Sample records for interplanetary space vehicle

  1. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion (United States)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.


    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  2. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.


    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  3. Interplanetary Space Weather and Its Planetary Connection (United States)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul


    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  4. Fusion Ship II- A Fast Manned Interplanetary Space Vehicle Using Inertial Electrostatic Fusion (United States)

    Burton, R. L.; Momota, H.; Richardson, N.; Shaban, Y.; Miley, G. H.


    A preliminary system design, Fusion Ship II, is presented for a high performance 750 MWthrust manned space vehicle in the 500 metric ton class. Fusion Ship II is based on Inertial Electrostatic Fusion (IEC), giving round trip times to the outer planets of 1-2 years. An IEC is chosen because it simplifies structure results in a very high power to weight ratio. The fusion reactor uses D-3He fuel that generates 14.7-MeV protons as the primary reaction product. The propulsion system uses direct conversion of proton energy to electricity, avoiding the thermalization of the working fluid to maximize efficiency. Design calculations are described for the principle system components (crew compartment, crew shielding, avionics, fusion reactor modules, traveling wave direct energy converter, step-down transformer, rectifier, ion thruster, heat rejection radiators) along with vehicle trajectory calculations. Since unburned fusion fuels are recycled rather than exhausted with the propellant, problems of fuel weight and preservation of 3He are minimized. The 750-MWthrust propulsion system is based on NSTAR-extrapolated Argon ion thrusters operating at a specific impulse of 35,000 seconds and a total thrust of 4,370 N. Round trip travel time for a Jupiter mission ΔV of 202,000 m/s is then 363 days. This design requires that an IEC reactor with a proton energy gain (power in 14.7-MeV protons/input electric power) of 9 or better is achieved. Extrapolation of present laboratory-scale IEC experiments to such conditions is possible theoretically, but faces several open issues including stability under high-density plasma operation.

  5. High performance manned interplanetary space vehicle using D-3He Inertial Electrostatic Fusion (United States)

    Burton, R.; Momota, H.; Richardson, N.; Coventry, M.; Shaban, Y.; Miley, G. H.


    A preliminary system design is presented for a high performance 100 MWe manned space vehicle in the 500 metric ton class, based on Inertial Electrostatic Fusion (IEC), with trip times to the outer planets of several months. An IEC is chosen because it simplifies structure results in a very high power to weight ratio. The fusion reactor uses D-3He fuel which generates 14.7-MeV protons as the primary reaction product. The propulsion system design philosophy is based on direct conversion of proton energy to electricity, avoiding the thermalization of the working fluid to maximize efficiency. The principle system components of crew compartment, electronics, fusion reactor, traveling wave direct energy converter, step-down transformer, rectifier, ion thruster and heat rejection radiators are described. The design requires that an IEC reactor with a proton energy gain (power in 14.7-MeV protons/input electric power) of 4 or better is necessary to keep radiator mass and size at acceptable levels. Extrapolation of present laboratory scale IEC experiments to reactor relevant conditions is possible theoretically, but faces several open issues including stability under high-density conditions. Since unburned fusion fuels are recycled rather than exhausted with the propellant, problems of fuel weight and preservation of 3He are minimized. The 100-MWe propulsion system is based on NSTAR-extrapolated krypton ion thrusters operating at a specific impulse of 16,000 seconds and a total thrust of 1020 N. Thrust time for a typical outer planet mission ΔV of 50,000 m/s is then ~200 days. .

  6. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C D


    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree

  7. International Launch Vehicle Selection for Interplanetary Travel (United States)

    Ferrone, Kristine; Nguyen, Lori T.


    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  8. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope (United States)

    Campbell, J. E.


    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  9. Optimizing interplanetary trajectories with deep space maneuvers (United States)

    Navagh, John


    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  10. Time-dependent radiation dose estimations during interplanetary space flights (United States)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.


    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  11. Space vehicle chassis (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle


    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  12. Deep Space Network Measurement Model Development for Interplanetary Mission

    Directory of Open Access Journals (Sweden)

    Hae-Yeon Kim


    Full Text Available The DSN(Deep Space Network measurement model for interplanetary navigations which is essential for precise orbit determination has been developed. The DSN measurement model produces fictitious DSN observables such as range, doppler and angular data, containing the potential observational errors in geometric data obtained from orbit propagator. So the important part of this research is to model observational errors in DSN observation and to characterize the errors. The modeled observational errors include the range delay effect caused by troposphere, ionosphere, antenna offset, and angular refraction effect caused by troposphere. Non-modeled errors are justified %%as the solved-for parameters. as the parameters. All of these results from developed models show about 10% errors compared to the JPL's reference results, that are within acceptable error range.

  13. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.


    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration

  14. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua


    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  15. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics (United States)

    Beckley, L. E.


    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  16. Aeroacoustics of Space Vehicles (United States)

    Panda, Jayanta


    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  17. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin


    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  18. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo


    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  19. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)


    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  20. Space Shuttle Vehicle Illustration (United States)


    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  1. First Taste of Hot Channel in Interplanetary Space (United States)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.


    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  2. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance (United States)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.


    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  3. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat (United States)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.

  4. Interplanetary Transit Simulations Using the International Space Station (United States)

    Charles, John B.; Arya, M.; Kundrot, C. E.


    We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should

  5. Interplanetary Transit Simulations Using the International Space Station (United States)

    Charles, J. B.; Arya, Maneesh


    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  6. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions. (United States)

    Smirnova, Olga A; Cucinotta, Francis A


    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can

  7. Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions

    International Nuclear Information System (INIS)

    Leubner, M.P.


    Numerous in situ observations indicate clearly the presence of nonthermal electron and ion structures as ubiquitous and persistent feature in a variety of astrophysical plasma environments. In particular, the detected suprathermal particle populations are accurately represented by the family of κ-distributions, a power-law in particle speed. After clarifying the characteristics of high-energy tail distributions under various space plasma conditions, different generation mechanisms of energetic particles are introduced where numerical simulations of wave-particle interaction based on a Fokker-Planck approach demonstrate how Landau interaction ultimately leads to κ-like distributions. Because of lack of theoretical justification, the use of the analytical form of κ-functions was frequently criticized. It is shown that these distributions turn out as consequence of an entropy generalization favored by nonextensive thermo-statistics, thus providing the missing link for powerlaw models of suprathermal tails from fundamental physics, along with a physical interpretation of the structure parameter κ. Moreover, with regard to the full nonextensive formalism, compatible also with negative values of κ, it is demonstrated that core-halo distribution structures, as observed for instance under typical interplanetary plasma conditions, are a natural content of the pseudo-additive entropy concept. The significance of the complete κ-distribution family with regard to observed core-halo electron and double-humped ion velocity space characteristics is illuminated, where the observed peak separation scale of interplanetary proton distributions is compatible with a maximum entropy condition

  8. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus


    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  9. Multi-Mission Space Exploration Vehicle (United States)

    National Aeronautics and Space Administration — Develop a manned vehicle allowing brief sorties to items of interest during multiple types of exploration missions. The vehicle consists of a core cabin that is...

  10. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  11. An analysis of interplanetary space radiation exposure for various solar cycles

    International Nuclear Information System (INIS)

    Badhwar, G.D.; O'Neill, P.M.; Cucinotta, F.A.


    The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1967-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected. 25 refs., 11 figs., 1 tab

  12. Spacecraft Position Estimation in Interplanetary Trajectories Using Star Trackers, Phase I (United States)

    National Aeronautics and Space Administration — Lynntech proposes a novel spacecraft position estimation method that leverages existing star trackers on board of a vehicle in an interplanetary trajectory for...

  13. Lightning Protection for the Orion Space Vehicle (United States)

    Scully, Robert


    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  14. Electric Vehicles at Kennedy Space Center (United States)

    Chesson, Bruce E.


    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  15. The Space Maneuver Vehicle: Enhancing Space's Utility to the Warfighter

    National Research Council Canada - National Science Library

    Davis, Stephen


    ... (the purpose of space control) and lack operational responsiveness. The rapid response, quick turnaround, and high on-orbit maneuverability of the Space Maneuver Vehicle can correct these shortfalls...

  16. Interplanetary Coronal Mass Ejection effects on thermospheric density as inferred from International Space Station orbital data (United States)

    Mendaza, T.; Blanco-Ávalos, J. J.; Martín-Torres, J.


    The solar activity induces long term and short term periodical variations in the dynamics and composition of Earth's atmosphere. The Sun also shows non periodical (i.e., impulsive) activity that reaches the planets orbiting around it. In particular, Interplanetary Coronal Mass Ejections (ICMEs) reach Earth and interact with its magnetosphere and upper neutral atmosphere. Nevertheless, the interaction with the upper atmosphere is not well characterized because of the absence of regular and dedicated in situ measurements at high altitudes; thus, current descriptions of the thermosphere are based on semi empirical models. In this paper, we present the total neutral mass densities of the thermosphere retrieved from the orbital data of the International Space Station (ISS) using the General Perturbation Method, and we applied these densities to routinely compiled trajectories of the ISS in low Earth orbit (LEO). These data are explicitly independent of any atmospheric model. Our density values are consistent with atmospheric models, which demonstrates that our method is reliable for the inference of thermospheric density. We have inferred the thermospheric total neutral density response to impulsive solar activity forcing from 2001 to the end of 2006 and determined how solar events affect this response. Our results reveal that the ISS orbital parameters can be used to infer the thermospheric density and analyze solar effects on the thermosphere.

  17. Solar and interplanetary disturbances

    CERN Document Server

    Alurkar, S K


    Over the last three decades, a spate of solar wind observations have been made with sophisticated ground-based and space-borne instruments. Two highly successful space missions of the Skylab and the twin spacecraft Helios 1 and 2 have amassed an invaluable wealth of information on the large scale structure of the inner heliosphere, the solar and interplanetary magnetic field, coronal holes, interplanetary dust, solar windflows, etc.Solar and interplanetary propagating phenomena have been extensively studied during the last two decades. Very recently, a new simple model based on results from a

  18. Transport coefficients of low-energy cosmic rays in interplanetary space

    International Nuclear Information System (INIS)

    Palmer, I.


    The propagation of energetic particles along and across the interplantary magnetic field is governed by the large-scale field geometry and by scattering in small-scale turbulent fields. Values of the scattering mean free path parallel to the field, γ/sub parallel/ (R), are reviewed in prompt solar bursts and nonimpulsive (corotating) events. Analysis of intensity and anisotropy profiles in combination is a powerful tool for elucidating γ/sub parallel/ (R). A consensus is found: at 1 AU, γ/sub parallel/ = 0.08--0.3 AU over a wide range of rigidity, R = 5 x 10 -4 to 5 GV. Efforts to explain the discrepancy between empirical values of γ/sub parallel/ and scattering theory are discussed. Quantitative measures of γ/sub parallel/ in rare scatter-free events, where magnetic power spectra. Cross-field diffusion due to random walk of field lines is revisited. Recent values deduced from magnetic power spectra in interplanetary space, magnetic diffusion at the sun, Jovian electron propagation, and cosmic ray events are evaluated. Again, a consensus is sought, and a reasonable mean is K/sub perpendicular//sup r//β = 10 21 cm 2 s -1 . Previous arguments against a significant K/sub perpendicular//sup r/ are reassessed, including the problem of the persistance of intensity fluctuations in cosmic ray events. Combining the consensus for K/sub perpendicular//sup r//β with that for γ/sub parallel/<0.1 at 1 AU, and thus neglect of K/sub perpendicular//sup r/ in the modeling of solar cosmic ray events appears justified (although account needs to be taken of coronal propagation). The outlook for the future includes better empirical values of γ/sub parallel/ down to E/sub p/approx.10 keV and E/sub e/approx. 1 keV, comparison with scattering theories at these energies, and comparison between empirical and theoretical γ/sub parallel/ in other regions such as the magnetosheath and upstream solar wind

  19. Probing flare-generated interplanetary disturbances by the Vega-1 and Vega-2 space probes during January-February 1986

    International Nuclear Information System (INIS)

    Eroshenko, E.G.; Styazhkin, V.A.; Ivanov, K.G.


    Results of magnetic measurements, conducted during Vega-I and Vega-2 space probes passing through interplanetary flare-generated disturbances on the 18 - 19.01., 8 - 9.02. and 15 - 17.02. 1986, are presented. Within disturbances structure bow and backward shock waves, magnetic clouds and interaction area between clouds are identified. Comparative investigation of disturbances from ball weak flares doublet 1n 15 -16.01 and from more energetic flares doublet 2n 14 - 15.02 are conducted. Normals to shock fronts and cloud boundaries correlate with disturbance specific flatness concept

  20. Ground Processing Affordability for Space Vehicles (United States)

    Ingalls, John; Scott, Russell


    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  1. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop (United States)

    Johnson, Michael


    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  2. 46 CFR 116.940 - Guards in vehicle spaces. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards in vehicle spaces. 116.940 Section 116.940... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or more vehicles, suitable chains, cables, or other barriers must be installed at the end of each vehicle runway...

  3. Ares Launch Vehicles Overview: Space Access Society (United States)

    Cook, Steve


    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  4. NASA Space Flight Vehicle Fault Isolation Challenges (United States)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine


    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  5. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions (United States)

    Kiplinger, Alan L.


    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  6. Carbon composites in space vehicle structures (United States)

    Mayer, N. J.


    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  7. Low-latitude active longitudes on the Sun and in interplanetary space

    International Nuclear Information System (INIS)

    Bumba, V.; Hejna, L.


    Following a short review of the history of the development of the active longitude concept, several graphs are given of the longitudinal distribution of various low-latitude phenomena of solar activity published by various authors. The inclinations of the active longitudes found were calculated. A summary picture of all these inclinations demonstrates the concentration of such active longitudes into two main directions. Two values of synodic rotation: 26.77 days and 27.16 days, correspond to these two types of low-latitude active longitudes, rotating faster than Carrington's rotation. The summary graph of all active longitudes belonging to these two types shows that active longitudes of different activity phenomena and from different authors overlap to a relatively high degree and that they run at least through three eleven-year cycles. The first of these active longitudes moves around the whole Sun in about 45-55 rotations and the second one in about 200 Carrington's rotations. It is believed that both these low-latitude active longitudes have their reflections in the two main inclinations of the interplanetary magnetic field sector boundaries demonstrated by Svalgaard and Wilcox (1975), their synodic rotations being 26.84 days and 27.14 days. (author). 9 figs., 25 refs

  8. 46 CFR 177.940 - Guards in vehicle spaces. (United States)


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in vehicle spaces. 177.940 Section 177.940... TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a vessel authorized to carry one or more vehicles, suitable chains, cables, or other barriers must be installed at the...

  9. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation (United States)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar


    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  10. Navigation simulator for the Space Tug vehicle (United States)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.


    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  11. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education (United States)


    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  12. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    National Research Council Canada - National Science Library

    Bayley, Douglas J


    .... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...

  13. Small star trackers for modern space vehicles (United States)

    Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir


    Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.

  14. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Costa Jr, Edio da [Instituto Federal de Minas Gerais-IFMG, Ouro Preto, MG, 35400-000 (Brazil); Tsurutani, Bruce T. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Alves, Maria Virgínia; Echer, Ezequiel [Instituto Nacional de Pesquisas Espaciais-INPE, São José dos Campos, SP, 12227-010 (Brazil); Lakhina, Gurbax S., E-mail:, E-mail: [Indian Institute for Geomagnetism, Navi Mumbai 410 218 (India)


    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  15. Interplanetary magnetohydrodynamics

    CERN Document Server

    Burlaga, Leonard F


    Spacecraft such as the Pioneer, Vela, and Voyager have explored the interplanetary medium between the orbits of Mercury and Pluto. The insights derived from these missions have been successfully applied to magnetospheric, astro-solar, and cosmic ray physics. This book is an overview of these insights, using magnetohydrodynamic (MHD) flows as the framework for interpreting objects and processes observed in the interplanetary medium. Topics include various types of MHD shocks and interactions among them, tangential and rotational discontinuities, force-free field configurations, the formation of merged interaction regions associated with various types of flows, the destruction of flows, the growth of the Kelvin-Helmholtz instability and formation of a heliospheric vortex street, the development of multifractal fluctuations on various scales, and the evolution of multifractal intermittent turbulence. Students and researchers in astrophysics will value the data from these missions, which provide confirmation of m...

  16. The Worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) Network in support of Space-Weather Science and Forecasting (United States)

    Bisi, Mario Mark; Americo Gonzalez-Esparza, J.; Jackson, Bernard; Aguilar-Rodriguez, Ernesto; Tokumaru, Munetoshi; Chashei, Igor; Tyul'bashev, Sergey; Manoharan, Periasamy; Fallows, Richard; Chang, Oyuki; Yu, Hsiu-Shan; Fujiki, Ken'ichi; Shishov, Vladimir; Barnes, David


    The phenomenon of space weather - analogous to terrestrial weather which describes the changing low-altitude atmospheric conditions on Earth - is essentially a description of the changes in the plasma environment at and near the Earth. Some key parameters for space-weather purposes driving space weather at the Earth include velocity, density, magnetic field, high-energy particles, and radiation coming into and within the near-Earth space environment. Interplanetary scintillation (IPS) can be used to provide a global measure of velocity and density as well as indications of changes in the plasma and magnetic-field rotations along each observational line of sight. If the observations are formally inverted into a three-dimensional (3-D) tomographic reconstruction (such as using the University of California, San Diego - UCSD - kinematic model and reconstruction technique), then source-surface magnetic fields can also be propagated out to the Earth (and beyond) as well as in-situ data also being incorporated into the reconstruction. Currently, this has been done using IPS data only from the Institute for Space-Earth Environmental (ISEE) and has been scientifically since the 1990s, and in a forecast mode since around 2000. There is now a defined (and updated) IPS Common Data Format (IPSCDFv1.1) which is being implemented by the majority of the IPS community (this also feeds into the UCSD tomography). The Worldwide IPS Stations (WIPSS) Network aims to bring together, using IPSCDFv1.1, the worldwide real-time capable IPS observatories with well-developed and tested analyses techniques being unified across all single-site systems (such as MEXART, Pushchino, and Ooty) and cross-calibrated to the multi-site ISEE system (as well as learning from the scientific-based systems such as EISCAT, LOFAR, and the MWA), into the UCSD 3-D tomography to improve the accuracy, spatial and temporal data coverage, and both the spatial and temporal resolution for improved space-weather science

  17. Space vehicle with customizable payload and docking station (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Seitz, Daniel


    A "black box" space vehicle solution may allow a payload developer to define the mission space and provide mission hardware within a predetermined volume and with predetermined connectivity. Components such as the power module, radios and boards, attitude determination and control system (ADCS), command and data handling (C&DH), etc. may all be provided as part of a "stock" (i.e., core) space vehicle. The payload provided by the payload developer may be plugged into the space vehicle payload section, tested, and launched without custom development of core space vehicle components by the payload developer. A docking station may facilitate convenient development and testing of the space vehicle while reducing handling thereof.

  18. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth (United States)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui


    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  19. Wooden Spaceships: Human-Centered Vehicle Design for Space (United States)

    Twyford, Evan


    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  20. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.


    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  1. Updated analysis of the upwind interplanetary hydrogen velocity as observed by the Hubble Space Telescope during solar cycle 23 (United States)

    Vincent, F.; Ben-Jaffel, L.; Harris, W.


    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the ionized component of the incoming ISM deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS, and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. As a consequence, it corrects the discrepancy with SWAN data near solar maximum (2001) and we now find that all data can be fit by the existing models to within 1σ, with the exception of SWAN observations taken at solar minimum (1997/1998). We suggest that this discrepancy at solar minimum could be due to an indirect effect of the local interstellar magnetic field, which should be included in future modeling efforts. There may be extra features as the geocoronal deuterium or a possible Fermi effect from the heliospheric interface but the diagnostic is difficult because the resolution of these observations is limited. We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed

  2. Modular space vehicle boards, control software, reprogramming, and failure recovery (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Delapp, Jerry; Prichard, Dean; Proicou, Michael; Seitz, Daniel; Stein, Paul; Michel, John; Tripp, Justin; Palmer, Joseph; Storms, Steven


    A space vehicle may have a modular board configuration that commonly uses some or all components and a common operating system for at least some of the boards. Each modular board may have its own dedicated processing, and processing loads may be distributed. The space vehicle may be reprogrammable, and may be launched without code that enables all functionality and/or components. Code errors may be detected and the space vehicle may be reset to a working code version to prevent system failure.

  3. Remote In-Space Manufacturing Applied with the Science of Interplanetary Supply Chain Modeling for Deep Space Gateway Application (United States)

    Galluzzi, M. C.


    Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.

  4. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design (United States)

    Joosten, B. Kent


    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  5. Risk Considerations of Bird Strikes to Space Launch Vehicles (United States)

    Hales, Christy; Ring, Robert


    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  6. Propagation of Energetic Electrons from the Corona into Interplanetary Space and Type III Radio Emission. Planetary Radio Emissions| PLANETARY RADIO EMISSIONS VII 7|


    Vocks, C.; Breitling, F.; Mann, G.


    During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically 1036 s-1. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of thes...

  7. Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani


    Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in

  8. X-37 Space Vehicle: Starting a New Age in Space Control? (United States)

    Jameson, Austin D.


    The U.S. can no longer rely on the "space as a sanctuary" policy, initiated by the Eisenhower Administration, to continue to exploit space for economic and military advantages. The X-37 space maneuvering vehicle demonstrator is an opportunity for the U.S. to begin to develop methods to more strategically defend and control the space environment. The X-37 is the first of NASA's x-vehicles intended to demonstrate leading edge technologies in orbit. This prototype space maneuvering vehicle co-sponsored by NASA, the Air Force and the Boeing Company is being designed to achieve the goals of reducing the cost to access space from 10,000 to 1000 per pound while improving reliability. The current project is funded to build an autonomous space maneuvering vehicle with on-orbit testing scheduled in 2002, The X-37 is an unmanned space plane that can carry a payload, and can conduct missions while orbiting, loitering, or rendezvousing with objects in space and then autonomously return to earth by landing on a conventional runway. If the Air Force develops the X-37 to its full potential the system could strategically support each of the Air Force's four space mission areas of force enhancement, space support, space control, and force application. Transition of the space maneuvering demonstrator into a space control platform will require a change in national policy. Capitalizing on the lessons from NASA's x-vehicles and partnering with the commercial sector can potentially save costs and shorten the development of a viable space platform that could be used for space control. Strategic development and funded evolution of the X-37 space vehicle is an immediate, tangible step the United States can take to actively pursue a more aggressive program to respond to threats in the space arena.

  9. Physical frameworks of safe vehicles for space tourism (United States)

    Filatyev, A. S.; Golikov, A. A.; Yanova, O. V.; Petrokovsky, S. A.


    The attention to specific problems of guarantee of sub-orbital flight safety is accented. It is displayed, that physical limitations on ascent and reentry segments form conflict requirements to configurations of the launcher and reentry vehicle. The algorithm of construction of permissible parameter ranges determining a shape of such vehicles and their critical flight regimes is offered. The developed technique is demonstrated as an application to analyze a possibility to use the launcher Angara-1 for space tourism purposes.

  10. Ground Vibration Testing Options for Space Launch Vehicles (United States)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry


    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  11. Designing interior space for drivers of passenger vehicle

    Directory of Open Access Journals (Sweden)

    Spasojević-Brkić Vesna K.


    Full Text Available The current study is a review of our previous papers with certain improvements, so it proves the hypothesis that passenger vehicles are still not sufficiently adapted to man in terms of ergonomics, especially from the aspect of interior space. In the ergonomic adjustment of passenger vehicles, the limits of anthropomeasures and technical limitations, are the most important. The methodology mainly uses operative investigations, and the 'man-vehicle' system is optimized within existing limitations. Here, we also explain original methodology for modeling that space. The fact that there is a point '0' as the origin point of a coordinate system with x, y and z axes of the man-vehicle system, which can be considered to be more or less fixed, enabled us to determine more accurately the mechanical and mathematical codependence in this system. The paper also proves that the anthropomeasures of length have mechanical and mathematical functions which also determine the width, i.e. all three dimensions and provides the design of the space behind the windscreen glass, the position of the steering wheel and the position of the foot commands with space for feet and knees determined, as well as the total space which the driver occupies. It is proved that the floor-ceiling height of a vehicle is primarily affected by the anthropomeasures of seating height and lower leg, while width is affected by the anthropomeasures of lower and upper leg and only then by shoulder width, so that the interior space for the driver of a passenger vehicle is 1250 mm and the width for knees spread at seat level is 926 mm maximum.

  12. Investigation of Vehicle Requirements and Options for Future Space Tourism (United States)

    Olds, John R.


    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  13. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism. (United States)

    Srivastav, Deepanshu; Malhotra, Sahil


    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  14. Advancing Autonomous Operations for Deep Space Vehicles (United States)

    Haddock, Angie T.; Stetson, Howard K.


    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  15. Microparticle impact calibration of the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) onboard the solar power sail demonstrator IKAROS (United States)

    Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime


    The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU

  16. Lunar Roving Vehicle Testing at the Johnson Space Center (United States)


    This photograph was taken during the testing of the Lunar Roving Vehicle (LRV) at the Johnson Space Center. Developed by the MSFC, the LRV was the lightweight electric car designed to increase the range of mobility and productivity of astronauts on the lunar surface. It was used on the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17.

  17. Space vehicle electromechanical system and helical antenna winding fixture (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven


    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  18. Cyber threat impact assessment and analysis for space vehicle architectures (United States)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.


    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  19. Technology issues associated with using densified hydrogen for space vehicles (United States)

    Hardy, Terry L.; Whalen, Margaret V.


    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  20. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits (United States)

    Reid, Christopher R.; Rajulu, Sudhakar


    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  1. Space imaging infrared optical guidance for autonomous ground vehicle (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu


    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  2. Uncertainty in Risk to Aircraft from Space Vehicle Operations (United States)

    Larson, Erik; See, Alex


    In this project, we investigate methods for understanding uncertainty in the risk to aircraft from space vehicle accidents. We have developed heuristic models of the uncertainty in aircraft vulnerability models, aircraft speed and altitude, and space vehicle debris lists. We then compute aircraft risks accounting for these uncertainties for both the grid risk approach and by considering many different azimuth trajectories through a point. The uncertainty is compared to the variation as a function of azimuth, to the size of the approximation in the grid approach, and to the effect of aircraft size. Although the uncertainty estimates in the vulnerability model and debris list are based only on engineering judgment, we draw preliminary conclusions that 1) uncertainties in these models are smaller than the effect of the difference between common commercial aircraft sizes and that 2) the uncertainty in the debris list is most significant of the uncertainties we considered, followed by the uncertainty in the vulnerability model.

  3. New space vehicle archetypes for human planetary missions (United States)

    Sherwood, Brent


    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  4. CARSTEP, Particle Flux on Space Vehicle in Van Allen Zone

    International Nuclear Information System (INIS)


    1 - Description of program or function: The CARSTEP code determines the flux of particles from the Van Allen zones that strike a space vehicle which is executing a mission in that volume of space. Using latitude, longitude, altitude of perigee, inclination and eccentricity of orbits, and mission time as input, the following data is given: latitude, longitude, and altitude of the vehicle at points along the trajectory, the flux of particles at these points, and time integrated flux for the total mission. 2 - Method of solution: The position of the vehicles as a function of time is determined by a two-body analysis. The program is divided into three parts: lunar transfer trajectories, lunar return trajectories, and geocentric orbits. The environment portion of CARSTEP uses a coordinate system (B,L) for mapping the distribution of geomagnetically trapped particles which has been developed by C.E. McIlwain. 3 - Restrictions on the complexity of the problem: The earth is considered a perfect sphere and atmospheric drag is neglected. One energy spectrum for particles is valid throughout the volume of space

  5. Interplanetary CubeSat Navigational Challenges (United States)

    Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.


    CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.

  6. Demonstration of a New Smallsat Launch Vehicle: The Orbital/Suborbital Program (OSP) Space Launch Vehicle Inaugural Mission Results


    Schoneman, Scott; Buckley, MAJ Steven; Stoller, MAJ George; Marina, CPT Luis; Morris, LT Christopher


    The United States Air Force and Orbital Sciences Corporation (Orbital) completed development and demonstration of a new low cost space launch vehicle for launching small satellites using surplus Minuteman II rocket motors melded with commercial launch vehicle technology. The Orbital Suborbital Program Space Launch Vehicle (OSPSLV, aka OSP Minotaur) successfully achieved all mission objectives with the inaugural launch into a 405 nm circular, 100 deg inclination orbit on 26 January, 2000. This...

  7. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System


    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing


    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be pa...

  8. A methodology for rapid vehicle scaling and configuration space exploration (United States)

    Balaba, Davis


    The Configuration-space Exploration and Scaling Methodology (CESM) entails the representation of component or sub-system geometries as matrices of points in 3D space. These typically large matrices are reduced using minimal convex sets or convex hulls. This reduction leads to significant gains in collision detection speed at minimal approximation expense. (The Gilbert-Johnson-Keerthi algorithm [79] is used for collision detection purposes in this methodology.) Once the components are laid out, their collective convex hull (from here on out referred to as the super-hull) is used to approximate the inner mold line of the minimum enclosing envelope of the vehicle concept. A sectional slicing algorithm is used to extract the sectional dimensions of this envelope. An offset is added to these dimensions in order to come up with the sectional fuselage dimensions. Once the lift and control surfaces are added, vehicle level objective functions can be evaluated and compared to other designs. The size of the design space coupled with the fact that some key constraints such as the number of collisions are discontinuous, dictate that a domain-spanning optimization routine be used. Also, as this is a conceptual design tool, the goal is to provide the designer with a diverse baseline geometry space from which to chose. For these reasons, a domain-spanning algorithm with counter-measures against speciation and genetic drift is the recommended optimization approach. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [60] is shown to work well for the proof of concept study. There are two major reasons why the need to evaluate higher fidelity, custom geometric scaling laws became a part of this body of work. First of all, historical-data based regressions become implicitly unreliable when the vehicle concept in question is designed around a disruptive technology. Second, it was shown that simpler approaches such as photographic scaling can result in highly suboptimal concepts

  9. Automated space vehicle control for rendezvous proximity operations (United States)

    Lea, Robert N.


    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  10. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)

    3SITAA-SAC, Indian Space Research Organisation, Ahmedabad, Gujarat 380 015, India. 4Indian Space Research Organisation-Head Quarters, Bangalore, Karnataka, India. Abstract. In the present study, .... Lepping, R. P., Jones, J. A., Burlaga, L. F. 1990, Magnetic field structure of Interplanetary. Magnetic Clouds at 1 A.U; ...

  11. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)

    An active Sun spews out concentrated particle and field energy into interplanetary space (IP), and manifestations of these have been studied by many researchers (to mention a few,. Cargill 2000; Lepping et al. 1990; Gopalswamy et al. 2004; Bothmer & Schwenn. 1998). Propagation of these emissions through IP space and ...

  12. Weight and cost forecasting for advanced manned space vehicles (United States)

    Williams, Raymond


    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  13. Multi-Purpose Interplanetary Deployable Aerocapture System (MIDAS) Project (United States)

    National Aeronautics and Space Administration — Altius Space Machines and MSNW LLC propose the development of a cubesat-scale Multipurpose Interplanetary Deployable Aerocapture System (MIDAS), to provide cubesats...

  14. Developing a vitamin greenhouse for the life support system of the international space station and for future interplanetary missions (United States)

    Berkovich, Y. A.; Krivobok, N. M.; Sinyak, Yu. Ye.; Smolyanina, S. O.; Grigoriev, Yu. I.; Romanov, S. Yu.; Guissenberg, A. S.


    In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in

  15. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin


    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  16. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle, Phase II (United States)

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  17. High Speed and High Angle of Attack Aerodynamic Characteristics of Winged Space Vehicle


    INATANI, Yoshifumi


    Static aerodynamic characteristics of winged space vehicle is investigated through a series of wind tunnel testing. This report includes a summary of the test results and associated considerations. The tests were conducted and supported by Working Group for Winged Space Vehicle of Institute of Space and Astronautical Science (ISAS). Attention has been concentrated on both longitudinal and lateral/directional, high angle of attack flight capability at high speed flight condition of the vehicle...

  18. Dispersion analysis techniques within the space vehicle dynamics simulation program (United States)

    Snow, L. S.; Kuhn, A. E.


    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).

  19. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design (United States)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar


    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  20. Tracking Debris Shed by a Space-Shuttle Launch Vehicle (United States)

    Stuart, Phillip C.; Rogers, Stuart E.


    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  1. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle (United States)

    Rhodes, Brooke M.; Reynolds, David W.


    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and

  2. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase II (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  3. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase I (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  4. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles Project (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  5. An investigation of the double layers caused by space vehicles moving through the ionosphere

    International Nuclear Information System (INIS)

    Liu Sanqiu; Liao Jingjing


    On the basis of non-steady-state nonlinear coupling equations of high-frequency field, density disturbance and potential, the evolution of double layers in the wake region of space vehicles moving through the ionosphere is numerically simulated in the non-static limit case. The results show that the interactions among plasmas, the vehicle and high-frequency electromagnetic waves radiated from the antenna system of the vehicle can lead to the formation of double layers. It is shown that the double layer is a nonlinear entity-caviton. Potential disturbance far away from the vehicle and the peak value of potential near the vehicle in the double layer are obvious. This is very important for detecting space vehicles with a stealth characteristic and preventing space vehicles from being harmed by double layers.

  6. Required Area for a Crew Person in a Space Vehicle (United States)

    Mount, Frances E.


    This 176 page report was written in circa 1966 to examine the effects of confmement during space flight. One of the topics covered was the required size of a space vehicle for extended missions. Analysis was done using size of crew and length of time in a confmed space. The report was based on all information available at that time. The data collected and analyzed included both NASA and (when possible) Russian missions flown to date, analogs (such as submarines), and ground studies. Both psychological and physiological responses to confmement were examined. Factors evaluated in estimating the degree of impairment included the level of performance of intellectual, perceptual, manual and co-ordinated tasks, response to psychological testing, subjective comments of the participants, nature and extent of physiological change, and the nature and extent of behavioral change and the nature and extent of somatic complaints. Information was not included from studies where elements of perceptual isolation were more than mildly incidental - water immersion studies, studies in darkened and acoustically insulated rooms, studies with distorted environmental inputs - unpattemed light and white noise. Using the graph from the document, the upper line provides a threshold of minimum acceptable volumeall points above the line may be considered acceptable. The lower line provides a threshold of unacceptable volume - all points below the line are unacceptable. The area in between the two lines is the area of doubtful acceptability where impairment tends to increase with reduction in volume and increased duration of exposure. Reference is made of the Gemini VII, 14-day duration mission which had detectable impairment with a combination of 40 cubic feet per man for 14 days. In line with all other data this point should be in the 'marked impairment' zone. It is assumed that the state of fitness, dedication and experience influenced this outcome.

  7. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.


    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  8. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles (United States)

    Hald, H.; Weihs, H.; Reimer, T.


    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  9. Fast, Autonomous Chemical Interplanetary Mission Design via Hybrid Optimal Control (United States)

    National Aeronautics and Space Administration — Interplanetary mission design is historically a complex and expensive process requiring many human-hours of work. This proposal outlines a novel technique for...

  10. Radar Characterization of the Interplanetary Meteoroid Environment, Phase I (United States)

    National Aeronautics and Space Administration — We propose a new modeling effort that will make substantial refinements and improvements to our existing models of the interplanetary meteoroid environment near...

  11. Optimizing Materials for Energy Harvesting on Interplanetary Return Missions (United States)

    National Aeronautics and Space Administration — Manned interplanetary missions will only be desirable once the ability to return is established. Even using improved fuel technologies we have not resourced the fuel...

  12. Large Scale System Safety Integration for Human Rated Space Vehicles (United States)

    Massie, Michael J.


    Since the 1960s man has searched for ways to establish a human presence in space. Unfortunately, the development and operation of human spaceflight vehicles carry significant safety risks that are not always well understood. As a result, the countries with human space programs have felt the pain of loss of lives in the attempt to develop human space travel systems. Integrated System Safety is a process developed through years of experience (since before Apollo and Soyuz) as a way to assess risks involved in space travel and prevent such losses. The intent of Integrated System Safety is to take a look at an entire program and put together all the pieces in such a way that the risks can be identified, understood and dispositioned by program management. This process has many inherent challenges and they need to be explored, understood and addressed.In order to prepare truly integrated analysis safety professionals must gain a level of technical understanding of all of the project's pieces and how they interact. Next, they must find a way to present the analysis so the customer can understand the risks and make decisions about managing them. However, every organization in a large-scale project can have different ideas about what is or is not a hazard, what is or is not an appropriate hazard control, and what is or is not adequate hazard control verification. NASA provides some direction on these topics, but interpretations of those instructions can vary widely.Even more challenging is the fact that every individual/organization involved in a project has different levels of risk tolerance. When the discrete hazard controls of the contracts and agreements cannot be met, additional risk must be accepted. However, when one has left the arena of compliance with the known rules, there can be no longer be specific ground rules on which to base a decision as to what is acceptable and what is not. The integrator must find common grounds between all parties to achieve

  13. Advanced automation for in-space vehicle processing (United States)

    Sklar, Michael; Wegerif, D.


    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  14. Common Cause Failure Modeling in Space Launch Vehicles (United States)

    Hark, Frank; Ring, Rob; Novack, Steven D.; Britton, Paul


    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFs are a set of dependent type of failures that can be caused for example by system environments, manufacturing, transportation, storage, maintenance, and assembly. Since there are many factors that contribute to CCFs, they can be reduced, but are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and dependent CCF. Because common cause failure data is limited in the aerospace industry, the Probabilistic Risk Assessment (PRA) Team at Bastion Technology Inc. is estimating CCF risk using generic data collected by the Nuclear Regulatory Commission (NRC). Consequently, common cause risk estimates based on this database, when applied to other industry applications, are highly uncertain. Therefore, it is important to account for a range of values for independent and CCF risk and to communicate the uncertainty to decision makers. There is an existing methodology for reducing CCF risk during design, which includes a checklist of 40+ factors grouped into eight categories. Using this checklist, an approach to produce a beta factor estimate is being investigated that quantitatively relates these factors. In this example, the checklist will be tailored to space launch vehicles, a quantitative approach will be described, and an example of the method will be presented.

  15. Transceiver optics for interplanetary communications (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.


    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  16. Conceptual Design For Interplanetary Spaceship Discovery (United States)

    Benton, Mark G.


    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  17. Maneuverability Strategy for Assistive Vehicles Navigating within Confined Spaces

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein


    Full Text Available In this work, a path planning strategy for both a car-like and a unicycle type assistive vehicles is presented. The assistive vehicles are confined to restricted environments. The path planning strategy uses the environment information to generate a kinematically plausible path to be followed by the vehicle. The environment information is provided by a SLAM (Simultaneous Localization and Mapping algorithm implemented on the vehicles. The map generated by the SLAM algorithm compensates the lack of sensor at the back of the vehicles' chassis. A Monte Carlo-based technique is used to find the optimum path given the SLAM information. A visual and user-friendly interface enhances the user-vehicle communication allowing him/her to select a desired position and orientation (pose that the vehicle should reach within the mapped environment. A trajectory controller drives the vehicle until it reaches a neighborhood of the desired pose. Several real-time experimental results within real environments are also shown herein.

  18. Interplanetary Overlay Network Bundle Protocol Implementation (United States)

    Burleigh, Scott C.


    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  19. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles (United States)

    Taylor, J. L.; Cockrell, C. E.


    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  20. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.


    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  1. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example (United States)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.


    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  2. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing


    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  3. Parametric estimation of R&M parameters during the conceptual design of space vehicles (United States)

    Ebeling, Charles E.


    Reliability and maintainability parameters of proposed space vehicles are estimated based on a comparability analysis of similar aircraft subsystems. Using multiple regression techniques, parametric equations are developed for each subsystem to predict mean flying hours between failure as a function of vehicle design and performance specifications. These estimates are then adjusted to account for reliability growth, environmental differences, and new technologies. Overall vehicle mission reliability may then be computed from subsystem reliability estimates.

  4. Program to determine space vehicle response to wind turbulence (United States)

    Wilkening, H. D.


    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  5. CFDP for Interplanetary Overlay Network (United States)

    Burleigh, Scott C.


    The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.

  6. Analysing Interplanetary Probe Guidance Accuracy

    Directory of Open Access Journals (Sweden)

    S. V. Sukhova


    Full Text Available The paper presents a guidance accuracy analysis and estimates delta-v budget required to provide the trajectory correction maneuvers for direct interplanetary flights (without midcourse gravity assists. The analysis takes into consideration the orbital hyperbolic injection errors (depend on a selected launch vehicle and ascent trajectory and the uncertainties of midcourse correction maneuvers.The calculation algorithm is based on Monte Carlo simulation and Danby’s matrix methods (the matrizant of keplerian motion. Danby’s method establishes a link between the errors of the spacecraft state vectors at different flight times using the reference keplerian orbit matrizant. Utilizing the nominal trajectory parameters and the covariance matrix of launch vehicle injection errors the random perturbed orbits are generated and required velocity corrections are calculated. The next step is to simulate midcourse maneuver performance uncertainty using the midcourse maneuver covariance matrix. The obtained trajectory correction impulses and spacecraft position errors are statistically processed to compute required delta-v budget and dispersions ellipse parameters for different prediction intervals.As an example, a guidance accuracy analysis has been conducted for a 2022 mission to Mars and a Venus mission in 2026. The paper considers one and two midcourse correction options, as well as utilization of two different launch vehicles.The presented algorithm based on Monte Carlo simulation and Danby’s methods provides preliminary evaluation for midcourse corrections delta-v budget and spacecraft position error. The only data required for this guidance accuracy analysis are a reference keplerian trajectory and a covariance matrix of the injection errors. Danby’s matrix method allows us to take into account also the other factors affecting the trajectory thereby increasing the accuracy of analysis.

  7. The Falcon Launch Vehicle - An Attempt at Making Access to Space More Affordable, Reliable and Pleasant


    Musk, Elon; Koenigsmann, Hans; Gurevich, Gwynne


    Falcon is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle being built by Space Exploration Technologies (SpaceX) from the ground up. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon can carry over 470 kg to a 700 km sun-synchronous orbit and a heavy Falcon can deliver 1450 kg to the same orbit. To minimize failure modes, the vehicle has the minimum pragmatic...

  8. A Novel Relative Navigation Control Strategy Based on Relation Space Method for Autonomous Underground Articulated Vehicles

    Directory of Open Access Journals (Sweden)

    Fengqian Dou


    Full Text Available This paper proposes a novel relative navigation control strategy based on the relation space method (RSM for articulated underground trackless vehicles. In the RSM, a self-organizing, competitive neural network is used to identify the space around the vehicle, and the spatial geometric relationships of the identified space are used to determine the vehicle’s optimal driving direction. For driving control, the trajectories of the articulated vehicles are analyzed, and data-based steering and speed control modules are developed to reduce modeling complexity. Simulation shows that the proposed RSM can choose the correct directions for articulated vehicles in different tunnels. The effectiveness and feasibility of the resulting novel relative navigation control strategy are validated through experiments.

  9. Space Wear Vision -Development of a Wardrobe for Life in Space Vehicles and Habitats (United States)

    Orndorff, Evelyne


    one of shirts used as sleep-wear. The IVA (Intra Vehicular Activity) Clothing Study has been the first study with Roscosmos under the "Utilization Sharing Plan On-Board ISS," while the other studies have been conducted at the Johnson Space Center in a controlled environment similar to the ISS. For exercise clothing, study participants wore garments during aerobic exercise. For routine wear clothing, study participants wore the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reasons for retiring a used garment. More studies have been initiated on Earth, and some should be planned to engage more astronauts and cosmonauts in the design of the new space wear. Future studies will extend to other types of garments in the wardrobe; another will address microbial growth on textiles. Others will address cleaning and sanitation of clothing in space vehicles. Efforts will be made for additional ISS studies with NASA's international partners.

  10. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations (United States)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine


    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  11. Maximum Aerodynamic Force on an Ascending Space Vehicle (United States)

    Backman, Philip


    The March 2010 issue of "The Physics Teacher" includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in…

  12. The magnetic field of Mars according to data of Mars-3 and Mars-5 space vehicles

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.; Eroshenko, E.G.; Zhuzgov, L.N.


    Magnitograms obtained by the space probe ''Mars-5'' on the evening and day sides as well as those from the ''Mars-3'' obtained earlier suggest the following: In the vicinity of Mars there exists a shock front and its disposition is tracked at various angles to the direction to the sun. Magnetometers have registered a region in space where magnetic field features the properties of a magnetosphere field in its topology and action on plasma. The magnetic field in the region of the ''magnitosphere'' does not change its sign when the interplanetary field does shile in adjacent boundary regions the regular part of the field changes its sign when that of the interplanetary field does. The configuration and dimensions of the ''magnitosphere'' depend on thesolar wind intensity. On the day side (''Mars-3'') the magnitospheric field ceases to be registered at an altitude of 2200km, whereas on the night side (''Mars-5'') the regular field is traced up to 7500-9500km from the planet surface. All the above unambiguously suggests that the planet Mars has its own magnetic field. Under the influence of the solar wind the field takes the characteristic form: it is limited on the day side and elongated on the night one. The topology oif force lines is explicable if one assumes that the axis of the Mars magnetic dipole is inclined to the rotation axis at an abgle of 15-20deg. The northern magnetic pole of the dipole is licated in the northern hemisphere, i.e. the Mars fields in their regularity are opposite to the geomagnetic field. The magnetic moment of the Mars dipole is equal to M=2.5x10 22 3 . (author)

  13. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.


    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  14. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  15. Signal Encoding and Telemetry Systems for Space Vehicles. (United States)


    first application in which this design encoder was flown on two Brazilian Sonda III rockets. These encoders were programmed for the following operating...State University (OSU). The depletion sensing vehicles will be Sonda III rockets and will be instrumented by Northeastern University. The experiments...Preamp. Gain 400 Polarization Loss 3 dB Safety Factor 3 dB Xmtr. Power 3, 5 or 8 W RESULTS Xmtr. Power CNR at IF 3 watts 9.7 dB 5 12.0 8 14.0 Sonda III

  16. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing (United States)


    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  17. Ultrasonic Additive Manufacturing for Efficient Space Vehicles, Phase II (United States)

    National Aeronautics and Space Administration — The goal of this Phase II SBIR program is to demonstrate the application of Ultrasonic Additive Manufacturing (UAM) solid state metal 3D printing to create new and...

  18. Modification and development of the external tank hydrogen vent umbilical system for the space shuttle vehicle (United States)

    Tatem, Bemis C., Jr.


    The design and development of a new T-O lock and secondary release mechanism which is being introduced to the ET Hydrogen Vent Umbilical System for the next launch of the Space Shuttle Vehicle is described. Critical analysis of the system in early 1986 indicated the need for an improvement in the secondary release system. The new T-O lock increases the clearance with the vehicle during secondary disconnect and is described.

  19. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle (United States)

    Kiyokawa, T.; Nakajima, M.; Mori, Y.


    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  20. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik


    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  1. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation (United States)

    Harvey, Jason; Moore, Michael


    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  2. Expert system isssues in automated, autonomous space vehicle rendezvous (United States)

    Goodwin, Mary Ann; Bochsler, Daniel C.


    The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.

  3. Review of delta wing space shuttle vehicle dynamics (United States)

    Reding, J. P.; Ericsson, L. E.


    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  4. Thermophysical Analysis of High Modulus Composite Materials for Space Vehicles (United States)

    Lee, Ho-Sung


    High modulus composite materials are used extensively in aerospace vehicles mainly for the purpose of increasing strength and reducing weight. However, thermal properties have become essential design information with the use of composite materials in the thermal design of spacecraft and spacecraft electronics packages. This is because the localized heat from closely packed devices can lead to functional failure of the aerospace system unless the heat is dissipated. In this study, thermal responses of high modulus advanced materials are considered for aerospace thermal design. The advanced composite material is composed of a continuous high modulus pitch based fiber and epoxy resin. In order to compare this advanced composite material with conventional aerospace composite materials, the thermophysical analysis of both materials was performed. The results include thermal conductivity measurements of composite materials and various thermal analytical techniques with DSC, TGA, TMA and DMA.

  5. Atmospheric disturbance model for aircraft and space capable vehicles (United States)

    Chimene, Beau C.; Park, Young W.; Bielski, W. P.; Shaughnessy, John D.; Mcminn, John D.


    An atmospheric disturbance model (ADM) is developed that considers the requirements of advanced aerospace vehicles and balances algorithmic assumptions with computational constraints. The requirements for an ADM include a realistic power spectrum, inhomogeneity, and the cross-correlation of atmospheric effects. The baseline models examined include the Global Reference Atmospheric Model Perturbation-Modeling Technique, the Dryden Small-Scale Turbulence Description, and the Patchiness Model. The Program to Enhance Random Turbulence (PERT) is developed based on the previous models but includes a revised formulation of large-scale atmospheric disturbance, an inhomogeneous Dryden filter, turbulence statistics, and the cross-correlation between Dryden Turbulence Filters and small-scale thermodynamics. Verification with the Monte Carlo approach demonstrates that the PERT software provides effective simulations of inhomogeneous atmospheric parameters.

  6. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles (United States)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric


    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such

  7. Subjective and objective evaluation of sense of space for vehicle occupants based on anthropometric data. (United States)

    Hiamtoe, Pitarn; Steinhardt, Florian; Köhler, Uwe; Bengler, Klaus


    At present, the number of the vehicle requirements has been continuously increasing. These requirements can be related to the customer as well as the technical requirements. Among these, the "feeling of space" of the occupants inside the vehicles can be regarded as one of the most important factors. In this respect, the driver and passengers should be able to experience positive feeling of space inside the vehicle. There are numerous factors that can influence the sense of space inside the vehicle. These include geometry (vehicle dimensions), light exposure, ambient lights, colors, material selection and material surface. Depending on the selection, the sense of space can be dramatically influenced by these factors. In general, human feeling is subjective and cannot be measured by any instrument. The measure can nevertheless be carried out by utilizing the method of subjective evaluation. Throughout the experiments, the method of evaluation is developed and the factors which can influence the interior feeling are analyzed. In this process, psychological perception, architectural aspects and anthropometry are considered and knowledge from the other domains is transferred in the form of a multidisciplinary approach. The experiments with an aim to evaluate the overall sense of space in the vehicle are carried out based on the physical mock up of BMW 1 series (E87). The space perception with different interior dimensions and anthropometric data of test persons are also analyzed. The use of Computer Aided Technology was shown by CATIA V5, PCMAN and RAMSIS. The results show a good correlation between the subjective evaluation and the geometric values.

  8. Geostationary Space Launch Vehicles and the U.S. Dilemma (United States)


    low rates to both low-Earth and GTO, using the Energia . However, the Energia has flown only two LEO missions, one in 1987 and the other in 1988."s U.S...Information Group: Surrey, UK), 1993, p. 7. 15. Lenorovitz, Jeffrey M. "NPO Energia Assures Users of Heavy Booster’s Viability." Aviation Week...Lenorovitz, Jeffrey. " Energia Gains U.S. Backing for Signal Satellite System." Aiion Week & Space Technology, February 28, 1994, pp. 55-56. Lenorovitz

  9. Analysis of International Space Station Vehicle Materials on MISSE 6 (United States)

    Finckenor, Miria; Golden, Johnny; Kravchenko, Michael; O'Rourke, Mary Jane


    The International Space Station Materials and Processes team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. Results for the following MISSE 6 samples materials will be presented: deionized water sealed anodized aluminum; Hyzod(tm) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; Beta Cloth with Teflon(tm) reformulated without perfluorooctanoic acid (PFOA), and electroless nickel. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: more deionized water sealed anodized aluminum, including Photofoil(tm); indium tin oxide (ITO) over-coated Kapton(tm) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth (alpha/beta transformation); and beta cloth backed with a black coating rather than aluminization. MISSE 8 samples are: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, protective fiberglass tapes and sleeve materials, and optical witness samples to monitor contamination.

  10. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  11. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned (United States)

    Housch, Helen


    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  12. Automated procedure execution for space vehicle autonomous control (United States)

    Broten, Thomas A.; Brown, David A.


    Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.

  13. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles (United States)

    Dobrinskaya, Tatiana


    This paper presents a new method for optimizing yaw maneuvers, which are the most common large maneuvers on the International Space Station (ISS). The goal of the maneuver optimization is to find a maneuver trajectory with minimal torques acting on the vehicle during the maneuver. Therefore, the thruster firings necessary to perform the maneuver are minimized. Reduction of thruster firings saves propellant and decreases structural loads and contamination of the vehicle critical elements, thus saving the service life of the thrusters and the vehicle itself. Equations describing the pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. Also, a yaw rate profile is suggested. In the obtained optimized case, the torques are significantly reduced. The proposed approximate analytical solution does not require extensive computer resources and, therefore, can be implemented using software onboard the ISS. As a result, the maneuver execution will be automatic. This is one of the major benefits of the simplified solution presented in this paper with respect to existing computational approaches. The suggested maneuver optimization method can be used not only for the ISS, but for other space vehicles as well.

  14. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles (United States)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide


    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  15. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.


    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  16. Meetings: Interplanetary GPS (United States)


    A system onboard the International Space Station found its location in the cosmos by detecting periodic x-ray signals from neutron stars—a technique that could eventually work for distant space probes.

  17. TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Blanco


    Full Text Available The autonomous navigation of vehicles typically combines two kinds of methods: a path is first planned, and then the robot is driven by a local obstacle-avoidance controller. The present work, which focuses on path planning, proposes an extension to the well-known rapidly-exploring random tree (RRT algorithm to allow its integration with a trajectory parameter-space (TP-space as an efficient method to detect collision-free, kinematically-feasible paths for arbitrarily-shaped vehicles. In contrast to original RRT, this proposal generates navigation trees, with poses as nodes, whose edges are all kinematically-feasible paths, suitable to being accurately followed by vehicles driven by pure reactive algorithms. Initial experiments demonstrate the suitability of the method with an Ackermann-steering vehicle model whose severe kinematic constraints cannot be obviated. An important result that sets this work apart from previous research is the finding that employing several families of potential trajectories to expand the tree, which can be done efficiently under the TP-space formalism, improves the optimality of the planned trajectories. A reference C++ implementation has been released as open-source.

  18. Dispersion analysis and linear error analysis capabilities of the space vehicle dynamics simulation program (United States)

    Snow, L. S.; Kuhn, A. E.


    Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.

  19. Heavy-lift launch vehicle options for future space exploration initiatives (United States)

    Branscome, Darrell R.; Harris, Ronald J.


    A review of present heavy-lift launch vehicles (HLLV) capable of placing heavy payloads in earth orbit is presented and the basis for an emerging consensus that an HLLV will be required in the near future is discussed. Some of the factors for the policies governing the roles and requirements for these vehicles in the future, such as cost, technology development, and lead time to first use are addressed. Potential Space Station Freedom application is discussed as well as application to the proposed initiatives for human exploration of Mars and the moon.

  20. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.


    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  1. Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt


    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The design of the next evolution of SLS, Block-1B, is well underway. The Block-1B vehicle is more capable overall than Block-1; however, the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) presents a challenge to the Powered Explicit Guidance (PEG) algorithm used by Block-1. To handle the long burn durations (on the order of 1000 seconds) of EUS missions, two algorithms were examined. An alternative algorithm, OPGUID, was introduced, while modifications were made to PEG. A trade study was conducted to select the guidance algorithm for future SLS vehicles. The chosen algorithm needs to support a wide variety of mission operations: ascent burns to LEO, apogee raise burns, trans-lunar injection burns, hyperbolic Earth departure burns, and contingency disposal burns using the Reaction Control System (RCS). Additionally, the algorithm must be able to respond to a single engine failure scenario. Each algorithm was scored based on pre-selected criteria, including insertion accuracy, algorithmic complexity and robustness, extensibility for potential future missions, and flight heritage. Monte Carlo analysis was used to select the final algorithm. This paper covers the design criteria, approach, and results of this trade study, showing impacts and considerations when adapting launch vehicle guidance algorithms to a broader breadth of in-space operations.

  2. Numerical study for flame deflector design of a space launch vehicle (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil


    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  3. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle (United States)

    Chan, William M.


    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  4. Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation


    Maged A. Mossallam


    The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The secon...

  5. Implementing a Near-Optimal Optical Receiver for Inter-Planetary Communication (United States)

    National Aeronautics and Space Administration — Proposal Objective: Interplanetary communications signals are inherently weak at the receiver. In fact, for a desired data rate the received optical pulses may...

  6. Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications Project (United States)

    National Aeronautics and Space Administration — Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications allowing moving up from UHF, S or X to get higher gain for a given diameter.

  7. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV) (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda


    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  8. Thermographic Testing Using on the X-33 Space Launch Vehicle Program by BFGoodrich Aerospace (United States)

    Burleigh, Douglas


    The X-33 program is a team effort sponsored by NASA, under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStar(Trademark), an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite-epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor 1) Arc Jet tests at NASA Ames Research Center in Mountainview, CA and NASA Johnson Space Center in Houston, TX, 2) High Temperature (wind) Tunnel Tests (HTT) at NASA Langley Research Center in Langley, VA, and 3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  9. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations (United States)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.


    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  10. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom (United States)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.


    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  11. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver (United States)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry


    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and Modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design and tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges of that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  12. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV) (United States)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan


    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  13. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility (United States)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban


    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  14. Interplanetary Dust Particles (United States)

    Bradley, J. P.


    micrometeorites) containing layer silicates indicative of parent-body aqueous alteration and the more distant anhydrous P and D asteroids exhibiting no evidence of (aqueous) alteration (Gradie and Tedesco, 1982). This gradation in spectral properties presumably extends several hundred AU out to the Kuiper belt, the source region of most short-period comets, where the distinction between comets and outer asteroids may simply be one of the orbital parameters ( Luu, 1993; Brownlee, 1994; Jessberger et al., 2001). The mineralogy and petrography of meteorites provides direct confirmation of aqueous alteration, melting, fractionation, and thermal metamorphism among the inner asteroids ( Zolensky and McSween, 1988; Farinella et al., 1993; Brearley and Jones, 1998). Because the most common grains in the ISM (silicates and carbonaceous matter) are not as refractory as those found in meteorites, it is unlikely that they have survived in significant quantities in meteorites. Despite a prolonged search, not a single presolar silicate grain has yet been identified in any meteorite.Interplanetary dust particles (IDPs) are the smallest and most fine-grained meteoritic objects available for laboratory investigation (Figure 1). In contrast to meteorites, IDPs are derived from a broad range of dust-producing bodies extending from the inner main belt of the asteroids to the Kuiper belt (Flynn, 1996, 1990; Dermott et al., 1994; Liou et al., 1996). After release from their asteroidal or cometary parent bodies the orbits of IDPs evolve by Poynting-Robertson (PR) drag (the combined influence of light pressure and radiation drag) ( Dermott et al., 2001). Irrespective of the location of their parent bodies nearly all IDPs under the influence of PR drag can eventually reach Earth-crossing orbits. IDPs are collected in the stratosphere at 20-25 km altitude using NASA ER2 aircraft ( Sandford, 1987; Warren and Zolensky, 1994). Laboratory measurements of implanted rare gases, solar flare tracks ( Figure 2

  15. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU


    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  16. Cultural ethology as a new approach of interplanetary crew's behavior (United States)

    Tafforin, Carole; Giner Abati, Francisco


    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  17. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys (United States)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)


    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  18. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.


    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  19. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle (United States)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.


    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  20. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles (United States)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.


    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  1. Lab Development for INS/GPS Testing of Launch and Space Vehicles (United States)

    Schrock, Ken; Freestone, Todd; Bell, Leon


    NASA Marshall Space Flight Center's experience with different GPS simulators and receivers over the last 10 years has shown a need for testing the receivers in more than just a nominal mission. The Spaceliner 100 program is researching blended INS/GPS data tuned specifically for launch vehicles and orbital deployments. The paper will discuss layout of the testing lab, the test equipment, test scenarios that all receivers will be evaluated under, and a discussion of receiver types planned to test. It will conclude with a discussion of some of the current tests and goals of future testing.


    Directory of Open Access Journals (Sweden)

    M. S. Egorov


    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  3. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle) (United States)

    Olds, John R.; Bellini, Peter X.


    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  4. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.


    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  5. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere (United States)

    Badruddin; Mustajab, F.; Derouich, M.


    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  6. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)


    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  7. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description (United States)

    Gardner, J. A.


    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  8. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.


    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  9. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles (United States)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig


    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  10. NASA/USRA advanced space design program: The laser powered interorbital vehicle (United States)


    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  11. The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES) (United States)

    Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul


    Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails

  12. A sheet-current approach to coronal-interplanetary modeling

    International Nuclear Information System (INIS)

    Yeh, T.; Pneuman, G.W.


    The most pertinent effect of the currents in the coronal-interplanetary space is their alteration of the magnetic topology to form configurations of open field lines. The important currents seem to be those in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines in the coronal helmet-streamer structures. Thus, the coronal-interplanetary space may be regarded as being partitioned by current-sheets into several piecewise current-free regions. These current sheets overlie the photospheric neutral lines, where the vertical component of the magnetic field reverses its polarity on the solar surface. But, their locations and strengths are determined by force balance between the magnetic field and the gas pressure in the coronal-interplanetary space. Since the pressure depends on the flow velocity of the solar wind and the solar wind channels along magnetic flux tubes, there is a strong magnetohydrodynamic coupling between the magnetic field and the solar wind. The sheet-current approach presented in this paper seems to be a reasonable way to account for this complicated interaction. (Auth.)

  13. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control (United States)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)


    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  14. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center (United States)

    Lyles, Garry; Otte, Neil E.


    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  15. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)


    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  16. A novel four-caster manual vehicle manoeuvring investigation: Higher loading-weights require larger turning spaces. (United States)

    Abraham, Brian B; Joyce, Tom J; Davidson, Robert I; Johnson, Garth R


    Patient-hoists, goods-trolleys and other omni-directional manually operated vehicles are ubiquitous. Yet no substantive, empirically based dynamic analysis has been made of these four-caster vehicles despite manual handling concerns. A relationship between loading-weight and turning space is indicated by theoretical analysis which further shows that this effect is represented by only 11 different manoeuvres. A qualitative account of the theory is presented. These 11 manoeuvres were implemented experimentally. A total of 17 subjects selected a maximum comfortable loading-weight for the four-caster vehicle for each of the 11 manoeuvres. Vehicle displacement and handle forces were measured for different centres of zero velocity. The median loading-weight of the manoeuvre with the highest loading-weight selections was 101% greater than the mean loading-weight of the three manoeuvres with the lowest loading-weight selections. The manoeuvre with the highest loading-weight selections required a larger vehicle turning space: one dimension increased by 37% (173 mm) compared with the three lowest loading-weight selection manoeuvres and the other dimension increased by 17% (130 mm) compared with one of the lowest loading-weight selection manoeuvres. Higher loading-weights require larger turning spaces. These results can contribute to building designs which facilitate safe manual manoeuvring of four-caster vehicles. © IMechE 2015.

  17. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles (United States)

    Ferguson, Roscoe C.


    As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc

  18. Future Concepts for Integrating the Space Launch System and the Multi-Purpose Crew Vehicle into a Reusable Space Transportation Infrastructure (United States)

    Smitherman, David; Woodcock, Gordon


    A space transportation infrastructure is described that utilizes the Space Launch System (SLS), the Mulit-Purpose Crew Vehicle (MPCV), the International Space Station (ISS), and propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for commercial crew, cargo, and propellant launches to a Low-Earth-Orbit (LEO) Depot and/or the ISS. The SLS provides all payload and propellant launches to the Earth-Moon Langrange Point 1 (EML1) Depot to support new reusable in-space transportation vehicles. The ISS or follow-on LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to Earth-Moon L1 for EML1 Depot missions. The EML1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. New vehicle design concepts are presented that can be launched utilizing the SLS and current ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) derived from the MPCV and a reusable Cryogenic Propulsion Stage (CPS) for crew transportation between the LEO Depot, EML1 Depot and missions beyond the Earth-Moon vicinity; a new reusable Lunar Lander for crew transportation between the EML1 Depot and the lunar surface; and a new reusable Deep Space Habitat (DSH) with a CTV to support crew missions from the EML1 Depot to ESL2, Asteroids, and a Mars Orbital Depot. The LEO Depot, EML1 Depot, and Mars Orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing SLS and current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this

  19. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  20. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    Abstract. Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary distur- bances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced ...

  1. Solar and Interplanetary Disturbances causing Moderate ...

    Indian Academy of Sciences (India)

    Abstract. The effect of solar and interplanetary disturbances on geo- magnetospheric conditions leading to 121 moderate geomagnetic storms. (MGS) have been investigated using the neutron monitor, solar geophysical and interplanetary data during the period 1978–99. Further, the duration of recovery phase has been ...

  2. S@tMax—A space-based system enabling mobile IP applications in vehicles (United States)

    Arcioni, Marco; Daehler, Erik; Mueller, Robert P.; van der Meulen, Wencke


    As personal mobility increases, people spend more time in their vehicles. Furthermore, a large segment of today's workforce is part of a growing mobile service industry. This mobile society creates opportunities to increase productivity which do not yet exist. Today's commuting time could be better utilized and mobile business transactions could be more efficiently conducted, by integrating mobile IP wireless services in vehicles. By means of a direct to mobile user Internet access, and total IP services, integrated into automobiles, S@tMax services can empower the mobile business movement therefore improving productivity. This paper presents a commercial system architecture that will deliver an optimized solution for direct to mobile user Internet access, through an integration of a ground based network infrastructure, use of existing communications satellites and the development of a proprietary satellite system. As a result of a detailed systems engineering process, the architectures of the space, ground and infrastructures segments will be presented. Furthermore, the benefits of on-orbit servicing were examined in the S@tMax context. The approach proposed is considered as an important step towards enforcing main roadway IP coverage in the US, for near-continuous communications and services.

  3. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios


    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  4. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles (United States)

    Aldridge, Edward; Curry, Bruce; Scully, Robert


    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  5. Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center (United States)

    Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.


    The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility

  6. The role of fracture mechanics in the design of fuel tanks in space vehicles (United States)

    Denton, S. J.; Liu, C. K.


    With special reference to design of fuel tanks in space vehicles, the principles of fracture mechanics are reviewed. An approximate but extremely simple relationship is derived among the operating stress level, the length of crack, and the number of cycles of failure. Any one of the variables can be computed approximately from the knowledge of the other two, if the loading schedule (mission of the tank) is not greatly altered. Two sample examples illustrating the procedures of determining the allowable safe operating stress corresponding to a set of assumed loading schedule are included. The selection of sample examples is limited by the relatively meager available data on the candidate material for various stress ratios in the cycling.

  7. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust (United States)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin


    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  8. Global Optimization of Interplanetary Missions with, Hybrid Propulsion, Multi-Stage Spacecraft, Aerocapture, and Planetary Atmospheric Probes (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD is to expand the capability of Goddard’s interplanetary trajectory preliminary design tool, the Evolutionary Mission Trajectory Generator...

  9. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas


    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  10. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle (United States)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)


    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  11. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets (United States)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.


    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  12. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles (United States)

    Singh, M.


    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  13. Small Launch Vehicle Trade Space Definition: Development of a Zero Level Mass Estimation Tool with Trajectory Validation (United States)

    Waters, Eric D.


    Recent high level interest in the capability of small launch vehicles has placed significant demand on determining the trade space these vehicles occupy. This has led to the development of a zero level analysis tool that can quickly determine the minimum expected vehicle gross liftoff weight (GLOW) in terms of vehicle stage specific impulse (Isp) and propellant mass fraction (pmf) for any given payload value. Utilizing an extensive background in Earth to orbit trajectory experience a total necessary delta v the vehicle must achieve can be estimated including relevant loss terms. This foresight into expected losses allows for more specific assumptions relating to the initial estimates of thrust to weight values for each stage. This tool was further validated against a trajectory model, in this case the Program to Optimize Simulated Trajectories (POST), to determine if the initial sizing delta v was adequate to meet payload expectations. Presented here is a description of how the tool is setup and the approach the analyst must take when using the tool. Also, expected outputs which are dependent on the type of small launch vehicle being sized will be displayed. The method of validation will be discussed as well as where the sizing tool fits into the vehicle design process.

  14. Impact of Different Spacing Policies for Adaptive Cruise Control on Traffic and Energy Consumption of Electric Vehicles


    Bayar, Bilgehan; Sajadi Alamdari, Seyed Amin; Viti, Francesco; Voos, Holger


    This paper assesses the impact of different spacing policies for Adaptive Cruise Control (ACC) systems on traffic and environment. The largest deal of existing studies focus on assessing the performance in terms of safety, while only few deal with the effect of ACC on the traffic flow and the environment. In particular, very little is know on traffic stability and energy consumption. In this study, the vehicles equipped with ACC are modelled and controlled by two different spacing policies. B...

  15. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary (United States)


    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  16. An automated rendezvous and capture system design concept for the cargo transfer vehicle and Space Station Freedom (United States)

    Fuchs, Ron; Marsh, Steven


    A rendezvous sensor system concept was developed for the cargo transfer vehicle (CTV) to autonomously rendezvous with and be captured by Space Station Freedom (SSF). The development of requirements, the design of a unique Lockheed developed sensor concept to meet these requirements, and the system design to place this sensor on the CTV and rendezvous with the SSF are described .

  17. Interplanetary magnetic field and geomagnetic Dst variations. (United States)

    Patel, V. L.; Desai, U. D.


    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  18. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces. (United States)


    ... during the sea passage. (h) Where a portable magazine or closed freight container is carried on a chassis... containers. Closed transport vehicles may be used as magazines; transport vehicles of other types may be used...

  19. Automated guidance algorithms for a space station-based crew escape vehicle. (United States)

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H


    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires

  20. The dynamics of solar plasma events and their interplanetary consequences (United States)

    Kaushik, Subhash Chandra; Sharma, Giriraj


    In the present study we have analyzed the interplanetary plasma / field parameter, which have initiated the complex nature intense and highly geo-effective events in the magnetosphere. It is believed that Solar wind velocity V. interplanetary magnetic field (IMF) B and Bz are the crucial drivers of these activities. However, sometimes strong geomagnetic disturbance is associated with the interaction between slow and fast solar wind streams originating from coronal holes leads to create co-rotating plasma interaction region (CIR). Thus the dynamics of the magnetospheric plasma configuration is the reflection of measured solar wind and interplanetary magnetic field (IMF) conditions. While the magnetospheric plasma anomalies are generally represented by geomagnetic storms and sudden ionosphere disturbance (SIDs). The study considers 220 geomagnetic storms associated with disturbance storm time (Dst) decrease of more than -50 nT to -300 nT, observed during solar cycle 23 and the ascending phase of solar cycle 24. These have been analyzed and studied statistically. The spacecraft data acquired by space satellites and those provided by World Data Center (WDC) - A and geomagnetic stations data from WDC- C, Kyoto are utilized in the study. It is observed that the yearly occurrences of geomagnetic storm are strongly correlated with sunspot cycle, however we have not found any significant correlation between the maximum and minimum phase of solar cycle. It is also inferred from the results that solar cycle-23 was remarkable for occurrence of intense geomagnetic storms during its descending phase.

  1. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment (United States)

    Enyinda, Chris I.


    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  2. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer (United States)

    Degnan, John J.; Smith, David E. (Technical Monitor)


    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.

  3. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng


    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  4. Water and organics in interplanetary dust particles (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  5. Dynamic Model Development for Interplanetary Navigation


    Eun-Seo Park; Young-Joo Song; Sung-Moon Yoo; Sang-Young Park; Kyu-Hong Choi; Jae-Cheol Yoon; Jo Ryeong Yim; Joon-Min Choi; Byung-Kyo Kim


    In this paper, the dynamic model development for interplanetary navigation has been discussed. The Cowell method for special perturbation theories was employed to develop an interplanetary trajectory propagator including the perturbations due to geopotential, the Earth's dynamic polar motion, the gravity of the Sun, the Moon and the other planets in the solar system, the relativistic effect of the Sun, solar radiation pressure, and atmospheric drag. The equations of motion in dynamic model we...

  6. Interplanetary Small Satellite Conference 2017 Program (United States)

    Dalle, Derek Jordan


    The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.

  7. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment (United States)

    Houck, J. A.


    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  8. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle (United States)

    Henline, William D.; Tauber, Michael E.


    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  9. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center (United States)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.


    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  10. Dust in the interplanetary medium

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ingrid; Lamy, Herve [Belgian Institute for Space Aeronomy, Brussels (Belgium); Czechowski, Andrzej [Space Research Center, Polish Academy of Sciences, Warsaw (Poland); Meyer-Vernet, Nicole; Zaslavsky, Arnaud, E-mail: ingrid.mann@aeronomie.b [LESIA, Observatoire de Paris, Meudon (France)


    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nanodust particles of sizes {approx_equal}1-10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nanodust are detected near 1 AU with the plasma wave instrument onboard the STEREO spacecraft. Although such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  11. Electron heating at interplanetary shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.


    Data for 41 forward interplanetary shocks measured between August 1978 and December 1979 show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons

  12. Interplanetary Shocks and the Resulting Geomagnetically Induced Currents at the Equator (United States)

    Carter, B. A.; Yizengaw, E.; Pradipta, R.; Halford, A. J.; Norman, R.; Zhang, K.


    Geomagnetically induced currents (GICs) caused by interplanetary shocks represent a serious space weather threat to modern technological infrastructure. The arrival of interplanetary shocks drives magnetosphere and ionosphere currents systems, which then induce electric currents at ground level. The impact of these currents at high latitudes has been extensively researched, but the magnetic equator has been largely overlooked. In this paper, we investigate the potential effects of interplanetary shocks on the equatorial region and demonstrate that their magnetic signature is amplied by the equatorial electrojet. This local amplication substantially increases the region's susceptibility to GICs. Importantly, this result applies to both geomagnetic storms and quiet periods, and thus represents a paradigm shift in our understanding of adverse space weather impacts on technological infrastructure.

  13. Solar events and their influence on the interplanetary medium (United States)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  14. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems (United States)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher


    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  15. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision (United States)

    Palaszewski, Bryan A.


    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  16. The Interplanetary Network I: From the Past to the Future (United States)

    Cline, T. L.; Hurley, K.; Laros, J.; Mazets, E.; Golenetskii, S.; Trombka, J.; Feroci, M.; Frontera, F.


    Interplanetary spacecraft have been used with orbiting satellites to precisely localize gamma ray transients for nearly 25 years, making possible both early GRB and SGR discoveries and recent afterglow observations. This technique, always subject to the vagaries of circumstance, was maintained by creative experiment modifications from seeming space piracy to the NEAR in-flight software change that made possible the present fully long-baseline network. We review the anecdotal history of the IPN, and outline future IPN possibilities when HETE-2, INTEGRAL, Mars 2001, AGILE, Swift, GLAST and the ISS may be involved.

  17. Interplanetary dust fluxes, solar and galactic cosmic rays

    International Nuclear Information System (INIS)

    Bel'skij, S.A.


    The role of dust fluxes in cosmic ray (CR) propagation in the interplanetary space is investigated. Global effects arising in the interaction of CR with magnetic and electric fields of a sporadic meteor cloud or of all meteor fluxes as a whole are discussed. The local effects arising in the interaction of CR with magnetic and electric fields of separate meteor fluxes are also considered. It is shown that an increase in the CR intensity during the maximum activity of meteor fluxes confirms the supposition on the CR acceleration in electric fields of meteor fluxes

  18. Maneuverability Strategy for Assistive Maneuverability Strategy for Assistive Vehicles Navigating within Confined Space

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein


    Full Text Available In this work, a path planning strategy for both a car-like and a unicycle type assistive vehicles is presented. The assistive vehicles are confined to restricted environments. The path planning strategy uses the environment information to generate a kinematically plausible path to be followed by the vehicle. The environment information is provided by a SLAM (Simultaneous Localization and Mapping algorithm implemented on the vehicles. The map generated by the SLAM algorithm compensates the lack of sensor at the back of the vehicles' chassis. A Monte Carlo-based technique is used to find the optimum path given the SLAM information. A visual and user-friendly interface enhances the user-vehicle communication allowing him/her to select a desired position and orientation (pose that the vehicle should reach within the mapped environment. A trajectory controller drives the vehicle until it reaches a neighborhood of the desired pose. Several real-time experimental results within real environments are also shown herein.

  19. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles (United States)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.


    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  20. Interplanetary Supply Chain Risk Management (United States)

    Galluzzi, Michael C.


    Emphasis on KSC ground processing operations, reduced spares up-mass lift requirements and campaign-level flexible path perspective for space systems support as Regolith-based ISM is achieved by; Network modeling for sequencing space logistics and in-space logistics nodal positioning to include feedstock. Economic modeling to assess ISM 3D printing adaption and supply chain risk.

  1. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs (United States)


    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  2. Space-based laser-powered orbital transfer vehicle (Project SLICK) (United States)


    A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.

  3. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object (United States)

    Kline, Heather


    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  4. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision (United States)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  5. CLIpSAT for Interplanetary Missions: Common Low-cost Interplanetary Spacecraft with Autonomy Technologies (United States)

    Grasso, C.


    Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned

  6. Navigation of military and space unmanned ground vehicles in unstructured terrains (United States)

    Lescoe, Paul; Lavery, David; Bedard, Roger


    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  7. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János


    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  8. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections

    DEFF Research Database (Denmark)

    Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup


    Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind parameters...

  9. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.


    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  10. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.


    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  11. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca


    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  12. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring, Phase I (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  13. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring Project (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  14. Interplanetary Magnetic Field Guiding Relativistic Particles (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.


    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  15. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space (United States)

    Cook, Stephen A.


    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  16. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.


    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  17. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application (United States)

    Ingalls, John; Cipolletti, John


    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  18. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.


    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  19. Hysteresis loops of Cosmic Ray intensity decreases versus solar and interplanetary parameters

    Directory of Open Access Journals (Sweden)

    R. P. Kane


    Full Text Available The purpose of this study was to examine the correlation between CR (Cosmic Ray intensity and solar, interplanetary and terrestrial parameters. The hysteresis loops of (CR versus those of several solar parameters showed narrow loops in even cycles 20, 22 and broad loops in odd cycles 19, 21, as also in the recent odd cycle 23. Hysteresis plots for CR versus interplanetary number density N and speed V were erratic and uncertain (broad and narrow, all mixed up. Plots of CR versus Interplanetary magnetic field (IMF B seemed to be narrow for even as well as odd cycles. Hysteresis loops between CR and other interplanetary parameters were not clear-cut. The same was true for terrestrial parameters. During sunspot maximum years 2000–2003 of cycle 23, there is a double peak structure in all parameters. Whereas CR have a peak spacing of ~30 months, sunspots and Tilt angle have a spacing of only ~20 months. The solar open magnetic flux and the Voyager 1 magnetic field have a spacing of ~25 months. The solar polar magnetic field reverses later than the first peak of all parameters and hence, could not be a direct cause (as if effect started before the cause and lasted for several months more after the cause disappeared. It seems that CR modulation is mainly guided by magnetic configurations deep in the heliosphere, which may not have a simple relationship with parameters near Earth or near Sun.

  20. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... In the present study, we investigate the possible relationship of IP parameters of solar wind and interplanetary magnetic field with ground-based geomagnetic indices. To carry out the study, we take all the IP shock events listed by Proton Monitor onboard Solar and Heliospheric Observatory (SOHO) during ...

  1. Geomagnetic response to solar and interplanetary disturbances

    Czech Academy of Sciences Publication Activity Database

    Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, Pavel; Nenovski, P.; Stauning, P.; Bochníček, Josef; Danov, D.; Demetrescu, C.; Gonzalez, W. D.; Maris, G.; Teodosiev, D.; Valach, F.


    Roč. 3, July (2013), A26/1-A26/20 ISSN 2115-7251 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar activity * interplanetary medium * indices * ionosphere (general) * ring current Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.519, year: 2013

  2. Dynamic Model Development for Interplanetary Navigation

    Directory of Open Access Journals (Sweden)

    Eun-Seo Park


    Full Text Available In this paper, the dynamic model development for interplanetary navigation has been discussed. The Cowell method for special perturbation theories was employed to develop an interplanetary trajectory propagator including the perturbations due to geopotential, the Earth's dynamic polar motion, the gravity of the Sun, the Moon and the other planets in the solar system, the relativistic effect of the Sun, solar radiation pressure, and atmospheric drag. The equations of motion in dynamic model were numerically integrated using Adams-Cowell 11th order predictor-corrector method. To compare the influences of each perturbation, trajectory propagation was performed using initial transfer orbit elements of the Mars Express mission launched in 2003, because it can be the criterion to choose proper perturbation models for navigation upon required accuracy. To investigate the performance of dynamic model developed, it was tested whether the spacecraft can reach the Mars. The interplanetary navigation tool developed in this study demonstrated the spacecraft entering the Mars SOI(Sphere of Influence and its velocity relative to the Mars was less than the escape velocity of the Mars, hence, the spacecraft can arrive at the target planet. The obtained results were also verified by using the AGI Satellite Tool Kit. It is concluded that the developed program is suitable for supporting interplanetary spacecraft mission for a future Korean Mars mission.

  3. Solar and Interplanetary Disturbances causing Moderate ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Keywords. Solar flares; active prominences and disappearing filaments; sunspot numbers; geomagnetic storms. Abstract. The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to 121 moderate geomagnetic storms (MGS) have been investigated using the neutron ...

  4. Space Vehicle Inspection High Range Resolution & Raman Spectral LIDAR, Phase I (United States)

    National Aeronautics and Space Administration — Systems & Processes Engineering Corporation (SPEC) proposes .65 U cubesat format LIDAR, with class 1 eye-safe lasers for space structure inspection applications....

  5. Vibration-Free Cooling Cycle Pump for Space Vehicles and Habitats Project (United States)

    National Aeronautics and Space Administration — Mainstream Engineering Corporation completed the design of a high-speed pump for International Space Station (ISS) Environmental Control and Life Support Systems and...

  6. The Interplanetary Internet: a communications infrastructure for Mars exploration (United States)

    Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard


    A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  7. 3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces

    DEFF Research Database (Denmark)

    Schøler, Flemming

    , this planner uses a more analytical approach since it relies on combinations of optimal curves. Both planners operate on an explicit description of the configuration space in a work space containing 3D obstacles. A method was developed that generates convex configuration space obstacles from any point clouds...

  8. More space and improved living conditions in cities with autonomous vehicles

    NARCIS (Netherlands)

    Vleugel, J.M.; Bal, Frans


    Many people live in cities today. Many more will do so in future. This increases the demand for space and (space for) transport. Space to expand roads is usually scarce. Building tunnels or elevated bridges is very expensive. Solving one bottleneck creates another bottleneck downstream. More road

  9. More space and improved living conditions in cities with autonomous vehicles

    NARCIS (Netherlands)

    Vleugel, J.M.; Bal, Frans


    Many people live in cities today. Many more will do so in future. This increases the demand for space and (space for) transport. Space to expand roads is usually scarce. Building tunnels or elevated bridges is very expensive. Solving one bottleneck creates a next bottleneck downstream. More road

  10. 76 FR 27308 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and... (United States)


    ... regulations are a major source of noise on Kodiak Island, as the operation of launch vehicle engines produce substantial sound pressures. Generally, four types of noise occur during a launch: (1) Combustion noise; (2) jet noise from interaction of combustion exhaust gases with the atmosphere; (3) combustion noise...

  11. Estimation of unmodeled forces on a low-thrust space vehicle. [trajectory analysis for Eros asteroid flyby (United States)

    Tapley, B. D.; Hagar, H.


    The application of a sequential estimation algorithm, which compensates for random errors in the dynamic model, to the problem of estimating the state of a continuously thrusting solar electric propulsion space vehicle is investigated. The dynamic model errors, due to random anomalies in the propulsion system, are approximated successfully by both first order and second order Gauss-Markov processes to obtain a more accurate and stable orbit determination algorithm. The importance of correct dynamic and measurement modeling in achieving accurate estimates is demonstrated.

  12. Helioseismology with Seismometers: II Coherence with the Interplanetary Magnetic Field (United States)

    Thomson, David J.; Vernon, Frank L.


    Since the discovery of seismic "hum'' in 1998 unexpected lines have been observed in terrestrial seismology.In this talk we give further evidence that these lines originate as normal modes of the Sun. Frequencies observed in terrestrial seismic and geomagnetic data are often split by multiples of a cycle/day and, unexpectedly, by multiples of one-half cycle per sidereal day.There is coherence between the interplanetary magnetic field (IMF) at ACE (located at L_1) and terrestrial geomagnetic and seismic data. There are slight frequency offsets between colocated geomagnetic and seismic data similar to those observed in normal modes excited by earthquakes. These have been attributed to dispersion from large-scale structure in the Earth.Both the splitting and coherence with the IMF give further confirmation that solar modes propagatethrough interplanetary space and are sufficiently strong to literally shake the Earth. This gives another method to detect and possibly identify solar gravity and low--frequency P-modes.

  13. Counterstreaming electrons in small interplanetary magnetic flux ropes (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.


    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  14. Migration of Interplanetary Dust and Comets (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  15. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase II (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  16. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase I (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  17. Soft Spaces as Vehicles for Neoliberal Transformations of Strategic Spatial Planning?

    DEFF Research Database (Denmark)

    Olesen, Kristian


    This paper analyses how policy agendas are being shaped and reshaped in new soft spaces emerging in Danish spatial planning at subnational scales, and how policy-making in these soft spaces seeks to influence formal planning arenas. The paper demonstrates how the new soft planning spaces in Danish...... spatial planning primarily are concerned with promoting policy agendas centred on economic development, whilst doing limited work in filling in the gaps between formal scales of planning, as envisaged in the planning literature. Instead, soft spaces seem to add to the increasing pressures on statutory...

  18. Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux) (United States)


    art of trajectory optimization of aerospace vehicles is given with emphasis on applications to ARIANE V ascent trajectories and HERMES reentry...Figure 9 is art illustra- lion of TIFS. MIL Verifieation Simulators (FSL, SAIL). Tile Flight Systemis Laboratory (FSL), located in Downey, Califoria, was...partie souligne le lien qui existe entre la Mecanique Variatlonnelle et los m~thodes modernos d’Optimisation (Principe du Maximum do Conte nsou

  19. Behavior of Reinforced Retaining Walls with Different Reinforcement Spacing during Vehicle Collisions

    Directory of Open Access Journals (Sweden)

    Kwangkuk Ahn


    reinforcement spacing using LS-DYNA, a general finite-element program. Eight tons of truck weight was used for the numerical analysis model. The behavior of a reinforced retaining wall under variable reinforcement spacing and positioning was analyzed. The results indicated that the reinforcement material was an important resistance factor against external collision load.

  20. NASA Affordable Vehicle Avionics (AVA). Common Modular Avionics System for Nanolaunchers Offering Affordable Access to Space; [Space Technology: Game Changing Development (United States)

    Aquilina, Rudy


    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just that-the ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA (Affordable Vehicle Avionics) solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single-use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costs-but can low-cost commercial inertial sensors work just as well? NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box (100 millimeters by 120 millimeters by 69 millimeters; 4 inches by 4.7 inches by 2.7 inches), with a mass of less than 0.84 kilogram (2 pounds. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with real-time GPS (Global Positioning Satellite) data. The goal of the AVA project is to produce and light-verify a common suite of avionics and software that

  1. Software Risk Identification for Interplanetary Probes (United States)

    Dougherty, Robert J.; Papadopoulos, Periklis E.


    The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.

  2. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.


    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  3. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle (United States)

    Chan, William M.


    This project forms part of the long term computational effort to simulate the time dependent flow over the integrated Space Shuttle vehicle (orbiter, solid rocket boosters (SRB's), external tank (ET), and attach hardware) during its ascent mode for various nominal and abort flight conditions. Due to the limitations of experimental data such as wind tunnel wall effects and the difficulty of safely obtaining valid flight data, numerical simulations are undertaken to supplement the existing data base. This data can then be used to predict the aerodynamic behavior over a wide range of flight conditions. Existing computational results show relatively good overall comparison with experiments but further refinement is required to reduce numerical errors and to obtain finer agreements over a larger parameter space. One of the important goals of this project is to obtain better comparisons between numerical simulations and experiments. In the simulations performed so far, the geometry has been simplified in various ways to reduce the complexity so that useful results can be obtained in a reasonable time frame due to limitations in computer resources. In this project, the finer details of the major components of the Space Shuttle are modeled better by including more complexity in the geometry definition. Smaller components not included in early Space Shuttle simulations will now be modeled and gridded.

  4. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas. (United States)

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng


    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  5. Multifrequency techniques for studying interplanetary scintillations (United States)

    Woo, R.


    Rytov's approximation, or the method of smooth perturbations, is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars of spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron-density fluctuations. It is also shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the present analysis is essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the sun.

  6. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles (United States)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.


    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  7. Design of cryogenic tanks for space vehicles shell structures analytical modeling (United States)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.


    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  8. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2 (United States)


    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  9. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review (United States)

    Oliveira, D. M.; Samsonov, A. A.


    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  10. Doppler frequency in interplanetary radar and general relativity (United States)

    Mcvittie, G. C.


    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  11. Of Modeling the Radiation Hazards Along Trajectory Space Vehicles Various Purpose (United States)

    Grichshenko, Valentina


    The paper discusses the results of the simulation of radiation hazard along trajectory low-orbit spacecraft for various purposes, geostationary and navigation satellites. Developed criteria of reliability of memory cells in Space, including influence of cosmic rays (CR), differences of geophysical and geomagnetic situation on SV orbit are discussed. Numerical value of vertical geomagnetic stiffness, of CR flux and assessment of correlation failures of memory cells along low-orbit spacecrafts trajectory are presented. Obtained results are used to forecasting the radiation situation along SV orbit, reliability of memory cells in the Space and to optimize nominal equipment kit and payload of Kazakhstan SV.

  12. Soft Spaces as Vehicles for Neoliberal Transformations of Strategic Spatial Planning?

    DEFF Research Database (Denmark)

    Olesen, Kristian

    scales for, on the one hand, managing pressing spatial issues such as urban sprawl and congestion, and on the other hand, promoting economic growth and international competitiveness. In 2008, new multi-level collaborative processes were initiated at the scale of these urban regions, involving...... be used as vehicles for neoliberal transformations of strategic spatial planning. In 2006, the Danish Ministry of the Environment published a national planning report articulating a ’New Map of Denmark’ consisting of two urban regions. The urban regions were promoted by the ministry as new appropriate...... the Ministry of the Environment, administrative regions, and municipalities. The aim of these processes was to prepare informal and voluntary spatial frameworks and overall urban structures for the two regions, turning these into ‘soft spaces’ of strategic spatial planning. The paper demonstrates how the state...

  13. Concept for a Lunar Transfer Vehicle for Small Satellite Delivery to the Moon from the International Space Station (United States)

    Elliott, John; Alkalai, Leon


    The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.

  14. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.


    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  15. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.


    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  16. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis (United States)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.


    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  17. Space Vehicle Inspection High Range Resolution & Raman Spectral LIDAR, Phase II (United States)

    National Aeronautics and Space Administration — As a result of an extremely productive Phase I program, SPEC has designed and built a pre-prototype of a 1.5 U CubeSat format LIDAR, with class 1 eye-safe lasers for...

  18. Simulation of the trajectories described by a space vehicle around the asteroid 243 Ida and its natural satellite Dactyl (United States)

    Rocco, E. M.; Gonçalves, L. D.


    The asteroid 243 Ida located in the asteroid belt, between Mars and Jupiter, is the fourth largest asteroid of the Koronis asteroid family, with an average diameter of 31.3 km and a mass around 4.2×1016 kg, and a small moon, Dactyl. In order to study the dynamics of this system, orbital trajectories are simulated around Ida considering, besides the gravitational attraction of Dactyl, the non-central gravitational field of the asteroid, defined by a polyhedral model that defines the shape and the non-uniform mass distribution of the body. In this way, the magnitude and the behaviour of such forces, and also their influence on the orbital elements that define the trajectory of the space vehicle, are evaluated and analysed.

  19. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing (United States)

    Sulyma, P. R.; Penny, M. M.


    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  20. U.S. Access to Space Launch Vehicle Choices for 1990-2010 (United States)


    own study of future space goals included a range of options such as increased study of the Earth, unmanned explorr-.oi. of the Solar System, and human...and activity beyond Earth orbit into the solar system.ř This could result in the establishment of a permanently manned lunar base, expeditions to...6, -8, -11, and -14 derived from ballistic missile systems and the SI,12, -13, and -16. The SL-X.17 booster, ’ Energia ," is still undergoing flight

  1. The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space (United States)

    Cook, Stephen A.


    The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.

  2. Human Factors and Information Operation for a Nuclear Power Space Vehicle

    International Nuclear Information System (INIS)

    Trujillo, Anna C.; Brown-Van Hoozer, S. Alenka


    This paper describes human-interactive systems needed for a crew nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation. (authors)

  3. Definition of a near real time microbiological monitor for space vehicles (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.


    Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.

  4. Human Factors and Information Operation for a Nuclear Power Space Vehicle (United States)

    Trujillo, Anna C.; Brown-VanHoozer, S. Alenka


    This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.

  5. The Geomagnetically Induced Currents at the Equator Associated with Interplanetary Shocks (United States)

    Yizengaw, E.; Doherty, P.; Carter, B. A.


    The arrival of interplanetary shocks drives magnetosphere and ionosphere current systems, which then can cause magnetic field variability at ground. The strength of these currents can be detected by the time derivation of the magnetometer observation (dB/dt) on the ground. The stronger dB/dt magnetic spikes at the arrival of interplanetary shocks may be able to cause significant geomagnetically induced currents (GIC) and electric fields that may have damaging effects on modern ground-based technological infrastructures. Although significant attention has been given to the impact of GICs at high-latitude regions, mainly in the auroral region where it gets amplified by the auroral electroject (AE), its impact at the geomagnetic equator has been largely overlooked until recently. It is well known that the interplanetary shocks-driven magnetopause current penetrates into the inner-magnetosphere and almost instantaneously extends down to the equatorial ionosphere through the TM0 (zero order transverse magnetic) mode waves in the Earth-ionosphere waveguide. These currents, which get amplified by the equatorial electroject (EEJ) in the same way the AE does to it, can cause bursts of GIC onto the power lines that are located in the vicinity of geomagnetic equator. Importantly, there are many cases in which interplanetary shocks that drive strong magnetopause currents sometimes do not cause geomagnetic storms and are followed by completely quiet conditions. This indicates that significant GIC can occur at high and equatorial regions not only during geomagnetic storm time but also during geomagnetically quiet periods. In this paper, using ground- and space-based observations, we demonstrate that the interplanetary shocks driven GIC bursts have potential effects at the equatorial region both during geomagnetically quiet and storm periods.

  6. Nanosatellites for Interplanetary Exploration : Missions of Co-Operation and Exploration to Mars, Exo-Moons and other worlds in the Solar System (United States)

    Ravi, Aditya; Radhakrishnan, Arun


    The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.

  7. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture (United States)

    Bilbro, James A.


    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  8. Autonomous aerobraking for low-cost interplanetary missions (United States)

    Carrelli, David; O'Shaughnessy, Daniel; Strikwerda, Thomas; Kaidy, James; Prince, Jill; Powell, Richard


    Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3-6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.

  9. The near-Earth and interplanetary plasma

    International Nuclear Information System (INIS)

    Al'pert, Y.L.


    This monograph is an extensive revision and expansion of the original paper which first appeared in 1976 in the encyclopedia, Handbuch der Physik. It presents a detailed and comprehensive treatment of wave processes and of the motion of bodies through plasma around moving bodies such as artificial satellites, and with natural plasma waves and oscillations. Contents, abridged: General properties of the near-Earth and interplanetary plasma. Refractive indexes of cold magnetoplasma. Growth rates for the different oscillation branches. Nonlinear effects in a plasma. Group velocity, trajectories, and trapping of electromagnetic waves in a magnetoplasma. Indexes

  10. Nonthermal Radiation Processes in Interplanetary Plasmas (United States)

    Chian, A. C. L.


    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  11. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System (United States)

    Wang, Shin-Ywan


    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  12. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking (United States)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan


    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  13. Definition of a near real-time microbiological monitor for application in space vehicles (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.; Woodward, Samuel S.; Pierson, Duane L.


    The concepts and methodologies for microbiological monitoring in space are examined, focusing on the determination of the requirements of a near real-time microbiological monitor. Results are presented from the technical evaluation of five microbiological monitor concepts, including cultural methods, single cell detection, biomolecular detection, specific product detection, and general molecular composition. Within these concepts, twenty-eight specific methodolgies were assessed and the five candidate methodologies with the highest engineering and feasibility scores were selected for further evaluations. The candidate methodologies are laser light scattering, primary fluorescence, secondary fluorescence, volatile product detection, and electronic particle detection. The advantages and disadvantages of these five candidate methodologies are discussed.

  14. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang


    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  15. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications. (United States)

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong


    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks.

  16. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle (United States)


    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  17. Motion of the sources for type II and type IV radio bursts and flare-associated interplanetary disturbances (United States)

    Sakurai, K.; Chao, J. K.


    Shock waves are indirectly observed as the source of type II radio bursts, whereas magnetic bottles are identified as the source of moving metric type IV radio bursts. The difference between the expansion speeds of these waves and bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the bottles behave quite differently from the waves and that the bottles are generally much slower than the waves. It has been suggested that the waves are related to flare-associated interplanetary disturbances which produce SSC geomagnetic storms. These disturbances may, therefore, be identified as interplanetary shock waves. The relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space is briefly discussed.

  18. Tomography of the Solar Wind using Interplanetary Scintillation ...

    Indian Academy of Sciences (India)


    Tomography—solar wind—interplanetary scintillation. Extended abstract. Interplanetary ... properties of solar wind (SW) along the line of sight (los) to a distant compact radio source. Mapping a los back to ... power spectra of intensity fluctuations, the primary IPS observable, constructed using the distribution of properties of ...

  19. Evolution and interaction of large interplanetary streams

    International Nuclear Information System (INIS)

    Whang, Y.C.; Burlaga, L.F.


    A computer simulation for the evolution and interaction of large interplanetary streams based on multi-spacecraft observations and an unsteady, one-dimensional MHD model is presented. Two events, each observed by two or more spacecraft separated by a distance of the order of 10 AU, were studied. The first simulation is based on the plasma and magnetic field observations made by two radially-aligned spacecraft. The second simulation is based on an event observed first by Helios-1 in May 1980 near 0.6 AU and later by Voyager-1 in June 1980 at 8.1 AU. These examples show that the dynamical evolution of large-scale solar wind structures is dominated by the shock process, including the formation, collision, and merging of shocks. The interaction of shocks with stream structures also causes a drastic decrease in the amplitude of the solar wind speed variation with increasing heliocentric distance, and as a result of interactions there is a large variation of shock-strengths and shock-speeds. The simulation results shed light on the interpretation for the interaction and evolution of large interplanetary streams. Observations were made along a few limited trajectories, but simulation results can supplement these by providing the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. The use of a quantitative nonlinear simulation model including shock merging process is crucial in the interpretation of data obtained in the outer heliosphere

  20. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.


    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  1. Using Pre-melted Phase Change Material to Keep Payload Warm without Power for Hours in Space (United States)

    Choi, Michael K.


    During a payload transition from the transport vehicle to its worksite on the International Space Station (ISS), the payload is unpowered for up to 6 hours. Its radiator(s) will continue to radiate heat to space. It is necessary to make up the heat loss to maintain the payload temperature above the cold survival limit. Typically an interplanetary Probe has no power generation system. It relies on its battery to provide limited power for the Communication and Data Handling (C&DH) subsystem during cruise, and heater power is unavailable. It is necessary to maintain the C&DH temperature above the minimum operating limit. This paper presents a novel thermal design concept that utilizes phase change material (PCM) to store thermal energy by melting it before the payload or interplanetary Probe is unpowered. For the ISS, the PCM is melted by heaters just prior to the payload transition from the transport vehicle to its worksite. For an interplanetary Probe, the PCM is melted by heaters just prior to separation from the orbiter. The PCM releases thermal energy to keep the payload warm for several hours after power is cut off.

  2. MRV - Modular Robotic Vehicle (United States)

    Ridley, Justin; Bluethmann, Bill


    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  3. The Cubesat mission to study Solar Particles (CuSP), an interplanetary cubesat (United States)

    Christian, E. R.; Desai, M. I.; Allegrini, F.; Jahn, J. M.; Kanekal, S.; Livi, S. A.; Murphy, N.; Ogasawara, K.; Paschalidis, N.


    The Cubesat mission to study Solar Particles (CuSP) is a funded 6U interplanetary cubesat scheduled to fly on the EM-1 SLS launch in 2018. CuSP has three small but capable instruments from the Southwest Research Institute (SwRI), NASA Goddard Space Flight Center (GSFC), and the NASA Jet Propulsion Laboratory (JPL). Its primary scientific goal is high-cadence precise measurements of the suprathermal (ST) tail in the solar wind. The suprathermal tail is the critical bridge between the thermal solar wind plasma and the dangerous high-energy solar energetic particles. CuSP also measures the energy spectra and composition of the ~1-50 MeV/nucleon H-Fe ions that evolve from the STs and the interplanetary magnetic field that is closely coupled to the particle distributions. CuSP is a stepping-stone to future interplanetary cubesats, smallsats, and constellations for both scientific and space weather applications. The challenges for this mission and future missions will also be discussed.

  4. Space transfer vehicle concepts and requirements. Volume 4: Summary of special studies (United States)


    Our final report for Phase 1 addressed the future space transportation needs and requirements based on the current assets, at the time, and their evolution through technology/advanced development using a path and schedule that supported the world leadership role of the United States in a responsible and realistic financial forecast. Always, and foremost, the recommendations placed high values on the safety and success of missions both manned and unmanned through a total quality management philosophy at Martin Marietta. The second phase of the STV contract involved the use of Technical Directives (TD) to provide short-term support for specialized tasks as required by the COTR. Three of these tasks were performed in parallel with Phase 1. These tasks were the Liquid Acquisition Experiment (LACE), Liquid Reorientation Experiment (LIRE), and Expert System for Design, Operation, and Technology Studies (ESDOTS). The results of these TD's were reported in conjunction with the Phase 1 Final Report. Cost analysis of existing launch systems has demonstrated a need for a new upper stage that will increase America's competitiveness in the global launch services market. To provide a growth path of future exploration class STV's, near-term low-cost upper stages featuring modularity, portability, scalability, and evolvability must be developed. These recommendations define a program that: leverages ongoing activities to establish a new development environment, develop technologies that benefit the entire life cycle of a system, and result in a scalable hardware platform that provides a growth path to future upper stages.

  5. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions (United States)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.


    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  6. Study of optimum propellant production facilities for launch of space shuttle vehicles (United States)

    Laclair, L. M.


    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  7. Architectural Implementation of NASA Space Telecommunications Radio System Specification (United States)

    Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.


    This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.

  8. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture (United States)

    Dunkin, James A.


    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  9. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture (United States)

    Dunkin, James A.

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  10. Solar flare nuclear gamma-rays and interplanetary proton events

    International Nuclear Information System (INIS)

    Cliver, E.W.; Forrest, D.J.; Cane, H.V.; Reames, D.V.; Mcguire, R.E.; Von Rosenvinge, T.T.


    Gamma-ray line (GRL) and solar energetic proton (SEP) events observed from February 1980 through January 1985 are compared in order to substantiate and better characterize the lack of correlation between GRL fluences and SEP event peak fluxes. The scatter plot of SEP event peak flux vs. GRL fluence is presented, and the ratio of 'solar' to 'interplanetary', about 10 MeV protons, is presented. It is shown that, while even large SEP events can originate in flares lacking detectable GRL emission, the converse case of flares with a significant GRL line fluence by lacking protons in space is rare. The ratio R of the number of about 10 MeV protons that produce GRL emission at the flare site to the number of about 10 MeV protons detected in space can vary from event to event by four orders of magnitude. There is a clear tendency for impulsive flares to have larger values of R than long-duration flares, where the flare time scale is given by the e-folding decay time of the associated soft X-ray emission. 103 refs

  11. Protecting Astronaut Health at First Entry into Vehicles Visiting the international Space Station: Insights from Whole-Module Offgas Testing (United States)

    Meyers, Valerie


    NASA has accumulated considerable experience in offgas testing of whole modules prior to their docking with the International Space Station (ISS). Since 1998, the Space Toxicology Office has performed offgas testing of the Lab module, both MPLM modules, US Airlock, Node 1, Node 2, Node 3, ATV1, HTV1, and three commercial vehicles. The goal of these tests is twofold: first, to protect the crew from adverse health effects of accumulated volatile pollutants when they first enter the module on orbit, and secondly, to determine the additional pollutant load that the ISS air revitalization systems must handle. In order to predict the amount of accumulated pollutants, the module is sealed for at least 1/5th the worst-case time interval that could occur between the last clean air purge and final hatch closure on the ground and the crew's first entry on orbit. This time can range from a few days to a few months. Typically, triplicate samples are taken at pre-planned times throughout the test. Samples are then analyzed by gas chromatography and mass spectrometry, and the rate of accumulation of pollutants is then extrapolated over time. The analytical values are indexed against 7-day spacecraft maximum allowable concentrations (SMACs) to provide a prediction of the total toxicity value (T-value) at the time of first entry. This T-value and the toxicological effects of specific pollutants that contribute most to the overall toxicity are then used to guide first entry operations. Finally, results are compared to first entry samples collected on orbit to determine the predictive ability of the ground-based offgas test.

  12. Magnetospheric and interplanetary physics 1979-1982 (United States)

    Stern, D. P.


    Major trends in the study of magnetospheric and interplanetary physics during the 1979-1982 period are surveyed. Topics discussed include the exploration of the Saturnian and Jovian magnetospheres by Voyagers 1 and 2, the behavior of different ions in the earth magnetosphere, auroral kilometric radiation, computer modeling of global magnetospheric MHD flow, the magnetic substorm, the quiet state, the earth's bow shock, the heliospheric current sheet, and new techniques such as electron beam experiments, 'active' injection experiments, auroral radars, and observations of the earth's distant magnetic tail. The future of this area of research is seen in the combination of data from different spacecraft and ground observations in a single correlated data set, and in the consolidation of past gains by analysis of the large data backlog, while a small number of new missions goes forward.

  13. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.


    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  14. Estimation of position and velocity for a low dynamic vehicle in near space using nonresolved photometric and astrometric data. (United States)

    Jing, Nan; Li, Chuang; Chong, Yaqin


    An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.

  15. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun


    Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.

  16. Design of Fuzzy Enhanced Hierarchical Motion Stabilizing Controller of Unmanned Ground Vehicle in Three DimensionalSpace

    Directory of Open Access Journals (Sweden)

    Yue Ma


    Full Text Available In this paper, stabilizing control of tracked unmanned ground vehicle in 3-D space was presented. Firstly, models of major modules of tracked UGV were established. Next, to reveal the mechanism of disturbances applied on the UGV, two kinds of representative disturbances (slope and general disturbances in yaw motion were discussed in depth. Consequently, an attempting PID method was employed to compensate the impacts of disturbances andsimulation results proved the validity for disturbance incited by slope force, but revealed the lack for general disturbance on yaw motion. Finally, a hierarchical fuzzy controller combined with PID controller was proposed. In lower level, there were two PID controllers to compensate the disturbance of slope force, and on top level, the fuzzy logic controller was employed to correct the yaw motion error based on the differences between the model and the real UGV, which was able to guide the UGV maintain on the stable state. Simulation results demonstrated the excellent effectiveness of the newly designed controller.

  17. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition

    Directory of Open Access Journals (Sweden)

    Yanpeng Li


    Full Text Available Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC, which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  18. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition. (United States)

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang


    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  19. The Soyuz launch vehicle the two lives of an engineering triumph

    CERN Document Server

    Lardier, Christian


    The Soyuz launch vehicle has had a long and illustrious history. Built as the world's first intercontinental missile, it took the first man into space in April 1961, before becoming the workhorse of Russian spaceflight, launching satellites, interplanetary probes, every cosmonaut from Gagarin onwards, and, now, the multinational crews of the International Space Station. This remarkable book gives a complete and accurate description of the two lives of Soyuz, chronicling the cooperative space endeavor of Europe and Russia. First, it takes us back to the early days of astronautics, when technology served politics. From archives found in the Soviet Union the authors describe the difficulty of designing a rocket in the immediate post-war period. Then, in Soyuz's golden age, it launched numerous scientific missions and manned flights which were publicized worldwide while the many more numerous military missions were kept highly confidential! The second part of the book tells the contemporary story of the second li...

  20. Physical Characteristics of Coronal Region Driving Out the Interplanetary Shock

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh


    Full Text Available Using the solar wind data of 2000 observed by ACE, We classified the interplanetary shock on basis of shock driver. We examined the physical properties of shock drivers such as the ratio of charge states(O7/O6 and thermal index(I_{th}. Most of 51 interplanetary shocks are driven by interplanetary coronal mass ejections(ICME; magnetic cloud and ejecta and high speed streams. According to the test of temperature(O7/O6 and I_{th}, we found that ICMEs originated from region with hot source in corona.

  1. 78 FR 8111 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test... (United States)


    ... regulations create two types of noise: continuous (but short-duration) noise, due mostly to combustion effects of aircraft and launch vehicles, and impulsive noise, due to sonic boom effects. Launch operations are the major source of noise on the marine environment from VAFB. The operation of launch vehicle...

  2. Role and design options of a logistics vehicle to support European and international space infrastructures in low earth orbit (United States)

    Apel, U.; Ress, R.


    Design options for a low-cost logistic vehicle for transporting uploads in LEO are discussed. Preferable design features based on mission requirements and constraints are identified and it is shown that the ATV currently under study has a suitable design for such a vehicle.

  3. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning (United States)

    Englander, Jacob


    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  4. Environmental Assessment for the Operation and Launch of the Falcon 1 and Falcon 9 Space Vehicles at Cape Canaveral Air Force Station Florida (United States)


    standards for buildings to mitigate vulnerabilities and terrorist threats. The 45 SW will review all constructions plans by SpaceX to ensure any new...tank volumes. Propellant spills from the launch vehicle would be channeled into sealed concrete catchment basins and disposed of according to the...propellant would be controlled through catchment systems in the processing facilitie s. Use of all chemicals involved in processing would be managed

  5. Machine learning and evolutionary techniques in interplanetary trajectory design


    Izzo, Dario; Sprague, Christopher; Tailor, Dharmesh


    After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing ...

  6. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.


    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  7. Interplanetary shock induced ring current auroras (United States)

    Zhang, Yongliang; Paxton, Larry J.; Zheng, Yihua


    On 21 January 2005, a fast interplanetary (IP) shock compressed the magnetosphere and caused detached auroras (DA) on the dayside, duskside and nightside ionosphere. The DA were detected by three independent FUV instruments: IMAGE/SI-12, TIMED/GUVI and DMSP/SSUSI. The SI-12 observations show that the dayside detached aurora (DDA) was located between 60° and 68° Mlat and between 06:00 and 15:00 MLT. It lasted for only ˜2 min. Coincident in situ Polar measurements show that sudden bursts of proton EMIC waves (˜2 min) were associated with the DDA. This provides direct evidence of the link between the EMIC waves and the DDA. The DA in the duskside and nightside appeared once the DDA disappeared. GUVI and SSUSI also observed the DA in the duskside and dayside with more details. Ring current simulations show that ˜10 keV protons with sausage-shaped spatial distribution of high anisotropy in flux and temperature were the particle source for the duskside and nightside DA. Compression of the magnetosphere appears to be the driver for both of the DDA and dusk/night DA. The nightside DA was observed for the first time during a sudden commencement. To unify the different terminologies, the detached auroras due to precipitating energetic protons from the ring current are called the ring current auroras.

  8. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System


    Tang Xiaofeng; Gao Feng; Xu Guoyan; Ding Nenggen; Cai Yao; Liu Jian Xing


    The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimi...

  9. Ariane transfer vehicle scenario (United States)

    Deutscher, Norbert; Cougnet, Claude


    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  10. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1 (United States)

    Nichols, M. E.


    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  11. Space Microbiology (United States)

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.


    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  12. Performance estimates for space shuttle vehicles using a hydrogen or a methane fueled turboramjet powered first stage (United States)

    Knip, G., Jr.; Eisenberg, J. D.


    Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.

  13. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  14. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Yang, Liping; Liu, Ying D.; Keiji, Hayashi; Li, Huichao [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Didcot (United Kingdom); Li, Bo; Xia, Lidong, E-mail: [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China)


    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  15. Project ARGO: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle (United States)

    Wang, H.; Seifert, D.; Waidelich, J.; Mileski, M.; Herr, D.; Wilks, M.; Law, G.; Folz, A.


    The Senior Aerospace System Design class at the University of Michigan undertook the design of a manned space transportation vehicle (STV) that would transport payloads between low earth orbit (LEO) and geosynchronous earth orbit (GEO). Designated ARGO after the ship of the Greek adventurer Jason, two different versions of an STV that would be based, refueled, and serviced at the Space Station Freedom were designed and analyzed by the class. With the same 2-man/7-day nominal mission of transporting a 10,000-kg payload up to GEO and bringing a 5000-kg payload back to LEO, the two versions of ARGO differ in the manner in which the delta V is applied to insert the vehicle into LEO upon return from GEO. The all-propulsive ARGO (or CSTV for chemical STV) uses thrust from its LH2/LOX rocket engines to produce the delta V during all phases of its mission. While the aeroassisted ARGO (or ASTV for aeroassisted STV) also uses the same engines for the majority of the mission, the final delta V used to insert the ASTV into LEO is produced by skimming the Earth's atmosphere and using the drag on the vehicle to apply the required delta V. This procedure allows for large propellant, and thus cost, savings, but creates many design problems such as the high heating rates and decelerations experienced by a vehicle moving through the atmosphere at hypersonic velocities. The design class, consisting of 43 senior aerospace engineering students, was divided into one managerial and eight technical groups. The technical groups consisted of spacecraft configuration and integration, mission analysis, atmospheric flight, propulsion, power and communications, life support and human factors, logistics and support, and systems analysis. Two committees were set up with members from each group to create the scale models of the STV's and to produce the final report.

  16. The use of various interplanetary scintillation indices within geomagnetic forecasts

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available Interplanetary scintillation (IPS, the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC. Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  17. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M


    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  18. 75 FR 5056 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test... (United States)


    ... vehicle programs use VAFB to launch satellites into polar orbit: Delta II, Taurus, Atlas V, Delta IV... II STSS ATRR 5-May 1324 PDT SLC-2W VAFB/SMI Delta II Worldview- 8-Oct 1151 PDT SLC-2W SMI II Atlas V... high swell that was present on the monitored beach. High swells and tides are one of the major causes...

  19. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere (United States)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing


    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  20. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.


    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  1. Measurements of electric and magnetic fields, in heavy vehicles parking space, in the vicinity of a power station with 150kv to 20kv transformers (United States)

    Gkanatsios, Stavros; Grigorescu, S.; Pliatsios, A.; Gkanatsiou, M.; Panagiotou, E.; Boukouvala, E.; Gavros, K.; Mitropoulos, D.


    The present paper investigates the electric and magnetic fields of extremely low frequencies in substations which step down voltage in Kozani, which is a city of about 65.000 inhabitants. In the substation, apart from the presence of voltage distribution transformers there are also power cables of 150 kV generated in pillars as well as power cables of 20 kV and 380V for the power supply of the city. Pillars with high, medium and low voltage power cables cross the parking space of heavy vehicles.

  2. Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR (United States)

    Corpaccioli, Luca; Linskens, Harry; Komar, David R.


    The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.

  3. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. (United States)

    Prangé, Renée; Pallier, Laurent; Hansen, Kenneth C; Howard, Russ; Vourlidas, Angelos; Courtin, Régis; Parkinson, Chris


    A relationship between solar activity and aurorae on Earth was postulated long before space probes directly detected plasma propagating outwards from the Sun. Violent solar eruption events trigger interplanetary shocks that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms. Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock--and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity throughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.

  4. On the twists of interplanetary magnetic flux ropes observed at 1 AU (United States)

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian


    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.

  5. Entering Space (United States)

    Zubrin, Robert

    The authors is giving a classification of civilisations depending on the degree of colonisation of the Earth, Solar System and Our Galaxy. The problems of: History of geographic discoveries (The great geographical discoveries during the Middle Age, the concurence of Chinnese and Europeans in this Area); The Astrophysics, such as: Asteroids, Water and Atmosphere on outer planets, Planet Mars Planet, Agriculture on outer planets, Minerals on outer planets; Cosmic flights: Fuels, Robotics, Moon (as an intermediary basis for interplanetary flights), Mars colonisation; Interstellar flights, Space research costs, strategy and tactics of the space colonisation; Policy: War and Peace, International Collaboration are discussed.

  6. Automated trajectory planning for multiple-flyby interplanetary missions (United States)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner

  7. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  8. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle (United States)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.


    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  9. Safe Laser Beam Propagation for Interplanetary Links (United States)

    Wilson, Keith E.


    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  10. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Mikheenko, S.G.


    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  11. Capture of interplanetary bodies in geocentric orbits and early lunar ...

    Indian Academy of Sciences (India)

    During the accretion of planets such as Earth,which are formed by collisional accretion of plan-etesimals,the probability of capture of interplanetary bodies in planetocentric orbits is calculated following the approach of Hills (1973)and the -body simulation,using simplectic integration method.The simulation,taking an input ...

  12. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    Meena Pokharia


    Nov 27, 2017 ... Abstract. The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and ...

  13. Association Between the Solar Wind Speed, Interplanetary Magnetic ...

    Indian Academy of Sciences (India)

    The purpose of the present study is to investigate the association of the cosmic ray intensity (CRI) and interplanetary magnetic field (IMF) with high speed solar wind streams (HSSWS) and slow speed solar wind streams (SSSWS) for solar cycle −23 and 24. We have found very interesting and adequate results where CRI ...

  14. Effect of solar features and interplanetary parameters on ...

    Indian Academy of Sciences (India)

    Abstract. The dependence of geomagnetic activity on solar features and interplanetary. (IP) parameters is investigated. Sixty-seven intense (−200 nT ≤ Dst < −100 nT) and seventeen superintense (Dst < −200 nT) geomagnetic storms (GMSs) have been studied from January 1996 to April 2006. The number of intense and ...

  15. Automated interplanetary shock detection and its application to Wind observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Maksimovic, M.; Šafránková, J.; Němeček, Z.; Santolík, Ondřej; Krupař, Vratislav


    Roč. 118, č. 8 (2013), 4793–4803 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : Interplanetary shocks * instruments and techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013

  16. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)


    Aug 25, 2010 ... Spörer's sunspot law at low latitudes (thus, no 'butterfly diagram'); how- ever, at high latitudes, there may be a poleward motion and an equator- ward motion from the rise to the maximum to the declining phases. Key words. Sun: activity, coronal mass ejections (CMEs). 1. Introduction. Interplanetary coronal ...

  17. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank


    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  18. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints (United States)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David


    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  19. Radiation effects. Engineering handbook (methods of improving the radiation tolerance of electronics in space vehicles). Final report

    International Nuclear Information System (INIS)

    Holmes-siedle, A.; Freeman, R.


    Space radiation effects in electronic subsystems are discussed. Useful data from a wide range of sources are presented and methods which have been newly developed to provide engineering solutions to the problem of degradation of devices in space are described. The new developments include a simple model for analyzing space-charge buildup in MOS devices, a ranking scheme for CMOS - LSI circuits and improved dose transmission curves and tradeoff curves for spacecraft life against shield weight. A complete analysis of a piece of spacecraft equipment is given. Recommendations for future progress in hardness engineering are made

  20. Fail-Safe, Controllable Liquid Spring/Damper System for Improved Rover Space Vehicle Mobility, Phase I (United States)

    National Aeronautics and Space Administration — NASA is planning to return to the moon in 2020 to explore thousands of miles of the moon?s surface with individual missions, lasting six months or longer. Surface...


    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Yang, Hongu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Usui, Fumihiko [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Ueno, Munetaka [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ootsubo, Takafumi [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kwon, Suk Minn [Department of Science Education, Kangwon National University, 192-1 Hyoja-dong, Kangwon-do, Chunchon 200-701 (Korea, Republic of); Mukai, Tadashi, E-mail: [Department of Earth and Planetary Sciences, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)


    We performed optical observations of the Gegenschein using a liquid-nitrogen-cooled wide-field camera, the Wide-field Imager of Zodiacal light with ARray Detector (WIZARD), between 2003 March and 2006 November. We found a narrow brightness enhancement superimposed on the smooth gradient of the Gegenschein at the exact position of the antisolar point. Whereas the Gegenschein morphology changed according to the orbital motion of the Earth, the maximum brightness coincided with the antisolar direction throughout the year. We compared the observed morphology of the Gegenschein with those of models in which the spatial density of the interplanetary dust cloud was considered and found that the volume scattering phase function had a narrow backscattering enhancement. The morphology was reproducible with a spatial distribution model for infrared zodiacal emission. It is likely that the zero-phase peak (the so-called opposition effect) was caused by coherent backscattering and/or shadow-hiding effects on the rough surfaces of individual dust particles. These results suggest that big particles are responsible for both zodiacal light and zodiacal emission. Finally, we derived the geometric albedo of the smooth component of interplanetary dust, assuming big particles, and obtained a geometric albedo of 0.06 {+-} 0.01. The derived albedo is in accordance with collected dark micrometeorites and observed cometary dust particles. We concluded that chondritic particles are dominant near Earth space, supporting the recent theoretical study by dynamical simulation.

  2. Interaction of the interplanetary shock and tangential discontinuity in the solar wind (United States)

    Goncharov, Oleksandr; Koval, Andriy; Safrankova, Jana; Nemecek, Zdenek; Prech, Lubomir; Szabo, Adam; Zastenker, Georgy N.


    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward interplanetary (IP) shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, while the bow shock is a standing fast reverse shock formed by the interaction of the supersonic solar wind with Earth's magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. It is well known that the interaction of tangential discontinuities with the bow shock can create hot flow anomalies but interactions between IP shocks and tangential discontinuities in the solar wind are studied to a lesser extent due to lack of observations. A fortunate position of many spacecraft (Wind, ACE, DSCOVR, THEMIS, Spektr-R) on June 22, 2015 allows us detailed observations of an IP shock modification due to this interaction. We present an analysis of the event supported with MHD modeling that reveals basic features of the observed IP shock ramp splitting. However, a good matching of modeling and observations was found for DSCOVR and Spektr-R located above the ecliptic plane, whereas a timing of observations below this plane demonstrates problems of modeling of highly inclined discontinuities.

  3. Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

    Directory of Open Access Journals (Sweden)

    Suyeon Oh


    Full Text Available The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare, interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity, and geomagnetic (Ap index parameters (SIG parameters during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

  4. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  5. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David


    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  6. Fast Acceleration of ``Killer'' Electrons and Energetic Ions by Interplanetary Shock Stimulated ULF Waves in the Inner Magnetosphere (United States)

    Zong, Q.


    Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. How the energetic particles are accelerated in the Van Allen radiation belts is one of major problems in the space physics. Very Low Frequency (VLF) wave-particle interaction has been considered as one of primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. However, recently, by using four Cluster spacecraft observations, we have found that after interplanetary shocks impact on the Earth’s magnetosphere, the acceleration of the energetic electrons in the radiation belt started nearly immediately and lasted for a few hours. The time scale (a few days) for traditional acceleration mechanism of VLF wave-particle interaction, as proposed by Horne et al. [1], to accelerate electrons to relativistic energies is too long to explain the observations. It is further found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change can play a non-negligible role in the radiation belt dynamics. Interplanetary shocks interact with and the Earth’s magnetosphere manifests many fundamental important space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt response to interplanetary shock impact contains three contributing parts: (1) the initial adiabatic acceleration due to the strong shock-related magnetic field compression; (2) then followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to fast damping electric fields associated with ULF waves. Particles will have a net acceleration since particles in the second half circle will not lose all of the energy gained in the first half cycle. The results reported in this paper cast new lights on understanding the acceleration of energetic particles in the

  7. Solar sails a novel approach to interplanetary travel

    CERN Document Server

    Vulpetti, Giovanni; Matloff, Gregory L


    The reality of sunlight-based sailing in space began in May 2010,  and solar sail technology and science have continued to evolve rapidly through new space missions. Using the power of the Sun's light for regular travel propulsion will be the next major leap forward in our journey to other worlds. This book is the second edition of the fascinating explanation of solar sails, how they work and how they will be used in the exploration of space. Updated with 35% new material, this second edition includes three new chapters on missions operated by Japan and the US, as well as projects that are in progress. The remainder of the book describes the heritage of exploration in water-borne sailing ships and the evolution to space-vehicle propulsion; as well as nuclear, solar-electric, nuclear-electric and antimatter rocket devices. It also discusses various sail systems that may use either sunlight or solar wind, and the design, fabrication and steering challenges associated with solar sails. The first edition was me...

  8. From the sun's corona to the polar cusp aurora above Svalbard. Interplanetary and terrestrial effects of a coronal transient

    International Nuclear Information System (INIS)

    Sandholt, P.E.


    The report presents a study of the flare-related coronal transient of Nov. 27, 1979, with the resulting interplanetary (IP) shock, and the associated auroral and magnetic effects that were observed from the ground 72 hours after the initial coronal brightening. The observed disturbance of the interplanetary magnetic field (IMF) resulting from the coronal mass ejection is discussed in relation to a model discription of flare-related perturbations of the solar current sheet. The power transfer from the solar wind to the magnetosphere did not rise above the treshold value for magnetospheric strom triggering in this case. thus, the IP shock was not followed by a major storm. However, distinct signatures related to the IP disturbance were observed in the polar cusp aurorae above Svaldbard and in the local magnetic field. The dynamical behaviour of the cusp aurora is discussed in relation to different models of plasma transfer across the dayside magnetopause, from the shocked solar wind to the magnetosphere. A detailed analysis of the available information from interplanetary space and the ground indicates that the main auroral dynamics observed in this case are related to localized, impulsive plasma injections associated with flux transfer events

  9. Head-space, small-chamber and in-vehicle tests for volatile organic compounds (VOCs) emitted from air fresheners for the Korean market. (United States)

    Jo, Wan-Kuen; Lee, Jong-Hyo; Kim, Mo-Keun


    The present study investigated the emission characteristics of gel-type air fresheners (AFs), using head-space, small-chamber, and in-vehicle tests. Five toxic or hazardous analytes were found in the headspace phase of AFs (toluene, benzene, ethyl benzene, and m,p-xylene) at a frequency of more than 50%. Limonene and linalool, which are known to be unsaturated ozone-reactive VOCs, were detected at a frequency of 58 and 35%, respectively. The empirical model fitted well with the time-series concentrations in the chamber, thereby suggesting that the empirical model was suitable for testing emissions. Limonene exhibited the highest emission rate, followed by m,p-xylene, toluene, ethyl benzene, and benzene. For most target VOCs, higher air change per hour (ACH) levels exhibited increased emission rates. In contrast, higher ACH levels resulted in lower chamber concentrations. The mean concentration of limonene was significantly higher in passenger cars with an AF than without. For other target compounds, there were no significant differences between the two conditions tested. Consequently, it was suggested that unlike limonene, the emission strength for aromatic compounds identified in the chamber tests was not strong enough to elevate in-vehicle levels.

  10. Accumulation patterns of proper point defects in thermo-regulating coatings based on ZnO for space vehicles under electron irradiation

    International Nuclear Information System (INIS)

    Mikhajlov, M.M.; Sharafutdinova, V.V.


    The expansion of the band of the induced absorption of zinc oxide powders and thermo-regulating coatings based on ZnO for space vehicles is carried out after the 30 keV electron irradiation. Singularities of the growth of the intensity of individual components as a function of the accelerated electron flow are studied. It is found that power and exponential dependences with one or two components are characteristic for different color centers and different thermo-regulating coatings. The kinetics of the accumulation of free electrons is characterized by the maximum value of the electron flows at which the generation of color centers on pre-radiation defects is realized by the radiolysis of the pigment lattice

  11. Mars Ascent Vehicle (United States)

    National Aeronautics and Space Administration — The challenge provides opportunities to develop a wide range of innovative methods to insert the sample, provide sample containment, erect the launch vehicle and...

  12. Applied, theoretical modeling of space-based assembly, using expert system architecture for computer-aided engineering tool development (United States)

    Jolly, Steven Douglas


    The challenges associated with constructing interplanetary spacecraft and space platforms in low earth orbit are such that it is imperative that comprehensive, preliminary process planning analyses be completed before committing funds for Phase B design (detail design, development). Phase A and 'pre-Phase A' design activities will commonly address engineering questions such as mission-design structural integrity, attitude control, thermal control, etc. But the questions of constructability, maintainability and reliability during the assembly phase usually go unaddressed until the more mature stages of design (or very often production) are reached. This is an unacceptable strategy for future space missions whether they be government or commercial ventures. After interviews with expert Aerospace and Construction industry planners a new methodology was formulated and a Blackboard Metaphor Knowledge-based Expert System synthesis model has been successfully developed which can decompose interplanetary vehicles into deliverable orbital subassemblies. Constraint propagation, including launch vehicle payload shroud envelope, is accomplished with heuristic and numerical algorithms including a unique adaptation of a reasoning technique used by Stanford researchers in terrestrial automated process planning. The model is a hybrid combination of rule and frame-based representations, designed to integrate into a Computer-Aided Engineering (CAE) environment. Emphasis is placed on the actual joining, rendezvous, and refueling of the orbiting, dynamic spacecraft. Significant results of this new methodology upon a large Mars interplanetary spacecraft (736,000 kg) designed by Boeing, show high correlation to manual decomposition and planning analysis studies, but at a fraction of the time, and with little user interaction. Such Computer-Aided Engineering (CAE) tools would greatly leverage the designers ability to assess constructability.

  13. Understanding and Mitigating Adverse Health Effects in Space Using A System Physiology Software, Phase I (United States)

    National Aeronautics and Space Administration — NASA's vision for Space Exploration aims for human interplanetary missions that have significant challenges on crew health and safety including fluid shifts, and...

  14. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.


    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  15. Optimal Partitioning of a Surveillance Space for Persistent Coverage Using Multiple Autonomous Unmanned Aerial Vehicles: An Integer Programming Approach (United States)


    decompo- sition, or an occupancy grid map ( OGM ) representation of the space. Quijano and Garrido [38] explore two possible grid decompositions. One...insights, impact , and potential future research. 79 V. Conclusions and Recommendations 5.1 Introduction This chapter provides a summary of the work...presented in this thesis. The insights and impact of this research, topics for future research efforts, and conclusions are also presented. 5.2 Review The

  16. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta


    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  17. Relativistic electron dropout echoes induced by interplanetary shocks (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.


    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  18. Dynamics of the Solar Plasma Events and Their Interplanetary Consequences (United States)

    Kaushik, Subhash Chandra


    In the present study we have analyzed the interplanetary plasma / field parameter, which have initiated the complex nature intense and highly geo-effective events in the magnetosphere. It is believed that Solar wind velocity V. interplanetary magnetic field (IMF) B and Bz are the crucial drivers of these activities. However, sometimes strong geomagnetic disturbance is associated with the interaction between slow and fast solar wind originating from coronal holes leads to create co-rotating plasma interaction region (CIR). Thus the dynamics of the magnetospheric plasma configuration is the reflection of measured solar wind and interplanetary magnetic field (IMF) conditions. While the magnetospheric plasma anomalies are generally represented by geomagnetic storms and sudden ionosphere disturbance (SIDs). The study considers geomagnetic storms associated with disturbance storm time (Dst) decreases of more than -50 nT to -300 nT, observed during solar cycle 23 and the ascending phase of solar cycle 24. These have been analyzed and studied statistically. The spacecraft data those provided by SOHO, ACE and geomagnetic stations like WDC-Kyoto are utilized in the study. It is observed that the yearly occurrences of geomagnetic storm are strongly correlated with 11-year sunspot cycle, but no significant correlation between the maximum and minimum phase of solar cycle have been found. It is also found that solar cycle-23 is remarkable for occurrence of intense geomagnetic storms during its declining phase. The detailed results are discussed in this paper.

  19. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David


    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  20. Three-dimensional exploration of the solar wind using observations of interplanetary scintillation. (United States)

    Tokumaru, Munetoshi


    The solar wind, a supersonic plasma flow continuously emanating from the Sun, governs the space environment in a vast region extending to the boundary of the heliosphere (∼100 AU). Precise understanding of the solar wind is of importance not only because it will satisfy scientific interest in an enigmatic astrophysical phenomenon, but because it has broad impacts on relevant fields. Interplanetary scintillation (IPS) of compact radio sources at meter to centimeter wavelengths serves as a useful ground-based method for investigating the solar wind. IPS measurements of the solar wind at a frequency of 327 MHz have been carried out regularly since the 1980s using the multi-station system of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. This paper reviews new aspects of the solar wind revealed from our IPS observations.

  1. Instrument to measure energy and charge of low energy interplanetary particles (United States)

    Tums, E.; Gloeckler, G.; Cain, J.; Sciambi, R.; Fan, C. Y.


    An experiment to measure the charge composition and energy spectra of ultra low energy charged particles in interplanetary space has been developed and launched on the IMP 8 (Explorer 50) satellite on Oct. 26, 1973. The instrument consists of two separate sensors sharing common electronics. One of these sensors uses a thin window gas proportional counter to measure the rate of energy loss and a totally depleted silicon surface barrier detector to measure total energy of incoming particles. The energy range for two dimensional analysis extends from 300 KeV to 2.5 MeV for protons and 60 KeV/nucleon to 25 MeV/nucleon for iron with excellent resolution of individual chemical elements. The other sensor combines electrostatic deflection with total energy measurements in silicon surface barrier detectors to give the ionic charge and kinetic energy of the particle.

  2. Comparison of single event upset rates for microelectronic memory devices during interplanetary solar particle events (United States)

    Mckerracher, P. L.; Kinnison, J. D.; Maurer, R. H.


    Variability in the methods and models used for single event upset calculations in microelectronic memory devices can lead to a range of possible upset rates. Using heavy ion and proton data for selected DRAM and SRAM memories, we have calculated an array of upset rates in order to compare the Adams worst case interplanetary solar flare model to a model proposed by scientists at the Jet Propulsion Laboratory. In addition, methods of upset rate calculation are compared: the Cosmic Ray Effects on Microelectronics CREME code and a Monte Carlo algorithm developed at the Applied Physics Laboratory. The results show that use of a more realistic, although still conservative, model of the space environment can have significant cost saving benefits.

  3. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir


    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  4. RFID in Space: Exploring the Feasibility and Performance of Gen 2 Tags as a Means of Tracking Equipment, Supplies, and Consumable Products in Cargo Transport Bags onboard a Space Vehicle or Habitat (United States)

    Jones, Erick C.; Richards, Casey; Herstein, Kelli; Franca, Rodrigo; Yagoda, Evan L.; Vasquez, Reuben


    Current inventory management techniques for consumables and supplies aboard space vehicles are burdensome and time consuming. Inventory of food, clothing, and supplies are taken periodically by manually scanning the barcodes on each item. The inaccuracy of reading barcodes and the excessive amount of time it takes for the astronauts to perform this function would be better spent doing scientific experiments. Therefore, there is a need for an alternative method of inventory control by NASA astronauts. Radio Frequency Identification (RFID) is an automatic data capture technology that has potential to create a more effective and user-friendly inventory management system (IMS). In this paper we introduce a Design for Six Sigma Research (DFSS-R) methodology that allows for reliability testing of RFID systems. The research methodology uses a modified sequential design of experiments process to test and evaluate the quality of commercially available RFID technology. The results from the experimentation are compared to the requirements provided by NASA to evaluate the feasibility of using passive Generation 2 RFID technology to improve inventory control aboard crew exploration vehicles.

  5. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    International Nuclear Information System (INIS)

    Zubrin, R.M.


    The following paper reports on a design study of a novel space transportation concept known as a ''NIMF'' (Nuclear rocket using Indigenous Martian Fuel.) The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO 2 . This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface

  6. Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data (United States)

    Gioia, Christopher J.

    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft's attitude is unknown. In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm. A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry

  7. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk


    As computing devices, sensors, and actuators pervade our surroundings, new applications emerge with accompanying research challenges. In the transportation domain vehicles are being linked by wireless communication and equipped with an array of sensors and actuators that make is possible to provide...... location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services......, mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology applications...

  8. Tutorial on Actual Space Environmental Hazards For Space Systems (Invited) (United States)

    Mazur, J. E.; Fennell, J. F.; Guild, T. B.; O'Brien, T. P.


    It has become common in the space science community to conduct research on diverse physical phenomena because they are thought to contribute to space weather. However, satellites contend with only three primary environmental hazards: single event effects, vehicle charging, and total dose, and not every physical phenomenon that occurs in space contributes in substantial ways to create these hazards. One consequence of the mismatch between actual threats and all-encompassing research is the often-described gap between research and operations; another is the creation of forecasts that provide no actionable information for design engineers or spacecraft operators. An example of the latter is the physics of magnetic field emergence on the Sun; the phenomenon is relevant to the formation and launch of coronal mass ejections and is also causally related to the solar energetic particles that may get accelerated in the interplanetary shock. Unfortunately for the research community, the engineering community mitigates the space weather threat (single-event effects from heavy ions above ~50 MeV/nucleon) with a worst-case specification of the environment and not with a prediction. Worst-case definition requires data mining of past events, while predictions involve large-scale systems science from the Sun to the Earth that is compelling for scientists and their funding agencies but not actionable for design or for most operations. Differing priorities among different space-faring organizations only compounds the confusion over what science research is relevant. Solar particle impacts to human crew arise mainly from the total ionizing dose from the solar protons, so the priority for prediction in the human spaceflight community is therefore much different than in the unmanned satellite community, while both communities refer to the fundamental phenomenon as space weather. Our goal in this paper is the presentation of a brief tutorial on the primary space environmental phenomena

  9. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.


    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  10. Evolution of magnetic flux ropes associated with flux transfer events and interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; Wang, S.; Akasofu, S.I.


    Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field (B θ ) is superposed on the axial field (B z ). In this paper the time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible magnetohydrodynamic simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field (B θ ≅ 1-4 B z ) the propagation velocity along the axial direction of the flux rope remains to be the Alfven velocity. Diagnoses show that after the initial phase the transverse kinetic energy equals the transverse magnetic energy, which is characteristic of the Alfven mode. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the Earth's dayside magnetopause and magnetic clouds in the interplanetary space

  11. Relationship between PC index and interplanetary electric field EKL under actual conditions of varying solar wind (United States)

    Troshichev, Oleg; Smirnov, Michael

    The PC index was introduced as an indicator of magnetic activity in the polar caps generated by the geoeffective interplanetary electric field E _{KL} determined in accordance with Kan and Lee [1979]. The PC index is calculated basing on magnetic data (δF) from near-pole stations Thule and Vostok with use of the statistically justified coefficients of regression α and β linking the polar cap magnetic disturbance vectors δF with the electric field E _{KL}. As a result, the PC index is defined as a value of the polar cap magnetic disturbance standardized with the intensity of the interplanetary electric field EKL regardless of season, UT and hemisphere. Statistically the appropriate values PC and E _{KL} well correlate, however in concrete situations PC and E _{KL} may be quite differ, because E _{KL} characterizes the state of the solar wind far upstream of the magnetosphere, whereas PC characterizes the energy that entered into magnetosphere, Analysis of consistencies and discrepancies between PC and E _{KL} under conditions of different solar wind parameters was carried for all events with magnetic substorms (N=1798) and magnetic storms (N=203) observed in epoch of maximal solar activity (1998-2001). Thus, the solar wind geoefficiency was estimated by independent indicators, such as AL and Dst indices characterizing magnetic activity within the magnetosphere. The essential attention was given also to geoefficiency of sudden pulses of the solar wind dynamic pressure. The results of the analysis were applied to derive the method to nowcast the magnetosphere state, including estimation of the “model PC, AL and Dst” indices calculated by actual measurement of E _{KL} in the point L1 under conditions of varying solar wind. It is demonstrated that the PC index can be successfully used to monitor space weather and the readiness of the magnetosphere to producing substorm or storm.

  12. Capture of interplanetary and interstellar dust by the jovian magnetosphere. (United States)

    Colwell, J E; Horányi, M; Grün, E


    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.


    Energy Technology Data Exchange (ETDEWEB)

    Pal' shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Cline, T.; Trombka, J.; McClanahan, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Boynton, W.; Fellows, C.; Harshman, K., E-mail: [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); and others


    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

  14. Velocity of interplanetary shock waves according to radioastronomical data

    International Nuclear Information System (INIS)

    Vlasov, V.I.


    Velocities of 34 interplanetary shock waves are estimated by the method of radioastronomical cartography of scintillation indices of cosmic radiosources. The velocity of shock waves within the limits of approximately 0.2-1.2 a.e. is shown to decrease as far as they are far from the Sun at a distance equalling 1/r α , where 0.25 < or approx. α ≤ 1. In this case the degree of shock wave slowing-down dependences on their initial velocity; the velocity radial gradient is approximately proportional to the square of the shock wave initial velocity

  15. The Swedish Interplanetary Society (1950-1969) and the formation of IAF and IAA (United States)

    Ingemar Skoog, A.


    With a growing interest for rocket technology and space travel after WW II a number of new "space societies" were formed in the period 1948-1951 in addition to the ones already existing in Germany, the UK and the US since before WW II. Soon came the need for a common international platform for exchange of information and experience, and the concept of an international federation of astronautical societies emerged. Sweden was one of the 8 countries to sign the original declaration to create an International Astronautical Federation on October 2, 1950 in Paris at the 1st International Astronautical Congress. The Swedish Society for Space Research (Svenska Sällskapet för Rymdforskning) was formed a few days after the historical event in Paris. The name was soon to be changed to the Swedish Interplanetary Society (Svenska Interplanetariska Sällskapet, SIS). Sweden was one of the 10 countries to sign the IAF foundation in 1951 in London and in the following year the first Constitution of IAF in Stuttgart. The SIS quickly grow to a membership of several hundred persons and its membership in IAF promoted an intensive exchange of journals, and the annual participation at the IAC gave growth to start study projects on spacecraft and sounding rockets, and the publication of astronautical journals in Swedish. In 1957 the first Swede was elected vice-president of IAF. Not too long after the IAF foundation the idea of an international body of distinguished individuals emerged, in addition to the body of "member societies" (IAF). Upon the initiative of Theodor von Karman, Eugen Sänger and Andrew Haley the IAF council approval of an International Academy of Astronautical was given on August 15, 1960 during the 11th IAC in Stockholm. This IAC in Stockholm gave a large publicity to space research and astronautics in Sweden, and put the activities of the SIS in the focus of the general public. This paper presents the Swedish involvement in the foundation of IAF and IAA. It also

  16. Orbital-Transfer Vehicle With Aerodynamic Braking (United States)

    Scott, C. D.; Nagy, K.; Roberts, B. B.; Ried, R. C.; Kroll, K.; Gamble, J.


    Vehicle includes airbrake for deceleration into lower orbit. Report describes vehicle for carrying payloads between low and high orbits around Earth. Vehicle uses thin, upper atmosphere for braking when returning to low orbit. Since less propellant needed than required for full retrorocket braking, vehicle carries larger payload and therefore reduces cost of space transportation.

  17. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath


    We study a location-routing problem in the context of capacitated vehicle routing. The input to k-LocVRP is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so t...

  18. The topology of intrasector reversals of the interplanetary magnetic field (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.


    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  19. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.


    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  20. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem (United States)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang


    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle

  1. China's Launch Vehicle Operations (United States)

    Bai, Jingwu


    China's Launch Vehicle technologies have been started since 1950s. With the efforts made by several-generation Chinese Space people, the Long March (LM) Launch Vehicles, China's main space transportation tools, have undergone a development road from conventional propellants to cryogenic propellants, from stage-by-stage to strap-on, from dedicated-launch to multiple-launch, from satellite-launching to space capsule-launching. The LM Launch Vehicles are capable of sending various payloads to different orbits with low cost and high reliability. Till now, the LM Launch Vehicles have conducted 67 launch missions, putting 76 spacecraft into the given orbits since the successful mission made by LM-1 in 1970. Especially, they have performed 22 international commercial satellite-launching missions, sending 27 foreign satellites successfully. The footprints of LM Launch Vehicles reflect the development and progress of Chinese Space Industry. At the beginning of the 21st century, with the development of launch vehicle technology and the economic globalization, it is an inexorable trend that Chinese space industry must participate in the international cooperation and competition. Being faced with both opportunities and challenges, Chinese Space Industry should promote actively the commercial launch service market to increase service quality and improve the comprehensive competition capabilities. In order to maintain the sustaining development of China's launch vehicle technology and to meet the increasing needs in the international commercial launch service market, Chinese space industry is now doing research work on developing new-generation Chinese launchers. The new launchers will be large-scale, powerful and non-contamination. The presence of the new-generation Chinese launchers will greatly speed up the development of the whole space-related industries in China, as well as other parts of the world. In the first part, this paper gives an overview on China Aerospace Science

  2. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail:, E-mail: [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)


    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  3. BIRDY - Interplanetary CubeSat for planetary geodesy of Small Solar System Bodies (SSSB). (United States)

    Hestroffer, D.; Agnan, M.; Segret, B.; Quinsac, G.; Vannitsen, J.; Rosenblatt, P.; Miau, J. J.


    We are developing the Birdy concept of a scientific interplanetary CubeSat, for cruise, or proximity operations around a Small body of the Solar System (asteroid, comet, irregular satellite). The scientific aim is to characterise the body's shape, gravity field, and internal structure through imaging and radio-science techniques. Radio-science is now of common use in planetary science (flybys or orbiters) to derive the mass of the scientific target and possibly higher order terms of its gravity field. Its application to a nano-satellite brings the advantage of enabling low orbits that can get closer to the body's surface, hence increasing the SNR for precise orbit determination (POD), with a fully dedicated instrument. Additionally, it can be applied to two or more satellites, on a leading-trailing trajectory, to improve the gravity field determination. However, the application of this technique to CubeSats in deep space, and inter-satellite link has to be proven. Interplanetary CubeSats need to overcome a few challenges before reaching successfully their deep-space objectives: link to ground-segment, energy supply, protection against radiation, etc. Besides, the Birdy CubeSat — as our basis concept — is designed to be accompanying a mothercraft, and relies partly on the main mission for reaching the target, as well as on data-link with the Earth. However, constraints to the mothercraft needs to be reduced, by having the CubeSat as autonomous as possible. In this respect, propulsion and auto-navigation are key aspects, that we are studying in a Birdy-T engineering model. We envisage a 3U size CubeSat with radio link, object-tracker and imaging function, and autonomous ionic propulsion system. We are considering two case studies for autonomous guidance, navigation and control, with autonomous propulsion: in cruise and in proximity, necessitating ΔV up to 2m/s for a total budget of about 50m/s. In addition to the propulsion, in-flight orbit determination (IFOD

  4. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.


    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  5. Automation for Vehicle and Crew Operations Project (United States)

    National Aeronautics and Space Administration — Modern space systems such as the International Space Station (ISS) and the proposed Constellation vehicles and habitats are complex entities with hundreds of...

  6. Charge/discharge performance of lithium-ion secondary cells under microgravity conditions: Lessons learned from operation of interplanetary spacecraft Hayabusa

    International Nuclear Information System (INIS)

    Sone, Yoshitsugu


    The Japan Aerospace Exploration Agency (JAXA) is developing a lithium-ion secondary battery for deep space missions. Lithium-ion secondary battery was first used for the interplanetary spacecraft, Hayabusa. With a view to future long-term operations on the moon and interplanetary travel, the in-orbit performance of the lithium-ion battery of Hayabusa was examined. The battery cells maintained a constant performance over 2.7 years of operation as Hayabusa travelled to the asteroid Itokawa. To maintain cell conditions. The state of charge was fixed by using a balance circuit. The cell voltages differed by less than 60 mV during the operation, which is within the error expected based on the circuit design and the telemetry conditions

  7. Intelligent Vehicle Health Management (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.


    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  8. Underwater Vehicle

    National Research Council Canada - National Science Library

    Dick, James L


    There is thus provided an underwater vehicle having facility for maneuvering alongside a retrieving vehicle, as by manipulation of bow and stern planes, for engaging a hull surface of the retrieving...

  9. Results of investigations with an 0.015-scale model (49-0) of the Rockwell International space shuttle vehicle 140A/B configuration with modified OMS pods and elevons in the AEDC VKF tunnel B (0A79) (United States)

    Esparza, V.; Lindsay, A. I.


    Aerodynamic data obtained from wind tunnel tests of an 0.015-scale space shuttle vehicle Orbiter model of a 140A/B configuration with modified orbital manuevering system pods and elevons are documented. Force data was obtained at various control surface settings and Reynolds numbers in the angle of attack range of 15 deg to 45 deg and at angles of sideslip of -5 deg to +5 deg. Control surface variables included elevon, rudder, speed brake, and body flap configurations.

  10. Atomic Power in Space: A History (United States)


    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  11. The Interplanetary Network Response to LIGO GW150914 (United States)

    Hurley, K.; Svinkin, D. S.; Aptekar, R.L.; Golenetskii, S. V.; Frederiks, D. D.; Boynton, W.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; hide


    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15-150 keV fluences of roughly 5 x 10(exp -8) -5 x 10(exp -7) erg cm(exp -2). We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi-GBM event reported in conjunction with GW150914.


    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D. [Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Boynton, W. [University of Arizona, Department of Planetary Sciences, Tucson, AZ 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 Germany (Germany); Connaughton, V.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cline, T.; Gehrels, N., E-mail: [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States)


    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15–150 keV fluences of roughly 5 ×10{sup −8}–5 × 10{sup −7} erg cm{sup −2}. We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi -GBM event reported in conjunction with GW150914.

  13. The interplanetary magnetic field observed by Juno enroute to Jupiter (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.


    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  14. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.


    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  15. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)


    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  16. The acceleration of particles at propagating interplanetary shocks (United States)

    Prinsloo, P. L.; Strauss, R. D. T.


    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  17. Time delay of interplanetary magnetic field penetration into Earth's magnetotail (United States)

    Rong, Z. J.; Lui, A. T. Y.; Wan, W. X.; Yang, Y. Y.; Shen, C.; Petrukovich, A. A.; Zhang, Y. C.; Zhang, T. L.; Wei, Y.


    Many previous studies have demonstrated that the interplanetary magnetic field (IMF) can control the magnetospheric dynamics. Immediate magnetospheric responses to the external IMF have been assumed for a long time. The specific processes by which IMF penetrates into magnetosphere, however, are actually unclear. Solving this issue will help to accurately interpret the time sequence of magnetospheric activities (e.g., substorm and tail plasmoids) exerted by IMF. With two carefully selected cases, we found that the penetration of IMF into magnetotail is actually delayed by 1-1.5 h, which significantly lags behind the magnetotail response to the solar wind dynamic pressure. The delayed time appears to vary with different auroral convection intensity, which may suggest that IMF penetration in the magnetotail is controlled considerably by the dayside reconnection. Several unfavorable cases demonstrate that the penetration lag time is more clearly identified when storm/substorm activities are not involved.

  18. The characteristic response of whistler mode waves to interplanetary shocks (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.


    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  19. An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Gonzalez, A.; Prestes, A.; Klausner, V. [Laboratory of Physics and Astronomy, IP and D/Universidade do Vale do Paraíba—UNIVAP, São José dos Campos, SP (Brazil); Mendes, O. [Division of Space Geophysics, National Institute for Space Research, São José dos Campos, SP (Brazil); Calzadilla, A. [Department of Space Geophysics, Institute of Geophysics and Astronomy, Havana (Cuba); Domingues, M. O., E-mail: [Associate Laboratory of Applied Computing and Mathematics, National Institute for Space Research, São José dos Campos, SP (Brazil)


    Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STE values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.

  20. Heliocentric distance dependence of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Behannon, K.W.


    Recent and ongoing planetary missions have provided and are continuing to provide extensive observations of the variations of the interplanetary magnetic field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations are observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, a process also contributing to the observed variability of the IMF. Temporal variations on a time scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r -2 , as was predicted by Parker, while the azimuthal component decreases more rapidly than the r -1 dependence predicted by simple theory. Three sets of observations are consistent with r/sup -1.3/ dependence for vertical-barB/sub phi/vertical-bar. The temporal variability of solar wind speed is most likely the predominant contributor to this latter observational result. The long-term average azimuthal component radial gradient is probably consistent with the Parker r -1 dependence when solar wind speed variations are taken into account. The observations of the normal component magnitude vertical-barB/sub theta/vertical-bar are roughly consistent with a heliocentric distance dependence of r/sup -1.4/. The observed radial distance dependence of the total magnitude of the IMF is well described by the Parker formulation. There is observational evidence that amplitudes of fluctuations of the vector field with periods less than 1 day vary with heliocentric distance as approximately r/sup -3/2/, in agreement with theoretical models by Whang and Hollweg

  1. Probing the small-scale structure of the interplanetary medium with high time resolution galactic cosmic ray observations (United States)

    Jordan, Andrew P.

    Galactic cosmic rays (GCRs) are relativistic charged particles that fill interplanetary and interstellar space. The Sun's magnetic field, carried radially outward by the solar wind (collectively called the interplanetary medium or IPM), is the dominant modulator of GCR fluxes near Earth. GCR variations can uncover IPM structure beyond what single-point IPM measurements reveal. While such research in the past has been successful on larger scales, little work has considered how the IPM affects GCRs on small scales (scales on the order of at most an hour in time or gigameters in space). This dissertation represents the first use of GCR observations to explore the nature of small-scale structure in the IPM, an area of active study. To begin, I test the validity of an important traditional model based on low time resolution observations. This model describes how interplanetary coronal mass ejections (ICMEs), their shocks, and their sheaths create two-step Forbush decreases (Fds) in GCR flux ( Forbush , 1937). I analyze 82 Fds from 1998 to 2006 and discover that the model is too idealized to account for the majority of Fds. Small-scale structure in the sheath of ICMEs appears to be important for creating a variety of time-profiles, instead of only the two steps predicted by the model. Next, I use space-based, high time resolution GCR data to investigate on even smaller scales how ICME sheath structure affects cosmic rays. Because the spacecraft instruments were not designed to detect GCRs, I first show that the space-based data are reliable. In three of the five observed Fds, planar magnetic structures within the ICME sheaths appear to have contributed to the initiation of the decreases. Finally, I explore thirty instances of a newly discovered phenomenon: small-scale local maxima in the GCR flux that occur within ICME sheaths during the initial stages of Fds. I discover that magnetic structure, not turbulence, in ICME sheaths is responsible for the majority of these

  2. Simulating Autonomous Telecommunication Networks for Space Exploration (United States)

    Segui, John S.; Jennings, Esther H.


    Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.

  3. Robotic Vehicle Proxy Simulation Project (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes the development of a digital simulation to replace robotic vehicles in field studies. It will model the dynamics, terrain interaction,...

  4. Dropsonde System for Unmanned Aerial Vehicles Project (United States)

    National Aeronautics and Space Administration — Unmanned Aerial Vehicles (UAVs) are assuming more numerous and increasingly important roles in global environmental and atmospheric research. There is a...

  5. Modeling ion induced effects in thin films and coatings for lunar and space environment applications (United States)

    Taylor, Edward W.; Pirich, Ronald


    Protective thin film coatings are important for many near-Earth and interplanetary space systems applications using photonic components, optical elements, solar cells and detector-sensor front surfaces to name but a few environmentally at-risk technologies. The near-Earth and natural space environment consists of known degradation processes induced within these technologies brought about by atomic oxygen, micrometeorite impacts, space debris and dust, solar generated charged particles, Van Allen belt trapped particles, and galactic cosmic radiation. This paper will focus on presenting the results of an investigation based on simulated ion-induced defect-modeling and nuclear irradiation testing of several innovative hybrid-polymeric self-cleaning hydrophobic coatings investigated for application to space photonic components, lunar surface, avionic and terrestrial applications. Data is reported regarding the radiation resistance of several hybrid polymer coatings containing various loadings of nanometer-sized TiO2 fillers for protecting sensors, structures, human and space vehicles from dust contamination found in space and on the Lunar and other planetary surfaces.

  6. Space Weather: The Solar Perspective (United States)

    Schwenn, Rainer


    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  7. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer


    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  8. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft (United States)

    Malaspina, David M.; Wilson, Lynn B., III


    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.


    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)


    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  10. Possible mechanism of the interplanetary medium effect on the diurnal rotation rate of the Earth

    International Nuclear Information System (INIS)

    Krymskij, P.F.


    Mechanism is proposed for effect of the solar wind and interplanetary magnetic field on the Earth rotation. In the mechanism base is Hall current generation in the plasma layer of the magnetosphere tail

  11. Study of Magnetic Field Spatial Variations in the Southern Hemisphere's Low Latitudes due to Different Interplanetary Structures Using the 3-D MHD SWMF/BATSRUS Model (United States)

    Souza, V. M. C. E. S.; Jauer, P. R.; Alves, L. R.; Padilha, A. L.; Padua, M. B.; Vitorello, I.; Alves, M. V.; Da Silva, L. A.


    Interplanetary structures such as Coronal Mass Ejections (CME), Shocks, Corotating Interaction Regions (CIR) and Magnetic Clouds (MC) interfere directly on Space Weather conditions and can cause severe and intense disturbances in the Earth's magnetic field as measured in space and on the ground. During magnetically disturbed periods characterized by world-wide, abrupt variations of the geomagnetic field, large and intense current systems can be induced and amplified within the Earth even at low latitudes. Such current systems are known as geomagnetically induced currents (GIC) and can cause damage to power transmission lines, transformers and the degradation of pipelines. As part of an effort to estimate GIC intensities throughout the low to equatorial latitudes of the Brazilian territory, we used the 3-D MHD SWMF/BATSRUS code to estimate spatial variations of the geomagnetic field during periods when the magnetosphere is under the influence of CME and MC structures. Specifically, we used the CalcDeltaB tool (Rastatter et al., Space Weather, 2014) to provide a proxy for the spatial variations of the geomagnetic field, with a 1 minute cadence, at 31 virtual magnetometer stations located in the proposed study region. The stations are spatially arranged in a two-dimensional network with each station being 5 degrees apart in latitude and longitude. In a preliminary analysis, we found that prior to the arrival of each interplanetary structure, there is no appreciable variation in the components of the geomagnetic field between the virtual stations. However, when the interplanetary structures reach the magnetosphere, each station perceives the magnetic field variation differently, so that it is not possible to use a single station to represent the magnetic field perturbation throughout the Brazilian region. We discuss the minimum number and spacing between stations to adequately detail the geomagnetic field variations in this region.

  12. On the solar origin of interplanetary disturbances observed in the vicinity of the Earth

    Directory of Open Access Journals (Sweden)

    N. Vilmer

    Full Text Available The solar origin of 40 interplanetary disturbances observed in the vicinity of the Earth between January 1997 and June 1998 is investigated in this paper. Analysis starts with the establishment of a list of Interplanetary Mass Ejections or ICMEs (magnetic clouds, flux ropes and ejecta and of Interplanetary Shocks measured at WIND for the period for which we had previously investigated the coupling of the interplanetary medium with the terrestrial ionospheric response. A search for associated coronal mass ejections (CMEs observed by LASCO/SOHO is then performed, starting from an estimation of the transit time of the inter-planetary perturbation from the Sun to the Earth, assumed to be achieved at a constant speed (i.e. the speed measured at 1 AU. EIT/SOHO and Nançay Radioheliograph (NRH observations are also used as proxies in this identification for the cases when LASCO observations do not allow one to firmly establish the association. The last part of the analysis concerns the identification of the solar source of the CMEs, performed using a large set of solar observations from X-ray to radio wavelengths. In the present study, this association is based on a careful examination of many data sets (EIT, NRH and H images and not on the use of catalogs and of Solar Geophysical Data reports. An association between inter-planetary disturbances and LASCO/CMEs or proxies on the disk is found for 36 interplanetary events. For 32 events, the solar source of activity can also be identified. A large proportion of cases is found to be associated with a flare signature in an active region, not excluding of course the involvement of a filament. Conclusions are finally drawn on the propagation of the disturbances in the interplanetary medium, the preferential association of disturbances detected close to the Earth’s orbit with halos or wide CMEs and the location on the solar disk of solar sources of the interplanetary disturbances during that period

  13. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1 (United States)

    Nichols, M. E.


    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  14. Motion of the sources for type 2 and type 4 radio bursts and flare-associated interplanetary disturbances (United States)

    Sakurai, K.; Chao, J. K.


    Shock waves are indirectly observed as the source of type 2 radio brusts, whereas magnetic bottles are identified as the source of moving metric type 4 radio bursts. The difference between the expansion speeds of these waves bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the behavior of the bottles is quite different from that of the waves and that the speed of the former is generally much lower. It is shown that the transit times of disturbances between the sun and the earth give information about the deceleration of shock waves to their local speeds observed near the earth's orbit. A brief discussion is given on the relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space.

  15. The Falcon I Launch Vehicle


    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne


    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  16. Space Weather Effects of Coronal Mass Ejection

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... This paper describes the space weather effects of a major CME which was accompanied by extremely violent events on the Sun. The signatures of the event in the interplanetary medium (IPM) sensed by Ooty Radio Telescope, the solar observations by LASCO coronagraph onboard SOHO, GOES X-ray ...

  17. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag


    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  18. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft (United States)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  19. Analytical electron microscopy of a hydrated interplanetary dust particle

    International Nuclear Information System (INIS)

    Blake, D.F.; Bunch, T.E.; Mardinly, A.J.; Echer, C.J.


    A hydrated interplanetary dust particle (IDP), IDP number-sign Ames-Dec86-11, was selected for study from a number of IDPs collected by U-2 aircraft from Ames Research Center. The particle consists primarily of a relatively nonporous aggregate of fine-grained layer silicates, some of which are in situ hydrous alteration products of pre-existing grains. The particle shows no apparent alteration due to its deceleration upon atmospheric entry. The layer silicates have a bimodal size distribution, in which matrix phyllosilicates have an apparent grain size of 10-50 nm, and phyllosilicates that pseudomorphically replace pre-existing grains have a grain size of 1-10 nm. Despite this order of magnitude difference in crystallite size, both phases are smectites, according to quantitative analytical and electron diffraction data. Euhedral to subhedral pyrrhotites, which have grain size of 0.1-1.0 μm, have high nickel contents. Pre-existing grains that have been pseudomorphed by clays are commonly surrounded or decorated with fine-grained (10-20 nm) low-nickel pentlandite. Very fine grained (1-10 nm) magnetite occurs in clusters throughout the matrix. Several fragments of a Mg-Fe silicate phase, apparently a glass, are present

  20. Quasilinear simulations of interplanetary shocks and Earth's bow shock (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian


    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  1. Impact of Interplanetary Magnetic Clouds On The Earthss Magnetosphere (United States)

    Osherovich, V. A.; Benson, R. F.; Fainberg, J.

    We present data collected by Wind in March 2001 for magnetic clouds along with the Dst index and IMAGE/RPI sounder data in the magnetosphere. The normal state of the solar wind is characterized by a solar wind quasi-invariant (QI = (B2/8)/(v2/2) ) where B is the strength of the interplanetary magnetic field , v is the bulk solar wind speed and is the plasma density. While the yearly median QI follows sunspot num- bers with a 98 per cent correlation (Osherovich et al 1999), the arrival of a magnetic cloud increases QI by two orders of magnitude (Osherovich et al. 1997). Sounder stimulated resonances such as harmonics of the electron gyro frequency fce, electron plasma resonance fpe, Bernstein mode resonances Qn with frequencies above fpe and Dn resonances with frequencies below fpe are used to deduce the ratio between the electron gyro radius rce and the Debye radius rde. We suggest that the ratio rce/rde as a measure of the magnetospheric response to the magnetic cloud. We show that profiles of QI and rce/rde are similar and we find the delay time between the signal (QI) and the response (rce/rde). References: Osherovich, V.A., et al., Proc. 31st ESLAB Symp., ESTEC, Noordwijk, The Nether- lands, 171, 1997. Osherovich, V.A. , J. Fainberg and R.G. Stone, Geophys. Res. Lett., 26(16), 2597, 1999.

  2. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.


    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  3. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks (United States)

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob; Ma, Qianli; Thorne, Richard M.; Angelopoulos, Vassilis; Li, Jinxing; An, Xin; Zhou, Chen; Kletzing, Craig; Reeves, Geoffrey D.; Spence, Harlan E.


    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time-dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  4. The structure of plasma density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.


    Observations of the scintillation of sources 3C273 and 3C279 at 2292 MHz are described. The interpretation of the scintillation in terms of the structure of the plasma-density irregularities in the interplanetary medium is discussed. Scintillation index measurements obtained during these observations are combined with similar measurements at other frequencies reported in the literature. The resulting variation of the scintillation-index and observing-frequency product with source elongation is interpreted in terms of irregularities with a spatial spectrum of electron density which is of power law form. This result is reinforced by an analysis of the spectra of the observed scintillations. Several tests are applied to both the Fourier and Bessel spectra which illustrate conclusively that the irregularity spatial spectrum is of power law form, rather than the Gaussian form suggested by some workers. The spectra also show that the irregularities are isotopic within 0.2 AU of the sun, while there is some evidence that a degree of elongation normal to the direction of the motion of the irregularities may develop at slightly greater solar distances. The irregularity velocities determined are consistent with solar wind velocities. (author)

  5. 33 CFR 127.1311 - Motor vehicles. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a designated...

  6. Exospheric and interplanetary hydrogen sensing from a translunar CubeSat platform by the Tomographic Hydrogen Emission Observatory (THEO) (United States)

    Waldrop, L.; Sample, J. G.; Doe, R.; Noto, J.; Walsh, B.; Kamalabadi, F.; Mierkiewicz, E. J.; Kerr, R. B.; Immel, T. J.


    The evaporation of neutral hydrogen (H) atmospheres into interplanetary space is a near-ubiquitous process in the universe that can be strongly perturbed by charge exchange coupling with ambient ions, influencing atmospheric evolution as well as the dissipation of plasma energy. Space-based observation of solar ultraviolet (UV) radiation scattered by H atoms is a powerful means to infer the underlying exospheric density distribution and thus unravel the competing effects of thermal and non-thermal processes on H energization and escape. Numerous past and present NASA missions have obtained measurements of terrestrial H emission at 121.6 nm (Lyman alpha) from earth-orbiting satellite platforms. However, their separate targeting of either the optically thick emission in the lower exosphere or the optically thin emission in the outer exosphere, together with their lack of independent measurement of the interplanetary emission that constitutes a significant background contamination, renders such data insufficient to advance exospheric science beyond current understanding. Here, we describe a new nano-satellite mission concept for exospheric H investigation that overcomes these historical measurement limitations. The mission, known as the Tomographic Hydrogen Emission Observatory (THEO), is designed to provide 3-D photometric measurements of terrestrial H Lyman alpha emission from a highly autonomous, three-axis-stabilized, 6U CubeSat platform along a trans-lunar trajectory that is ideal for the unambiguous estimation of H density from the exobase to the magnetopause and beyond. In particular, we will describe the feasibility of meeting operational challenges associated with satellite navigation and communication at such large distances.

  7. Space Science in Project SMART: A UNH High School Outreach Program (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.


    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  8. Electronic Prognostics for Vehicle Health Management Project (United States)

    National Aeronautics and Space Administration — All electronic systems are prone to wear-out and eventual failure and this has direct implications for Vehicle Health Management for NASA with its long space...

  9. Flexible Composites for Space (United States)

    National Aeronautics and Space Administration — Payload mass reduction and packaging efficiency in launch vehicles are essential for deep space exploration.  Inflatable softgoods have been identified as attractive...

  10. Walking the Filament of Feasibility: Global Optimization of Highly-Constrained, Multi-Modal Interplanetary Trajectories Using a Novel Stochastic Search Technique (United States)

    Englander, Arnold C.; Englander, Jacob A.


    Interplanetary trajectory optimization problems are highly complex and are characterized by a large number of decision variables and equality and inequality constraints as well as many locally optimal solutions. Stochastic global search techniques, coupled with a large-scale NLP solver, have been shown to solve such problems but are inadequately robust when the problem constraints become very complex. In this work, we present a novel search algorithm that takes advantage of the fact that equality constraints effectively collapse the solution space to lower dimensionality. This new approach walks the filament'' of feasibility to efficiently find the global optimal solution.

  11. Signatures of interplanetary transients behind shocks and their associated near-surface solar activity

    Directory of Open Access Journals (Sweden)

    S. Bravo

    Full Text Available Interplanetary transients with particular signatures different from the normal solar wind have been observed behind interplanetary shocks and also without shocks. In this paper we have selected four well-known transient interplanetary signatures, namely: magnetic clouds, helium enhancements and bidirectional electron and ion fluxes, found in the solar wind behind shocks, and undertaken a correlative study between them and the corresponding solar observations. We found that although commonly different signatures appear in a single interplanetary transient event, they are not necessarily simultaneous, that is, they may belong to different plasma regions within the ejecta, which suggests that they may be generated by complex processes involving the ejection of plasma from different solar regions. We also found that more than 90% of these signatures correspond to cases when an Hα flare and/or the eruption of a filament occurred near solar central meridian between 1 and 4 days before the observation of the disturbance at 1 AU, the highest association being with flares taking place between 2 and 3 days before. The majority of the Hα flares were also accompanied by soft X-ray events. We also studied the longitudinal distribution of the associated solar events and found that between 80% and 90% of the interplanetary ejecta were associated with solar events within a longitudinal band of ±30° from the solar central meridian. An east-west asymmetry in the associated solar events seems to exist for some of the signatures. We also look for coronal holes adjacent to the site of the explosive event and find that they were present almost in every case.

    Key words. Interplanetary physics · Interplanetary shocks · Solar wind plasma · Solar physics · Flares and mass ejections


    International Nuclear Information System (INIS)

    Vincent, Frédéric E.; Quémerais, Eric; Koutroumpa, Dimitra; Katushkina, Olga; Izmodenov, Vladislav; Ben-Jaffel, Lotfi; Harris, Walter M.; Clarke, John


    Observations of interstellar helium atoms by the Interstellar Boundary Explorer (IBEX) spacecraft in 2009 reported a local interstellar medium (LISM) velocity vector different from the results of the Ulysses spacecraft between 1991 and 2002. The interplanetary hydrogen (IPH), a population of neutrals that fills the space between planets inside the heliosphere, carries the signatures of the LISM and its interaction with the solar wind. More than 40 yr of space-based studies of the backscattered solar Lyα emission from the IPH provided limited access to the velocity distribution, with the first temporal evolution map of the IPH line-shift during solar cycle 23. This work presents the results of the latest IPH observations made by the Hubble Space Telescope's Space Telescope Imaging Spectrograph during solar cycle 24. These results have been compiled with previous measurements, including data from the Solar Wind Anisotropies instrument on the Solar and Heliospheric Observatory. The whole set has been compared to physically realistic models to test both sets of LISM physical parameters as measured by Ulysses and IBEX, respectively. This comparison shows that the LISM velocity vector has not changed significantly since Ulysses measurements


    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Frédéric E.; Quémerais, Eric; Koutroumpa, Dimitra [Université Versailles St.-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CRNS/INSU, LATMOS-IPSL, 11 boulevard d' Alembert, 78280 Guyancourt (France); Katushkina, Olga; Izmodenov, Vladislav [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Ben-Jaffel, Lotfi [UPMC Univ. Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Harris, Walter M. [University of Arizona, Lunar and Planetary Laboratory, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Clarke, John [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)


    Observations of interstellar helium atoms by the Interstellar Boundary Explorer (IBEX) spacecraft in 2009 reported a local interstellar medium (LISM) velocity vector different from the results of the Ulysses spacecraft between 1991 and 2002. The interplanetary hydrogen (IPH), a population of neutrals that fills the space between planets inside the heliosphere, carries the signatures of the LISM and its interaction with the solar wind. More than 40 yr of space-based studies of the backscattered solar Lyα emission from the IPH provided limited access to the velocity distribution, with the first temporal evolution map of the IPH line-shift during solar cycle 23. This work presents the results of the latest IPH observations made by the Hubble Space Telescope's Space Telescope Imaging Spectrograph during solar cycle 24. These results have been compiled with previous measurements, including data from the Solar Wind Anisotropies instrument on the Solar and Heliospheric Observatory. The whole set has been compared to physically realistic models to test both sets of LISM physical parameters as measured by Ulysses and IBEX, respectively. This comparison shows that the LISM velocity vector has not changed significantly since Ulysses measurements.

  14. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane


    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  15. Acceleration of energetic protons by interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.


    The acceleration of energetic protons in interplanetary magnetosonic fast-mode shock waves is studied via analytical modelling, numerical simulations and in situ observations. It is found that the only physical process by which energetic particles can gain energy from magnetosonic fast-mode shock waves is the one in which the particles cross the shock front several times during a shock encounter and the particle guiding centers gradient B and/or curvature drift at the shock front in the vector V x vector B electric field that exists in the shock rest frame. It is shown that it is physically impossible for charged particles to be Fermi accelerated by MHD shock waves or discontinuities. An analytical model is presented in which the particle-shock interaction is viewed in an intermediate frame in which the upstream and downstream vector V x vector B and partial derivative of vector B with respect to the electric fields are simultaneously zero. It is shown by numerical simulations that both reflected and transmitted particles conserve the first adiabatic invariant in the vector E = 0 frame for quasi-perpendicular shocks psi greater than or equal to 70 0 . The analytical predictions of post-shock energies and pitch angles and shock reflection and transmission coefficients are shown to be in excellent agreement with numerical simulation results. It is found that the 2 to 3 orders of magnitude increases in the Ca 1 MeV proton intensity frequently observed around the time of shock passage apparently cannot be produced by protons encountering the shocks just once, and that the average particle probably encounters the shocks several times prior to observation at Ca 1 MeV. The combination of vector V x vector B electric field mechanism and multiple shock encounters is shown to lead naturally to a differential energy spectrum that is an exponential in momentum

  16. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko


    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  17. OMV--Short Range Vehicle Concept (United States)


    In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), is shown without its main propulsion module. Essentially two propulsion vehicles in one, the OMV could be powered by a main propulsion module , or, in its short range vehicle configuration shown here, use its own hydrazine and cold gas thrusters. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  18. Results of investigations on the 0.004-scale model 74-0 of the configuration 4 (modified) space shuttle vehicle orbiter in the NASA/MSFC 14-by-14-inch trisonic wind tunnel (oa131) (United States)

    Nichols, M. E.


    The results of an oil flow boundary-layer visualization wind tunnel test of an 0.004-scale model of the Space Shuttle Vehicle Orbiter in the NASA/Marshall Space Flight Center 14-by-14-inch Trisonic Wind Tunnel are presented. The model was tested at Mach numbers from 0.60 through 2.75, at angles-of-attack from 0 through 25 degrees, and at unit Reynolds numbers from 5.0 to 7.0 million per foot. The test program involved still and motion picture photography of oil-paint flow patterns on the orbiter, during and immediately after tunnel flow, to determine areas of boundary layer separation and regions of potential auxiliary power unit exhaust recirculation during transonic and low supersonic re-entry flight.

  19. Robotic vehicle (United States)

    Box, W. Donald


    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  20. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service


    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service ( before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  1. Distributed Propulsion Vehicles (United States)

    Kim, Hyun Dae


    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  2. Space storms as natural hazards

    Directory of Open Access Journals (Sweden)

    L. I. Dorman


    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  3. Connected vehicle applications : safety. (United States)


    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  4. On the relationship between interplanetary coronal mass ejections and magnetic clouds

    Directory of Open Access Journals (Sweden)

    E. K. J. Kilpua


    Full Text Available The relationship of magnetic clouds (MCs to interplanetary coronal mass ejections (ICMEs is still an open issue in space research. The view that all ICMEs would originate as magnetic flux ropes has received increasing attention, although near the orbit of the Earth only about one-third of ICMEs show clear MC signatures and often the MC occupies only a portion of the more extended region showing ICME signatures. In this work we analyze 79 events between 1996 and 2009 reported in existing ICME/MC catalogs (Wind magnetic cloud list and the Richardson and Cane ICME list using near-Earth observations by ACE (Advanced Composition Explorer and Wind. We perform a systematic comparison of cases where ICME and MC signatures coincided and where ICME signatures extended significantly beyond the MC boundaries. We find clear differences in the characteristics of these two event types. In particular, the events where ICME signatures continued more than 6 h past the MC rear boundary had 2.7 times larger speed difference between the ICME's leading edge and the preceding solar wind, 1.4 times higher magnetic fields, 2.1 times larger widths and they experienced three times more often strong expansion than the events for which the rear boundaries coincided. The events with significant mismatch in MC and ICME boundary times were also embedded in a faster solar wind and the majority of them were observed close to the solar maximum. Our analysis shows that the sheath, the MC and the regions of ICME-related plasma in front and behind the MC have different magnetic field, plasma and charge state characteristics, thus suggesting that these regions separate already close to the Sun. Our study shows that the geometrical effect (the encounter through the CME leg and/or far from the flux rope center does not contribute much to the observed mismatch in the MC and ICME boundary times.

  5. The Worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) Network October 2016 Observing Campaign: Initial WIPSS Data Analyses (United States)

    Bisi, M. M.; Fallows, R. A.; Jackson, B. V.; Tokumaru, M.; Gonzalez-Esparza, A.; Morgan, J.; Chashei, I. V.; Mejia-Ambriz, J.; Tyul'bashev, S. A.; Manoharan, P. K.; De la Luz, V.; Aguilar-Rodriguez, E.; Yu, H. S.; Barnes, D.; Chang, O.; Odstrcil, D.; Fujiki, K.; Shishov, V.


    Interplanetary Scintillation (IPS) allows for the determination of velocity and a proxy for plasma density to be made throughout the corona and inner heliosphere. Where sufficient observations are undertaken, the results can be used as input to the University of California, San Diego (UCSD) three-dimensional (3-D) time-dependent tomography suite to allow for the full 3-D reconstruction of both velocity and density throughout the inner heliosphere. By combining IPS results from multiple observing locations around the planet, we can increase both the temporal and spatial coverage across the whole of the inner heliosphere and hence improve forecast capability. During October 2016, a unique opportunity arose whereby the European-based LOw Frequency ARray (LOFAR) radio telescope was used to make nearly four weeks of continuous observations of IPS as a heliospheric space-weather trial campaign. This was expanded into a global effort to include observations of IPS from the Murchison Widefield Array (MWA) in Western Australia and many more observations from various IPS-dedicated WIPSS Network systems. LOFAR is a next-generation low-frequency radio interferometer capable of observing in the radio frequency range 10-250 MHz, nominally with up to 80 MHz bandwidth at a time. MWA in Western Australia is capable of observing in the 80-300 MHz frequency range nominally using up to 32 MHz of bandwidth. IPS data from LOFAR, ISEE, the MEXican Array Radio Telescope (MEXART), and, where possible, other WIPSS Network systems (such as LPI-BSA and Ooty), will be used in this study and we will present some initial findings for these data sets. We also make a first attempt at the 3-D reconstruction of multiple pertinent WIPSS results in the UCSD tomography. We will also try to highlight some of the potential future tools that make LOFAR a very unique system to be able to test and validate a whole plethora of IPS analysis methods with the same set of IPS data.

  6. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. (United States)

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank


    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  7. Effects of future space vehicle operations on a single day in the National Airspace System : a fast-time computer simulation. (United States)


    This document describes the objectives, methods, analyses, and results of a study used to quantify the effects of future space operations : on the National Airspace System (NAS), and to demonstrate the possible benefits of one proposed strategy to mi...

  8. ParkMaster: An in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments


    Grassi, Giulio; Bahl, Paramvir; Jamieson, Kyle; Pau, Giovanni


    International audience; We present the design and implementation of ParkMaster, a system that leverages the ubiquitous smartphone to help drivers find parking spaces in the urban environment. ParkMas-ter estimates parking space availability using video gleaned from drivers' dash-mounted smartphones on the network's edge, uploading analytics about the street to the cloud in real time as participants drive. Novel lightweight parked-car localization algorithms enable the system to estimate each ...

  9. Space space space

    CERN Document Server

    Trembach, Vera


    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  10. NASA's Space Launch System Program Update (United States)

    May, Todd; Lyles, Garry


    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software

  11. Relationship between the amplitude of geomagnetic Pc 3 pulsations and parameters of the interplanetary medium

    International Nuclear Information System (INIS)

    Kuklin, G.V.; Parkhomov, V.A.; Vinogradov, P.A.


    The dependence of Pc 3 amplitudes (T=10-45 s) on solar wind velocity, particle density, components of the interplanetary magnetic field (IMF) and on the Mach-Alfven number (Msub(A)) are discussed. By means of a statistical multivariate analysis of experimental data it has been shown that the pulsation amplitude is most closely connected with the solar wind velocity. A significant but less close correlation was found between Pc 3 amplitudes and the components of the interplanetary magnetic field vector in the ecliptic plane. The nature of the relationship of Pc 3 with solar wind and IMF parameters are discussed. (author)

  12. 12th Reinventing Space Conference

    CERN Document Server


    The 2014 Reinventing Space conference presented a number of questions in the context of a constantly innovating space industry, from addressing the future of global cooperation, investigating the impact of cuts in US government spending on the private space sector, and probing the overall future of the commercial launch sector. Space tourism and new technology promise the revival of interest in space development (the Apollo Era was the first period of intense space activity and growth). The need to create dramatically lower cost, responsive and reliable launch systems and spacecraft has never been more vital. Advances in technology are allowing smaller and cheaper satellites to be orbited - from cubesats to nanosatellites to femtosatellites. Thanks to more efficient new launch possibilities, low cost access to space is becoming ever more achievable. Commercial companies and countries are targeting the industry with new funding. Organised by the British Interplanetary Society, the presentations at this confere...

  13. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades (United States)

    Haloulakos, V. E.


    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  14. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)



    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  15. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  16. Automation for Vehicle and Crew Operations, Phase I (United States)

    National Aeronautics and Space Administration — Modern space systems such as the International Space Station (ISS) and the proposed Constellation vehicles and habitats are complex entities with hundreds of...

  17. Solar cosmic ray hazard to interplanetary and earth-orbital space travel (United States)

    Yucker, W. R.


    A statistical treatment of the radiation hazards to astronauts due to solar cosmic ray protons is reported to determine shielding requirements for solar proton events. More recent data are incorporated into the present analysis in order to improve the accuracy of the predicted mission fluence and dose. The effects of the finite data sample are discussed. Mission fluence and dose versus shield thickness data are presented for mission lengths up to 3 years during periods of maximum and minimum solar activity; these correspond to various levels of confidence that the predicted hazard will not be exceeded.

  18. A method simulating random magnetic field in interplanetary space by an autoregressive method

    International Nuclear Information System (INIS)

    Kato, Masahito; Sakai, Takasuke


    With an autoregressive method, we tried to generate the random noise fitting in with the power spectrum which can be analytically Fouriertransformed into an autocorrelation function. Although we can not directly compare our method with FFT by Owens (1978), we can only point out the following; FFT method should determine at first the number of data points N, or the total length to be generated and we cannot generate random data more than N. Because, beyond the NΔy, the generated data repeats the same pattern as below NΔy, where Δy = minimum interval for random noise. So if you want to change or increase N after generating the random noise, you should start the generation from the first step. The characteristic of the generated random number may depend upon the number of N, judging from the generating method. Once the prediction error filters are determined, our method can produce successively the random numbers, that is, we can possibly extend N to infinite without any effort. (author)


    National Aeronautics and Space Administration — The original Data Set Name was MST5IMF. The data was delivered personally by Oyama. The component values indicate a crossing of the neutral sheet. The magnetic field...

  20. Laser Communications Subsystem for Interplanetary CubeSats (United States)

    National Aeronautics and Space Administration — This task will develop a flight terminal prototype of a 1.5 U lasercom terminal. The innovation relies heavily on a “reduced complexity” flight terminal with sound...