term test technique for estimation of creep strength of newly developed materials.

  13. GOLIA-RK, Structure Stress for Isotropic Materials with Creep and Temperature Fields

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1976-01-01

    1 - Nature of the physical problem solved: Stress analysis of complex structures in presence of creep, dimensional changes and thermal field. Plane stress, plane strain, generalized plane strain and axisymmetric problems can be solved. The material is assumed to be either isotropic or transversely isotropic. Any laws of material behaviour can easily be incorporated by the user (see subroutines WIGNER and CLAW). 2 - Method of solution: Finite element method using triangular elements with linear local fields. The equations for the displacements are solved by Choleski's method. An algorithm is incorporated to calculate automatically the successive time steps in a creep problem. 3 - Restrictions on the complexity of the problem: Maximum number of elements is 700. Maximum number of nodal points is 400. The indexes of two adjacent nodes are not permitted to differ by more than 19

  14. The role of interruptions in polyQ in the pathology of SCA1.

    Directory of Open Access Journals (Sweden)

    Rajesh P Menon

    Full Text Available At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA or missense (CAT mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11% and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission.

  15. A Creep Model for High-Density Snow

    Science.gov (United States)

    2017-04-01

    proportionality, Q = activation energy (Cal/mol), R = the ideal gas constant (1.985 Cal/mol K), and T = absolute temperature in Kelvin. Applying this, I...modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...this power law ). The present study used this general form as the basis for developing two creep models: one to describe the pri- mary creep and

  16. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  17. Trunk proprioception adaptations to creep deformation.

    Science.gov (United States)

    Abboud, Jacques; Rousseau, Benjamin; Descarreaux, Martin

    2018-01-01

    This study aimed at identifying the short-term effect of creep deformation on the trunk repositioning sense. Twenty healthy participants performed two different trunk-repositioning tasks (20° and 30° trunk extension) before and after a prolonged static full trunk flexion of 20 min in order to induce spinal tissue creep. Trunk repositioning error variables, trunk movement time and erector spinae muscle activity were computed and compared between the pre- and post-creep conditions. During the pre-creep condition, significant increases in trunk repositioning errors, as well as trunk movement time, were observed in 30° trunk extension in comparison to 20°. During the post-creep condition, trunk repositioning errors variables were significantly increased only when performing a 20° trunk extension. Erector spinae muscle activity increased in the post-creep condition, while it remained unchanged between trunk repositioning tasks. Trunk repositioning sense seems to be altered in the presence of creep deformation, especially in a small range of motion. Reduction of proprioception acuity may increase the risk of spinal instability, which is closely related to the risk of low back pain or injury.

  18. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  19. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  20. An extension of a high temperature creep model to account for fuel sheath oxidation

    International Nuclear Information System (INIS)

    Boccolini, G.; Valli, G.

    1983-01-01

    Starting from the high-temperature creep model for Zircaloy fuel sheathing, the NIRVANA (developed by AECL), a multilayer model, is proposed in this paper: it includes the outer oxide plus alpha retained layers, and the inner core of beta or alpha plus beta material, all constrained to deform with the same creep rate. The model has been incorporated into the SPARA fuel computer code developed for the transient analysis of fuel rod behaviour in the CIRENE prototype reactor, but it is in principle valid for all Zircaloy fuel sheathings. Its predictions are compared with experimental results from burst tests on BWR and PWR type sheaths; the tests were carried out at CNEN under two research contracts with Ansaldo Meccanico Nucleare and Sigen-Sopren, respectively

  1. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  2. Thermal/hydraulic bowing stability analysis of grid-supported multi-pin bundles with differential swelling and irradiation creep

    International Nuclear Information System (INIS)

    McAreavey, G.

    1977-01-01

    Azimuthal variations of clad temperature in fuel pin bundles leads to pin bowing by differential thermal expansion. During irradiation in a fast flux further possibly more severe bowing is caused by differential neutron induced voidage swelling, which, being temperature sensitive, will also vary azimuthally. The problem of pin bowing in a fuel element cluster involves consideration of the thermal/hydraulic behaviour, allowing for both inherent and induced clad temperature non-uniformities, coupled with the restrained bowing behaviour, including differential thermal expansion, differential swelling, and irradiation creep. All pins must be considered simultaneously. In the temperature and stress ranges of interest thermal creep may be neglected. An existing computer code, IAMBIC solves the zero time thermal bowing problem for a cluster of up to 61 pins on hexagonal pitch, with up to 21 supports at arbitrary axial spacing. The present paper describes the basis of TRIAMBIC, a time dependent code which analyses the irradiation induced effects in fuel pin bunbles due to fast neutrons. (Auth.)

  3. Causes of unplanned interruption of radiotherapy

    International Nuclear Information System (INIS)

    Diegues, Sylvia Suelotto; Ciconelli, Rozana Mesquita; Segreto, Roberto Araujo

    2008-01-01

    Objective: To evaluate the occurrence and causes of unplanned interruption of radiotherapy. Materials and methods: Retrospective study developed in the Division of Radiotherapy of Hospital Alemao Oswaldo Cruz in Sao Paulo, SP, Brazil, with data collected from 560 dossiers of patients submitted to radiotherapy in the period between January 1, 2005 and December 31, 2005. Chi-squared and Student t tests were utilized in the data analysis, and p < 0.05 was considered as statistically significant. Results: Interruption of treatment was identified in 350 cases, corresponding to 62.5% of the patients. The reasons for treatment interruption were the following: preventive device maintenance (55%), patient's own private reasons (13%), adverse reactions to the treatment or to combined radiotherapy/chemotherapy (6%), clinical worsening (3%), two or more combined reasons (23%). The interruption time interval ranged between 1 and 24 days (mean 1.4 day). One-day interruption was mostly due to preventive device maintenance (84.4%); two-five-day interruption was due to combined reasons (48.28%). Conclusion: The most frequent cause of interruption was preventive device maintenance, with maximum two-day time interval. (author)

  4. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  5. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  6. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III); Ensayos de fluencia lenta en el acero inoxidable X6 Cr Ni 1811 (1.4948) en el marco del Programa Extrapolacion

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R; Schirra, M; Rivas, M de la; Barroso, S; Seith, B

    1982-07-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10{sup 4} hours higher temperatures in order to extrapolated up to {>=}10{sup 5} hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  7. Creep behavior and evolution of microstructure of modified Grade 91 welded joint after short term exposure at 500 deg C; Fluage a 500 deg C d'un joint soude d'un acier 9Cr-1Mo modifie. Evolution de la microstructure et comportement mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, F.

    2009-03-15

    With the increase in worldwide energy demand, the nuclear industry is a way of producing electricity on a large scale and to answer to this need. For the design of a new generation of fission nuclear reactors and among six chosen fission reactor systems, France develops in particularly the Very High Temperature Reactor (VHTR) concept. This implies the use of materials that are more and more resistant to high temperature for long-term exposure. AREVA focuses on materials already used in fossil-fuel power plant, so that the mechanical behaviour of Grade 91 (Fe{sub 9}Cr{sub 1}MoNbV) has to be investigated. This ferritic-martensitic steel is considered to be a potential candidate for welded components. Such structures are combined with welded joints, which have to be studied. Three industrial partners (AREVA, CEA, EDF) have launched a study with the Centre des Materiaux in order to investigate the creep of welded joint of Grade 91. The aim of this work is to complete the available database about the mechanical behaviour of Grade 91, base metal and welded joint, during creep tests performed at 500 C up to 4500 h exposure. Thermal aging tests, tensile tests, and creep tests were performed at 450 C and 500 C using both base metal and cross-weld samples. Several geometries of cross-weld creep specimens were tested. The microstructure has not remarkably changed after tests concerning both nature and size of precipitates, and the characteristic size of the matrix sub-structure. The creep damage is not developed in the ruptured specimens after creep tests. Only little damage by cavity nucleation and growth was found in the creep specimens. Creep fracture at 500 C takes places by viscoplastic flow, contrary to tests performed at 625 C where the creep-induced damage governs the creep rupture at least for long-term lifetime. From creep curves of base metal and cross-weld specimens, a phenomenological model is proposed. The flow rule is a Norton power law with a stress exponent

  8. Stress Outcomes of Four Types of Perceived Interruptions.

    Science.gov (United States)

    Fletcher, Keaton A; Potter, Sean M; Telford, Britany N

    2018-03-01

    Objective We sought to define and measure four types of perceived interruptions and to examine their relationships with stress outcomes. Background Interruptions have been defined and measured in a variety of inconsistent ways. No study has simultaneously examined the subjective experience of all types of interruptions. Method First, we provide a synthesized definition and model of interruptions that aligns interruptions along two qualities: origin and degree of multitasking. Second, we create and validate a self-report measure of these four types of perceived interruptions within two samples (working undergraduate students and working engineers). Last, we correlate this measure with self-reported psychological and physical stress outcomes. Results Our results support the four-factor model of interruptions. Results further support the link between each of the four types of interruptions (intrusions, breaks, distractions, and a specific type of ruminations, discrepancies) and stress outcomes. Specifically, results suggest that distractions explain a unique portion of variance in stress outcomes above and beyond the shared variance explained by intrusions, breaks, and discrepancies. Conclusion The synthesized four-factor model of interruptions is an adequate representation of the overall construct of interruptions. Further, perceived interruptions can be measured and are significantly related to stress outcomes. Application Measuring interruptions by observation can be intrusive and resource intensive. Additionally, some types of interruptions may be internal and therefore unobservable. Our survey measure offers a practical alternative method for practitioners and researchers interested in the outcomes of interruptions, especially stress outcomes.

  9. Assessment of concrete creep and shrinkage

    International Nuclear Information System (INIS)

    Trivedi, Neha; Singh, R.K.

    2012-01-01

    B-3 model prediction of concrete creep and shrinkage strains on cylindrical specimen and BARC Containment test model (BARCOM) are presented. Experimental shrinkage strain is shown to be in agreement with B-3 model predictions for cylindrical specimen and BARCOM. Creep strain in cylindrical specimen is found to be in agreement with B-3 model. In BARCOM for wall cast in different pores, creep strain is in agreement with B-3 model in hoop direction however in longitudinal direction, observed creep strain in higher than B-3 model. For dome structure cast in a single pour, experimental creep strain shows confirmity with B-3 model both in hoop and longitudinal directions. The study on concrete aging and average longitudinal shrinkage strain is carried out. (author)

  10. Irradiation-induced creep in graphite: a review

    International Nuclear Information System (INIS)

    Price, R.J.

    1981-08-01

    Data on irradiation-induced creep in graphite published since 1972 are reviewed. Sources include restrained shrinkage tests conducted at Petten, the Netherlands, tensile creep experiments with continuous strain registration at Petten and Grenoble, France, and controlled load tests with out-of-reactor strain measurement performed at Oak Ridge National Laboratory, Petten, and in the United Kingdom. The data provide reasonable confirmation of the linear viscoelastic creep model with a recoverable transient strain component followed by a steady-state strain component, except that the steady-state creep coefficient must be treated as a function of neutron fluence and is higher for tensile loading than for compressive loading. The total transient creep strain is approximately equal to the preceding elastic strain. No temperature dependence of the transient creep parameters has been demonstrated. The initial steady-state creep coefficient is inversely proportional to the unirradiated Young modulus

  11. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  12. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  13. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  14. Point defects and the creep of metals

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1976-01-01

    Basic concepts felt to be important in diffusion-controlled creep of metals are reviewed and it is suggested that such creep is controlled by edge-dislocation climb under a rather wide range of conditions. The effect of a damage-producing flux on such creep processes is explored. It is shown that processes such as Herring-Nabarro creep are unaffected by irradiation. Evidence is presented for a climb-plus-glide mechanism of radiation creep for stresses above unirradiated yield or flow stresses. At lower stresses a preferential dislocation loop nucleation model is suggested

  15. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  16. Radiation effects on time-dependent deformation: Creep and growth

    International Nuclear Information System (INIS)

    Simonen, E.P.

    1989-03-01

    Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb-glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed. 53 refs., 18 figs., 1 tab

  17. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  18. Dilatational behaviour of ZrNb1 fuel cans of a WWER-type reactor during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Stephan, M.; Wetzel, L.

    1987-01-01

    Based on an assessment of various factors of influence on the performance of fuel cans during normal operation and imaginable accidents, the necessity of studying creep and burst behaviour of WWER-type fuel cans of ZrNb1 under simulated LOCA conditions has been proved and an experimental facility designed for this purpose is described. Control of fuel can temperature is accomplished through a minicomputer during the creep and bursts experiments. With this, various temperature loading profiles of the fuel cans can be realized. Experimental results on dilatational behaviour of ZrNb1 fuel cans from isothermal creep and burst experiments in air are presented and compared with values for Zircaloy. (author)

  19. Analysis of Smartphone Interruptions on Academic General Internal Medicine Wards. Frequent Interruptions may cause a 'Crisis Mode' Work Climate.

    Science.gov (United States)

    Vaisman, Alon; Wu, Robert C

    2017-01-04

    Hospital-based medical services are increasingly utilizing team-based pagers and smartphones to streamline communications. However, an unintended consequence may be higher volumes of interruptions potentially leading to medical error. There is likely a level at which interruptions are excessive and cause a 'crisis mode' climate. We retrospectively collected phone, text messaging, and email interruptions directed to hospital-assigned smartphones on eight General Internal Medicine (GIM) teams at two tertiary care centres in Toronto, Ontario from April 2013 to September 2014. We also calculated the number of times these interruptions exceeded a pre-specified threshold per hour, termed 'crisis mode', defined as at least five interruptions in 30 minutes. We analyzed the correlation between interruptions and date, site, and patient volumes. A total of 187,049 interruptions were collected over an 18-month period. Daily weekday interruptions rose sharply in the morning, peaking between 11 AM to 12 PM and measuring 4.8 and 3.7 mean interruptions/hour at each site, respectively. Mean daily interruptions per team totaled 46.2 ± 3.6 at Site 1 and 39.2 ± 4.2 at Site 2. The 'crisis mode' threshold was exceeded, on average, 2.3 times/day per GIM team during weekdays. In a multivariable linear regression analysis, site (β6.43 CI95% 5.44 - 7.42, ptime.

  20. Executing application function calls in response to an interrupt

    Science.gov (United States)

    Almasi, Gheorghe; Archer, Charles J.; Giampapa, Mark E.; Gooding, Thomas M.; Heidelberger, Philip; Parker, Jeffrey J.

    2010-05-11

    Executing application function calls in response to an interrupt including creating a thread; receiving an interrupt having an interrupt type; determining whether a value of a semaphore represents that interrupts are disabled; if the value of the semaphore represents that interrupts are not disabled: calling, by the thread, one or more preconfigured functions in dependence upon the interrupt type of the interrupt; yielding the thread; and if the value of the semaphore represents that interrupts are disabled: setting the value of the semaphore to represent to a kernel that interrupts are hard-disabled; and hard-disabling interrupts at the kernel.

  1. Improvements of Spiers model for compaction creep of crushed rock salt

    International Nuclear Information System (INIS)

    Poley, A.D.

    1996-10-01

    This report describes a number of improvements to the existing model for the process of compaction creep of rock salt developed by Spiers and co-workers. The process of compaction creep determines the behaviour of the seals of crushed rock salt, the last engineered barriers of a repository in rock salt for (radioactive) wastes. In Chapter 2 the derivation of the original model of Spiers and co-workers is followed except for some simplifying approximations. A comparison of the model results is made with experimental data and a number of model adjustments are suggested. In Chapter 3 one of these suggested model adjustments is explored, and an alternative model is developed. The results obtained with this model compare favourably with the experimental data without the use of adjustable shape functions as for the original model. Preliminary investigations of the impact of the new model on estimated releases to the geosphere of radionuclides form a repository in rock salt revealed striking differences: with the new model the compaction of the rock salt seals was so rapid that no releases could occur. The striking differences between the results - in terms of releases form a rock salt repository to the geosphere after groundwater intrusion - obtained using the two models clearly indicate the need for further experimental research into the end-compaction behaviour of rock salt backfill. (orig.)

  2. Long-time rupture strength and creep behaviour of welded joints on heat-resistant CrMoV steels with 1 and 12% chrome

    International Nuclear Information System (INIS)

    Maier, G.; Maile, K.; Theofel, H.

    1985-01-01

    Power plant components in the creep range are damaged frequently in the weld joint zones. The investigation concentrated therefore on the reliability of the information supplied by tests on small- and large-size samples. Creep rupture tests of dissimilar welded joints (1% with 12% chrome) with variations of heat input and weld metal have been conducted. At creep rupture times of about 10 4 h all joints failed in the outside heat affected zone of the weaker base metal. Large-size samples, proved in comparison at same stresses, showed distinctly longer times to rupture. (orig.) [de

  3. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  4. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  5. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  6. One-stage or multi-stage creep fatigue behaviour of heat-resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1994-01-01

    For one stage realistic long term alternating strain tests on two forged steels with the duration of tests up to an order of magnitude of 45,000 hours, the generalised damage accumulation rule, using an optimised evaluation process dealing with pre-stress effects leads to a relative creep fatigue service life of one. A replacement description by the modified service life share rule is indicated for the long term area. First results from realistic three step tests are classified in the scatter band of single stage stress, where there are only slight differences from different cycle counting processes. (orig.) [de

  7. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  8. Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Kawasaki, Megumi; Beyerlein, Irene J.; Vogel, Sven C.; Langdon, Terence G.

    2008-01-01

    High-purity aluminum was processed by equal-channel angular pressing (ECAP) and then tested under creep conditions at 473 K. The results show conventional power-law creep with a stress exponent of n = 5 which is consistent with an intragranular dislocation process involving the glide and climb of dislocations. It is demonstrated that diffusion creep is not important in these tests because the ultrafine grains produced by ECAP are not stable at this temperature. Texture measurements were undertaken using the high-pressure preferred orientation neutron time-of-flight diffractometer and they reveal significant differences in the evolution of texture during creep in pressed and unpressed specimens. These experimental measurements of texture are in excellent agreement with theoretical textures predicted using a visco-plastic self-consistent model that limits deformation to plastic slip. The calculations provide additional confirmation that creep occurs through an intragranular dislocation process

  9. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  10. Review of recent irradiation-creep results

    International Nuclear Information System (INIS)

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references

  11. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  12. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  13. Microstructural causes of negative creep in cast superalloys

    International Nuclear Information System (INIS)

    Frank, G.

    1990-01-01

    The dissertation examines by means of microstructural investigations and modelling calculations two types of superalloys: the nickel-base cast alloy IN 738 LC (γ'-hardened, containing MC and M 23 C 6 carbides), and the cobalt-base cast alloy FSX 414 (containing M 23 C 6 carbides, solid solution-hardened). The task was to determine the causes of microstructural volume contraction, in order to improve and facilitate explanation and extrapolation of the materials' long-term behaviour at high temperatures, and to derive if possible information on appropriate measures preventing negative creep, which may lead to critical damage of bolted joints, for instance. (orig./MM) [de

  14. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  15. Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jun Min; Lee, Han Sang; Kim, Yun Jae [Korea Univ., Daejeon (Korea, Republic of)

    2017-08-15

    Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the Mα-tangent method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep.

  16. Numerical algorithms in secondary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.

    1980-01-01

    The problem of stationary creep is presented as well as its variational formulation, when weak constraints are established, capable of assuring one single solution. A second, so-called elasto-creep problem, is further analysed, together with its variational formulation. It is shown that its stationary solution coincides with that of the stationary creep and the advantages of this formulation with respect to the former one is emphasized. Some numerical applications showing the efficiency of the method propesed are finally presented [pt

  17. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  18. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-01-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current and large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements to the maximum interruptible current

  19. Field and experimental evidence for coseismic ruptures along shallow creeping faults in forearc sediments of the Crotone Basin, South Italy

    Science.gov (United States)

    Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio

    2014-05-01

    Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and

  20. MCDIRC: A model to estimate creep produced by microcracking around a shaft in intact rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1989-12-01

    Atomic Energy of Canada Limited (AECL) is studying the concept of disposing of nuclear fuel waste in a vault in plutonic rock. Models are being developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. A model has been constructed to consider the perturbation of the stress state of intact rock by a vertical cylindrical opening. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which the movement (creep) of the opening wall and radial strain in the rock mass can be estimated

  1. Model for transient creep of southeastern New Mexico rock salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important

  2. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    A creep constitutive equation of Hastelloy X was obtained from available experimental data. A sensitivity analysis of this creep constitutive equation was carried out. As the result, the following were revealed: (i) Variations in creep behavior with creep constitutive equation are not small. (ii) In a simpler stress change pattern, variations in creep behavior are similar to those in the corresponding fundamental creep characteristics (creep strain curve, stress relaxation curve, etc.). (iii) Cumulative creep damage estimated in accordance with ASME Boiler and Pressure Vessel Code Case N-47 from a stress history predicted by ''the standard creep constitutive equation'' which predicts the average behavior of creep strain curve data is not thought to be on the safe side on account of uncertainties in creep damage caused by variations in creep strain curve. (author)

  3. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  4. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  5. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  6. Creep-rupture, steam oxidation and recovery behaviours upon dynamic transients up to 1300 C of cold-worked 304 stainless steel tubes dedicated to nuclear core fuel cladding

    International Nuclear Information System (INIS)

    Portier, L.; Brachet, J.C.; Vandenberghe, V.; Guilbert, T.; Lezaud-Chaillioux, V.; Bernard, C.; Rabeau, V.

    2011-01-01

    An ambitious mechanical tests program was conducted on the fuel rod cladding of the CABRI facility between 2004 and 2009 to re-evaluate the cladding tubes materials behaviour. As an offspring of this major scientific investment several conclusions of interest could be drawn on the 304 stainless steel material. In particular, the specific behaviour of the materials during hypothetical and extreme 'dry-out' conditions was investigated. In such a scenario, the cladding tube materials should experience a very brief incursion at high temperatures, in a steam environment, up to 1300 C, before cladding rewetting. Some of the measurements performed in the range of interest for the safety case were on purpose developed beyond the conservatively safe domain. Some of the results obtained for these non-conventional heating rates, pressures and temperature ranges will be presented. First in order to assess the high temperature creep-rupture material behaviour under internal pressure upon dynamic transient conditions, tests have been performed on cold-worked 304 stainless cladding tubes in a steam environment, for heating rates up to 100 C*s -1 and pressure ramp rates up to 10 bar*s -1 thanks to the use of the EDGAR facility. Other tests performed at a given pressure allowed us to check the steady-state secondary creep rate of the materials in the 1100-1200 C temperature range. It was also possible to determine the rupture strength value and the failure mode as a function of the thermal and pressure loading history applied. It is worth noticing that, for very specific conditions, a surprising pure intergranular brittle failure mode of the clad has been observed. Secondly, in order to check the materials oxidation resistance of the materials, two-side steam oxidation tests have been performed at 1300 C, using the DEZIROX facility. It was shown that, thanks to the use of Ring Compression tests, the 304 cladding tube keeps significant ductility for oxidation times up to at least

  7. The time-course of recovery from interruption during reading: eye movement evidence for the role of interruption lag and spatial memory.

    Science.gov (United States)

    Cane, James E; Cauchard, Fabrice; Weger, Ulrich W

    2012-01-01

    Two experiments examined how interruptions impact reading and how interruption lags and the reader's spatial memory affect the recovery from such interruptions. Participants read paragraphs of text and were interrupted unpredictably by a spoken news story while their eye movements were monitored. Time made available for consolidation prior to responding to the interruption did not aid reading resumption. However, providing readers with a visual cue that indicated the interruption location did aid task resumption substantially in Experiment 2. Taken together, the findings show that the recovery from interruptions during reading draws on spatial memory resources and can be aided by processes that support spatial memory. Practical implications are discussed.

  8. Theoretical and experimental investigations of creep buckling on NiCr 22 Co 12 Mo tubes

    International Nuclear Information System (INIS)

    Ahmed, K.; Breitbach, G.; Over, H.; Schubert, F.; Nickel, H.

    1988-08-01

    The postulated pressure loss of the secondary circuit is one of the hardest loading conditions for the heat exchanging components in a HTGR plant. It is to proof for the design that the heat exchanging metallic components (heat exchanger or reformer tubes of a PNP plant for instance) do not collapse under such an emergency condition. An external pressure p a stressed tubes or cylindric shells at a pressure loss of a secondary circuit side. This external pressure buckles the tubes in dependence of the fabrication implied out of roundness 0 (fabrication tolerances) by material creep in the high temperature region. This creep buckling ends in a failure (collapse) of the component after a critical time t cr . The aim of the work is the experimental verification of creep buckling behaviour for the heat exchanger components and the comparison with different constitutive equations. With these equations safety factors can be formulated against as well the critical collapse time and pressure as the permissible out of roundness from fabrication. (orig.) [de

  9. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  10. Creep Properties of Walikukun (Schouthenia ovata Timber Beams

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-09-01

    Full Text Available This study presents an evaluation of creep constants of Walikukun (Schoutheniaovata timber beams when rheological model of four solid elements, which is obtained byassembling Kelvin and Maxwell bodies in parallel configuration, was adopted. Creep behaviorobtained by this method was further discussed and compared with creep behavior developedusing phenomenological model of the previous study. Creep data of previous study was deformationmeasurement of Walikukun beams having cross-section of 15 mm by 20 mm with a clearspan of 550 mm loaded for three weeks period under two different room conditions: with andwithout Air Conditioner. Creep behavior given by both four solid elements model and phenomenological(in this case are power functions had good agreement during the period of creepmeasurement, but they give different prediction of creep factor beyond this period. The powerfunction of phenomenological model could give a reasonable creep prediction, while for the foursolid elements model a necessary modification is required to adjust its long-term creep behavior.

  11. Modeling of creep-fatigue interaction of zirconium {alpha} under cyclic loading at 200 C; Modelisation du comportement et de l`endommagement en fatigue-fluage du zirconium {alpha} a 200C

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author).

  12. CANSWEL-2: a computer model of the creep deformation of Zircaloy cladding under loss-of-coolant accident conditions

    International Nuclear Information System (INIS)

    Haste, T.J.

    1982-07-01

    The CANSWEL-2 code models cladding creep deformation under conditions relevant to a loss-of-coolant accident (LOCA) in a pressurised water reactor (PWR). It considers in detail the centre rod of a 3 x 3 nominally square array, taking into account azimuthal non-uniformities in cladding thickness and temperature, and the mechanical restraint imposed on contact with neighbouring rods. Any of the rods in the array may assume a non-circular shape. Models are included for primary and secondary creep, dynamic phase change and superplasticity when both alpha- and beta-phase Zircaloy are present. A simple treatment of oxidation strengthening is incorporated. Account is taken of the anisotropic creep behaviour of alpha-phase Zircaloy which leads to cladding bowing. The CANSWEL-2 model is used both as a stand-alone code and also as part of the LOCA analysis code MABEL-2. (author)

  13. Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-06-01

    Full Text Available Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries. These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding, leading to the improvement of creep properties. Based on this point, adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys. The present investigation, however, shows that the creep properties of binary Mg–Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg2Sn at grain boundaries. That means other possible mechanisms function to affect the creep response. It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries. Based on this observation, new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg–Sn alloys.

  14. Irradiation creep in simple binary alloys

    International Nuclear Information System (INIS)

    Nagakawa, J.; Sethi, V.K.; Turner, A.P.L.

    1981-07-01

    Creep enhancement during 21-MeV deuteron irradiation was examined at 350 0 C for two simple binary alloys with representative microstructures, i.e., solid-solution (Ni - 4 at. % Si) and precipitation-hardened (Ni - 12.8 at. % Al) alloys. Coherent precipitates were found to be very effective in suppressing irradiation-enhanced creep. Si solute atoms depressed irradiation creep moderately and caused irradiation hardening via radiation-induced segregation. The stress-dependence of irradiation creep in Ni - 4 at. % Si should a transition, which seems to reflect a change of mechanism from dislocation climb due to stress-induced preferential absorption (SIPA) to climb-controlled dislocation glide enhanced by irradiation

  15. Loading History Effect on Creep Deformation of Rock

    Directory of Open Access Journals (Sweden)

    Wendong Yang

    2018-06-01

    Full Text Available The creep characteristics of rocks are very important for assessing the long-term stability of rock engineering structures. Two loading methods are commonly used in creep tests: single-step loading and multi-step loading. The multi-step loading method avoids the discrete influence of rock specimens on creep deformation and is relatively time-efficient. It has been widely accepted by researchers in the area of creep testing. However, in the process of multi-step loading, later deformation is affected by earlier loading. This is a key problem in considering the effects of loading history. Therefore, we intend to analyze the deformation laws of rock under multi-step loading and propose a method to correct the disturbance of the preceding load. Based on multi-step loading creep tests, the memory effect of creep deformation caused by loading history is discussed in this paper. A time-affected correction method for the creep strains under multi-step loading is proposed. From this correction method, the creep deformation under single-step loading can be estimated by the super-position of creeps obtained by the dissolution of a multistep creep. We compare the time-affected correction method to the coordinate translation method without considering loading history. The results show that the former results are more consistent with the experimental results. The coordinate translation method produces a large error which should be avoided.

  16. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  17. The creep behaviour of sphere-cylinder shell intersections subjected to internal pressure

    International Nuclear Information System (INIS)

    Leckie, F.A.; Hayhurst, D.R.; Morrison, C.J.

    1976-01-01

    As the result of the renewed interest in nuclear power production many new problems have arisen in the design of components which must operate at temperatures sufficiently high for creep deformation and rupture to take place. The results of recent theoretical studies have been applied to the design of a complex component. From this study there emerges a rational and simple design procedure which has features similar to those of plastic design, and which can be presented in terms of the representative deformation and rupture stresses. The theoretical predictions are compared with the results of s series of tests performed on the component. (author)

  18. Study of creep behavior of a calcarenite: San Julián´s stone (Alicante

    Directory of Open Access Journals (Sweden)

    Brotóns, V.

    2013-12-01

    Full Text Available Rocks creep has a great importance in the evaluation of the long-term behaviour of elements built with or within these materials. In this work, a porous well-known limestone locally named as San Julián stone has been physically and mechanically characterized. Uniaxial compressive tests for 96 h. at constant stress are carried out. Long-term behaviour has been modelled by means of a well-known creep model, the CEB-FIP Model code 2010, used for modelling other stony-material (i.e. concrete. Furthermore, a rheological model has been proposed. The main aim of this work is to investigate the possibility of exploiting the vast experience accumulated in the study of concrete deformational long-term behaviour in order to obtaining a reasonable approach to the behaviour of the rock, for too long testing times difficult to implement in laboratory. A creep function adapted to the studied rock only dependent on its elastic and mechanical characteristics is also proposed in this work.La fluencia de las rocas tiene gran importancia en la evaluación del comportamiento a largo plazo de elementos construidos con estos materiales. En este trabajo, se ha caracterizado física y mecánicamente una calcarenita porosa bien conocida localmente como Piedra de San Julián. Se han realizado ensayos de compresión uniaxial de 96 h. a carga constante. Se ha utilizado un modelo de fluencia bien conocido, el Código-modelo CEB-FIP 2010, usado para modelizar otro material pétreo (hormigón. Además, se ha propuesto un modelo reológico. El objetivo principal de este trabajo es investigar la posibilidad de aprovechar la gran experiencia acumulada en el estudio del hormigón, con el fin de obtener un enfoque para el comportamiento de la roca, para tiempos de prueba muy largos difíciles de implementar en laboratorio. Se propone una función de fluencia adaptada a la roca estudiada dependiente sólo de sus características elásticas y mecánicas.

  19. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  20. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  1. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...... is quite stable and convergence can be reached also with big time steps. Keywords: Viscoplasticity, creep, unified constitutive model, aluminum, high temperature....

  2. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui; Deng, Peigang; Lam, Gilbert; Lu, Bo; Lee, Yi-Kuen; Tai, Yu-Chong

    2011-01-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated

  3. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  4. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  5. Creep curve formularization at 950degC for Hastelloy XR

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Muto, Yasushi

    1991-03-01

    Creep tests under constant stress were conducted on a nickel-base heat-resistant alloy, Hastelloy XR, in air at 950degC. Minimum creep strain rate, time to the onset of tertiary creep and time to rupture were obtained as a function of applied stress. Then, a creep constitutive equation was made based on the Garofalo formula for primary and secondary creep and based on the Kachanov-Rabotnov formula for tertiary creep, which could represent fairly well the experimental creep deformation curves under the constant stress conditions. The creep deformation under the constant load condition corresponding to the stress increment was analysed using the creep constitutive equation and strain hardening law. Then the calculated creep strain showed slightly higher value than the experimental creep strain, and the calculated life was shorter than the experimental one. (author)

  6. Study of the creep of lime-stabilised zirconia

    International Nuclear Information System (INIS)

    Saint-Jacques, Robert G.

    1971-09-01

    This research thesis reports the study of creep of stabilised zirconia containing between 13 and 20 per cent of lime, at temperatures between 1.200 and 1.400 C, and under compression stresses between 500 and 4.000 pounds by square inch. Specimens are polycrystalline with an average grain diameter between 7 and 29 microns. The author notably shows that the creep rate of lime-stabilised zirconia is directly proportional to the applied stress, and that the creep apparent activation energy is close to activation energy of volume self-diffusion of calcium and zirconium in lime-stabilised zirconia. Results of creep tests show that, in the studied conditions, the creep rate is directly proportional to the inverse of the grain average diameter, and this is in compliance with the Gifkins and Snowden theory of creep by sliding at grain boundaries. The author also shows that the creep rate of the lime stabilised zirconia varies with lime content, and reaches a maximum when zirconia contains about 15 per cent of lime. Lower creep rates obtained for higher and lower lime contents are explained [fr

  7. Accelerated diffusion controlled creep of polycrystalline materials. Communication 1. Model of diffusion controlled creep acceleration

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1998-01-01

    The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe

  8. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  9. Creep of fissile ceramic materials under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1975-01-01

    Theoretical estimation of the irradiation-induced creep rate of U0 2 by a modification of the Nabarro-Herring model for diffusional creep resulted in a creep rate range between about 6 x 10 -6 to 8 x 10 -5 h -1 for a fission rate of 1 x 10 14 f/cm 3 s and a stress of 2 kgf/mm 2 . Accordingly, the creep rate is enhanced by irradiation at temperatures below 1000 0 to 1200 0 C. It is essentially due to the 'thermal rods' along the fission fragment tracks. Therefore, irradiation-induced creep rates should depend only slightly on temperature and must be markedly lower for carbide and nitride fuel. In-reactor creep experiments on UO 2 were performed at fuel temperatures between 250 0 to 850 0 C. At burnups between 0.3 to 3% the steady-state compressive creep rates are proportional to stress (0 to 4 kgf/mm 2 ) and to fission rate (1 x 10 13 to 2 x 10 14 f/cm 3 s), and are in the range estimated before. The increase in the creep rate with increasing temperature is low and corresponds to an apparent activation energy of only 5200 cal/mol. At burnups above 3 to 4% the stress exponent of the irradiation-induced creep rate increased from n = 1 to n = 1.5. Creep measurements on UO 2 to 15 wt-%Pu0 2 (mechanically mixed, sintered density 86% TD) showed the same temperature dependence as UO 2 below 700 0 C. However, the creep rates were higher by a factor of about 20 compared to fully dense UO 2 . This difference may be explained by assuming a high 'effective' porosity. In-pile creep tests on some UN samples resulted in creep rates that were lower by an order of magnitude than for UO 2 under comparable conditions. (author)

  10. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  11. microstructure change in 12 % Cr steel during creep

    International Nuclear Information System (INIS)

    Winatapura, D. S.; Panjaitan, E.; Arslan, A.; Sulistioso, G.S.

    1998-01-01

    The microstructure change in steel containing of 12% Cr or DIN X20CrMoV 12 1 during creep has been studied by means of optical microscopy and Transmission Electron Microscope (TEM). The creep testing at 650 o C was conducted under constant load of 650 Mpa. The heat treatment of the specimen before creep testing was austenization, followed by tempering for 2 hours. The obtained microstructure was tempered martensitic. This microstructure consisted of the martensite laths, and distributed randomly in the matrix. During tempering, chromium carbide particles of Cr 7 C 6 less than 0,2 μmin-size were precipitated on or and in the subgrain and lath martensite grain boundary. During creep testing those particles transformed and precipitated as chrome carbide precipitates of Cr 23 C 6 . At the secondary creep stage, the void formation occurred, and then it developed into the creep cracks. At tertiary creep stage for 3554 hours, the specimen was failure. The creep cracks were informs of transgranular and intergranular modes which propagated almost perpendicular to the stress axis. From this observation, it is suggested that tempering caused the ductility of martensitic microstructure, which increased the creep resistant or Cr 12% steel

  12. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  13. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  14. Correlation of Creep Behavior of Domal Salts

    International Nuclear Information System (INIS)

    Munson, D.E.

    1999-01-01

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable

  15. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  16. New considerations on variability of creep rupture data and life prediction

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Jeong, Won Taek; Kong, Yu Sik

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in thee creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time and state steady creep rate on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

  17. New Considerations on Variability of Creep Rupture Data and Life Prediction

    International Nuclear Information System (INIS)

    Jung, Won Taek; Kong, Yu Sik; Kim, Seon Jin

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model

  18. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  19. Multiaxial creep behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Findley, W.N.; Mark, R.

    1975-07-01

    Tests in combined tension-torsion, pure tension and pure torsion, were conducted at elevated temperature (about 1100 0 F). Most of these tests were repeats of previous experiments where friction in the extensometer caused anomalous creep behavior. The existence of a creep surface at 12.5 ksi effective Mises stress was explored. Work on a compression creep apparatus continued. Creep and recovery data were fitted to the equation epsilon/sub ij/ = epsilon 0 /sub ij/ + e + /sub ij/t/sup n//sub ij/ by means of a least squares method. (5 tables, 10 fig) (auth)

  20. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  1. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  2. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  3. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  4. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  5. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  6. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  7. A recent advance in the assessment of creep rupture data

    International Nuclear Information System (INIS)

    Holdsworth, S.R.

    1999-01-01

    A new procedure for the assessment of creep rupture data has been developed in the UK. The methodology features a state-of-the-art statistical treatment with independent checks on the physical realism, goodness of fit and extrapolation repeatability/stability of the model equation established to best characterise the behaviour of the material under investigation. Software provides semi-automation to allow full advantage to be taken of modern desk top computing power, but with ample provision for expert-user intervention. The paper reviews the background knowledge which underpins the new procedure and illustrates the method of implementation. (orig.)

  8. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  9. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  10. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  11. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 1. Quantitative evaluation of microstructural damage in creep rupture specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1997-03-01

    Several microstructural changes take place in a material during the course of creep. These changes can be a measure of creep life consumption. In this paper, microstructural changes in Mod.9Cr-1Mo steel were studied in order to examine their ability as the measure of creep life consumption. Macroscopic structural changes, such as void growth, rotation of lath structure toward the tensile axis and elongation of grains, are evident only in the necked portion of ruptured specimens. These macroscopic structural changes are not useful for creep life assessment. Lath width increases and dislocation density within lath decreases with increasing creep duration. These changes in dislocation substructure start in the early stage of creep life, and cause the increase of strain rate in the tertiary creep stage. The lath width and the dislocation density reach a stationary value before rupture. The stationary values are independent of temperature, and uniquely related to creep stress normalized by shear modulus. The extent of these microstructural changes are greater at lower stresses under which the material is practically used. These facts suggest that the lath width and the dislocation density within lath can be a useful measure of creep life consumption. Hardness of crept specimens is closely related to the lath width and the dislocation density within lath. The changes of these microstructural features can be evaluated by the measurement of hardness. (author)

  12. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  13. Creep characteristics of single crystalline Ni3Al(Ta,B)

    International Nuclear Information System (INIS)

    Wolfenstine, J.; Earthman, J.C.

    1994-01-01

    The creep characteristics, including the nature of the creep transient after a stress reduction and activation energy for creep of single crystalline Ni 3 Al(Ta,B) in the temperature range 1,083 to 1,388 K, were investigated. An inverse type of creep transient is exhibited during stress reduction tests in the creep regime where the stress exponent is equal to 3.2. The activation energy for creep in this regime is equal to 340 kJ mol -1 . A normal type of creep transient is observed during stress reduction tests in the regime where the stress exponent is equal to 4.3. The activation energy for creep in this regime is equal to 530 kJ mol -1 . The different transient creep behavior and activation energies for creep observed in this investigation are consistent with the previous suggestion that the n = 4.3 regime is associated with creep by dislocation climb, whereas the n = 3.2 regime is associated with a viscous dislocation glide process for Ni 3 Al at high temperatures

  14. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  15. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550 degrees c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength

  16. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  17. Irradiation creep due to SIPA-induced growth

    International Nuclear Information System (INIS)

    Woo, C.H.

    1980-01-01

    An additional contribution to irradiation creep resulting from the stress-induced preferred adsorption (SIPA) effect is described - SIPA-induced growth (SIG). The mechanism of SIG is discussed and an expression for its contribution to irradiation creep developed. It is shown that SIG is very significant in comparison with SIPA. Enhancement of creep by swelling may also occur. (U.K.)

  18. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  19. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  20. Datalogger for the creep laboratory

    International Nuclear Information System (INIS)

    Sambasivan, S.I.; Karthikeyan, T.V.; Chowdhary, D.M.; Anantharaman, P.N.

    1989-01-01

    The creep laboratory, MDL/ICGAR is a facility to study the creep properties of materials which are of interest to the fast reactor programme. The creep test is conducted over a few days to several months and years depending on the test variables employed. In these tests the creep strain and creep rate as a function of time are studied while the load and temperature are kept constant. The datalogger automates the process of recording the strain information as a function of time and also monitors the temperature throughout the test. The system handles 126 temperature channels and 42 strain channels from 27 machines. The temperature inputs are from the thermocouples and for cold junction compensation RTD's are used. An extensometer with a linear variable differential transformer (LVDT) or Super Linear Variable Capacitor (SLVC) form the set up to measure strain. The data logger consists of a front end analog input sub-system (AISS), a 8085 based Data Acquisition System (DAS) communicating to a microcomputer with CP/M operating system. The system responds to the user through the console and outputs of a dot matrix printer. The system, running a real time executive, also allows for on line enabling or disabling of a channel, printing of data, examining the current status and value, setting and getting time etc. (author)