WorldWideScience

Sample records for international nuclear power

  1. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  2. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  3. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  4. International nuclear power status 1994

    International Nuclear Information System (INIS)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au)

  5. Nuclear power - international and national dimensions

    International Nuclear Information System (INIS)

    Yanev, Ya.

    1994-01-01

    A strong internationalization of nuclear problems is observed recently. International links have acted as a powerful force for improvement of safety standards and plant performance. The prospects for nuclear industry, its safety and excellent operation, its acceptance and tolerance from society in general will strongly influence the future of nuclear power generation in Bulgaria. The most important problems of Bulgarian nuclear energy are: implementation of safety upgrading program; building and operating new nuclear units; developing infrastructure which will permit safe and reliable operation of the existing units and solve the fuel cycle problems in a reliable and acceptable by the society manner. (I.P.)

  6. International nuclear power status 2002; International kernekraftstatus 2002

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  7. International nuclear power status 2001; International kernekraftstatus 2001

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  8. International nuclear power status 1999; International kernekraftstatus 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Oelgaard, P.L. [eds.

    2000-03-01

    This report isthe sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  9. International nuclear power status 2000; International kernekraftstatus 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. [eds.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  10. International nuclear power status 1994; International kernekraftstatus 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L. [eds.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au).

  11. Nuclear power proliferation. Problems of international control

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B [International Inst. for Environment and Development, London (UK)

    1977-09-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power.

  12. Nuclear power proliferation: problems of international control

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B

    1977-09-01

    Some of the present limitations of international institutions in achieving control and management of nuclear power are reviewed and appraised. The nuclear industry is experiencing a multiple crisis in which economic, technical, and ethical aspects are blended. Nuclear hardware costs have increased faster than inflation in the last five years, largely as a result of delays in program completion arising from reactor and fuel-cycle safety problems. Meanwhile, there is a widespread and growing doubt, partly as a result of this cost escalation, as to whether capital will be available to finance the electricity-generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall--but particularly nuclear--energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels that could reassure the concerned public and the energy industries.

  13. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2011-01-01

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  14. Nuclear power internationally, status and trends

    International Nuclear Information System (INIS)

    Laue, H.J.

    1988-01-01

    The recent events have stimulated the discussion concerning the human factor in nuclear engineering. Without a guarantee of the reliability and responsibility of everybody concerned, both directly and indirectly, the future of nuclear power will look bleak in an increasing number of countries. The present status and probable future development of nuclear power are outlined, and general trends are discussed. The future use of nuclear power will be concentrated in countries of high political stability which can assure safety, availability and economic efficiency. (orig.) [de

  15. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    permitting process in the country as well as important planned (or recently introduced) changes in the relevant legislation. The analysis also presents the role of the regulating authorities as well as other key actors in the process, and outlines the different steps of the permitting processes, including the relationships between the different permits. We also address the responsibility for the radioactive waste and dismantling, and how these issues come into the licensing process. Important differences and similarities across the various countries are highlighted, with special emphasis on parallels to the Swedish legislation. The report then analyzes a number of important legal and political issues of a principal nature in the permitting of nuclear power plants. We compare how the different countries differ on these grounds, and also emphasize some overall lessons and practical experiences of nuclear power development internationally. Three broad issues are discussed. The first of these concerns the notion of nuclear power as a highly political issue, and we analyze the role of the public opinion, the extent to which the regulatory process is independent of policy decisions, as well as the allocation of political power between the national and local levels in the respective countries. Not the least the last issue has been in focus in some of the countries that have reformed their permitting process, and there exist significant inter-country differences. The second issue concerns how a number of countries - most notably the USA and Great Britain - have attempted to streamline their plant permitting processes for new nuclear power. These reforms are characterized by, for instance, a combined construction and operation license, the selection (and exclusion) of geographical locations for new installations, as well as attempts to achieve standardizations of nuclear reactor designs. We pay particular attention to the issues of reactor design standardization, including the scope

  16. Nuclear power needs international solidarity and cooperation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A report by Dr. Blix, director-general of IAEA, to the General Assembly of the United Nations is summarized. Some 15% of the world's entire power requirements are produced from nuclear energy. Thorough inspections, carried out at regular intervals, have not detected removal of any of this nuclear material for military purposes. Cooperation between governments is essential to prevent accidents and improve the safety of nuclear technology. (J.S.)

  17. Recent international trends on nuclear power

    International Nuclear Information System (INIS)

    Endo, Tetsuya

    2000-01-01

    Nuclear power generation is now sluggish from economical reason or sometimes together from political reason, except some exceptions in Western Europe, and U.S.A. It tends now to keep its present state or to decrease gradually as cannot say to be out of nuclear power generation. At these areas, anxiety on energy security becomes lower at present, and economics under liberation of market is preceded to everything because of without anxiety on environmental theory at a viewpoint of the global warming protection, either. However, when considering on finiteness of fossil fuel and long-term countermeasure of the global warming protection, no longer that any break-through on energy technology will form in future, it seems to occur that nuclear power would be re-recognized. For the Renaissance of the nuclear power, it is essential to correspond to some problems shown as follows: processing and disposal of high level radioactive wastes, upgrading of economics containing its initial cost, safe operation, maintenance of scientific technology standard on nuclear power, and nuclear non-scattering. And, on the energy problem, it is essential to recognize that Japan is a nation with a number of differences in its circumstance from those in U.S.A. and European nations. (G.K.)

  18. Iranian nuclear power and international law

    International Nuclear Information System (INIS)

    Aivo, G.

    2006-01-01

    Does the Iranian programme violate the Non-Proliferation Treaty (NPT)? Iran is a signatory to the NPT and whilst certainly within its rights in developing civil nuclear energy, this is not so for the development of nuclear weapons in order to become a regional power which Iran is already not far from becoming. In the face of diverging opinions among the major interested parties (including the UN, United States, EU, Russia and China), how might this crisis be resolved? (author)

  19. Availability estimation of international nuclear power plants

    International Nuclear Information System (INIS)

    Ribeiro, A.A.T.; Muniz, A.A.

    1978-11-01

    Results are presented of investigation on the factors influencing the availability of nuclear power plants of the PWR type; an estimation of expected values for the availability factor and the probability of its having lower values than a certain specified value are given. (Author) [pt

  20. Prospects for nuclear power international after Fukushima

    International Nuclear Information System (INIS)

    Kidd, Steve

    2012-01-01

    Full-text: The Fukushima accident in March 2011 has imposed a number of significant challenges for the world nuclear industry, in terms of enhancing safety at both existing and prospective reactor sites and in regaining public trust for its operations. Yet despite setbacks in a number of countries (notably Germany in addition to Japan itself) the overall outlook for nuclear power around the world is little changed from before the accident. The front end of the nuclear fuel cycle is fully internationalised and operates as a series of competitive markets, guaranteeing economic supply to the operating reactors around the world. Although new reactor types with potentially different fuelling modes are on the horizon, nothing much is likely to change before 2030. The back end is, however, comparatively less developed and there remain substantial uncertainties how it will develop in the future. Technical solutions exist, but governments have failed to grasp realities in used fuel management and waste disposal. Although many commentators argue that low levels of public acceptance are the prime reason for nuclear power failing to take a more substantial part of the energy mix, the root cause is relatively poor economics (at least in much of the Western world). Plants cost too much to build, essentially taking too long to complete, by comparison with rival generating technologies. Additionally, cheap natural gas has become a barrier in certain markets. The risk profile of nuclear projects therefore makes it difficult to attract financing but there are some possible solutions to these issues. (author)

  1. International status and prospects of nuclear power

    International Nuclear Information System (INIS)

    2008-12-01

    Nuclear power plants are primarily used for electricity production. Currently, 439 reactors are operating in 30 countries and are contributing approximately 14% to global electricity generation. The share of nuclear in global electricity generation has declined slightly in recent years. However, the total amount of nuclear electricity generation is increasing as plant availability, power uprating, and new plants offset the loss from older plants that are being shut down. Due to the economic benefits of continuing operation of a plant after the capital cost has been repaid, and with careful plant life management assessments, a number of reactors have had their operating licences extended for an additional 20 years. Light water reactors (LWRs) are by far the most prevalent reactors in use today, followed by pressurized heavy water reactors, gas cooled reactors and, currently, two fast reactors. The safety and reliability of nuclear facilities have been steadily improving. Strong networks among countries with operating nuclear power plants have enabled operators to learn from each other and to address common issues. Ongoing efforts have continuously strengthened safety culture and regulatory oversight. The current available supply of uranium meets the demand. Current enrichment and fuel fabrication capacities are adequate to meet the expected demand for the next decade. There is also substantial experience in the storage and reprocessing of spent fuel and the treatment of high level waste. Existing reprocessing capacity is adequate to meet present demand. Most spent fuel continues, however, to be stored awaiting a decision on future policy, i.e. whether to reprocess and recycle it or to dispose of it as waste. To date, no ultimate disposal facilities are available. Only a few countries currently use civil nuclear energy for purposes other than electricity production - mainly for seawater desalination and district heating - and even then only to a limited extent

  2. Ukrainian Nuclear Society International Conference 'Strategy of the nuclear power development: The choice of Ukraine'

    International Nuclear Information System (INIS)

    Vishnevskij, I.N.; Trofimenko, A.P.

    2001-01-01

    Abstracts of the papers presented at the International Conference of the Ukrainian Nuclear Society 'Strategy of the nuclear power development'. The following problems are considered: present situation with the nuclear power and its safety; nuclear fuel cycle development; waste and spent nuclear fuel management; reactors' decommissioning issues; modernization of the NPP with WWER reactors; future reactors; economics of nuclear power; safety culture; legal and regulatory framework, state nuclear regulatory control; PR in nuclear power industry; staff training

  3. Progress of international cooperation of nuclear power generation

    International Nuclear Information System (INIS)

    Sasaki, Sadaaki; Ishikawa, Hidetaka; Eda, Hisao; Noda, Hiroshi; Kobayashi, Ichiro; Kawahara, Akira; Nagano, Akira

    1999-01-01

    International cooperation on nuclear power technology under promotion of the Japan Electric Power Information Center can be divided roughly to two items: one is an assistant project of Japan Keirin Association and another is an international training of operation management and so forth on nuclear power plant trusted by Ministry of International Trade and Industry. Among upgrading needs of technical cooperation on nuclear power to the developing nations, the electric companies were received a request on private cooperation by the Ministry of International Trade and Industry. In 1985, it was decided that the nuclear power technical cooperation through an subsidy project of the Japan Keirin Association was advanced mainly by every electric companies as a window of the Japan Electric Power Information Center in Japan Electric Industry Association. And, by receiving another request, the Japan Electric Power Information Center began an international training on operation management and so one of the nuclear power plant since October, 1992. Here were introduced outlines of both technical cooperation on nuclear power and international training on operation management. (G.K.)

  4. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  5. Nuclear power and international cooperation - perceptions of the third world

    International Nuclear Information System (INIS)

    Khan, M.A.

    1983-01-01

    The views of the Third World that need to be given consideration in international nuclear policy-making are presented in the following topical sections: background summary of developing countries energy needs and sources, incentives for nuclear power development in developing countries, the need for nuclear cooperation, the Non-proliferation Treaty, erosion of confidence of the recipient states in the reliability of international cooperation agreements, and perceptions of the Third World regarding energy and proliferation

  6. U.K. policy responses to international influences - nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1978-01-01

    An account is given of U.K. participation in international discussions directed towards the safe development and application of nuclear power. Particular attention is given to the International Fuel Cycle Evaluation (INFCE), which is stated to be looking at the whole question of proliferation and the merits and disadvantages of a range of alternative fuel cycles and nuclear power strategies. A summary is also given of U.K. participation in work on radiological protection (through the I.C.R.P.) and radioactive waste disposal. International cooperation in research and development is mentioned. Public involvement in policy making is also discussed briefly. (U.K.)

  7. Energy supply, nuclear power, and the international energy situation

    International Nuclear Information System (INIS)

    Pierer, H. von

    1991-01-01

    The Chernobyl accident has greatly intensified the readiness for international cooperation on problems of reactor safety and for exchanges of operating experience. That accident was more than a regional event. If all psychological and political consequences are taken into account, its international significance is apparent. In principle, it demonstrated not the lack of safety of nuclear power plants generally, but rather that of the Soviet RBMK reactor line, which would not have been licensed in any Western country because of its inherent unsafety. In the long run, the worldwide acceptance of nuclear power can be regained and stabilized only by an open dialog and by international exchanges of experience. The pronounced growth of the world's population requires energy policy to think beyond national frontiers. The rising energy requirement permits of no other decision than to exploit all technically feasible and economically viable as well as ecologically tolerable sources of energy. This includes nuclear power as well as solar energy. (orig.) [de

  8. Proceedings of the international nuclear power plant aging symposium

    International Nuclear Information System (INIS)

    Beranek, A.

    1989-03-01

    This report presents the proceedings of the International Nuclear Power Plant Aging Symposium that was held at the Hyatt Regency Hotel in Bethesda, Maryland, on August 30-31 and September 1, 1988. The Symposium was presented in cooperation with the American Nuclear Society, the American Society of Civil Engineers, the American Society of Mechanical Engineers, and the Institute of Electrical and Electronics Engineers. There were approximately 550 participants from 16 countries at the Symposium

  9. Internal exposure in French nuclear power plants : 10 years on

    International Nuclear Information System (INIS)

    Chevalier, C.; Gonin, M.

    1992-01-01

    Collectively speaking, internal exposure in French nuclear power plants is negligible. However, some quite high individual doses have been recorded. The details of cases of significant contamination are presented here in table form. A brief discussion of a few particular cases underscores the problems involved. (author)

  10. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  11. International requirements for life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Wernicke, Robert

    2009-01-01

    Lifetime extension or long-term operation of nuclear facilities are topics of great international significance against the backdrop of a fleet of nuclear power plants of which many have reached 2/3 of their planned life. The article deals with the conditions for, and the specific requirements of, seeking long-term operation of nuclear power plants as established internationally and on the basis of IAEA collections. Technically, long-term operation is possible for many of the nuclear power plants in the world because, normally, they were built on the basis of conservative rules and regulations and, as a consequence, incorporate significant additional safety. Application of requirements to specific plants implies assessments of technical safety which show that conservative design philosophies created reserves and, as a consequence, there is an adequate level of safety also in long-term plant operation. For this purpose, the technical specifications must be revised, necessary additions made, and (international) operating experience taken into account and management of aging established. Two examples are presented to show how the approach to long-term plant operation is put into practice on a national level. (orig.)

  12. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A wide range of issues relevant to the innovative technologies for nuclear power cycle and nuclear power were addressed. The 7 sessions of the conference were entitled: (1) no title; (2) needs, prospects and challenges for innovation; (3) evolution of technical, social, economic and political conditions; (4) panel on challenges for the deployment of innovative technologies; (5) international programmes on innovative nuclear systems; (6) innovative nuclear systems and related R and D programmes; (7) concluding panel.

  13. Nuclear power issue as seen by the International Energy Agency

    International Nuclear Information System (INIS)

    Kelly, P.

    1976-01-01

    An account is given of the work of the International Energy Agency towards reducing the dependence of member states on imported oil. Forecasts of energy consumption are discussed, and the contributions that could be made by various energy sources, and by energy conservation, are examined. It is concluded that nuclear power is essential to a reduced dependence policy. The constraints on full realization of national nuclear programmes are stated as follows: licensing delays, waste disposal, financing, uranium supply, and fuel services. Ways in which these could be overcome by national and international action are suggested. Reference is made to the work of other atomic energy agencies: IAEA and OECD Nuclear Energy Agency. (U.K.)

  14. Internalization of external costs for nuclear power in Romania

    International Nuclear Information System (INIS)

    Andrei, Veronica; Ghita, Sorin; Ionita, Gheorghe; Gheorghe-Sorescu, Antonius; Glodeanu, Florin

    2006-01-01

    , for that impact. Externality is one type of failure that causes inefficiency.' Like other energy sources, nuclear energy has risks and benefits that need to be fully recognized and assessed to evaluate its external costs. The external costs of nuclear energy include: radioactive waste disposal, future financial liabilities arising from decommissioning and dismantling of nuclear facilities, health and environmental impact of radioactivity releases in routine operation and effects of severe accidents. Beyond the competitive generation costs of existing nuclear power plants in most markets, benefits of nuclear power, that are not reflected currently in prices, include: security of supply, cost stability and the quasi absence of atmospheric emissions of greenhouse gases, other pollutant gases and particulates. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. This paper presents a few aspects on externalities of nuclear power and current approach on the internalization of external costs on radioactive waste disposal and decommissioning of the Cernavoda Nuclear Power Plant. The paper contents as follows: 1. Introduction; 2. External costs; 3. Positive externalities of nuclear electricity; 4. Actions relevant to internalize future liabilities for nuclear power in Romania; 5. Conclusions. In conclusion the capital and operating costs of nuclear power plants already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. If externalities such as: security of supply, cost stability and broad economic impacts on employment and balance of trade would be internalized, the effect would be positive for nuclear energy. In Romania, decommissioning and radioactive wastes

  15. The realities of nuclear power: international economic and regulatory experience

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1988-01-01

    The book is aimed at the energy industry, energy ministries, nuclear power organisations and national agencies. A description is given of a framework for evaluating nuclear power technology development, along with the economic evaluation of nuclear power. The contrasting records are examined of four of the major users of nuclear power - the USA, the Federal Republic of Germany, Canada and France, and factors are identified which have been important in determining the success or otherwise of each of the four nuclear power programmes. Finally the future of nuclear power is discussed. (U.K.)

  16. Korean views on needs for international cooperation in development and development of advanced nuclear power systems

    International Nuclear Information System (INIS)

    Yoon, Young Ku; Lee, Byong Whi; Shim, Chang Saeng.

    1993-01-01

    Korea methodology and experience in international cooperation in the field of construction and operation of nuclear power plants as well as Korean views on development and deployment of advanced nuclear nuclear power systems are presented

  17. Cost related to nuclear power plants: the international experience

    International Nuclear Information System (INIS)

    1995-03-01

    This report about the international costs of nuclear electricity generations is divided in two distinct parts: the first one shows the competitiveness of the main sources of electricity generation for base load operation according to studies carried on by OECD and UNIPEDE since 1983; the second one discusses the most recent OECD study about the different types of power plants to be constructed in its number states, based on the experience of each country and the technology evolution of the different fuels used. (F.E.). 4 refs, 2 figs, 27 tab

  18. Nuclear power. Nuclear fuel cycle and waste management. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-02-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1990-2002. It gives a short abstract of these publications along with contents and their costs

  19. International Nuclear Technology Forum: Future prospects of nuclear power plants and Turkey

    International Nuclear Information System (INIS)

    1994-01-01

    The document includes 19 papers presented at the 'International Nuclear Technology Forum: Future Prospects of Nuclear Power Plants in Turkey', held between 12-15 October 1993 in Ankara (Turkey). A separate abstract was prepared for each paper prepared for each paper

  20. Opposition to nuclear power: a review of international experience

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, J; Huggett, C

    1976-12-01

    This paper examines the rise of opposition to nuclear power in the USA, the Federal Republic of Germany, France, Sweden, and Japan. It explores the course that opposition has taken, the issues on which it has focused, the factors that have influenced it, and the problems it poses for public decision making. Opinions differ about the causes of nuclear opposition. Indeed, it is probable that a variety of factors have contributed, including cultural and political values regarding continued economic and energy growth and fears of deliberate large-scale violence with the spread of radioactive materials, the protest movements against nuclear weapons testing, the upsurge in environmental concern in the 1960s, the movement towards greater social responsibility in science, and a growing distrust of ''the Establishment''--particularly in the USA because of Watergate. The upsurge in concern was reflected in greater attention to environmental matters in the mass media, schools, universities, and the international agencies. It is important to recognize that this concern cuts across conventional left-right divisions of politics. Radicals, communists, and conservatives can be found among both the proponents and the critics. These difficulties facing the policy maker are accentuated by the amorphous nature both of the opposition and the issues which have received attention and by the evidence of many opinion surveys: that more people are in favor of nuclear power than oppose it, but the majority are uncertain and do not understand the issues. For purposes of analysis it is useful to distinguish between three types of opposition--nuclear-specific, site-specific, and that related to planning and consent procedures. (MCW)

  1. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  2. Training of nuclear power professionals in international courses

    International Nuclear Information System (INIS)

    Kanter, M.A.

    1979-01-01

    Argonne National Laboratory has presented nine international courses in the IAEA Nuclear Power Training Program. Five have been overview courses fifteen weeks in length and four have been specialized courses ranging from five to nine weeks. A total of 286 participants from 38 countries have been traned in these courses. The Argonne courses comprise approximately 40% of the Agency's program, which is also carried out in France, Spain, and the Federal Republic of Germany. The two types of overview courses, one covering the planning phase of a project and the other the construction and operation phase, surveyed all aspects of nuclear power programs--economic, managerial, regulatory, and technical. Experience has shown that the majority of the participants in those courses had concentrated interest in specialized areas. Specialized courses have now been offered on five specific subjects. Based on past course evaluations by our staff, 37% of those trained were judged capable of making significant contribution to their country's nuclear program, 44% were judged potentially capable of such contributions, 17% were capable of only limited contribution, and 2% were inappropriately selected. Participation in international training has been very useful because of the exposure to working experts and because of the interaction between participants from the different developing countries. It is clear that such courses of moderate length sometimes attract senior management personnel, but in general can best be directed to responsible staff at middle management levels. More junior staff would be more effectively trained at the national level. Preliminary results of a Center survey of those participants who were trained two years ago have confirmed these conclusions

  3. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  4. International problems connected with the introduction of nuclear power

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1978-01-01

    In this book, problems of nuclear energy are seen from the international point of view, stress being laid on the role played by the FRG in the international nuclear energy discussion. The FRG is among the non-nuclear-aim-countries, the one with the highest development level of nuclear energy technique, with an essential responsibility and an obligation to support the world-wide thought of not-expanding. The FRG could make an important contribution to finding back to a world-wide solid nuclear order and an atmosphere of confidence. (GL) [de

  5. Power uprates in nuclear power plants: international experiences and approaches for implementation

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    2008-01-01

    The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants

  6. Nuclear power, nuclear fuel cycle and waste management, 1986-1999. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2000-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power and nuclear fuel cycle and waste management and issued during the period of 1986-1999. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  7. Experience of international projects implementation at Leningrad Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Zavialov, L.A. [Leningrad Nuclear Power Plant ' Rosenergoatom' , Leningrad Region, 188540, Sosnovy Bor (Russian Federation)

    2008-07-01

    During the period of 1992-2007 more than 60 different projects of different specificity and budget have been successfully implemented in frames of Technical Assistance for the Commonwealth of Independent States (TACIS) Program, Project financed by European Bank for Reconstruction and Development (EBRD), as well as in frames of Agreements on Cooperation between Leningrad NPP and Radiation and Nuclear safety Authority of Finland (STUK) and Swedish Nuclear Power Inspectorate, International Co-operation Program SKI-ICP(SIP). All these projects were directed to the safety increasing of the Leningrad NPP reactor, type RBMK-1000. Implementation of the technical aid projects has been performed by different foreign companies such as Aarsleff Oy, (Finland), SGN (France), Nukem (Germany), Jergo AB (Sweden), SABAROS (Switzerland), Westinghouse (USA), Nordion (Canada), Bruel and Kjer (Denmark), Data System and Solutions (UK), SVT Braundshuz (Germany) WICOTEC (Sweden), Studsvik (Sweden) and etc. which has enough technical and organizational experience in implementation of such projects, as well as all necessary certificates and licenses for works performance. Selection of a Contractor/Supplier for a joined work performance has been carried out in accordance with the tender procedure, technical specification and a planned budget. Project financing was covered by foreign Consolidated Funds and Authorities interested in increasing of Leningrad NPP safety, which have valid intergovernmental agreements with Russian Federation on the technical assistance to be provided to the NPPs. At present time all joined international projects implemented at Leningrad NPP are financed jointly with LNPP. All projects can be divided into technical aid projects connected with development and turnkey implementation of systems and complexes and projects for supply of equipment which has no analogues in Russia but successfully used all over the world. Positive experience of the joined projects

  8. Experience of international projects implementation at Leningrad Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zavialov, L.A.

    2008-01-01

    During the period of 1992-2007 more than 60 different projects of different specificity and budget have been successfully implemented in frames of Technical Assistance for the Commonwealth of Independent States (TACIS) Program, Project financed by European Bank for Reconstruction and Development (EBRD), as well as in frames of Agreements on Cooperation between Leningrad NPP and Radiation and Nuclear safety Authority of Finland (STUK) and Swedish Nuclear Power Inspectorate, International Co-operation Program SKI-ICP(SIP). All these projects were directed to the safety increasing of the Leningrad NPP reactor, type RBMK-1000. Implementation of the technical aid projects has been performed by different foreign companies such as Aarsleff Oy, (Finland), SGN (France), Nukem (Germany), Jergo AB (Sweden), SABAROS (Switzerland), Westinghouse (USA), Nordion (Canada), Bruel and Kjer (Denmark), Data System and Solutions (UK), SVT Braundshuz (Germany) WICOTEC (Sweden), Studsvik (Sweden) and etc. which has enough technical and organizational experience in implementation of such projects, as well as all necessary certificates and licenses for works performance. Selection of a Contractor/Supplier for a joined work performance has been carried out in accordance with the tender procedure, technical specification and a planned budget. Project financing was covered by foreign Consolidated Funds and Authorities interested in increasing of Leningrad NPP safety, which have valid intergovernmental agreements with Russian Federation on the technical assistance to be provided to the NPPs. At present time all joined international projects implemented at Leningrad NPP are financed jointly with LNPP. All projects can be divided into technical aid projects connected with development and turnkey implementation of systems and complexes and projects for supply of equipment which has no analogues in Russia but successfully used all over the world. Positive experience of the joined projects

  9. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  10. Using international experience to improve performance of nuclear power plants

    International Nuclear Information System (INIS)

    Calori, F.; Csik, B.J.; Strickert, R.J.

    1989-01-01

    Information on performance achievements will assist nuclear power plant operating organizations to develop initiatives for improved or continued high performance of their plants. The paper describes the activities of the IAEA in reviewing and analysing the reasons for good performance by contacting operating organizations identified by its Power Reactor Information System as showing continued good performance. Discussions with operations personnel of utilities have indicated practices which have a major positive impact on good performance and which are generally common to all well performing organizations contacted. The IAEA also promotes further activities directed primarily to the achievement of standards of excellence in nuclear power operation. These are briefly commented

  11. Fukushima Nuclear Accident, the Third International Severe Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Rashad, S.M.

    2013-01-01

    Japan is the world's third largest power user. Japan's last remaining nuclear reactor shutdown on Saturday 4 Th of May 2012 leaving the country entirely nuclear free. All of 50 of the nation's operable reactors (not counting for the four crippled reactors at Fukushima) are now offline. Before last year's Fukushima nuclear disaster, the country obtained 30% of its energy from nuclear plants, and had planned to produce up to 50% of its power from nuclear sources by 2030. Japan declared states of emergency for five nuclear reactors at two power plants after the units lost cooling ability in the aftermath of Friday 11 March 2011 powerful earthquake. Thousands of (14000) residents were immediately evacuated as workers struggled to get the reactors under control to prevent meltdowns. On March 11 Th, 2011, Japan experienced a sever earthquake resulting in the shutdown of multiple reactors. At Fukushima Daiichi site, the earthquake caused the loss of normal Ac power. In addition it appeals that the ensuing tsunami caused the loss of emergency Ac power at the site. Subsequent events caused damage to fuel and radiological releases offsite. The spent fuel problem is a wild card in the potentially catastrophic failure of Fukushima power plant. Since the Friday's 9.0 earthquake, the plant has been wracked by repeated explosions in three different reactors. Nuclear experts emphasized there are significant differences between the unfolding nuclear crisis at Fukushima and the events leading up to the Chernobyl disaster in 1986. The Chernobyl reactor exploded during a power surge while it was in operation and released a major cloud of radiation because the reactor had no containment structure around to. At Fukushima, each reactor has shutdown and is inside a 20 cm-thick steel pressure vessel that is designed to contain a meltdown. The pressure vessels themselves are surrounded by steel-lined, reinforced concrete shells. Chernobyl disaster was classified 7 on the International

  12. International conference: nuclear power for the 21 st century

    International Nuclear Information System (INIS)

    2005-01-01

    It is widely recognised that global energy demand will rise substantially during this century. The increased industrialization and urbanization of developing countries will produce large increases in energy demand in regions that currently have very low per capita energy use. This increasing demand for energy will need to be met in order to improve living standards for at least half of the world population and to reduce the economic imbalances between countries and regions. At the same time the use of fossil fuel based energy is identified as a major cause of environmental damage. The release of greenhouse gases from burning of fossil fuel in power stations and for transport is seen as a contributor to global warming. It is widely recognised that continued exploitation of fossil fuels and release of carbon dioxide will need to be controlled. After a prolonged period of slow development of nuclear power, confined to some countries in the world, it is now being recognised that nuclear energy has a potentially significant role to play in meeting the energy needs of the planet without damaging the environment. Developments in technology make the economics of nuclear power more attractive, and they may become even more so as fossil fuel prices continue to rise.or a widespread use of nuclear power, however, there remain concerns on the safety, security, waste and proliferation aspects. The global application of safety standards and appropriate security measures are required to ensure acceptable levels of protection. Effective control measures are required to ensure that non-proliferation commitments are honored. Handling nuclear waste safely and securely is achievable, but continues to remain as a public concern. The broad strategic objectives of the Conference are the following: to review the role of nuclear power and to define the potential benefits (energy security, sustainability and improved environmental protection) that expanding nuclear power offers to meet the

  13. Construction of APR1000 nuclear power information management system based on international standards

    International Nuclear Information System (INIS)

    Choi, Seung Hwan; Song, Deok Yong; Han, Byung Sub; An, Kyung Ik; Hwang, Jin Sang

    2010-01-01

    In recent years, due to speedy rise of international oil prices, orders of nuclear power plant construction have been in progress by many countries to solve the stable supply of power. Our country has continued to perform nuclear power construction. As only a few developed countries like Japan and European countries have its own nuclear power construction technology, competition among them is keen. Our country has awarded the contract of UAE nuclear power plants based on the accumulated nuclear power plant construction technologies so far. In this regard, KEPCO has recognized the needs of information management system to manage nuclear power information and proceeded the implementation of nuclear power information management system for export-model

  14. Construction of APR1000 nuclear power information management system based on international standards

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Hwan [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Deok Yong; Han, Byung Sub [Enesys Co., Daejeon (Korea, Republic of); An, Kyung Ik; Hwang, Jin Sang [PartDB Co., Daejeon (Korea, Republic of)

    2010-10-15

    In recent years, due to speedy rise of international oil prices, orders of nuclear power plant construction have been in progress by many countries to solve the stable supply of power. Our country has continued to perform nuclear power construction. As only a few developed countries like Japan and European countries have its own nuclear power construction technology, competition among them is keen. Our country has awarded the contract of UAE nuclear power plants based on the accumulated nuclear power plant construction technologies so far. In this regard, KEPCO has recognized the needs of information management system to manage nuclear power information and proceeded the implementation of nuclear power information management system for export-model

  15. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2012-01-01

    nuclear power plant that is already licensed by an experienced regulator. Consequently, an option is to start development of national regulations by adopting or adapting regulations from a country that has licensed the same type of nuclear power plant. However, if the intention is to have an open technology selection process, care should be taken to establish a set of technology neutral regulations, such as by using the IAEA safety standards as the foundation. This set of technology neutral regulations can then be complemented by more design specific regulations after the technology is chosen. Since the development of technical competences requires considerable time, the regulatory body needs to plan for human resources development at a very early stage. As a first step, the essential competences required for the different phases of the nuclear power programme should be identified. Thereafter, formal training arrangements should be established between the regulatory body and one or more experienced regulators that have licensed a similar facility. This should include early interaction between senior managers of the two regulators followed by detailed training of selected staff who will form the technical core of the regulatory body. The regulatory body should also identify outside organizations that will act as its technical support organizations (TSOs) and should provide for conduct of nuclear safety R and D by these TSOs, including the appropriate research facilities and expertise. If additional nuclear power plants will be constructed in the new entrant country in the future, the new nuclear power plant units may not be of the same design as the first plant. This aspect should be kept in mind when developing both the licensing methodologies and staff. Regulatory staff can also obtain significant benefit from participation in international cooperation activities such as the Convention on Nuclear Safety, technical cooperation forums of regulatory bodies of countries

  16. International overview: Good practices at nuclear power plants

    International Nuclear Information System (INIS)

    Calori, F.; Dular, J.

    1992-01-01

    It is reported that to determine and analyze the reasons for differences in an energy availability factors observed at various nuclear power plants (NPP), the IAEA initiated two studies covering a number of plants. The article reviews the key purposes and aims of these two studies, and summarizes their major findings, including the identification of the main factors contributing to the good performance of a NPP. 1 fig., 2 tabs

  17. Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    IV International scientific and technical conference “Innovative designs and technologies of nuclear power” has been organized and is conducted by JSC NIKIET with support from Rosatom State Corporation, the International Atomic Energy Agency, the Russian Academy of Sciences and the Nuclear Society of Russia. The conference topics include: innovative designs of nuclear facilities for various applications, nuclear fuel and new materials, closed fuel cycle technologies, SNF and RW management, technological answers to nonproliferation problems, small power reactors (stationary, transportable, floatable, propulsion, space), integrated codes of a new generation for safety analysis of nuclear power plants and fuel cycles, controlled fusion [ru

  18. Argue internal audit on how to promote the nuclear power enterprise internal control

    International Nuclear Information System (INIS)

    Li Xiaoming

    2012-01-01

    In order to strengthen and standardize enterprise internal control, improve the management level and risk prevention ability, five departments jointly established the basic rules of internal control in enterprises, large and medium-sized enterprises as the national power enterprise, the enterprise internal audit executive power in strengthening and perfecting internal control, and in the enterprise internal control of play an active role. (author)

  19. Proceedings of 2009 international congress on advances in nuclear power plants

    International Nuclear Information System (INIS)

    2009-01-01

    This CD-ROM is the collection of the paper presented at the 2009 International Congress on Advances in Nuclear Power Plants (ICAPP'09) . The 365 of the presented papers are indexed individually. (J.P.N.)

  20. The nuclear power safety programme of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Rosen, M.

    1981-01-01

    The expanded role of the IAEA in the field of nuclear power safety will be discussed. Emphasis will be given to the NUSS program (the letters being an acronym for Nuclear Safety Standards) to establish internationally accepted safety codes and guides for nuclear power plants dealing with governmental regulatory organizations, siting, design, operation and quality assurance. Other activities discussed will be advisory services, exchange of information and training, emergency accident assistance, and technical assistance. (orig./RW)

  1. Nuclear Power, Nuclear Fuel Cycle and Waste Management 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power and Nuclear Fuel Cycle and Waste Management issued during the period 1980-1994. Most publications are issued in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. If publications are also available in other languages than English, this is noted as C for Chinese, F for French, R for Russian and S for Spanish by the relevant ISBN number. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  2. Computer-based control of nuclear power information systems at international level

    International Nuclear Information System (INIS)

    Boniface, Ekechukwu; Okonkwo, Obi

    2011-01-01

    In most highly industrialized countries of the world information plays major role in anti-nuclear campaign. Information and discussions on nuclear power need critical and objective analysis before the structured information presentation to the public to avoid bias anti-nuclear information on one side and neglect of great risk in nuclear power. This research is developing a computer-based information system for the control of nuclear power at international level. The system is to provide easy and fast information highways for the followings: (1) Low Regulatory dose and activity limit as level of high danger for individuals and public. (2) Provision of relevant technical or scientific education among the information carriers in the nuclear power countries. The research is on fact oriented investigation about radioactivity. It also deals with fact oriented education about nuclear accidents and safety. A standard procedure for dissemination of latest findings using technical and scientific experts in nuclear technology is developed. The information highway clearly analyzes the factual information about radiation risk and nuclear energy. Radiation cannot be removed from our environment. The necessity of radiation utilizations defines nuclear energy as two-edge sword. It is therefore, possible to use computer-based information system in projecting and dissemination of expert knowledge about nuclear technology positively and also to use it in directing the public on the safety and control of the nuclear energy. The computer-based information highway for nuclear energy technology is to assist in scientific research and technological development at international level. (author)

  3. The changing structure of the international commercial nuclear power reactor industry

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  4. National and international cooperation for public acceptance of nuclear power in the Republic of Korea

    International Nuclear Information System (INIS)

    Kwon, I.Y.

    1992-01-01

    Current status of public acceptance of nuclear power and efforts for enhancing the acceptance are briefly reviewed. Discussion is made of the needs for, and ways of, cooperation among related national institutions and agencies. Need of inter-disciplinary approach is also stressed. Desirable participants in activities for gaining public acceptance of nuclear power are identified, where - in the participation of women in PA efforts receives particular importance. In dealing with the needs for and ways of international cooperation, roles of, and coordination among, international organizations/associations concerning public acceptance of nuclear power are discussed

  5. International examples of excellence in nuclear power plant performance

    International Nuclear Information System (INIS)

    Hansen, K.F.

    1988-01-01

    The author's organization has been engaged in a study comparing the performance of light water reactors in six nations with major commitments to nuclear power. The countries involved include the Federal Republic of Germany, France, Japan, Sweden, Switzerland, and the United States. They have collected data on every LWR larger than 300 MWe for the ten year interval 1975-1984. The data was collected in a very detailed form including capacity losses due to scheduled events, forced outages, and regulatory outages. The author represents information about specific examples of excellent performance and presents some plausible lessons for general usage. The author proposes several ideas for the United States that might contribute toward excellence here

  6. Internal dose from tritium at Wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Hee Geun Kim; Jeong Yull Dho; Myung Jae Song

    1995-01-01

    Tritium is produced in large quantities at heavy water nuclear power reactors via the neutron activation reaction 2 H(n,γ) 3 H. At Wolsung nuclear power plant which has a CANDU reactor, the tritium concentrations in coolant and in moderator systems are 1.5 Ci/Kg-D 2 O and 35 Ci/kg-D 2 O, respectively, after 12 years of operation. The airborne tritium concentration in main access area is normally less than 5 MPCa except short-term peaks. The average tritium concentrations in main access controlled areas are normally less than 100 MPCa. Tritium is mainly present in the air of workplace of CANDU reactors as a tritiated water vapour. Airborne tritiated water vapour enters the workers body via inhalation and absorption through skin and can result in a significant dose. The occupational doses from tritium at Wolsung NPP have been maintained below 1 man-Sv per year so far. The tritium contribution to the total plant man-Sv changes between 30 percent and 50 percent. For the mitigation of tritium inhalation, various protective equipment are being used at Wolsung NPP. The respirator system was devised at Wolsung NPP in order to remove tritiated water vapours from the inhaled air. A respirator is connected to a small plastic bottle filled with ice cubes. The system devised shows a good tritium removal efficiency. The air pressure drop through the ice cubes is minimal. The operation cost of the system is also very cheap. Further mitigation of tritium inhalation is heavily dependant on the source term reduction. One of the ultimate solutions is to introduce a tritium removal facility. (author). 7 figs., 3 tabs

  7. The state of art of internal fire PSA in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Xinli; Zhao Bo; Zheng Xiangyang

    2010-01-01

    The operational experiences of nuclear power plants (NPPs) show that the internal fires challenge effectively the nuclear safety of NPPs. Thus, the authorities having jurisdiction in the world have enhanced the supervision on fire safety in NPPs, asking the licensees to perform fire hazard analysis and evaluate the fire risk. This article mainly describes the state of art of internal fire probabilistic safety assessment (PSA) in the world, and compares the main methods and standards for internal fire PSA. (authors)

  8. International Symposium on Nuclear Energy SIEN 2007. Nuclear Power - A New Challenge

    International Nuclear Information System (INIS)

    Stiopol, Mihaela

    2007-01-01

    The Symposium organized by Romanian Nuclear Energy Association, AREN, in co-operation with Romanian Atomic Forum, ROMATOM, was primarily targeting the expert community involved in developing new nuclear power projects and implementing the National Nuclear Program. The symposium was also open as a dicussion and information forum for scientists, engineers, technicians and students interested in scietific and technologic topics of Nuclear Power such as: - Developing the new nuclear technologies; - Identifying new avenues for developing nuclear programs; - strengthening the public confidence and support in nuclear power technology as the energy resource fulfilling most safely the environment protection requirements with the lowest cost-efficient power technology and as the most secure, sustainable solution satisfying the ever raising energy demand. Thus the main objectives was to analyse the New Challenges of Nuclear Power for near future and long-term sustainable socio-economic development. The Symposium was structured in 5 sessions covering the following topics: S1. Developing the new nuclear technologies; S2. Operation, inspection and maintenance; S3. Enhancing nuclear safety features; S4. Fuel cycle and waste management; S5. Public acceptance and confidence strengthening. A poster session of 8 presentations and a workshop completed the Symposium works. Three topics were selected for the workshop as follows: QA Management within the European Integration; Young generation 'Building the Future'; Women in Nuclear and the EU Nuclear Programs Developing

  9. ISOFIC/ISSNP 2014: International Symposium on Future I and C for Nuclear Power Plants/International Symposium on Symbiotic Nuclear Power Systems

    International Nuclear Information System (INIS)

    2014-08-01

    This proceedings contains articles of ISOFIC/ISSNP 2014: International Symposium on Future I and C for Nuclear Power Plants/International Symposium on Symbiotic Nuclear Power Systems. It was held on Aug. 24-28, 2014 in Jeju. This proceedings is comprised of 14 sessions. The subject titles of I and C session are sensor, modern control, diagnostics and surveillance, digital upgrades, software V and V, cyber security, safety and reliability of digital systems, risk and safety evaluation, etc. The subject titles of HMI session are Human factors engineering, human performance, human reliability assessment, control room design, operator support systems, etc. The subject titles of ISSNP session are Safety and risk studies from social, environmental and economic aspects, other general nuclear engineering (ex. Reactor physics, thermal-hydraulics, reactor core and plant behavior, nuclear fuel behavior, etc.) and integrated aspects of energy systems (ex. Multipurpose utilization of nuclear energy, nuclear fuel cycle, plant decommissioning, comparative study of nuclear energy with other energy technologies, etc.)

  10. ISOFIC/ISSNP 2014: International Symposium on Future I and C for Nuclear Power Plants/International Symposium on Symbiotic Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    This proceedings contains articles of ISOFIC/ISSNP 2014: International Symposium on Future I and C for Nuclear Power Plants/International Symposium on Symbiotic Nuclear Power Systems. It was held on Aug. 24-28, 2014 in Jeju. This proceedings is comprised of 14 sessions. The subject titles of I and C session are sensor, modern control, diagnostics and surveillance, digital upgrades, software V and V, cyber security, safety and reliability of digital systems, risk and safety evaluation, etc. The subject titles of HMI session are Human factors engineering, human performance, human reliability assessment, control room design, operator support systems, etc. The subject titles of ISSNP session are Safety and risk studies from social, environmental and economic aspects, other general nuclear engineering (ex. Reactor physics, thermal-hydraulics, reactor core and plant behavior, nuclear fuel behavior, etc.) and integrated aspects of energy systems (ex. Multipurpose utilization of nuclear energy, nuclear fuel cycle, plant decommissioning, comparative study of nuclear energy with other energy technologies, etc.)

  11. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  12. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  13. Nuclear power plant control and instrumentation 1982. Proceedings of an international symposium on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    1983-01-01

    Ever increasing demands for nuclear power plant safety and availability imply a need for the introduction of modern measurement and control methods, together with data processing techniques based on the latest advances in electronic components, transducers and computers. Nuclear power plant control and instrumentation is therefore an extremely rapidly developing field. The present symposium, held in Munich, FR Germany, was prepared with the help of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation and organized in close co-operation with the Gesellschaft fur Reaktorsicherheit, Federal Republic of Germany. A number of developments were highlighted at the Munich symposium: - The increased use of computers can bring clear advantages and this technique is now proven as a tool for supervising and controlling plant operation. Advanced computerized systems for operator support are being developed on a large scale in many countries. The progress in this field is quite obvious, especially in disturbance analysis, safety parameter display, plant operator guidance and plant diagnostics. The new trend of introducing computers and microprocessors in protection systems makes it easy to implement 'defence-in-depth' strategies which give better assurance of correct system responses and also prevent unnecessary reactor trips, thus improving plant availability. The introduction of computerized systems for control of reactor power, reactor water level and reactor pressure as well as for reactor start-up and shut-down could improve the reliability and availability of nuclear power plants. The rapid technical development in the area of control and instrumentation makes it necessary to plan for at least one replacement of obsolete equipment in the course of the 30 years lifetime of a nuclear power plant and retrofitting of currently operating reactors with new control systems. Major design improvements and regulatory requirements also require

  14. Development of Internal Dose Assessment Program for Nuclear Power Plant Employees

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Kang, Duck Won; Maeng, Sung Jun; Kim, Hee Geun; Son, Soon Whan; Lim, Young Kee; Son, Joong Kwon; Park, Keyoung Rock [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jang, See Young; Ha, Jong Woo; Suh, Keyoung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Oh, Oak Doo; Lee, Joong Woo; Yoon, Sung Sik [Yonsei University, Seoul (Korea, Republic of)

    1996-12-31

    Internal exposure monitoring based on new concept of radiation protection. Analysis and Performance test of the in vivo systems being operated in nuclear power plants in Korea. Design and fabrication of humanoid phantom for calibration of in vivo system. Development of internal dose evaluation code based on the ICRP 30 dosimetric model. (author). 44 refs., figs.

  15. Proceedings of international workshop on utilization of nuclear power in oceans (N'ocean 2000)

    International Nuclear Information System (INIS)

    Yamaji, A.; Nariyama, N.; Sawada, K.

    2000-03-01

    Human beings and the ocean have maintained close relations for a long time. The ocean produced the life at very old time and human beings have been benefited by ocean, particularly in Japan that is surrounded by the ocean. In the utilization of nuclear power in ocean, Japan has been very active from the beginning of the development of nuclear power. The nuclear powered ship MUTSU has been developed and completed the experimental voyage. Besides the nuclear powered ship, we are using the ocean for the transportation of radioactive materials. This International Workshop aimed at offering further information about nuclear utilization in oceans such as icebreakers, deep-sea submarines, high speed carriers, floating plant, desalination and heating plants, radioactive materials transport ships, and so on. The discussions on the economical, environmental and scientific effects are included. The 36 of the present papers are indexed individually. (J.P.N.)

  16. The nuclear power safety programme of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Rosen, M.

    1981-01-01

    The role of the International Atomic Energy Agency in the field of nuclear power safety is growing. In the period since the Three Mile Island accident, a significant expansion in its nuclear safety programme has taken place. To assure an acceptable safety level world-wide, new emphasis is being placed on the major effort to establish and foster the use of a comprehensive set of internationally agreed safety standards for nuclear power plants. New initiatives are in progress to intensify international co-operative safety efforts through the exchange of information on safety-related operating occurrences, and through a more open sharing of safety research results. Emergency accident assistance lends itself to international co-operation and steps are being taken to establish an emergency assistance programme so the Agency can aid in co-ordinating a timely response to provide, at short notice, help and advice in case of a nuclear power accident. There has been some strengthening of those advisory services which involve missions of international experts primarily to countries with less developed nuclear power programmes, and in conjunction with the Technical Assistance Programme there is a co-ordinated programme for developing countries, involving safety training courses and assistance aimed at promoting an effective national regulatory programme in all countries using nuclear power. This paper discusses the major features of the IAEA activities in nuclear power plant safety. An understanding of the programme and its limitations is essential to its more effective use. Additional initiatives may still be proposed, but the possibilities for international and regional co-operation to assure an adequate level of safety world-wide already exist. (author)

  17. International legal and political issues associated with the export/import of nuclear power plants

    International Nuclear Information System (INIS)

    Manning Muntzing, L.

    1978-01-01

    The benefits of nuclear power can be achieved by most nations only through international commerce that has been shaped by political considerations and implemented through legal instruments. The end product is a structure of legal agreements designed to implement the basic political and commercial decisions that are required for any nation to enter the nuclear power arena. The IAEA Statute, the Non-Proliferation Treaty and regional nuclear agreements have reflected the international political consensus concerning nuclear power. In recent years, however, events have occurred that in all probability will result in additional international arrangements. It is expected that the increase in terrorist activities will result in greater physical protection commitments, that concern for weapons proliferation will result in further definition of sanctions, and that such troublesome issues as double labelling of materials will be discussed by the international community. In areas such as bilateral agreements between nations, commercial arrangements and export licences, this is a period of rethinking, renegotiating, and readjusting. The result is a degree of uncertainty and lack of stability that could so jeopardize the potential for nuclear transfers that the nuclear energy option may not vest. While there always will be questions and issues, it is essential to settle some of the key problems without delay so that nuclear benefits can be realized. (author)

  18. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  19. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  20. Japan's international cooperation programs on seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Sanada, Akira

    1997-01-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  1. Japan`s international cooperation programs on seismic safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Akira [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  2. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  3. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  4. Nuclear power of Korea

    International Nuclear Information System (INIS)

    Chun Bee-Ho

    2011-01-01

    National nuclear is presented. Nuclear energy safety after Fukushima, international cooperation in nuclear energy is discussed. Nuclear projects with the United Arab Emirates have been developed to build 4 nuclear power plants in the UAE - APR 1400. At the Korea-Bulgaria Industrial Committee Meeting in Sofia (March 2011) Korean side proposed Nuclear Safety Training Program in Korea for Bulgarian government officials and experts transfer of know-how and profound expertise on world-class nuclear technology and nuclear safety

  5. International co-operation and the future of nuclear power. European Nuclear Congress '98, Nice, 26 October 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the joint Opening Session of the European Nuclear Congress'98 (ENC) and RECOD in Nice, France, on 26 october 1998. The conference emphasized the importance of strengthened international co-operation in all areas relevant to the safe and peaceful use of nuclear energy, especially for power generation. As the only intergovernmental global organization dedicated to nuclear science and technology, the role of the IAEA is to serve as the international focal point for standard setting, independent analysis, technology transfer and oversight and verification

  6. International Conference on Human Resource Development for Nuclear Power Programmes: Building and Sustaining Capacity. Presentations

    International Nuclear Information System (INIS)

    2014-01-01

    The objectives of the conference are to: • Review developments in the global status of HRD since the 2010 international conference; • Emphasize the role of human resources and capacity building programmes at the national and organizational level for achieving safe, secure and sustainable nuclear power programmes; • Discuss the importance of building competence in nuclear safety and security; • Provide a forum for information exchange on national, as well as international, policies and practices; • Share key elements and best practices related to the experience of Member States that are introducing, operating or expanding nuclear power programmes; • Highlight the practices and issues regarding HRD at the organizational and national level; • Highlight education and training programmes and practices; • Emphasize the role of nuclear knowledge management for knowledge transfer and HRD; and • Elaborate on the role and scope of various knowledge networks

  7. Air pollution and international law: a subject important to nuclear power

    International Nuclear Information System (INIS)

    Rose, D.J.

    1985-01-01

    An increasingly important advantage of nuclear power is its minimal air pollution, in particular the absence of combustion products such as acid rain and carbon dioxide. Developing a consensus about acceptable limits of such pollutants is a slow process that culminates in domestic an international agreements. Therefore, the pace of adoption of new technologies, nuclear power included, is often controlled by the level and intensity of debate, rather than by the technology alone. The state of understanding and consensus about local and long-range transboundary air pollution is therefore germane to the nuclear sector. Progress over the past several decades, mainly between the United States and Canada and within Europe, in developing a more comprehensive and effective international consensus, both informal and formal, is reviewed. There appears to be a trend toward more effective international participation in seeking a less-polluting world, albeit it is punctuated at times by unconcern

  8. Quality management in an international nuclear power plant project

    International Nuclear Information System (INIS)

    Brion, J.; Crustin, J.

    1975-01-01

    SNR (Schneller Natriumgekuehlter Reaktor) is the fast reactor power plant being erected at Kalkar, Federal German Republic. Quality management in this project is a contractual obligation. Quality management is subdivided into quality engineering, set of actions performed before manufacturing, and quality control, set of material controls performed during fabrication. The two successive phases of the quality management are presented. The difficulties and improvment possibilities are discussed [fr

  9. Nuclear power performance and safety. V.3. Safety and international co-operation

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. This objective was accomplished through presentation and discussion of about 200 papers at the Conference. Almost 500 participants and observers from 40 countries and 12 organizations discussed three major questions which were posed as the focus of this Conference: (1) What are the current trends and major issues with regard to performance and safety of nuclear power, the nuclear fuel cycle and radioactive waste management? (2) What steps are being taken or need to be taken to resolve outstanding issues in order to improve the performance of nuclear power with assured safety? (3) What performance objectives and achievements can be anticipated for the 1990s? All presentations of this Conference were divided into six volumes. This is Volume 3 which is devoted to the problems of safety and international cooperation. All presentations of Volume 3 were divided into four sessions as follows: the need for safety in nuclear power programmes (4 papers); international cooperation in nuclear safety (6 papers); technical aspects in plant safety (7 papers); approaches to safety (3 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  10. Proceedings of an international ministerial conference on nuclear power for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-15

    objectives of the conference were the following: 1) To review the role of nuclear power and to define the potential benefits (energy security, sustainability and improved environmental protection) that expanding nuclear power offers to meet the increasing energy needs of the world. 2) To facilitate a discussion on the issue of nuclear energy and society involving experts and decision makers. The conference consisted of two major elements. The first element was invited ministerial presentations on the current and future role of nuclear power in the context of national energy strategies, while the second was round table discussions involving renowned international experts to discuss: World energy needs and resources; Environmental challenges of the 21st century; Driving factors for strategies and choices; Governance issues. This conference was held to enable the future of nuclear power to be discussed at the ministerial level. Participation included 465 experts from 69 IAEA Member States and eight international organizations. Presentations of national visions on the future of nuclear power by 25 ministers in person, and seven presentations made on behalf of Ministers, demonstrated the timeliness and importance of the conference. The participation of about 75 press and media representatives and broad media coverage were further indications of the wide interest in the future of nuclear power. In many views presented, and in two round table discussions, the potential significant role of nuclear energy in meeting the energy needs of the planet was recognized, in particular that: 1) Developments in technology and improvements in management resulted in better safety, and that the economics of nuclear power made it increasingly attractive and fully competitive. 2) Nuclear power can contribute in meeting the needs of the Millennium Development Goals and the Johannesburg Plan of Implementation, such as the eradication of poverty and hunger, universal access to plentiful fresh water and

  11. Near-Term Nuclear Power Revival? A U.S. and International Perspective

    International Nuclear Information System (INIS)

    Braun, C.

    2004-01-01

    In this paper I review the causes for the renewed interest in the near-term revival of nuclear power in the U.S. and internationally. I comment on the progress already made in the U.S. in restarting a second era of commercial nuclear power plant construction, and on what is required going forwards, from a utilities perspective, to commit to and implement new plant orders. I review the specific nuclear projects discussed and committed to in the U.S. and abroad in terms of utilities, sites, vendor and suppliers teams, and project arrangements. I will then offer some tentative conclusions regarding the prospects for a near-term U.S. and global nuclear power revival

  12. International safety standards and regulatory practices and their application to Brazilian nuclear power plants - a realistic view

    International Nuclear Information System (INIS)

    Almeida, Claudio; Camargo, Claudio

    1999-01-01

    An international nuclear safety regime is being established through a series of binding safety conventions, voluntarily adopted international safety standards and an accompanying peer review process. The basis for the evaluation of each country performance within this international regime should be the international practices. However, local conditions should be taken into account to avoid undue stress of the limited resources available to countries with a limited nuclear power programme. This work reviews the current international nuclear safety and discusses the application of some international practices to the Brazilian situation, considering the peculiarities of the national nuclear power programme and the limitations of the available financial and human resources. (author)

  13. International outage coding system for nuclear power plants. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2004-05-01

    The experience obtained in each individual plant constitutes the most relevant source of information for improving its performance. However, experience of the level of the utility, country and worldwide is also extremely valuable, because there are limitations to what can be learned from in-house experience. But learning from the experience of others is admittedly difficult, if the information is not harmonized. Therefore, such systems should be standardized and applicable to all types of reactors satisfying the needs of the broad set of nuclear power plant operators worldwide and allowing experience to be shared internationally. To cope with the considerable amount of information gathered from nuclear power plants worldwide, it is necessary to codify the information facilitating the identification of causes of outages, systems or component failures. Therefore, the IAEA established a sponsored Co-ordinated Research Project (CRP) on the International Outage Coding System to develop a general, internationally applicable system of coding nuclear power plant outages, providing worldwide nuclear utilities with a standardized tool for reporting outage information. This TECDOC summarizes the results of this CRP and provides information for transformation of the historical outage data into the new coding system, taking into consideration the existing systems for coding nuclear power plant events (WANO, IAEA-IRS and IAEA PRIS) but avoiding duplication of efforts to the maximum possible extent

  14. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  15. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  16. International inventory of training facilities in nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    1977-01-01

    Because the development of trained manpower is important for full use of nuclear power, the International Atomic Energy Agency has compiled this first inventory of training facilities and programs. It is based on information submitted by Member States and received up to 31 January 1977. The inventory is arranged by country, type of training organization, and by subject

  17. Incentives to strengthen international co-operation in R and D for advanced nuclear power technology

    International Nuclear Information System (INIS)

    Balthesen, E.; Bakunyaev, A.D.; Gibson, I.H.; Hosemann, J.P.; Tavoni, R.; Versteegh, A.M.

    1993-01-01

    This paper is concerned with the need for International Co-operation in R and D for Advanced Reactors in order to maintain options for the future deployment of nuclear power against the current background of declining R and D capability in Europe

  18. Decommissioning nuclear power plants: a case for internal funding

    International Nuclear Information System (INIS)

    Ferguson, J.S.

    1987-01-01

    Historically, utilities have exercised sole responsibility for reinvesting capital funds collected from ratepayers. Capital provided by ratepayers, whether for recovery of invested capital or for removal costs, reduces the magnitude of future borrowings - dollar for dollar. If regulatory commissions require utilities to place these collections in separate, inaccessible investment accounts (as in external funding methods), then utilities will be denied the use of these funds. Ratepayers, in turn, will be denied both their usual interest credit and the cost-saving benefits afforded by utilities having readily accessible cash to use instead of having to resort to borrowing. Such benefits can be attained only through internal-funding methods that keep rate payer contributions under unrestricted utility control. While state regulatory commissions currently favor external funding for financial assurance, the author feels the extra cost to ratepayers and the utilities is too high a price to pay

  19. International symposium concluded that uranium supply for nuclear power is secure

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs that stable uranium supply to fuel nuclear power plants will continue to be available according to the conclusion reached at the International Symposium on the Uranium Production Cycle and the Environment held from 2 to 6 October 2000 at the IAEA in Vienna. The meeting included specialists from about 40 countries, in addition to the Arab Atomic Energy Agency, European Commission, OECD/Nuclear Energy Agency (NEA), Office of Supervising Scientist (OSS)/Environment Australia, United Nations, Uranium Institute, World Bank, the World Energy Council and the Nuclear Energy Institute (NEI)

  20. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper Refs, figs, tabs

  1. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper

  2. Management of operational safety in nuclear power plants. INSAG-13. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how safety

  3. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and.analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  4. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  5. Frech experience in achieving nuclear power self-reliance and possible benefits for international cooperation

    International Nuclear Information System (INIS)

    Leny, J.C.

    1987-01-01

    The success of France's nuclear power program can be attributed to two main factor. Firstly, the necessity for France to increase its energy independence. Nuclear energy was the only viable choice, but French industry had to master all the phases of such a program. Secondly, a will to pursue the objectives set, which has remained steadfast for over 20 years. Today, two-thirds of French electricity comes from unclear power, and the French program is continuing its regular progression. Several times already, in particular in this pacific basin region, French industry has cooperated in nuclear power projects abroad. It is convinced that even greater international cooperation can only be beneficial for all, and is ready , for its part, to bring to bear on this effort all of its experience and resources. (author)

  6. Nuclear power, nuclear fuel cycle and waste management, 1986-1997. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  7. Proceedings of 2017 international congress on advances in nuclear power plants (ICAPP2017)

    International Nuclear Information System (INIS)

    2017-04-01

    The International Congress on Advances in Nuclear Power Plants (ICAPP) provides a forum for leaders of the nuclear industry to exchange information, present results from their work, review the state of the industry, and discuss future directions and needs for the deployment of new nuclear power plant systems around the world. ICAPP will gather industry leaders in several invited lectures in plenary sessions. The theme for ICAPP2017 is 'A New Paradigm in Nuclear Power Safety'. Since the Fukushima Daiichi Accident in 2011, various efforts in improving nuclear safety have been initiated not only in Japan but also in other countries. Decontamination of affected soil and steps toward decommissioning Fukushima Daiichi are proceeding steadily, but many issues to be resolved still remain. Further advances in reactor decommissioning technologies are expected in light of the rising number of old nuclear power plants being closed. The congress also provides an excellent opportunity to discuss these topics. This issue is the collection of 345 papers presented at the entitled meeting. All the 345 papers are indexed individually. (J.P.N.)

  8. Nuclear power: A look at the future. International Conference on Fifty Years of Nuclear Power: The Next Fifty Years, 27 June 2004, Moscow, Russia

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2004-01-01

    This statement touches on a few aspects of the evolving global scenario for nuclear power - briefly reviewing the current picture, outlining a number of key issues, and discussing what the International Atomic Energy Agency is doing to ensure that nuclear power remains a safe, secure and viable option for supplying energy needs. Of the 442 nuclear plants currently operating, fewer than 10% are located in developing countries. Many industrialized nations generate substantial portions of their electricity from nuclear fission: including: France, at 78%; Belgium, at 55%; Germany, at 28%; Japan, at 25%; the United States, at 20%; and Russia, at 17%. By contrast, for large developing countries such as Brazil, India and China, the percentages are only 3.7%, 3.3% and 2.2%, respectively. Current expansion and growth prospects for nuclear power are centred in Asia. Although the focus of this international effort was on improving safety, the secondary benefit was a steady increase in nuclear plant availability and productivity. In 1990, nuclear plants on average were generating electricity 71% of the time. As of 2003, that figure stood at 84% - an improvement in productivity equal to adding more than 34 new 1000 megawatt nuclear plants - all at relatively minimal cost. Overall, the current picture remains mixed, and projections for the future of nuclear power vary widely depending on what assumptions are made. The IAEA's current 'low' (or conservative) projection - which assumes that today's nuclear plants will retire on schedule, and assumes no new construction beyond what is already firmly planned - would envision the total amount of nuclear electricity generated dropping off after about 2020. The IAEA 'high' projection, which includes additional scenarios for new nuclear plant construction, would envision nuclear power generating 70% more electricity in 2030 than at present, but still tapering off in its global share of electricity, due to even more rapid expansion in

  9. The international trade of nuclear power plants: the supply side - 5006

    International Nuclear Information System (INIS)

    Leveque, F.

    2015-01-01

    The international trade of nuclear power plants is usually studied from a demand perspective. Which new countries are willing to access to this technology? How the Fukushima Daiichi catastrophe has changed the market forecasts? What risks of proliferation new entrants entail? This paper takes an opposite direction. It looks at the structure and the organising of the supply side. Which countries are the major exporters? How their ranking has changed? Is the nuclear export industry becoming a global industry? Part 1 provides a short description of the worldwide market. Surprisingly, its size is modest and the US only plays a minor role. This part also provides a view on the relationship between domestic and export markets. Part 2 discusses the industrial organization of the nuclear industry. It compares the nuclear industry with the armament industry and the oil and gas supplies and services. Part 3 concludes in analysing the conditions nuclear industry could become a global industry. (author)

  10. The role of nuclear power in external and internal communications at Siemens

    International Nuclear Information System (INIS)

    Breyer, Wolfgang

    1999-01-01

    'Der Spiegel', quotes Siemens CEO as saying that the nuclear business accounts for 2 percent of the business but for 95 percent of his troubles. The communications organization at Siemens is rather complex. As a consequence of the political relevance of energy technology, KWU has a public relations department addressing a broad spectrum of stake holders, runs a quarterly magazine on energy and environmental policy called Standpunkt, (Viewpoint) and has, the largest press office of all Siemens Groups. These entities also contribute to the corporate media for internal and external communications. When the nuclear controversy in Germany reached its first culmination in the mid-1970s, Kraftwerk Union, the forerunner of what is now the Siemens Power Generation Group (KWU), automatically became a leading voice on the pro-nuclear side because, as turnkey contractor for most of Germany's NPPs, it had the deepest knowledge of the technology whereas the owner/operator side was and is organized in several utilities. From the German experience with anti-nuke campaign one could draw the following conclusions: (1) A political,, technology like nuclear necessarily leads to a high profile in the public. As the No. nuclear supplier in Germany Siemens doesn't have the option of a low profile; (2) As a consequence, the nuclear business gets unproportional attention in the public. Siemens has to take this into account in order to assure its other business areas enough visibility; (3) For public relations on nuclear power, the internal audience is as important as the external one. Because of the large work-force of Siemens, internal communications have a significant multiplication effect for the external audience; (4) A broad spectrum of non-nuclear activities doesn't make a company like Siemens more vulnerable to public pressure than a mono-structured company. On the contrary: The high prestige gained in its other business fields makes it easier to defend the nuclear business as

  11. International requirements for life extension of nuclear power plants; Internationale Anforderungen zur Lebensdauerverlaengerung von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Robert [TUeV NORD SysTec GmbH und Co. KG, Abt. Festigkeit und Konstruktion, Hamburg (Germany)

    2009-11-15

    Lifetime extension or long-term operation of nuclear facilities are topics of great international significance against the backdrop of a fleet of nuclear power plants of which many have reached 2/3 of their planned life. The article deals with the conditions for, and the specific requirements of, seeking long-term operation of nuclear power plants as established internationally and on the basis of IAEA collections. Technically, long-term operation is possible for many of the nuclear power plants in the world because, normally, they were built on the basis of conservative rules and regulations and, as a consequence, incorporate significant additional safety. Application of requirements to specific plants implies assessments of technical safety which show that conservative design philosophies created reserves and, as a consequence, there is an adequate level of safety also in long-term plant operation. For this purpose, the technical specifications must be revised, necessary additions made, and (international) operating experience taken into account and management of aging established. Two examples are presented to show how the approach to long-term plant operation is put into practice on a national level. (orig.)

  12. Internal exposure monitoring of personnel of a nuclear power plant with pressurized-water reactors

    International Nuclear Information System (INIS)

    Krueger, F.W.; Poulheim, K.F.; Rueger, G.; Schreiter, W.D.

    1982-01-01

    In the GDR a programme for monitoring the internal radiation exposure of personnel has been established in the Bruno Leuschner Nuclear Power Plant, Greifswald, which allows one to estimate the effective dose equivalent in the way recommended by the ICRP. The measuring equipment used, and the methods of calibration and of evaluation of results are described. At present about 400 persons are monthly monitored with a thorax monitor in the nuclear power plant. If an investigation level - corresponding to an effective dose equivalent of 0.3mSv/month - is exceeded, a more exact measurement is made in the whole-body counter at the National Board for Nuclear Safety and Radiation Protection of the GDR. In addition, a selected group of 50 persons is measured twice yearly in the whole-body counter. The measurements show the high effectiveness of the protective measures against radionuclide intake by workers in the nuclear power plant, resulting in a contribution of less than 1% to the collective dose of the personnel. A correlation has been found between external and internal exposure indicating that, in general, there will be a higher intake only under conditions resulting also in higher external exposures. The highest individual values of internal exposure found are below 0.5mSv/month and thus within the range of the lower detection limit of dosimeter films used for monitoring the external exposure. (author)

  13. Quality assurance in the field of nuclear power, international and Romanian practice

    International Nuclear Information System (INIS)

    Rogociu, Ioan

    1997-01-01

    Electricity should be generated in nuclear power plants under nuclear safety regulations with a high reliability level. In order to achieve this requirement it is necessary to work under quality assurance (QA) mode. The term of 'quality assurance' was used for the first time in USA in 1967. Since then, the situation has continuously developed. The most comprehensive standards in the fields are the USA ones. The IAEA agency in Vienna developed the first standards in 1978. The developed countries have their own legislation in the field. The IAEA standards, are based on the USA, German, Japanese, British, Canadian and French legislation. Romania drafted the Law No. 6/1982, repealed by the Law No. 11 in 1996. There is no satisfactory Romanian standard at present to regulate the activities of quality assurance in the nuclear power field. The works at Unit 1 of Cernavoda nuclear power plant were performed under the Canadian QA standards. The Canadian nuclear power company Ontario Hydro has been lately confronted with difficulties that may lead to decommission of 7 out of 19 units now in operation. To avoid the Canadian system deficiencies Romania needs standards based on the experience gained in this field by all developed countries, such as: USA, Japan, Germany, France, etc and IAEA regulations. The present paper is a pleading in favour of the Romanian legislation drafting at the level of the international demands. (author)

  14. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-01-01

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors

  15. 13th International conference on environmental degradation of materials in nuclear power systems

    International Nuclear Information System (INIS)

    2007-01-01

    The 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems was held on August 19-23, 2007 in Whistler, British Columbia, Canada. More of a scientific meeting than a convention, this conference series is the premier nuclear industry corrosion meeting where the 225 registrations consisted of world experts of the field from utilities, engineering and service organizations, manufacturers, research establishments and universities gathered to listen to 144 technical papers on new work and to explore new insights into corrosion mechanisms in the many water cooled systems in nuclear power plants. Over 225 delegates attended the conference, over 144 technical papers were presented in the following sessions: IASCC; Waste; PWR Secondary; Ni-Base Welds; Operating Experience; Low Alloy Steels; Alloy 800 Steam Generator Tubing; Zirconium Alloys; Crack Growth; SCWR; PWR Primary; BWR SCC; Irradiation Effects; Flow Accelerated Corrosion; and, Nobel Metal

  16. Features of the International Cooperation in Nuclear Power at the Present Stage

    Directory of Open Access Journals (Sweden)

    Dmitry S. Panteley

    2017-01-01

    Full Text Available Purpose: in article the author raises the aspects of the international cooperation in nuclear power. The author wants to analyse the multiplefactor analysis of the international regulation in the field of peaceful use of atomic energy and to reveal competitive advantages of the Russian Federation in this area.Methods: the methodological base of the research was made by set of general scientific methods and methods of the economic analysis. In particular, such methods of the scientific analysis were used as system approach, method of the comparative analysis, synthesis and analysis. From economic methods was used the method of the analysis of the branch competitiveness.Results: the author, raises the aspects of the international cooperation in nuclear power, comes to the conclusion that the specifics of branch cause need of comprehensive and close international interaction for prevention of distribution of dual-use technologies, for ensuring global and regional ecological and energy security, for ensuring the rights to use peaceful atom for needs of national economies and for observance of rules of the free market competition in such a complex branch of the world economy.Conclusions and Relevance: nuclear power is a high-tech and innovative branch of the Russian economy. Today it is one of the most dynamically developing in the country, and also plays a significant role in the world energy. Among the competitive advantages of the national nuclear power industry is the development of new technologies, flexible price offers in foreign markets, etc. The development of the branch and the sustainability of Russia's competitive position in this area on foreign markets require the development of new proposals for different regional markets and the implementation of planned measures to support the level of competitiveness.Сonclusions can be used as recommendations for developing programs to increase the competitiveness of the Rosatom State Corporation

  17. A study of the international trend and comprehensive enhancement program on the Nuclear Power Plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Soon Hong; Cho, Nam Jin; Paek, Won Phil [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1990-12-15

    The objectives of this study are as follows : overview of the international trend related to the safety of Nuclear Power Plant(NPPs), study of the present status of NPP safety in Korea in aspects of design, construction and operation, suggestion of the comprehensive program to improve NPP safety in Korea. The results of this study can contribute to improve the safety of existing and future NPPs, and to establish the severe accident policy in Korea.

  18. A study of the international trend and comprehensive enhancement program on the Nuclear Power Plant safety

    International Nuclear Information System (INIS)

    Jang, Soon Hong; Cho, Nam Jin; Paek, Won Phil

    1990-12-01

    The objectives of this study are as follows : overview of the international trend related to the safety of Nuclear Power Plant(NPPs), study of the present status of NPP safety in Korea in aspects of design, construction and operation, suggestion of the comprehensive program to improve NPP safety in Korea. The results of this study can contribute to improve the safety of existing and future NPPs, and to establish the severe accident policy in Korea

  19. An international comparison of commercial nuclear power plant staffing regulations and practice, 1980--1990

    International Nuclear Information System (INIS)

    Melber, B.; Hauth, J.; Terrill, E.; Berk, B.; Gore, B.

    1994-03-01

    In this report an international review of regulatory and industry practices is provided in the area of nuclear power plant staffing during the 1980s in Canada, France, Germany, Japan, Sweden, and the United Kingdom. The objective of this review is to highlight trends in staffing regulatory approaches, industry practices, and issues of concern in other countries that have potential relevance to nuclear power plant staffing issues in the United States. The decade of the 1980s was marked by a great deal of growth in nuclear power operations internationally; however, growth of nuclear power is not expected to continue in the 1990s except in France and Japan. A continuum of regulatory approaches to staffing was identified, ranging from prescribed regulations that are applied to all licensees (Germany is most similar to the United States in this regard), to indirect staffing regulations where the regulatory authority oversees plant operating practices that are agreed to in the plant operating license (most notably, France and the United Kingdom). Most of the changes observed in staffing regulations and practices in the early 1980s were made in response to the accident at the Three Mile Island Unit 2 nuclear power plant (TMI) in 1979. These changes included the widespread issuance of new operator and licensing requirements and the establishment of national training centers. After the post-TMI changes were implemented, a period of relative stability followed. Changes in the latter half of the 1980s have focused on continuing improvements and additions to training curricula and methods, most notably increased reliance on simulator training

  20. Proceedings of the first international seminar on seismic base isolation for nuclear power facilities

    International Nuclear Information System (INIS)

    1989-01-01

    The First International Seminar on Seismic Base Isolation of Nuclear Power Facilities was organized by the authors of this paper. It was held in San Francisco, California, USA, on August 21--22, 1989, in conjunction with the tenth International Conference on Structural Mechanics in Reactor Technology (SMiRT-10). The purpose of the seminar was to provide an international forum for discussion on the application of base isolation to nuclear power plants and of its effectiveness in reducing seismic loads and permitting standard plant designs. It also provided an opportunity for technical interchange between base isolation system designers, structural engineers, and nuclear power plant engineers. Seismic isolation is certainly one of the most significant earthquake engineering developments in recent years. This was clearly demonstrated by the very large attendance at this seminar and the various papers presented. Isolation system act as filters that reduce the seismic forces and increase the ability of isolated structures and their contents to withstand the damaging effects of earthquake motions. Each individual paper has been cataloged separately

  1. Application of the international guidelines for machinery breakdown prevention at nuclear power plants

    International Nuclear Information System (INIS)

    Wendland, W.G.

    2001-01-01

    For more than forty years as a specialized branch of the worldwide insurance industry, the nuclear insurance pools have underwritten property damage protection for nuclear facilities throughout the world. At power plants insured by the pools, an enviable record of operational safety has been attained. Nevertheless, electrical and mechanical equipment does break down occasionally. Although these failures do not necessarily compromise nuclear safety, they can cause significant damage to equipment, leading to a considerable loss of generating revenue and causing sizeable insurance losses. Since insurance companies have a large financial stake in nuclear power plants, their goal is to minimize insurance losses, including the failure of systems and equipment and ensuing consequential damages. To ensure that the insurance risk is properly underwritten, insurance companies analyze loss information, develop loss prevention guidelines and focus loss control activities on those areas where insurance risk is most significant. This paper provides a chronology of the development of the ''International Guidelines for Machinery Breakdown Prevention at Nuclear Power Plants'' and describes the results of insurance inspections conducted using these guidelines. Included is a summary of guideline content and of insurance loss experience between 1962 and 1999. (author)

  2. Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06

    International Nuclear Information System (INIS)

    2006-01-01

    Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and

  3. Statement to International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Al Kaabi, H.

    2010-03-01

    United Arab Emirates is going through a rapid growth in its energy needs, projected to increase to three folds by the year 2020 compared to 2007, reflecting an annual growth rate of 9% from 2007 onward. In evaluating different options to meet the projected demand, Nuclear energy emerged as a proven, environmentally promising and commercially competitive option which could make a significant contribution to the UAE's economy and future energy security. A sustainable , materially-sized nuclear energy program could contribute substantially to the UAE's basic power needs for decades, retain the continued support of international investment partners, yield sufficient revenues to support a competent and fully-professionalized regulation and safety authority, and ensure the continual improvement of safety practices and security in accordance with best international standards. In conclusion, I would like to emphasize the importance that nuclear energy introduction plans are based on long term sustainable strategy to ensure its successful deployment in a safe and responsible manner, and through the adoption of plans and strategies that will ensure the availability of resources and efficiency of the sector through its long life. In the UAE, as we continue to develop our nuclear energy program , the actions outlined in the policy paper will continue to provide a framework which is robust, in line with international best practices, and which is an accurate demonstration of our commitments as a responsible member of the international community

  4. Ministerial presentation: Bulgaria [International ministerial conference on nuclear power for the 21st century

    International Nuclear Information System (INIS)

    Minev, A.

    2005-01-01

    His Excellency A. Minev, Deputy Minister of Energy and Energy Resources, Bulgaria, suggested that, over the long term, it is clear that the need for sustained human development will require a substantial investment in energy generation in the coming decades, and that, given its capacity for emissions free electricity generation, nuclear energy has strong potential as a reliable baseline energy source. He reported that the construction of the second nuclear power plant in Bulgaria has very strong political and public support at the local and national level. More than 97% of the local community, and more than 72% of Bulgarians, strongly support the plans for a new nuclear facility. He stressed that national responsibility for the safety of nuclear installations is the fundamental principle on which the regulation of nuclear safety and of radioactive waste management has been developed by the international community as endorsed by the Convention on Nuclear Safety and its parties, including the European atomic energy community, and reflected in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, and acknowledges that the IAEA's standards and approaches, as reflected notably in the IAEA Safety Fundamentals and Safety Requirements series, constitute an internationally recognized framework which Bulgarian national safety requirements use as a reference

  5. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  6. The nuclear power option. Proceedings of an international conference on the nuclear power option held in Vienna, 5-8 September 1994

    International Nuclear Information System (INIS)

    1995-01-01

    At 11 sessions of the conference present status and different aspects of future nuclear power development were discussed. About 150 participants from 37 countries and 7 international organizations attended the conference. 57 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  8. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  9. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Mullens, James Allen; Wilson, Thomas L.; Wood, Richard Thomas; Korsah, Kofi; Qualls, A.L.; Muhlheim, Michael David; Holcomb, David Eugene; Loebl, Andy

    2007-01-01

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented

  10. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  11. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    features as a nuclear power plant that is already licensed by an experienced regulator. Consequently, an option is to start development of national regulations by adopting or adapting regulations from a country that has licensed the same type of nuclear power plant. However, if the intention is to have an open technology selection process, care should be taken to establish a set of technology neutral regulations, such as by using the IAEA safety standards as the foundation. This set of technology neutral regulations can then be complemented by more design specific regulations after the technology is chosen. Since the development of technical competences requires considerable time, the regulatory body needs to plan for human resources development at a very early stage. As a first step, the essential competences required for the different phases of the nuclear power programme should be identified. Thereafter, formal training arrangements should be established between the regulatory body and one or more experienced regulators that have licensed a similar facility. This should include early interaction between senior managers of the two regulators followed by detailed training of selected staff who will form the technical core of the regulatory body. The regulatory body should also identify outside organizations that will act as its technical support organizations (TSOs) and should provide for conduct of nuclear safety R and D by these TSOs, including the appropriate research facilities and expertise. If additional nuclear power plants will be constructed in the new entrant country in the future, the new nuclear power plant units may not be of the same design as the first plant. This aspect should be kept in mind when developing both the licensing methodologies and staff. Regulatory staff can also obtain significant benefit from participation in international cooperation activities such as the Convention on Nuclear Safety, technical cooperation forums of regulatory bodies of

  12. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  13. Activities of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP)

    International Nuclear Information System (INIS)

    Ianko, L.

    1994-01-01

    Activities of the IAEA international working group on life management of nuclear power plants are outlined with emphasis on objectives, scope of activities, methods of work, organizational matters, financing

  14. Minimal Internal Radiation Exposure in Residents Living South of the Fukushima Daiichi Nuclear Power Plant Disaster.

    Science.gov (United States)

    Akiyama, Junichi; Kato, Shigeaki; Tsubokura, Masaharu; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Hayano, Ryugo; Tokiwa, Michio; Shimmura, Hiroaki

    2015-01-01

    Following the Fukushima nuclear power plant disaster, assessment of internal radiation exposure was indispensable to predict radiation-related health threats to residents of neighboring areas. Although many evaluations of internal radiation in residents living north and west of the crippled Fukushima nuclear power plant are available, there is little information on residents living in areas south of the plant, which were similarly affected by radio-contamination from the disaster. To assess the internal radio-contamination in residents living in affected areas to the south of the plant or who were evacuated into Iwaki city, a whole body counter (WBC) screening program of internal radio-contamination was performed on visitors to the Jyoban hospital in Iwaki city, which experienced less contamination than southern areas adjacent to the nuclear plant. The study included 9,206 volunteer subjects, of whom 6,446 were schoolchildren aged 4-15 years. Measurements began one year after the incident and were carried out over the course of two years. Early in the screening period only two schoolchildren showed Cs-137 levels that were over the detection limit (250 Bq/body), although their Cs-134 levels were below the detection limit (220 Bq/body). Among the 2,760 adults tested, 35 (1.3%) had detectable internal radio-contamination, but only for Cs-137 (range: 250 Bq/body to 859 Bq/body), and not Cs-134. Of these 35 subjects, nearly all (34/35) showed elevated Cs-137 levels only during the first year of the screening. With the exception of potassium 40, no other radionuclides were detected during the screening period. The maximum annual effective dose calculated from the detected Cs-137 levels was 0.029 and 0.028 mSv/year for the schoolchildren and adults, respectively, which is far below the 1 mSv/year limit set by the government of Japan. Although the data for radiation exposure during the most critical first year after the incident are unavailable due to a lack of systemic

  15. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  16. The IAEA's activities in safeguarding nuclear materials and in developing internationally acceptable safety codes and guides for nuclear power plants

    International Nuclear Information System (INIS)

    Rometsch, Rudolf; Specter, Herschel

    1977-01-01

    Promoting the peaceful use of nuclear energy and aiming at the international sharing of its benefits are objectives that guide the activities of the Agency. But this promotional work is carried out on condition that security and safety are provided for. All Agency assistance involving nuclear facilities will be subjected to standards of safety or other standards, which are proposed by a State the Agency finds essentially equivalent. Safeguards are always applied on the basis of agreement. States party to NPT are obligated to negotiate and conclude with the Agency agreements which cover all their peaceful nuclear activities. Safeguards agreements concluded outside NPT are applied to specific supplies of facilities, equipment and material. To assist countries in laying down their nuclear safety regulations the Agency's program for the developing of codesof practice and safety guides for nuclear power plants draws up guidelines for governmental organizations, siting, design, operation and quality assurance. Codes are the fundamental documents laying down the objectives of each field of nuclear safety

  17. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  18. Plutonium, power, and politics: international arrangements for the disposition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1979-01-01

    In this study, Gene Rochlin, physicist and social scientist, explores the technical, political, and institutional aspects of international nuclear export and fuel-cycle policies. He categorizes existing proposals and suggests ways to develop new ones that better promote both national and international goals. Dr. Rochlin argues neither for nor against the future use of nuclear power or plutonium fuels. Rather, he addresses the question of how international arrangements could be reached that might jointly satisfy the objectives of the several key nations, yet not be too difficult to negotiate. He concludes that a major fault has been the tendency to improvise arrangements for specific technical or industrial operations. As a result, overall social and political goals have become the bargaining points for compromise. Yet, attempts to simultaneously resolve all problems are unlikely to prove fruitful. Dr. Rochlin suggests instead the formation of institutions organized around more-limited social, political, and technical objectives - even at the expense of excluding some nations, or omitting some aspects of the nuclear fuel cycle. Only by so doing, he argues, can immediate agreements be reached that preserve the potential for more-comprehensive future arrangements without sacrificing industrial, environmental, or nonproliferation goals

  19. Internal event analysis of Laguna Verde Unit 1 Nuclear Power Plant. System Analysis

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis of Laguna Verde Unit 1 Nuclear Power Plant , CNSNS-TR-004, in five volumes. The reports are organized as follows: CNSNS-TR-004 Volume 1: Introduction and Methodology. CNSNS-TR-004 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR-004 Volume 3: System Analysis. CNSNS-TR-004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR-004 Volume 5: Appendices A, B and C. This volume presents the results of the system analysis for the Laguna Verde Unit 1 Nuclear Power Plant. The system analysis involved the development of logical models for all the systems included in the accident sequence event tree headings, and for all the support systems required to operate the front line systems. For the Internal Event analysis for Laguna Verde, 16 front line systems and 5 support systems were included. Detailed fault trees were developed for most of the important systems. Simplified fault trees focusing on major faults were constructed for those systems that can be adequately represent,ed using this kind of modeling. For those systems where fault tree models were not constructed, actual data were used to represent the dominant failures of the systems. The main failures included in the fault trees are hardware failures, test and maintenance unavailabilities, common cause failures, and human errors. The SETS and TEMAC codes were used to perform the qualitative and quantitative fault tree analyses. (Author)

  20. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  1. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  2. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  3. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  4. Internal event analysis for Laguna Verde Unit 1 Nuclear Power Plant. Accident sequence quantification and results

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1994-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant, CNSNS-TR 004, in five volumes. The reports are organized as follows: CNSNS-TR 004 Volume 1: Introduction and Methodology. CNSNS-TR4 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR 004 Volume 3: System Analysis. CNSNS-TR 004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR 005 Volume 5: Appendices A, B and C. This volume presents the development of the dependent failure analysis, the treatment of the support system dependencies, the identification of the shared-components dependencies, and the treatment of the common cause failure. It is also presented the identification of the main human actions considered along with the possible recovery actions included. The development of the data base and the assumptions and limitations in the data base are also described in this volume. The accident sequences quantification process and the resolution of the core vulnerable sequences are presented. In this volume, the source and treatment of uncertainties associated with failure rates, component unavailabilities, initiating event frequencies, and human error probabilities are also presented. Finally, the main results and conclusions for the Internal Event Analysis for Laguna Verde Nuclear Power Plant are presented. The total core damage frequency calculated is 9.03x 10-5 per year for internal events. The most dominant accident sequences found are the transients involving the loss of offsite power, the station blackout accidents, and the anticipated transients without SCRAM (ATWS). (Author)

  5. The availability of German nuclear power plants in an international comparison

    International Nuclear Information System (INIS)

    Fehndrich, W.; Kutsch, W.

    1976-01-01

    Due to unprecise definitions, incomplete reports and the small number of plants in operation, an analysis of the availability of nuclear power stations by international standards meets some difficulties. Especially in the classification of causes of accidents, isolated cases gain too much importance due to the statistically small number of unscheduled shutdowns and thus often distort the picture. Still, the present comparison based on statements made by the ABE committee and the IAEA presents a good picture of availability tendencies and main types of failures and gives rise to the assumption that the initial difficulties with which every new technology has to cope will soon be overcome. (orig./AK) [de

  6. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Khan, T.A.; Roecklein, A.K.

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately

  7. International conference on management of spent fuel from nuclear power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    2006-01-01

    This document contains 48 extended synopses of the International Conference on Management of Spent Fuel from Nuclear Power Reactors. The major topics covered related to national programmes in spent fuel management as well as regional trends, technology and safety/security aspects of wet and dry storage, licensing and regulation, quality assurance, design control, operating experience, R and D, and special aspects of spent fuel storage including in-service inspection, robotics, heat removal, and other engineering considerations. Each of the extended synopses was indexed separately

  8. An international comparison of regulatory organizations and licensing procedures for new nuclear power plants

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Nuttall, William J.

    2008-01-01

    This paper considers measures needed to license new nuclear power plants efficiently. We base our analysis on international standards and a comparison of the national regulatory and licensing framework in seven countries (Canada, France, Germany, Japan, Switzerland, the UK and the USA). We split the review into the organization of regulatory responsibilities and the licensing process. We propose a set of considerations that should be incorporated into national solutions. While conscious of the different cultural fundamentals of each region, we hope this paper will help fuel an emerging debate on this highly topical issue

  9. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A. [comp.] [Brookhaven National Lab., Upton, NY (United States); Roecklein, A.K. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

  10. Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants - ICAPP '08

    International Nuclear Information System (INIS)

    2008-01-01

    ICAPP 2008 congress brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covered the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. It covered also lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program comprised 13 technical tracks: 1. Water-Cooled Reactor Programs and Issues: Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting near term utility needs; design issues; business, economical cost challenges; infrastructure limitations and improved construction techniques including modularization. 2. High Temperature Gas Cooled Reactors: Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, impact of non electricity applications on reactor design; advanced thermal and fast reactors. 3. LMFR and Longer Term Reactor Programs: Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as super critical water reactors and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. 4. Operation, Performance and Reliability Management: Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in

  11. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  12. International nuclear trade

    International Nuclear Information System (INIS)

    Biad, A.; Cormis, F. de; Kerever, A.

    1998-01-01

    This third part is relative to the international nuclear trade it includes: the 1996 EURATOM/Usa Agreement on the peaceful Uses of nuclear energy: EURATOM Strengthened, a case study on IVO Power engineering Oy as a supplier to Russia, lessons learned from the Us/EURATOM Agreement for Cooperation, negotiating the parameters of nuclear regulation: lessons from South Africa, Good and new business in Brazil's nuclear energy field, cooperation between Russia and european union in the nuclear field: the legal basis, present status and future prospects, the industrial implications of the non proliferation policy. (N.C.)

  13. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  14. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  15. International guidance on the qualifications of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    Csik, B.J.

    1984-01-01

    Nuclear power plant operation and maintenance as well as training of operations personnel are activities where a large amount of experience is available. Though it would seem that the status of a well-established practice, requiring constant attention but no major efforts directed towards improvements, should have been reached, this is not the case. Currently, upgrading of the qualification requirements and training procedures of nuclear power plant operations personnel is a major issue and substantial efforts are being expended to this effect. The availability of international guidance in this field is perceived to be of benefit to all; therefore the Agency has undertaken to develop such guidance. In addition to earlier publications, a guidebook on this subject area is being prepared. Important problems and current issues have been identified and these are commented upon in the present paper. The specific topics referred to include: the role of the operating organization and the regulatory body; organizational aspects; staffing requirements; competence requirements for personnel; establishment and verification of competence; and personnel management. It is recognized that developing international guidance is a difficult and delicate task, especially when it is intended to go beyond stating the obvious and expressing generalities which are certain to meet a general consensus. (author)

  16. Balance between automation and human actions in nuclear power plant operation. Results of international cooperation

    International Nuclear Information System (INIS)

    Sun, B.; Olmstead, R.; Oudiz, A.; Jenkinson, J.; Kossilov, A.

    1990-01-01

    Automation has long been an established feature of power plants. In some applications, the use of automation has been the significant factor which has enabled plant technology to progress to its current state. Societal demands for increased levels of safety have led to greater use of redundancy and diversity and this, in turn, has increased levels of automation. However, possibly the greatest contributory factor in increased automation has resulted from improvements in information technology. Much recent attention has been focused on the concept of inherently safe reactors, which may simplify safety system requirements and information and control system complexity. The allocation of tasks between man and machine may be one of the most critical activity in the design of new nuclear plants and major retro-fits and it therefore warrants a design approach which is commensurate in quality with the high levels of safety and production performance sought from nuclear plants. Facing this climate, in 1989 the International Atomic Energy Agency (IAEA) formed an advisory group from member countries with extensive experience in nuclear power plant automation. The task of this group was to advise on the appropriate balance between manual and automatic actions in plant operation. (author) [fr

  17. Balance between automation and human actions in nuclear power plant operation. Results of international cooperation

    International Nuclear Information System (INIS)

    Sun, B.; Olmstead, R.; Oudiz, A.; Jenkinson, J.; Kossilov, A.

    1990-01-01

    Automation has long been an established feature of power plants. In some applications, the use of automation has been the significant factor which has enabled plant technology to progress to its current state. Societal demands for increased levels of safety have led to greater use of redundancy and diversity and this, in turn, has increased levels of automation. However, possibly the greatest contributory factor in increased automation has resulted from improvements in information technology. Much recent attention has been focused on the concept of inherently safe reactors, which may simplify safety system requirements and information and control system complexity. The allocation of tasks between man and machine may be one of the most critical activity in the design of new nuclear plants and major retro-fits and it therefore warrants a design approach which is commensurate in quality with the high levels of safety and production performance sought from nuclear plants. Facing this climate, in 1989 the International Atomic Energy Agency (IAEA) formed an advisory group from member countries with extensive experience in nuclear power plant automation. The task of this group was to advise on the appropriate balance between manual and automatic actions in plant operation

  18. Aging management strategy for reactor internals of Korean nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Soung Woo; Lee, Sam Lai; Hong, Seung Mo; Kim, Hong Pyo; Kim, Dong Jin; Lim, Yun Soo; Kim, Joung Soo; Jung, Man Kyo; Park, Jang Yul

    2010-01-01

    This report describes various factors on the IASCC of reactor internals in terms of fluence, stress, water chemistries and materials. Materials of each components of Korean nuclear power plants have been surveyed. A technical report for a management of reactor internals issued by EPRI was reviewed for a selection of most susceptible area among many components. Baffle former bolts are considered to be the most susceptible parts due to high irradiation level(fluence) and high tensile stress. Neutron fluence of Kori-1 and Kori-2 was calculated based on fuel exchange history, fuel performance and plant operation history. This report will be used for more advanced inspection and maintenance guidelines development by supplying inspection intervals and components (most susceptible regions) for the long term operation plants

  19. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  20. Remarks at the International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programs

    International Nuclear Information System (INIS)

    Klein, Dale E.

    2012-01-01

    Thank you and good morning, everyone. I am pleased to be in Abu Dhabi, which I have heard so much about but have never visited before. During my tenure at the U.S. Nuclear Regulatory Commission as Chairman and now as a Commissioner, I have traveled extensively across the globe in support of international nuclear safety and security and visited a number of countries. So, I can say with some experience that this is one of the most impressive examples of modern development that I have encountered anywhere in my travels. I congratulate the UAE for its commitment to national development, to this location, and to the ideal of progress toward a bright future. The topic of this conference - human resources development and the expansion of nuclear power - is about the commitment and investment in people. The importance of this 'human side' of modern technology is sometimes forgotten or assumed to develop on its own once basic educational programs and institutions are put in place. In my view, the development and maintenance of a skilled national workforce is critical to the development of a stable, successful national nuclear power program. As many of you know, I am on leave from the University of Texas and will soon be returning there. And because of my academic background, I have made the need to expand scientific and engineering education and to promote technological development a recurring theme in my numerous presentations while serving at the U.S. NRC. So I am pleased to participate in this conference today and to share the podium for this keynote address session with my distinguished and honorable colleague from India, Mr. Rajagopala Chidambaram. I also want to commend the International Atomic Energy Agency for convening this special conference on this vital subject. The subject of highly qualified, nuclear trained people has been a significant theme in my speeches and private conversations. There is little doubt that ensuring there will be enough trained and

  1. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  2. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  3. Development of a strategic plan for an international R and D project on innovative nuclear fuel cycles and power plants

    International Nuclear Information System (INIS)

    Kendall, J.; Choi, J.S.

    2002-01-01

    The long-term outlook for nuclear energy should be considered in a broader perspective of future energy needs, operational safety, proliferation and environmental impacts. An Advisory Group Meeting (AGM) on Development of a Strategic Plan for an International R and D Project on Innovative Nuclear Fuel Cycles and Power Plants was convened in Vienna in October 1999 to assess the criteria, the needs for international cooperation, and to formulate a strategic plan for project integration. (author)

  4. Safe management of the operating lifetimes of nuclear power plants. INSAG-14. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2014-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. The present report by INSAG deals with a general approach to the safe management of the operating lifetimes of nuclear power plants. It responds to the concerns about maintaining adequate safety levels at ageing plants, even beyond their design lifetimes. Maintaining adequate safety levels implies first and foremost stringent control of equipment ageing, consistent with the design safety bases of the plants. However, as stated in the 75-INSAG-3 report, 'Basic Safety Principles for Nuclear Power Plants', nuclear safety requires a continuing quest for excellence; this implies enhancinuest for excellence; this implies enhancing the safety levels of operating nuclear power plants as far as reasonably practicable, with due account taken of experience and advancement in knowledge. Moreover, in view of the present situation of the nuclear industry, it may become difficult to maintain adequate competences in many countries with nuclear power programmes. These topics are considered in this latest INSAG report and released to a wider audience

  5. Safe management of the operating lifetimes of nuclear power plants. INSAG-14. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. The present report by INSAG deals with a general approach to the safe management of the operating lifetimes of nuclear power plants. It responds to the concerns about maintaining adequate safety levels at ageing plants, even beyond their design lifetimes. Maintaining adequate safety levels implies first and foremost stringent control of equipment ageing, consistent with the design safety bases of the plants. However, as stated in the 75-INSAG-3 report, 'Basic Safety Principles for Nuclear Power Plants', nuclear safety requires a continuing quest for excellence; this implies enhancing the safety levels of operating nuclear power plants as far as reasonably practicable, with due account taken of experience and advancement in knowledge. Moreover, in view of the present situation of the nuclear industry, it may become difficult to maintain adequate competences in many countries with nuclear power programmes. These topics are considered in this latest INSAG report and released to a wider audience

  6. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  7. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  8. International ITER fusion energy organization. Paving the way to power generation from nuclear fusion

    International Nuclear Information System (INIS)

    Preuschen-Liebenstein, R. von

    2006-01-01

    ITER (Latin: the way) is the acronym of a new international large research facility gradually taking shape after the meeting of Gorbachev and Reagan in Reykjavik in 1985. Under the auspices of the IAEA, worldwide scientific and industrial cooperation with 'home teams' of each of the ITER partners began at that time which were commissioned to accumulate the knowledge and the technology of nuclear fusion in the participating countries. At the end of the preparation and decisionmaking process, the design draft of the ITER reactor was elaborated in international cooperation as the basis of the ITER Convention. After lengthy negotiations among the international ITER partners, a European site for the ITER organization and its reactor was found at Cadarache, France. As the first ITER member, Europe now initiated worldwide cooperation in research and development, seeking to demonstrate the technical and scientific feasibility of tapping fusion power for peaceful purposes. The Council of the European Union (competitiveness), at its meeting on September 25, 2006, decided to sign the ITER Convention about the establishment of the International ITER Fusion Energy Organization ('ITER Organization') and about the mutual obligation to make the necessary contributions towards the construction of ITER. (orig.)

  9. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    International Nuclear Information System (INIS)

    2004-01-01

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident

  10. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  11. International coal and the future of nuclear power in the UK

    International Nuclear Information System (INIS)

    Parker, M.J.

    1987-01-01

    The future international price of coal is a central issue in the economic comparison of coal-fired and nuclear power stations. However, this is very difficult to estimate as prices are uncertain and subject to wide margins of error. Recent trends are discussed. The increase in the seaborne steam coal trade is one trend. Although only about 5% of steam coal is traded, this is mainly in the Far East and in Western Europe. It is steam coal prices which are relevant in considering nuclear economies. The structure of the international steam coal market is explained. An assessment of future prices of steam coal considers both demand and supply. The delivered cost of steam coal to N.W. Europe in 1986 is shown - the main suppliers being Australia, Colombia, South Africa and the USA. China and Poland are also exporters of steam coal. Currently, there is an over-supply which is keeping the price low. However, as demand increases prices are likely to rise in the 1990s but with upper limits depending on the total volume of trade. Thirteen graphs or maps illustrate the figures on which the discussion and conclusions are based. (UK)

  12. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  13. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations. While any final assessment of such measures and alternatives would have to examine the circumstances particular to each nation, it is hoped that the more generic assessments conducted here will be useful in suggesting guidelines for developing an improved nonproliferation regime which also helps to meet nuclear-energy needs. One chapter outlines the existing nonproliferation regime, including the Treaty for the Non-Proliferation of Nuclear Weapons (NPT), International Atomic Energy Agency (IAEA) safeguards, bilateral and multilateral requirements for agreements of cooperation and transfers of technology, and existing provisons for sanctions for violation of nonproliferation commitments. The chapter then proceeds to an assessment of various alternatives for providing assurance of fuel supply in light of this current regime. Another chapter examines a set of technical and institutional measures and alternatives for various components of once-through and closed fuel cycles. The components of the once-through fuel cycle assessed are enrichment services and spent-fuel management; the components of closed fuel cycles assessed are reprocessing and plutonium management and fast-breeder reactor (FBR) deployment

  14. Investigation of internal contamination by tritium in A-1 nuclear power plant personnel in 1974

    International Nuclear Information System (INIS)

    Ondris, D.; Herchl, M.; Homolova, E.

    1977-01-01

    The results are presented of the 1974 personnel monitoring of the Bohunice A-1 nuclear power plant staff for internal contamination with tritium. Totally, 650 urine samples taken from 103 workers were analyzed using the recommended ICRP procedure. In routine examinations, the highest dose equivalent value of tritium incorporated within two weeks did not exceed 10 mrem, i.e., the maximum annual dose equivalent did not exceed 260 mrem. 8.5 μCi tritium per 1 litre urine was considered to be an alarm value. In a selected group of 21 high-risk persons analyses were conducted before and after each operation associated with tritium hazards. The limit dose was set to 5.8 μCi.l -1 , i.e., the tritium concentration equivalent to 10% of the maximum permissible annual intake. In 18 workers where tritium risk was of a more serious nature the biological half-life was followed up, with the average biological half-life being 8.5 days, with 5 days for the minimum and 12 days for the maximum values. The results show that in 1974 the tritium burden did not exceed 1/10 of the maximum permissible dose for any of the A-1 nuclear power plant workers. (L.O.)

  15. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  16. Licensing procedure for nuclear power in Sweden. An international look with lessons for Sweden

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2011-02-01

    In this study we present an in-depth analysis of the existing licensing procedure for nuclear power in Sweden, and the related processes towards different public authorities. In order to put the existing legislation into context we also analyze the legal and political prerequisites for the establishment of nuclear reactors during the 1970s. The purpose of this report is thus to: (a) analyze the legal and political conditions under which the existing nuclear power plants in Sweden were built; and (b) review and analyze the existing licensing procedure for nuclear power in the country. Four main statutes (and several subordinated regulations) apply in connection with the establishment of a new nuclear plant in Sweden, including the adoption of physical plans, a principal governmental decision on the permissibility of the plant and at least five major licenses. Physical planning according to the Planning and Building Act is primarily a municipal responsibility. A plan has to meet certain environmental requirements; not least the 'provisions on efficient management of natural resources' in the Environmental Code, indicating how different kinds of land and water areas should be used and thereby direct the location of different installations. The Swedish rules are complex and vague in many respects, and may therefore imply major uncertainties for a prospective investor. The legal protection is less unclear if an area is of national interest for a specific purpose, such as nature conservation, where it normally would not be possible to locate, say, a nuclear power plant. An area may also be of national interest for nuclear plants, which of course significantly alters the preconditions in favour of the plant project. The physical planning procedure comprises an 'environmental consideration' of the plan, including an 'environmental impact assessment' (EIA), provided the plan is likely to have significant effects on the environment. This 'programmatic EIA' does however not

  17. International inventory of training facilities in nuclear power and its fuel cycle 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The revised inventory is arranged according to the following subject areas: nuclear power plant (NPP) engineering, nuclear safety, quality assurance, NPP operation and maintenance, NPP instrumentation and control, nuclear fuel management, nuclear materials control. Training in each subject area is classified into five groups depending on the type of organization offering the training courses. Each course is briefly described by its name or purpose, institution and location, duration, frequency, language, and content

  18. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  19. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  20. Contribution of international cooperation in achieving the Romanian nuclear power objectives

    International Nuclear Information System (INIS)

    Diaconu, Daniela

    2002-01-01

    The international cooperation implied by the Romanian nuclear power program has on the short term the goal of supporting the Romanian effort of obtaining new nuclear fuels, improving the radioactive waste management, developing the technology and software transfer, training of Romanian researchers and participations in international projects. On long term the international cooperation is aiming at rising the scientific standards and the degree of global integration of Romanian research and technology. This policy is supported also by the agreements convened with different international organizations as for instance 'The Agreement for Nuclear Safety' or 'Common agreement for safe management of spent fuel and radioactive waste'. The INR at Pitesti and CITON - Bucharest are involved in works for cooperation technical projects supported by IAEA Vienna aiming at the nuclear safe and safeguard and power programs. At present underway are research contracts concerning the CANDU pressure tube, the corrosion in the primary cooling circuit of the CANDU reactors, as well as, the behavior under irradiation and intermediate disposal of oxide fuels. In the frame of IAEA assisted technical programs the TRIGA reactor of INR Pitesti is transferred from HEU to LEU fuels, new technologies for using recovered uranium and slightly enriched uranium fuels are developed, as well as a data acquisition system with advanced on-line characteristics. The cooperation between INR Pitesti and AECL Canada comprised in the frame of the 1998 agreement is oriented towards three fields of common interest: nuclear safety, nuclear fuel and management of in-service life of NPPs. Already transferred were computer codes from AECL devoted to accident analysis (WIMS, CATHENA and ELOCA) which were implemented and reproduced accurately all the test cases provided by AECL. For installing these codes specialists from our institute participated in training courses, on-the-job training, as well as, in validation

  1. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1980-01-01

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  2. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  3. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  4. International Nuclear Technology Forum: Future prospects of nuclear power plants and Turkey; Uluslararasi Nukleer Teknoloji Kurultayi: Nukleer guc santrallarinin gelecegi ve Turkiye

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document includes 19 papers presented at the `International Nuclear Technology Forum: Future Prospects of Nuclear Power Plants in Turkey`, held between 12-15 October 1993 in Ankara (Turkey). A separate abstract was prepared for each paper prepared for each paper.

  5. Review of international standards related to the design for control rooms on nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, Masashi; Yoshikawa, Hidekazu; Fujita, Yushi

    2005-01-01

    The improvement of Human-Machine Interface (HMI) design for control rooms on nuclear power plants (NPP) has been accomplished world wide, especially after the TMI-2 accident. The design process and guidelines are standardized in IEC60964 and supplemental standards as international standard. However, technological update is required due to the increased use of computerized control and monitoring equipment and systems in control rooms on NPP in recent years. Standards are becoming more important for computerized control rooms because there is more freedom to design than conventional hardware based system. For computerized control rooms, standards for hardware and software of HMI systems should be also considered. Standards and guidelines for computerized control rooms on NPP have been developed recently in each body such as IEC, ISO, and IEEE etc. Therefore, reviewing these standards and guidelines related to control rooms design of NPP can be useful not only for revision of the international standards such as IEC60964, but also for users of the standards and guidelines. In this paper, we reviewed the international standards related to the design for control rooms, in the two aspects of HMI design and hardware and software design, considering the undergoing revision work and their application. (author)

  6. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  7. The availability of German nuclear power plants in an international comparison

    International Nuclear Information System (INIS)

    Fehndrich, W.; Kutsch, W.

    1975-01-01

    The availability of German nuclear power stations is discussed in comparison with European and American light-water nuclear power stations. Furthermore, the availability or utilization is shown as a function of the year of operation and of the unit size (the latter only for the USA), and the trends observed during the last 4 years are made evident. The unscheduled shutdowns of light-water nuclear power stations during the past 4 years are analysed on the basis of publications of the IAEA in Vienna and the ABE-Committees of the German Atomforum with special emphasis on the affected systems. (orig.) [de

  8. Nuclear Power Plant Operating Experience from the IAEA/NEA International Reporting System for Operating Experience 2012-2014

    International Nuclear Information System (INIS)

    2018-03-01

    The International Reporting System for Operating Experience (IRS) is an essential element of the international operating experience feedback system for nuclear power plants. Its fundamental objective is to contribute to improving safety of commercial nuclear power plants which are operated worldwide. IRS reports contain information on events of safety significance with important lessons learned which assist in reducing recurrence of events at other plants. This sixth publication, covering the period 2012 - 2014, follows the structure of the previous editions. It highlights important lessons based on a review of the approximately 240 event reports received from the participating countries over this period.

  9. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  10. International nuclear material safeguards

    International Nuclear Information System (INIS)

    Syed Azmi Syed Ali

    1985-01-01

    History can be a very dull subject if it relates to events which have long since lost their relevance. The factors which led to the creation of the International Atomic Energy Agency (IAEA), however, are as important and relevant today as they were when the Agency was first created. Without understanding these factors it is impossible to realise how important the Agency is in the present world or to understand some of the controversies surrounding its future. Central to these controversies is the question of how best to promote the international transfer of nuclear technology without contributing further to the problem of proliferating nuclear explosives or explosive capabilities. One effective means is to subject nuclear materials (see accompanying article in box), which forms the basic link between the manufacture of nuclear explosives and nuclear power generation, to international safeguards. This was realized very early in the development of nuclear power and was given greater emphasis following the deployment of the first two atomic bombs towards the end of World War II. (author)

  11. Nuclear power

    International Nuclear Information System (INIS)

    d'Easum, Lille.

    1976-03-01

    An environmentalist's criticism of nuclear energy is given, on a layman's level. Such subjects as conflict of interest in controlling bodies, low-level radiation, reactor safety, liability insurance, thermal pollution, economics, heavy water production, export of nuclear technology, and the history of the anti-nuclear movement are discussed in a sensationalistic tone. (E.C.B.)

  12. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  13. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  14. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  15. Strategic International Cooperation of Fukui Prefectural Government in Human Resources Development for Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Nishikawa, Issei

    2014-01-01

    Japan's new 'Basic Energy Plan': • Nuclear Energy is an important ”base load power supply”. • Restart NPPs that adhere to the world’s strictest regulation standards. • Reduce dependence on nuclear power as much as possible. • Ascertain the scale of steady supply, cost reduction, global warming, ensuring safety. • Decide the best mix of energy sources as soon as possible

  16. Estimation of internal exposure dose from food after the Fukushima Daiichi Nuclear Power Station disaster

    International Nuclear Information System (INIS)

    Takizawa, Mari; Yoshizawa, Nobuaki; Kawai, Masaki; Miyatake, Hirokazu; Hirakawa, Sachiko; Murakami, Kana; Sato, Osamu; Takagi, Shunji; Suzuki, Gen

    2016-01-01

    In order to estimate the internal exposure dose from food due to the Fukushima Daiichi Nuclear Power Station accident, total diet study (TDS) has been carried out. TDS is a method for estimating how much of certain chemicals people intake in the normal diet. A wide range of food products are chosen as targets, and the increase or decrease of chemicals depending on processing or cooking is taken into account. This paper glanced at the transition of TDS survey results, and with a focus on the survey results of the market basket (MB) system, which is one of the TDS techniques, it examined a decrease in the committed effective dose per year of radioactive cesium. Although the values of internal exposure dose from food in Fukushima Prefecture and surrounding prefectures are even now in a relatively high tendency compared with those in the distant regions, the difference has been narrowing. According to the attenuation prediction of internal exposure dose in each region of Fukushima Prefecture, the values after 5 years from the accident will be lower than the measured value on the food in market that has been investigated during 1989 and 2005. In addition, the internal exposure dose that was the survey results based on MB system in September - October 2014 was 0.0007 to 0.0022 mSv/year. These values are very small at 1% or less of the upper limit dose of 1 mSv/year as the setting basis of current reference value in Japan. (A.O.)

  17. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  18. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  19. Creating a Pan-Asian model for international cooperation in nuclear power

    International Nuclear Information System (INIS)

    Gerstenhaber, E.P.

    1994-01-01

    The author stressed that as southeast Asian countries expand their participation in nuclear technology, a time has come for new forms of cooperation between nations. Cooperation will accelerate the entry of nations into the nuclear era, especially where a well developed industrial and technical base may not yet be available. By sharing the challenges of the technology and working together, nations may more quickly and economically afford the benefits of nuclear energy. Activities range from basic engineering to manufacturing and assembly of advanced modularized plants. Focus on nuclear requirements will help to build an indigenous industrial and technical base. Several models for international cooperation are presented

  20. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  1. Human Resource Development for Introducing and Expanding Nuclear Power Programmes. Summary of an International Conference

    International Nuclear Information System (INIS)

    2012-01-01

    Currently, the world is witnessing a resurgence of interest in nuclear power. More than fifty Member States, with support from the IAEA, are considering the introduction of nuclear power, and human resource development is one of the crucial areas in terms of requests for support. The need for human resources in the nuclear sector is not only experienced by countries embarking on new nuclear power programmes, but also by countries with existing programmes that are considering expansion, as many current professionals are approaching retirement age and the number of newly trained staff is generally not sufficient to meet the potential demand. The IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes was held from 14 to 18 March 2010 in Abu Dhabi, hosted by the Government of the United Arab Emirates. This conference was organized to address work force issues faced by countries which are embarking on new nuclear power programmes, expanding current programmes or planning to supply nuclear technology to other countries. The situation is different for each country; some need to develop their own local expertise, while others need to scale up existing educational and training programmes to increase the number of professionals. The purpose of this conference was to bring together Member States to help formulate country specific policies on human resource development, education, training and knowledge management to help support each country's nuclear power programme. In addition, the IAEA can facilitate better use of other educational opportunities, including research reactors and development of training facilities. These proceedings highlight the key findings and recommendations of the meeting and the conclusions of the chairperson. All papers presented and discussed during the meeting are included on the attached CD-ROM. To access the papers, click on 'Index' on the CD-ROM.

  2. Human Resource Development for Introducing and Expanding Nuclear Power Programmes. Summary of an International Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    Currently, the world is witnessing a resurgence of interest in nuclear power. More than fifty Member States, with support from the IAEA, are considering the introduction of nuclear power, and human resource development is one of the crucial areas in terms of requests for support. The need for human resources in the nuclear sector is not only experienced by countries embarking on new nuclear power programmes, but also by countries with existing programmes that are considering expansion, as many current professionals are approaching retirement age and the number of newly trained staff is generally not sufficient to meet the potential demand. The IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes was held from 14 to 18 March 2010 in Abu Dhabi, hosted by the Government of the United Arab Emirates. This conference was organized to address work force issues faced by countries which are embarking on new nuclear power programmes, expanding current programmes or planning to supply nuclear technology to other countries. The situation is different for each country; some need to develop their own local expertise, while others need to scale up existing educational and training programmes to increase the number of professionals. The purpose of this conference was to bring together Member States to help formulate country specific policies on human resource development, education, training and knowledge management to help support each country's nuclear power programme. In addition, the IAEA can facilitate better use of other educational opportunities, including research reactors and development of training facilities. These proceedings highlight the key findings and recommendations of the meeting and the conclusions of the chairperson. All papers presented and discussed during the meeting are included on the attached CD-ROM. To access the papers, click on 'Index' on the CD-ROM.

  3. Statement to International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programs

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    Mr. President, Excellencies, Ladies and Gentlemen, It is a pleasure for me to open this IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes. I am very grateful to the Government of the United Arab Emirates for hosting this important event. As you know, the world is witnessing a resurgence of interest in nuclear power. The IAEA has projects on introducing nuclear power with no fewer than fifty-eight of our Member States. We expect between 10 and 25 new countries to bring their first nuclear power plants on-line by 2030. These are momentous changes. However, some countries are concerned about a possible shortage of skilled professionals in the nuclear field in the coming decades. The generation of professionals who built and led the nuclear power industry for much of the past 50 years is approaching retirement and in some countries there are not enough students coming up through the educational system to take their place. Naturally, we at the IAEA want to do all we can to help Member States address this issue. That is why we have organized this conference. The situation is different in different countries. For countries with expanding nuclear power programmes, the challenge is to scale up their existing education and training in order to have the required qualified workforce on time. Countries planning to supply nuclear technology to others not only have to meet their national human resource needs, but must also be able to transfer education and training capacity together with the technology they provide. Finally, countries embarking on nuclear power cannot become too dependent on their technology supplier and need to develop their own home-grown expertise and skills base. The Agency would be happy to help interested States to formulate country-specific policies on human resource development, education, training and knowledge management in support of nuclear power programmes. We could also help countries make better

  4. Statement to international conference on human resource development for introducing and expanding nuclear power programs

    International Nuclear Information System (INIS)

    Amano, Y.

    2010-03-01

    Full text: Mr. President, Excellencies, Ladies and Gentlemen, It is a pleasure for me to open this IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes. I am very grateful to the Government of the United Arab Emirates for hosting this important event. As you know, the world is witnessing a resurgence of interest in nuclear power. The IAEA has projects on introducing nuclear power with no fewer than fifty-eight of our Member States. We expect between 10 and 25 new countries to bring their first nuclear power plants on-line by 2030. These are momentous changes. However, some countries are concerned about a possible shortage of skilled professionals in the nuclear field in the coming decades. The generation of professionals who built and led the nuclear power industry for much of the past 50 years is approaching retirement and in some countries there are not enough students coming up through the educational system to take their place. Naturally, we at the IAEA want to do all we can to help Member States address this issue. That is why we have organized this conference. The situation is different in different countries. For countries with expanding nuclear power programmes, the challenge is to scale up their existing education and training in order to have the required qualified workforce on time. Countries planning to supply nuclear technology to others not only have to meet their national human resource needs, but must also be able to transfer education and training capacity together with the technology they provide. Finally, countries embarking on nuclear power cannot become too dependent on their technology supplier and need to develop their own home-grown expertise and skills base. The Agency would be happy to help interested States to formulate country-specific policies on human resource development, education, training and knowledge management in support of nuclear power programmes. We could also help countries

  5. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  6. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  7. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  8. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  9. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  10. Proceedings of the international conference on nuclear power competitiveness in the next two decades

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this conference is to analyse the different elements that can have an influence on the cost of generating nucleo- electricity. Besides the usual predominant factors as fuel supply, personnel and maintenance that enter in the costs of any electricity generating method, nuclear power generation suffers the extra burden of severe regulatory demands, high decommissioning and insurance costs and an adverse public opinion that can effect competitiveness. Countries that can keep the nuclear option open during this difficult period will be the leaders in the future, those that cannot survive will become hopelessly energy dependent. Almost one hundred contributions gathered in these volume, as a result of presentations at the conference from participants from 22 countries, will contribute to increase competitiveness of nuclear power generation and, if possible, develop new ideas to help solve the present crisis in the nuclear sector. refs., ills

  11. Proceedings of the international conference on nuclear power competitiveness in the next two decades

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The purpose of this conference is to analyse the different elements that can have an influence on the cost of generating nucleo- electricity. Besides the usual predominant factors as fuel supply, personnel and maintenance that enter in the costs of any electricity generating method, nuclear power generation suffers the extra burden of severe regulatory demands, high decommissioning and insurance costs and an adverse public opinion that can effect competitiveness. Countries that can keep the nuclear option open during this difficult period will be the leaders in the future, those that cannot survive will become hopelessly energy dependent. Almost one hundred contributions gathered in these volume, as a result of presentations at the conference from participants from 22 countries, will contribute to increase competitiveness of nuclear power generation and, if possible, develop new ideas to help solve the present crisis in the nuclear sector. refs., ills.

  12. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  13. Probabilistic reconstruction of internal exposure for nuclear power plant workers using air concentration measurements

    International Nuclear Information System (INIS)

    Linkov, I.; Burmistrov, D.

    2000-01-01

    Air surveys, whole-body counting, bioassays or combination of these measurements can be utilized for purposes or assessing internal doses to determine compliance with occupational dose equivalent limits. Air sampling with a little support provided by whole body counting and/or bioassays was often relied on in dose calculations. The utility of air sampling for internal dose reconstruction is addressed in this paper through the probabilistic analysis of environmental factors and their impact on dose estimates. In this paper we attempt to reconstruct an internal dose due to inhalation of beta + gamma emitting radionuclides for a contractual electrician, Mr. X. The data available for reconstruction of internal dose for Mr. X was found to be highly variable and uncertain. Uncertainty describes a lack of knowledge about a parameter, this lack of knowledge theoretically can be reduced, e.g., if more measurements were to be taken (for example, estimated activities for alpha-emitting radionuclides are uncertain due to the influence of naturally-occurring alpha-emitters). Variability describes the existence of different values that represent different environmental conditions (for example, the air concentrations of radionuclides may vary over time because of the different tasks performed by workers in the area). Variability can not be reduced by additional data collection because the varying values reflect the variable nature of the environment, not a lack of data. The high variability in measured air concentrations in the restricted areas of a LWR nuclear power plant where he worked do not allow adequate reconstruction of his individual internal dose using deterministic methods and therefore probabilistic methods are desirable. The guidance for probabilistic assessment developed by the United States Environmental Protection Agency as well as recommendations of the National Council of Radiation Protection provide an adequate framework for probabilistic reconstruction of

  14. An international benchmark on safety review practices at nuclear power plants

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Kettunen, J.

    2000-02-01

    A benchmarking exercise on safety review practices at nuclear power plants in Finland, Sweden and the United Kingdom has been carried out. In the exercise a comparison was made between documented practices at the Forsmark, Hinkley Point A and Olkiluoto nuclear power plants. In addition a total of 28 persons at FKA, Magnox and TVO were interviewed on their views on the efficiency of the plant modification processes in the later half of 1997. One specific example of a plant modification was selected from each of the nuclear power plant sites to provide a basis for the comparison. The report gives an account of the methodology used, a description of the plant modification projects, impressions from the interviews, potential problem areas and suggestions for possible improvements. (orig.)

  15. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  16. International measures for supporting the Ukraine in decommissioning Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Wolf, J.

    2006-01-01

    The destruction of Block 4 of the Ukranian nuclear power plant in Chernobyl on 26 April 1986 was the largest and most momentous accident in the civil use of nuclear energy. Its far-reaching and lasting ecological, heath-related and economic effects confronted the then Soviet and later the Ukraine with grave problems. Particularly after the dissolution of the Eastern Bloc and the emergence of information about the safety shortcomings of RBMK-type (Chernobyl-type) reactors the Western states pressed for the decommissioning of these reactors. At the G7 summit in Naples in 1994 the Ukraine was offered an action plan of support if it were willing to close down Chernobyl nuclear power plant. This initiative led to the signing on 20 December 1995 of a Memorandum of Understanding on the Closure of Chernobyl Nuclear Power Plant between the G7 states, the European Commission and the Ukraine. It contained an assurance by President Kuchma that Chernobyl nuclear power plant would be closed by the year 2000

  17. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  18. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  19. System aspects of managing international scientific and technical as well as manufacturing economic cooperation in the nuclear power field

    International Nuclear Information System (INIS)

    Drahny, M.

    1988-01-01

    International scientific and technical cooperation in nuclear power is discussed from the angle of systems control aspects. Integration benefit and the development stages of the integration process are mainly treated. The researcher-user relations are analysed in detail in scientific and technical cooperation and its links to economic cooperation. In nuclear power within COMECON countries, the most important field of cooperation currently is the complex program of scientific and technical progress of the COMECON member countries till the year 2000, especially its third priority trend called Accelerated Development of Nuclear Power. The following new quality should be thereby provided for the participating states: the achievement of the world peak standards of technical and economic parameters; the reflection of scientific and technical and economic cooperation in a complete innovatory cycle Science-Technology-Production-Application; the achievement of direct labor relations of the participating research, development, production and end user organizations. (Z.M.). 1 fig., 16 refs

  20. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

  1. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    International Nuclear Information System (INIS)

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations

  2. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  3. Coal and nuclear power should supplement oil - International Chamber of Commerce

    International Nuclear Information System (INIS)

    Gomez, B.

    1982-01-01

    The views of the International Chamber of Commerce on world energy planning are noted. The Chamber has suggested that governments should expedite and clarify environmental and safety regulations for nuclear energy and coal, both important and acceptable energy sources which offer abundant and economic means to reduce dependence on petroleum. Economic advantages and environmental hazards are considered

  4. Proceedings of the international conference on nuclear power plant aging, availability factor and reliability analysis

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on nuclear power plant life extension. Topics considered at the conference included availability, accelerated aging techniques, the qualification of electrical equipment, probabilistic risk assessment, reactor maintenance, outages, reliability, computer-aided design, seismic effects, mechanical vibrations, fatigue monitoring, steam generators, and materials degradation by aging and embrittlement

  5. Summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1978-01-01

    An attempt is made to trace the development of extreme load criteria as it applies to earthquakes, extreme wind, high energy system rupture (LOCA), floods and other manmade and natural external hazards, from 1965 until the present, in the leading nuclear power nations throughout the world. (Author)

  6. Federal Administrative Court, judgement of December 17, 1986 (nuclear power station at international border)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In its decision of December 17, 1986, the Federal Administrative Court accepted the right of action of Dutch borderers against an atomic licence for a German nuclear power plant. The necessary involvement according to sec. 42 Paragraph 2 of the Administrative Court Procedure Act results from the violation of the third party protection provision in sec. 7 Atomic Energy Act. (WG) [de

  7. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  8. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Single Channel Trip System for the Dungeness B AGRs in the United Kingdom has enabled Nuclear Electric to enhance the performance of each of the twin reactors progressively towards the design figure of 660MW. The unique self-testing dynamic nature of the microprocessor-based ISAT system was one of the key factors in satisfying the UK Regulator that the system met the demanding requirements of the Dungeness B application, and current operational and maintenance experience is very encouraging. Systems based on the ISAT principle have application in reactor protection systems throughout the world. (Author)

  9. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  10. Review of the international forum on peaceful use of nuclear energy and nuclear security. Taking the lessons learned from Fukushima Daiichi Nuclear Power Plant accident to the 2012 Seoul nuclear security summit

    International Nuclear Information System (INIS)

    Tazaki, Makiko; Suda, Kazunori; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2012-06-01

    The Japan Atomic Energy Agency (JAEA) held '2011 International Forum on the Peaceful Use of Nuclear Energy and Nuclear Security - Taking the lessons learned from Fukushima Daiichi Nuclear Power Plant Accident to the 2012 Seoul Nuclear Security Summit-' on 8 and 9 December, 2011. It intended to articulate effective strategies and measures for strengthening nuclear security using lessons learned from the Fukushima Nuclear Accident. Moreover, it was expected to explore comprehensive approaches which could contribute to enhancing both nuclear safety and security in order to support sustainable and appropriate development of the peaceful use of nuclear energy. This report includes abstracts of keynote speeches, summary of panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording and content of this report, excepts presentation materials. (author)

  11. Review of the international forum on peaceful use of nuclear energy and nuclear security. Taking the lessons learned from Fukushima Daiichi Nuclear Power Plant accident to the 2012 Seoul nuclear security summit

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Makiko; Suda, Kazunori; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro [Japan Atomic Energy Agency, Department of Science and Technology for Nuclear Material Management, Tokai, Ibaraki (Japan)

    2012-06-15

    The Japan Atomic Energy Agency (JAEA) held '2011 International Forum on the Peaceful Use of Nuclear Energy and Nuclear Security - Taking the lessons learned from Fukushima Daiichi Nuclear Power Plant Accident to the 2012 Seoul Nuclear Security Summit-' on 8 and 9 December, 2011. It intended to articulate effective strategies and measures for strengthening nuclear security using lessons learned from the Fukushima Nuclear Accident. Moreover, it was expected to explore comprehensive approaches which could contribute to enhancing both nuclear safety and security in order to support sustainable and appropriate development of the peaceful use of nuclear energy. This report includes abstracts of keynote speeches, summary of panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording and content of this report, excepts presentation materials. (author)

  12. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  13. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  14. Management of Operational Safety in Nuclear Power Plants. INSAG-13. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how

  15. Nuclear power and the environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    One of the most important points of agreement arising from international studies of nuclear energy is that no significant change to the environment has occurred as a result of operating power plants. This emerged from the Agency's symposium at United Nations headquarters during August on Environmental Aspects of Nuclear Power. (author)

  16. Economics of nuclear power

    International Nuclear Information System (INIS)

    Marwah, O.S.

    1982-01-01

    There can be no precise economic measures, in the abstract, of the costs of nuclear power production in the less-developed countries (LDCs). The conditions that affect the calculations have to be evaluated specifically for each country and individually for each nuclear-related project in that country. These conditions are a combination of internal and external factors, and their mix for one project can change during the course of construction. The author lists 21 factors that may vary according to individual national costs. 6 references, 4 tables

  17. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  18. Proceedings of the international topical meeting on advances in human factors in nuclear power systems

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book presents the papers given at a conference on the human factors engineering of nuclear power plants. Topics considered at the conference included human modeling, artificial intelligence, expert systems, robotics and teleoperations, organizational issues, innovative applications, testing and evaluation, training systems technology, a modeling framework for crew decisions during reactor accident sequences, intelligent operator support systems, control algorithms for robot navigation, and personnel management

  19. International symposium on nuclear power plant life management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems.

  20. International symposium on nuclear power plant life management. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems

  1. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  2. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  3. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  4. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  5. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  6. International Youth Nuclear Congress

    International Nuclear Information System (INIS)

    Fern, A.

    2017-01-01

    International Youth Nuclear Congress (IYNC) was Initiated by an international YG group of enthusiasts in 1997. Mission statement developed at ENC1998 in Nice, France Growth in enthusiasm and support: IAEA, Nuclear Societies, companies. IYNC run by the Young Generation with full support of experienced advisors, nuclear societies and companies. First came to African continent when IYNC 2010 was hosted by South Africa

  7. Register of international standard NP on IT based wireless application in nuclear power plants

    International Nuclear Information System (INIS)

    Koo, I. S.; Hong, S. B.; Cho, I. W.; Choi, Y. S.; Lee, J. C.

    2011-04-01

    DC draft of standard technical report for wireless applications in NPP is developed, which is a Korean IT technologies. Wireless technologies are forwardwd to converging technologies nuclear and IT area. These technologies are supported to reduce vulnerability against cyber attacks and are forwarded to international standards which met with the nuclear environment requirements. DC draft of standard technical report is provided and circulated. Korean experts participate in Plenary meeting for IEC TC45/SC45A and intermediate meeting for IEC SC45A/WGA3 and 9. Korean expert takes the chair of wireless session at ANS winter conference. Visible light communication is experimented for feasibility study on reducing vulnerability against cyber attacks. VLC is capable of robust wireless communication against cyber attacks. This is suggested to describe a method for technical report. Issue DTR for wireless applications in NPP in 2012

  8. The Daya Bay nuclear power plant performance. An example of international cooperation

    International Nuclear Information System (INIS)

    Hertzog, D.

    1998-01-01

    Technology transfer is an integral part of Framatome's general approach to its Chinese partners for the Daya Bay, Ling Ao, and Qinshan phase 2 nuclear power plant projects. It has been the subject of major operations covering all activities relevant to project management, design and engineering, manufacturing, and maintenance know-how. This presentation is more particularly devoted to nuclear island maintenance knowledge, which has been extensively transferred by Framatome to the Daya Bay plant owner over a period of four years, through a program including the constitution of mixed Franco-Chinese teams to handle plant maintenance, shadow training of Chinese specialists in the maintenance work performed by Framatome or its subcontractors in France, and theoretical training sessions on equipment mockups in China and France. (author)

  9. 15. Internal symposium on recent progress of nondestructive inspection and monitoring technologies for nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    At the symposium, lectures were given on the recent development of the nondestructive inspection technology for nuclear power plants, the trend regarding the nondestructive inspection in foreign countries (Japan-Germany atomic energy seminar), the present state and subjects of the monitoring technology in BWR plants, the present state and subjects of the monitoring technology in PWR plants, and the present state and the subjects for hereafter of the defect evaluation method in the equipment of light water reactors. The data on the ultrasonic flaw detection in aluminum alloy welded joints were obtained. The German inspection technology is similar to that in Japan and other countries. The research on the plant synthetic monitoring and diagnosis system is reported. The monitoring systems for abnormal state in operation, troubles and the secular change of equipment are reported. The evaluation of the flaws in nuclear piping is reported. The summaries of the lectures are collected in this book. (K.I.)

  10. Proceedings of the first MIT international conference on the next generation of nuclear power technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    The overall goal of advanced nuclear reactor development is to provide technological options which will be broadly acceptable to the different interested communities - electric utilities, environmental protection interests and electricity consumers. These constituencies will differ greatly in their priorities and understandings of what is feasible. However they all will collectively determine the definition of what constitutes an acceptable technology. The purpose of the Conference reported here was to aid the process reaching a greater consensus concerning acceptable technologies. The Conference was structured to permit all of those involved to gain a common understanding of the performance attributes which can reasonably be expected from the next generation of nuclear power plants, and to assist the process of communication among the various interest groups - ranging from reactor manufacturers and electric utilities to groups which have been strongly critical of nuclear power. This Conference is the first of an indefinite series of Conferences to be sponsored by the Program. The purpose of having a series of Conferences is to permit them to serve as a vehicle for sustained discussion among the communities which will determine whether future nuclear power plants are acceptable as national strategic options. The hope in organizing these Conferences is to improve the technologies which will eventually emerge, as a consequence of early effective communication among those concerned with the results. In order to do this, however, it is necessary for the people involved in such communication to have opportunities for sustained exposure to the ideas of others whom they would not otherwise have met. To do this it is necessary that these various communities interact repeatedly. The Conference series is intended to assist in that process. The Conference consisted of six focused topical sessions and two panel discussions. In each topical session keynote and respondent papers

  11. Proceedings of the first MIT international conference on the next generation of nuclear power technology

    International Nuclear Information System (INIS)

    1990-01-01

    The overall goal of advanced nuclear reactor development is to provide technological options which will be broadly acceptable to the different interested communities - electric utilities, environmental protection interests and electricity consumers. These constituencies will differ greatly in their priorities and understandings of what is feasible. However they all will collectively determine the definition of what constitutes an acceptable technology. The purpose of the Conference reported here was to aid the process reaching a greater consensus concerning acceptable technologies. The Conference was structured to permit all of those involved to gain a common understanding of the performance attributes which can reasonably be expected from the next generation of nuclear power plants, and to assist the process of communication among the various interest groups - ranging from reactor manufacturers and electric utilities to groups which have been strongly critical of nuclear power. This Conference is the first of an indefinite series of Conferences to be sponsored by the Program. The purpose of having a series of Conferences is to permit them to serve as a vehicle for sustained discussion among the communities which will determine whether future nuclear power plants are acceptable as national strategic options. The hope in organizing these Conferences is to improve the technologies which will eventually emerge, as a consequence of early effective communication among those concerned with the results. In order to do this, however, it is necessary for the people involved in such communication to have opportunities for sustained exposure to the ideas of others whom they would not otherwise have met. To do this it is necessary that these various communities interact repeatedly. The Conference series is intended to assist in that process. The Conference consisted of six focused topical sessions and two panel discussions. In each topical session keynote and respondent papers

  12. International research progress of CFD application in analysis of nuclear power system

    International Nuclear Information System (INIS)

    Li Linsen; Wang Kan; Song Xiaoming

    2009-01-01

    This paper introduces the latest international research progress of CFD application in nuclear reactor system analysis. CFD method has been applied to a few 3-D single phase transient simulations, including flow field modeling of the reactor cores, assemblies, and vessel plenums. On the other hand, CFD method applied to reactor system still needs further validation and benchmarking, meanwhile,the application of CFD also needs to be studied, including the setup of the Best Practice Guidelines (BPG). Furthermore, CFD codes are used to couple with thermal-hydraulic system codes or neutronic codes. Eventually, in two phase field and turbulence modeling, CFD codes are still being developed. (authors)

  13. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  14. Information technology impact on nuclear power plant documentation. Report prepared within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    As the majority of the nuclear power plants (NPPs) in the world were designed and constructed about twenty to forty years ago, these older power plants may have shortcomings in documentation on construction, commissioning, operations, maintenance, or decommissioning. Therefore, facility documentation does not always reflect actual plant status after years of plant operation, modification, and maintenance. To deal with these shortcomings, computer and information technologies that provide sophisticated and modern design tools as well as information processing and storage facilities can offer dramatic innovation from paper-centric documentation towards data-centric documentation. This report addresses all aspects of documentation associated with various life-cycle phases of NPPs and the information technology (IT) that are relevant to the documentation process. It also provides a guide for planning, designing, and executing an IT documentation project. Examples are given to demonstrate successful implementations at plants. Finally, it discusses the issues related to the application of the IT in NPPs and the trends for applications of the IT at NPPs as well as the technology itself. It is recognized that this can also improve configuration management. reliability of data, quality of personnel work, and ultimately plant performance reliability and safety. The aspects of using the IT for NPP documentation are closely related to configuration management at NPPs. The report consists of nine sections, a reference section, and five additional appendices. The development of this report which was initiated by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). It is the result of a series of consultants meetings held by the IAEA in Vienna (October 1999, November 2000). It was prepared with the participation and contributions of experts from Canada, Germany, Norway, Sweden, and the United States of America. In addition, a

  15. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  16. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  17. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  18. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  19. Nuclear power proliferation

    International Nuclear Information System (INIS)

    Johnson, B.

    1977-01-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power. (author)

  20. SMiRT 23. 14{sup th} international seminar on fire safety in nuclear power plants and installations

    Energy Technology Data Exchange (ETDEWEB)

    Roewekamp, Marina (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Berg, Heinz-Peter [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-12-15

    In the frame of the project 3614R01575 funded by the German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (Bundesministerium fuer Umwelt, Naturschutz, Bau und Reaktorsicherheit, BMUB) the meanwhile fourteenth international seminar on ''Fire Safety in Nuclear Power Plants and Installations'' has been conducted as P ost-Conference Seminar of the 23{sup rd} International Conference on Structural Mechanics In Reactor Technology (SMiRT 23) in Salford, United Kingdom in August 2015. The following seminar proceedings contain the entire twenty-one technical contributions to the two day s seminar with in total fifty-five participants from ten countries in Asia, Europe and America.

  1. Licensing of nuclear power plants. The case of Sweden in an international comparison

    International Nuclear Information System (INIS)

    Michanek, Gabriel; Soederholm, Patrik

    2009-01-01

    Efficient power plant licensing procedures are essential for the functioning of deregulated electricity markets. The purpose of this paper is to review and analyse the licensing process for nuclear power plants in Sweden, and in part contrast the Swedish case with the corresponding approaches in a selection of other countries. This approach permits a discussion of how licensing processes can be altered and what the benefits and drawbacks of such changes are. The paper highlights and discusses a number of important legal issues and implications, including, for instance: (a) the role of political versus impartial decision-making bodies; (b) the tension between national policy goals and implementation at the local level; (c) public participation and access to justice; (d) consistency and clarity of the legal system; and (e) the introduction of license time limits. (author)

  2. International proliferation on nuclear weapons

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The subject is dealt with under the following headings: introduction; routes to proliferation (preparation of U 235 , Pu 239 , U 233 ); nuclear power fuel cycles and proliferation; the fast reactor fuel cycle; security aspects of the existing fuel cycle; the IAEA and the nuclear non-proliferation treaty. It is concluded that 'the basis for sound international control exists, and taken together with the further technical steps which will be taken to make the existing fuel cycles more robust against the diversion of materials by terrorists and the abuse of civil nuclear power programmes by governments, we have good reason to proceed now with the orderly exploitation of ...nuclear energy...'. (U.K.)

  3. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  4. Man as a safety element in the operation of a nuclear power plant. IAEA international conference on man-machine interface in the nuclear industry - review paper

    International Nuclear Information System (INIS)

    Ikegame, R.

    1988-01-01

    Nuclear power generation has been steadily developing worldwide and is now playing a very important part in total energy supply. In order to further promote nuclear power generation harmoniously, it is essential to secure the trust of the public by keeping safe and stable operation and to make constant efforts not to repeat such severe accidents as TMI and Chernobyl. These two accidents have caused us to recognize the substantial importance of the Man-Machine interface. With this as a background, the International Conference on the Man-Machine Interface in the Nuclear Industry was held in Tokyo for four days from February 15 th 1988, organized by IAEA and in cooperation with OECD/NEA as well as CEC. I would like to review this conference, for which I was the Vice Chairman of the Japanese Organizing Committee, and to explain my opinion about this issue

  5. International comparison of economic and technical indexes of nuclear power plant construction

    International Nuclear Information System (INIS)

    Majer, P.; Fialova, H.

    1988-01-01

    The comparison of capital costs of the construction of nuclear power plants takes into consideration the following aspects: the delineation of the installation, the determination of costs and their break-down, the impact of the time factor, the conversion of the costs to a comparable unit. Power plants are always compared with roughly the same power capacity, this even when conditions for construction are not fully comparable. Construction costs may be divided into, e.g., pre-construction costs, direct capital costs, indirect capital costs, interest during construction. The time factor is manifest in the duration of construction and in the concrete year of construction for which the comparison is being made. The inflationary rise in prices and interests are increasing capital costs by roughly 5 - 8% per annum. The comparison of costs expressed in different currencies is made either by conversion using the rate of exchange or by comparing the time expended for the construction of the power plant. Various methods of comparison are discussed. (J.B.). 7 refs

  6. Nuclear power: Preparing for the future. International conference on nuclear power for the 21st century, 21 March 2005, Paris, France

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    This statement discusses a few aspects of the evolving global scenario for nuclear power. All indicators show that an increased level of emphasis on subjects such as fast growing energy demands, security of energy supply, and the risk of climate change are driving a re-consideration, in some quarters, of the need for greater investment in nuclear power. The decisions that emerge from this debate will have long range implications, and require a degree of planning that looks at least several decades into the future. This morning I would like to offer a brief review of the current picture, and to outline a number of issues that, in my view, will be crucial in determining the contribution of nuclear power to the future global energy mix

  7. International Aspects of Nuclear Safety

    International Nuclear Information System (INIS)

    Lash, T.R.

    2000-01-01

    Even though not all the world's nations have developed a nuclear power industry, nuclear safety is unquestionably an international issue. Perhaps the most compelling proof is the 1986 accident at Chornobyl nuclear power plant in what is now Ukraine. The U.S. Department of Energy conducts a comprehensive, cooperative effort to reduce risks at Soviet-designed nuclear power plants. In the host countries : Armenia, Ukraine, Russia, Bulgaria, the Czech Republic, Hungary, Lithuania, Slovakia, and Kazakhstan joint projects are correcting major safety deficiencies and establishing nuclear safety infrastructures that will be self-sustaining.The U.S. effort has six primary goals: 1. Operational Safety - Implement the basic elements of operational safety consistent with internationally accepted practices. 2. Training - Improve operator training to internationally accepted standards. 3. Safety Maintenance - Help establish technically effective maintenance programs that can ensure the reliability of safety-related equipment. 4. Safety Systems - Implement safety system improvements consistent with remaining plant lifetimes. 5. Safety Evaluations - Transfer the capability to conduct in-depth plant safety evaluations using internationally accepted methods. 6. Legal and Regulatory Capabilities - Facilitate host-country implementation of necessary laws and regulatory policies consistent with their international treaty obligations governing the safe use of nuclear power

  8. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  9. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  10. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  11. Internal radiation dose of KURRI volunteers working at evacuation shelters after TEPCO's Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Kurihara, Kouta; Kinashi, Yuko; Okamoto, Kenichi

    2012-01-01

    We report the radiation doses encountered by 59 Kyoto University Research Reactor Institute (KURRI) staff members who had been dispatched to screen refugees for radiation at emergency evacuation sites 45–80 km from the Tokyo Electric Power Co.’s (TEPCO’s) Fukushima Daiichi nuclear power plant. From March 20 to April 30, 2011, 42 members in teams consisting of 2–4 staff members were dispatched 15 times to 7 emergency evacuation sites located 45–80 km from the power plant to examine the radioactive contamination affecting refugees. Continuously, from May 10 to May 23, 2011, 17 members in teams consisting of 2–5 staff members were dispatched 6 times to Fukushima Prefecture to establish the Kyoto University Radiation Mapping (KURAMA) system. Internal burdens of radioactive nuclides were estimated using a whole-body counter consisting of an iron room, NaI (Tl) scintillation detectors, and a digital multichannel analyzer (MCA7600; Seiko EG and G). The calibration of the whole-body counter and the conversion of the measured body burden to the committed effective dose by internal exposure were carried out in accordance with the Nuclear Safety Research Association (NSRA) technical manual. The external radiation dose to each staff member was measured using a personal dosimeter. The first dispatched team showed 1300–1929 Bq of internal radiation activity from cesium (including "1"3"7Cs and "1"3"4Cs) and 48–118 Bq of "1"3"1I. The internal doses of four members of the first team were estimated to be 24–39 μSv. The doses from internal exposure were almost similar to the cumulative external doses for the dispatch period (March 20–22, 2011) when the radiation plumes following the explosions of Units 1 and 3 in TEPCO’s Fukushima Daiichi nuclear plant had diffused around Fukushima City. The external radiation doses of members dispatched after the second team had decreased from one-third to less than one-tenth of the external doses of the first dispatched team

  12. Internal radiation dose of KURRI volunteers working at evacuation shelters after TEPCO's Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Kurihara, Kouta; Kinashi, Yuko; Okamoto, Kenichi

    2013-01-01

    We report the radiation doses encountered by 59 Kyoto University Research Reactor Institute (KURRI) staff members who had been dispatched to screen refugees for radiation at emergency evacuation sites 45-80 km from the Tokyo Electric Power Co.'s (TEPCO's) Fukushima Daiichi nuclear power plant. From March 20 to April 30, 2011, 42 members in teams consisting of 2-4 staff members were dispatched 15 times to 7 emergency evacuation sites located 45-80 km from the power plant to examine the radioactive contamination affecting refugees. Continuously, from May 10 to May 23, 2011, 17 members in teams consisting of 2-5 staff members were dispatched 6 times to Fukushima Prefecture to establish the Kyoto University Radiation Mapping (KURAMA) system. Internal burdens of radioactive nuclides were estimated using a whole-body counter consisting of an iron room, NaI (Tl) scintillation detectors, and a digital multichannel analyzer (MCA7600; Seiko EG and G). The calibration of the whole-body counter and the conversion of the measured body burden to the committed effective dose by internal exposure were carried out in accordance with the Nuclear Safety Research Association (NSRA) technical manual. The external radiation dose to each staff member was measured using a personal dosimeter. The first dispatched team showed 1300-1929 Bq of internal radiation activity from cesium (including "1"3"7Cs and "1"3"4Cs) and 48-118 Bq of "1"3"1I. The internal doses of four members of the first team were estimated to be 24-39 μSv. The doses from internal exposure were almost similar to the cumulative external doses for the dispatch period (March 20-22, 2011) when the radiation plumes following the explosions of Units 1 and 3 in TEPCO's Fukushima Daiichi nuclear plant had diffused around Fukushima City. The external radiation doses of members dispatched after the second team had decreased from one-third to less than one-tenth of the external doses of the first dispatched team. The internal

  13. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    Parera, María Delia

    2011-01-01

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author) [es

  14. Nuclear technology international 1987

    International Nuclear Information System (INIS)

    Geary, Neville

    1987-01-01

    A total of 59 articles cover a wide range of subjects within the scope of nuclear power generation. The first 13 are concerned with the design and construction of nuclear reactors - PWRs, AGRs, Magnox reactors, fast reactors. The final article in this section is on reactor decommissioning. The next 33 papers all concern services to the nuclear power industry. These include the supply of uranium, uranium enrichment, fuel fabrication, reprocessing, spent fuel storage, robotics and remote handling and radioactive waste disposal. The 13 articles in the safety and public acceptability section concern fears over the Chernobyl accident, safety aspects of nuclear power including risk assessment, fire protection, quality assurance, earthquake tolerance, non-proliferation of nuclear weapons and finally, general problems of balancing advances in nuclear technology and economic desirability against a lack of public confidence in the industry. All reactor and fuel types are represented. Most of the articles concern nuclear power in Europe or North America. All are indexed separately. (UK)

  15. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  16. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  17. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  18. Tenth meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation, Vienna, 3-5 March 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of NPP control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The papers and discussions mostly dealt with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern, highly automated control systems and on the improvement of plant availability and safety. A separate abstract was prepared for each of the 20 presentations of the meeting

  19. Internalizing social costs in power plant siting: some examples for coal and nuclear plants in the United States

    International Nuclear Information System (INIS)

    Peelle, E.

    1976-01-01

    Selected aspects of the United States experience in one particular type of energy development project, the siting of nuclear and fossil fueled power generating facilities, are examined in terms of how well community-level impacts are internalized. New institutional arrangements being devised and new requirements being made at local, state, regional, and federal levels in response to these dissociations of cost and benefits from large energy development projects are discussed. Selected examples of these new institutional responses are analyzed for adequacy and significance

  20. Working material. IAEA seismic safety of nuclear power plants. International workshop on lessons learned from strong earthquake

    International Nuclear Information System (INIS)

    2008-08-01

    The International Workshop on Lessons Learned from Strong Earthquake was held at Kashiwazaki civic plaza, Kashiwazaki, Niigata-prefecture, Japan, for three days in June 2008. Kashiwazaki-Kariwa NPP (KK-NPP) is located in the city of Kashiwazaki and the village of Kariwa, and owned and operated by Tokyo Electric Power Company Ltd. (TEPCO). After it experienced the Niigata-ken Chuetsu-oki earthquake in July 2007, IAEA dispatched experts' missions twice and held technical discussions with TEPCO. Through such activities, the IAEA secretariat and experts obtained up-dated information of plant integrity, geological and seismological evaluation and developments of the consultation in the regulatory framework of Japan. Some of the information has been shared with the member states through the reports on findings and lessons learned from the missions to Japan. The international workshop was held to discuss and share the information of lessons learned from strong earthquakes in member states' nuclear installations. It provided the opportunity for participants from abroad to share the information of the recent earthquake and experience in Japan and to visit KK-NPP. And for experts in Japan, the workshop provided the opportunity to share the international approach on seismic-safety-related measures and experiences. The workshop was organised by the IAEA as a part of an extra budgetary project, in cooperation with OECD/NEA, hosted by Japanese organisations including Nuclear and Industrial Safety Agency (NISA), Nuclear Safety Commission (NSC), and Japan Nuclear Energy Safety Organization (JNES). The number of the workshop participants was 70 experts from outside Japan, 27 countries and 2 international organisations, 154 Japanese experts and 81 audience and media personnel, totalling to 305 participants. The three-day workshop was open to the media including the site visit, and covered by NHK (the nation's public broadcasting corporation) and nation-wide and local television

  1. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  2. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  3. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  4. The international nuclear technology

    International Nuclear Information System (INIS)

    Remick, F.J.

    1992-01-01

    With today's technology, isolationism is virtually impossible. The world's economies are so strongly intertwined that what affects one country will, in some way, influence another. Nuclear technology is no exception. If anything, nuclear technology is a catalyst for international cooperation. In the United States of America, nuclear technology is undergoing significant changes. Many of these changes are being greatly influenced by programs of international cooperation

  5. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  6. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  7. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  8. International experience feedback on fatigue monitoring systems for nuclear power plants

    International Nuclear Information System (INIS)

    Morilhat, P.

    1997-01-01

    From the very beginning of electro-nuclear programmes the need has become internationally obvious to develop systems aiming at automation and improvement of monitoring of the transients stressing the main mechanical components of nuclear units, by checking the conservativeness of the design no longer from a comparison of causes (temperature and pressure variations) but by directly assessing the results (stresses and linked damage). Prototypes of such systems have appeared since the middle of the 1980's mainly in France, the USA and Germany, and manufacturing them has since continued. Several years of development and on site testing of prototypes of fatigue measuring devices designed by the R and D Direction have enabled contacts with the developers of similar systems to be established and, in some cases, comparisons to be made. The experience accumulated in the use of such systems, both in France and abroad from now on makes a first experience feedback possible. The fatigue measuring device concept is based on a succession of elementary modules which enable the information received from the unit to be processed, first in the form of transient counting (transient meters), then in the form of mechanical diagnosis (fatigue monitoring systems). Among the systems in operation some provide actually only the transient meter part while others link transient meters and fatigue meters (EDF, EPRI and MITSUBISHI systems and some versions of the SIEMENS system). Moreover, numerous systems require, in addition to unit operation instrumentation, specific instrumentation located in monitored areas. The number of devices in operation has not stopped growing since the middle of the 80's to reach 53 systems working in 1996. The biggest developers are EPRI and its consultant Structural Integrity Associates (FatiguePro system), SIEMENS (FAMOS system) and EDF whose gradual implementation of SYSFAC from '96 is going to make its share particularly increase. Technical experience feedback

  9. Contribution of International and Regional Networks in Developing and Maintaining Human Capacity Building for Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Osman, O. E.

    2015-01-01

    Capacity is defined as; the ability of individuals and organizations or organizational units to perform functions effectively, efficiently and sustainably. Capacity building is an evidence-driven process of strengthening the abilities of individuals, organizations, and systems to perform core functions sustainably, and to continue to improve and develop over time. This article will explain the contributions of knowledge networks at the national, regional and international level in developing the existing capacity building and human resources for regulatory body in Sudan, to confront the future challenges regarding to nuclear power program- safety and security. The article will compare the advantages and effectiveness of these knowledge networks (IAEA, ANNuR, FNRBA) in capacity building and enhance the infrastructure of national regulatory body. And how these networks contribute to enable the regulatory bodies in Africa and Arab countries, to establish and strengthen their regulatory infrastructure for nuclear power programme consistent with international standards and recommendations. As well as the recommendations resulting and deduced from comparative study to promote the exchange of knowledge, experience and information among its members. (author)

  10. Radioactivity level of airplane to Guangzhou Baiyun international airport during the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Song Haiqing; Chen Wentao; Cheng Xiaobo; Liao Tong; Deng Fei; Chen Fuliang; Zhang Yanjin; Li Lingjuan; Liang Guiyuan; Wu Guibiao

    2014-01-01

    The radioactivity level of airplanes to Guangzhou Baiyun International Airport (GBIAC) during the Fukushima Daiichi nuclear power plant accident was monitored by Guangdong Environmental Radiation Monitoring Center (GERC) on March 15 and 16, 2011. The artificial radionuclide "1"3"1I, "1"3"4Cs, "1"3"7Cs, "l"3"6Cs, "1"3"2I, "1"3"2Te were detected in the wipe samples of the outer surface of airplanes from Japan to GBIAC. The radioactivity ration of "1"3"7Cs/"1"3"4Cs was calculated as (1.12 ± 0.06) in the wipe samples, which similar to the result in the wipe sample of the outer surface of airplanes from Japan to Hangzhou airport obtained by Zhejiang Province Environmental Radiation Monitoring Center (l.lO ± 0.08), but slightly higher than results in the aerosol monitoring at Guangzhou (0.99 ± 0.30) and Shenzhen (0.94 ± 0.30) by GERC, the data (0.83) published by Japan Nuclear and Industrial Safety Agency (NISA) and the result (1.00 ± 0.13) measured by Tokyo Electric Power Company. A slight radioactive contamination was detected on the surface of outer airplanes and internal cabin. The practice suggested that the wipe sample of the outer surface of airplane was a fast , simple and sensitive approach for emergency monitoring of radioactive contamination. (authors)

  11. Separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1978-01-01

    A successful development of the proposed combination of the Fast Breeder Reactor and the CIVEX fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/CIVEX system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/CIVEX for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. From a historical view, it would restore fast reactor development to the path originally foreseen in the programs of worldwide nuclear energy authorities, including the Atomic Energy Commission during its first two decades of existence

  12. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  13. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  14. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  15. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  16. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  17. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  18. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  19. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  20. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    development of advanced fuels based on slightly enriched uranium recovered from enriched fuel treatment as well as on fuel cycles using the spent fuel from PWR reactors in CANDU reactors. The paper addresses also legal aspects of nuclear power, international conventions and agreements and international cooperation in the nuclear field

  1. Development on multifunctional phased-array fault inspection technology. Aiming at integrity on internals in nuclear power plant reactors

    International Nuclear Information System (INIS)

    Komura, Ichiro; Hirasawa, Taiji; Nagai, Satoshi; Naruse, Katsuhiko

    2002-01-01

    On nuclear power plants sharing an important role in Japanese energy policy, their higher safety and reliability than the other plants are required, and their non-destructive inspection occupies important position for information means to judge their integrity. And, for a part of responses to recent rationalization of the plant operation and increase of aged plants, requirements and positioning onto the non-destructive inspection technology also change. As a result, not only concept on allowable fault sizes is adopted, but also inspection on reactor internals without conventional regulation is obliged to require for size evaluation (sizing) with higher precision to use for secure detection and integrity evaluation of the faults than sizes determined for every internals. For requirement with such higher levels for fault detection and sizing, and for requirement for effective inspection, phased-array supersonic wave fault inspection method is one of the methods with high potential power. Here were introduced on principles and characteristics of the phased-array supersonic wave fault inspection method, and on various fault inspection methods and functions mainly developed for reactor internals inspection. (G.K.)

  2. International effects on safety and performance improvement for increasing the share of nuclear power in supply of the world energy demand

    International Nuclear Information System (INIS)

    Rouhanifard, A.; Hosseini Toudeshki, S.

    2008-01-01

    Perhaps the biggest challenge in launching atomic energy projects will be common public perception that it is a dangerous energy source. In fact, there have only ever been two nuclear accidents - one was Chernobyl (Ukraine) and the other was Three Mile Island (US) where there was an encased explosion and no one was hurt. Undoubtedly, and for good reason, it has had a lasting negative effect on public opinion over the safety of nuclear energy. However, the technology behind nuclear energy has improved in recent years. People have to be aware that new nuclear is not old nuclear. Nuclear is a safe technology and plants are much safer now. In terms of air pollution, developing a nuclear power program can actually have a positive effect on the environment. So today, two thirds of the world's population live in an environment where nuclear power plants are an essential part of energy production and industrial infrastructure. World countries are moving steadily forward with plans for much expanded role of nuclear energy. Efficiency of nuclear generation has increased dramatically over thc last decades. Lessons learned from accidents, advances in nuclear technology and implementation of projects for design of future safer and more economical nuclear reactors, will lead to grow of installed global nuclear capacity from about 369 G We net at the beginning of 2005 to about 553 G We net by 2025. In this paper, we present the results of a study on international efforts to improve safety of nuclear power plants. We focus on the current state of technology and the technology which will be employed for future built reactors to strengthen the role of nuclear power plants for supply of electrical energy in next decades. Finally, based on our studies on past, present and future of the world nuclear technology, we mention the issues to be taken into consideration while preparing the program for development of nuclear power plants in Iran

  3. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Mackerron, Gordon; Berkhout, Frans

    1990-01-01

    The environmental effects of nuclear power discussed in this paper are specifically the effects of radiation on human populations, either directly or through the food chain. Controlling the environmental effects of nuclear power has two dimensions, waste management and safety. Regulatory controls aim to keep the risk of death due to man-made radiation down to what is thought to be an acceptable level; the background to the establishing of such levels is examined. The scale of the nuclear industry is outlined. In industrial countries with nuclear power, with the possible exception of the USA and USSR which have extensive nuclear weapons programmes, most radioactive wastes arise in the civil nuclear fuel cycle; medical, research and industrial users of nuclear materials produce the rest. The extreme variety of materials included in radioactive wastes is highlighted. Approaches to the management of different kinds of radioactive waste are discussed; the particular problems associated with reactor decommissioning are considered. The enormous potential harm of serious accidents at nuclear power plants through a release of large quantities of radionuclides into the environment has been a dominant influence in the design of reactors. The accidents at Three Mile Island and Chernobyl underline the need for careful examination of management issues as well as design and operational failures. Finally, the catastrophic effects of a full scale nuclear war are briefly considered within the context of nuclear proliferation and international security. (UK)

  4. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  5. International co-operation: a condition for further development of nuclear power

    International Nuclear Information System (INIS)

    Quenet, P.

    1994-01-01

    For two main reasons, loss of confidence in nuclear energy and loss of competitiveness, nuclear programmes are in recession, although the very high level of safety and reliability of NPP operation. Efficient co-operation among nuclear operators world wide in order to reach the highest possible standard everywhere. The mission of WANO is to maximize the safety and reliability of the operation of NPPs by exchanging information and encouraging comparison, emulation and communication among its members. (author)

  6. The debate on nuclear power

    International Nuclear Information System (INIS)

    Bethe, H.A.

    1977-01-01

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233 U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  7. Nuclear power status 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives general statistical information (by country) about electricity produced by nuclear power plants in the world in 1998, and in a table the number of nuclear reactors in operation, under construction, nuclear electricity supplied in 1998, and total operating experience as of 31 December 1998

  8. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  9. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  10. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  11. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  12. Nuclear power: Questions and answers

    International Nuclear Information System (INIS)

    1988-01-01

    In 1988, the Uranium Institute, a London-based international association of industrial enterprises in the nuclear industry, published a report entitled The Safety of Nuclear Power Plants. Based on an assessment by an international group of senior nuclear experts from eight countries, the report provides an authoritative explanation, for non-specialists of the basic principles of reactor safety, their application, and their implications. Some questions and answers are selected from that report; they address only a few of the subjects that the report itself examines in greater detail

  13. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  14. Results and insights of internal fire and internal flood analyses of the Surry Unit 1 Nuclear Power Plant during mid-loop operations

    International Nuclear Information System (INIS)

    Chu, Tsong-Lun; Musicki, Z.; Kohut, P.

    1995-01-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). The objectives of the program are to assess the risks of severe accidents initiated during plant operational states (POSs) other than full power operation and to compare the estimated core damage frequencies (CDFs), important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a Level 3 PRA for internal events and a Level 1 PRA for seismically induced and internal fire and flood induced core damage sequences. This paper summarizes the results and highlights of the internal fire and flood analysis documented in Volumes 3 and 4 of NUREG/CR-6144 performed for the Surry plant during mid-loop operation

  15. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  16. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  17. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  18. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  19. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  20. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  1. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  2. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  3. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  4. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  5. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  6. Nuclear power newsletter Vol. 4, no. 2, June 2007

    International Nuclear Information System (INIS)

    2007-06-01

    The topics presented in this newsletter are: International Conference on Non-Electric Application of Nuclear Power; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management systems, nuclear power infrastructures and human resources; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional post in Nuclear Power Division; Upcoming meetings; 2nd International Symposium on PLiM; 8th IAEA-FORATOM Joint Workshop

  7. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  8. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  9. Nuclear power under strain

    International Nuclear Information System (INIS)

    1978-08-01

    The German citizen faces the complex problem of nuclear power industry with slight feeling of uncertainty. The topics in question can only be briefly dealt with in this context, e.g.: 1. Only nuclear energy can compensate the energy shortage. 2. Coal and nuclear energy. 3. Keeping the risk small. 4. Safety test series. 5. Status and tendencies of nuclear energy planning in the East and West. (GL) [de

  10. Nuclear power in the Philippines

    International Nuclear Information System (INIS)

    1965-01-01

    The first United Nations project of its kind, where the prospects of using nuclear power in a developing country are being analysed, is being carried out in the Philippines. It is entitled, 'Pre-Investment Study on Power, including Nuclear Power, in Luzon'; it is a United Nations Special Fund project, for which the International Atomic Energy Agency is acting as the executing body. Although directed specifically at the situation of the Luzon grid, the approach and the methods evolved should be useful in other countries also. The project was initiated in early 1964 and is expected to be completed by the end of 1965. The Philippines have substantial reserves of hydro capacity, but very little of fossil fuels. The country has been interested for quite some time in the possibility of using nuclear power. In 1956 a study was made of a small nuclear power plant for the Manila area, but such a plant would not have been able to compete with the fossil fuel-fired station. The Philippine Government had in mind the development of Luzon Island, which is the largest and most industrialized part of the Philippines, accounting for 50 per cent of the population and 80 per cent of the power demand. In 1960, the Government invited an Agency mission, whose report entitled, 'The Prospects of Nuclear Power for the Philippines', indicated that the possibilities of using a reasonably large nuclear plant in the Luzon grid deserved serious consideration

  11. Some problems of recent 'All Japan' strategy for nuclear power exports. Identification of its problems and a proposal for improvement based on international development strategies of the major three categories of businesses constituting nuclear power industry

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2011-01-01

    In Japan, 'All Japan' strategy for nuclear power exports, which arranges engineering companies and electric utilities to sell nuclear power plants providing engineering, procurement, construction and operation abroad, with governmental support of expanded trade insurance, is strongly promoted today as a part of Japan's national growth strategy. However, 'All Japan' strategy generates some problems because the strategy does not consider difference of business strategies concerning international development of each enterprise. This report identifies problems of 'All Japan' strategy based on environmental scanning of major three categories of businesses, which are big nuclear technology companies, vendors and electric utilities constituting nuclear power industry. And this report proposes the way to improve the strategy as follows to resolve those problems. 1) It is necessary to assess the risk of the project that is to be undertaken by 'All Japan' approach carefully. 2) Governmental support for vendors is also needed because the vendors are source of strength of international development of the nuclear industry in Japan. 3) Where the cooperation among the electric utilities is necessary, imposing the risk burden on the utilities should be avoided. 4) It is necessary for government to take measures about 'Weakness' and 'Threat' that each category of business commonly faces. (author)

  12. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  13. International validation of safety analyses for nuclear power plants; Mednarodno preverjanje varnostnih analiz za jedrske elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Gregoric, N; Mavko, B [Institut ' Jozef Stefan' Ljubljana (Yugoslavia)

    1988-07-01

    Paper describes the participation of 'J.Stefan' Institute in international standard problems for validation of modeling and programs for safety analysis. Listed are main international experimental facilities for collecting data basic for understanding of physical phenomena, code development and validation of modelling and programs. Since the results of international standard problem analyses are published in a joint final report, it is simple to asses the conformance of the results of a particular group with the experiment. Good results from three international exercises done so far, have encouraged the group to currently participate in OECD-ISP-22 which is a model of the Italian three loop PWR. (author)

  14. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  15. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  16. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  17. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  18. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  19. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  20. Nuclear power - the future

    International Nuclear Information System (INIS)

    Hann, J.

    1991-01-01

    It is asserted by the author that nuclear power is the only available resource - indeed the only solution to an ever-increasing demand for energy in the United Kingdom over the next 50-100 years. It must be the cornerstone of a practical integrated energy policy, covering that sort of time-scale. In fact, it is going to be a strategic necessity. In this paper the background to establishing a policy is sketched. An explanation is given of what the nuclear industry is doing so as to ensure that the nuclear option is very definitely retained as a result of the 1994 Review of nuclear power in the UK. (author)

  1. International certification of nuclear power reactors design. A proposal from the U.S. NRC (Nuclear Regulatory Commission)

    International Nuclear Information System (INIS)

    Felizia, Eduardo R.

    2006-01-01

    The proposal foundations of the Nuclear Regulatory Commission Board Chairman are briefly described, which were enunciated at a meeting on Fourth Generation Reactors (Washington, March 2005). This proposal is analyzed mainly from the point of view of its consequences in third countries buyers of nuclear technology. The analysis is complemented by descriptions of the current process of the NRC design certification and of Third and Fourth Generation Reactors. (author) [es

  2. Statement to International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Al Kaabi, Hamad

    2012-01-01

    United Arab Emirates is going through a rapid growth in its energy needs, projected to increase to three folds by the year 2020 compared to 2007, reflecting an annual growth rate of 9% from 2007 onward. In evaluating different options to meet the projected demand, Nuclear energy emerged as a proven, environmentally promising and commercially competitive option which could make a significant contribution to the UAE's economy and future energy security. In April 2008, UAE Government has formally endorsed its 'Policy on the Evaluation and Potential Development of Peaceful Nuclear Energy'. The policy defines a framework for developing the domestic nuclear energy program in form of commitments, strategies and principles. The policy is based on principles of complete operational transparency, highest standards of safety, security and non-proliferation, working directly with the IAEA and responsible nations of expertise, and lastly developing the program in way that ensures the long term sustainability. Focusing on the later, government plans on introduction of nuclear energy has put a great emphasis from the outset on principles that will ensure the program is successful and sustainable in the long run.

  3. Nuclear power without nuclear weapons

    International Nuclear Information System (INIS)

    Kaiser, K.; Klein, F.J.

    1982-01-01

    In this study leading experts summarize the work of a working group meeting during several years, and they represent the state of the art of the international discussion about the non-proliferation of nuclear weapons. The technical basis of proliferation, the relations between energy policy and nuclear energy, as well as the development of the non-proliferation system up to the present are thoroughly studied. Special attention is paid to the further development of the instruments of the non-proliferation policy, and approaches and ways to improving the control of the fuel cycle, e.g. by means of multinational methods or by improving the control requirements are analyzed. Also the field of positive inducements and negative sanctions to prevent the proliferation as well as the question of ensured supply are elucidated in detail. A further section then analyzes the functions of the international organizations active in this field and the nuclear policy of the most important western industrial nations, the RGW-states and the threshold countries of the Third World. This volume pays special attention to the nuclear policy of the Federal Republic of Germany and to the possibilities and necessities of a further development of the non-proliferation policy. (orig.) [de

  4. International Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  5. Incentives to strengthen international co-operation in R and D for advanced nuclear power technology

    International Nuclear Information System (INIS)

    Versteegh, A.M.; Balthesen, E.; Bakunyaev, A.D.; Gibson, I.H.; Tavoni, R.

    1993-09-01

    The paper identifies the main areas which need strong international collaboration: development of innovative safety features; improvement of fuel characteristics and efficiency; dose reduction techniques; use of technology developed for other purposes; common assessments of design proposals. (orig./HP)

  6. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  7. Enlightenment on international cooperation for nuclear safety in China in light of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Fu Jie; Feng Yi; Luan Haiyan; Meng Yue; Zhang Ou

    2013-01-01

    This thesis elaborates on the impact of Fukushima nuclear accident on global nuclear power development and subsequent international activities carried out by major countries. It analyses significance of international cooperation in ensuring nuclear safety and promoting nuclear power development and makes some suggestions to further strengthen the international cooperation on nuclear safety in China. (authors)

  8. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  9. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  10. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  11. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  12. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  13. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  14. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  15. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  16. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  17. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.

  18. Country Nuclear Power Profiles - 2015 Edition

    International Nuclear Information System (INIS)

    2015-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2015 edition, issued on CD-ROM, contains updated country information for 51 States

  19. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  20. International nuclear panorama; Panorama nucleaire international

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document takes stock on the nuclear power in the world. The nuclear power place in the energy policy of many countries is discussed and the development programs are presented. It seems that the USA attitude, favourable to a development of nuclear power plants, had an real impact on the other countries energy policy. (A.L.B.)

  1. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  2. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  3. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  4. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  5. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  6. Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Yong Deong; Lee, Hwan Soo

    2014-01-01

    The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux

  7. Book of extended synopses. International symposium on advanced nuclear power systems. Design, technology, safety and strategies for their deployment

    International Nuclear Information System (INIS)

    1993-01-01

    During the symposium the design, technology, safety and strategy for the development of advanced nuclear power systems were discussed. 20 papers were presented at the symposium. A separate abstract was prepared for each of these papers. Refs

  8. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  9. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  10. The current status of Korea's Nuclear Power Plant Industry and the Need for International Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woo [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2008-04-15

    As an executive in charge of the nuclear power plant sector at Doosan Heavy Industries and Construction ('Doosan'), which is the nation's only major supplier of nuclear power plant equipment and materials, I would like to tell you about how the nation's nuclear power plant industry has developed and in what direction it is currently expected to advance, with the focus on my company's nuclear business activities. In 1980, Doosan built a large factory in Chang won with the aim of engaging in the industrial plant business, including production of power plant equipment and materials. This factory is now capable of producing equipment and materials for large-capacity power plants, ranging from the production of casting and forging to the final assembly of power plant equipment. The Korean government took the dramatic step of integrating power plant facilities of several companies into one entity, and have Doosan take over it. The nation continued to build nuclear power plants while making efforts to achieve self-reliance in the relevant technology.

  11. The nuclear controversy international

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    The present paper deals with the following questions: How quickly can the developed nations get as much energy as possible from the nuclear power plants they are building. How can we get a maximum output from a maximum number of nuclear plants to reduce the health and the environment damage that we get from fossil fired power plants. How can we reduce the strain on future generations because of the atmospheric pollution and reduce the strain on future generations because we use up all the oil and the gas that we should leave to them for worthier purposes than energy production. (orig.) [de

  12. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  13. [Nuclear News -- Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The topics discussed in this section are: (1) NU(Northeast Utilities) receives largest court fine levied for false records. (2) ComEd nuclear fleet has best-ever performance. (3) Perry and Beaver Valley now run by First Energy Nuclear. (4) Slight reactor power increases may save dollars; (5) Nuclear plants shares to change hands. (6) Y2K nonsafety-related work scheduled for completion. (7) New NRC plan for reviewing plant license transfers with foreign ownership.

  14. Nuclear power and acceptation

    International Nuclear Information System (INIS)

    Speelman, J.E.

    1990-01-01

    In 1989 a workshop was held organized by the IAEA and the Argonne National Laboratory. The purpose was to investigate under which circumstances a large-scale extension of nuclear power can be accepted. Besides the important technical information, the care for the environment determined the atmosphere during the workshop. The opinion dominated that nuclear power can contribute in tackling the environment problems, but that the social and political climate this almost makes impossible. (author). 7 refs.; 1 fig.; 1 tab

  15. Accidental internal exposure of all groups of Chernobyl nuclear power plant employees

    International Nuclear Information System (INIS)

    Goussev, I.A.; Moissev, A.A.; Evtichiev, V.I.

    1996-01-01

    Accidental internal exposure of Chernobyl NPP employees has started from April, 1986 and it was found to be decreased to pre-accident level at the end of 1987. Significant number of people from all groups of staff and temporary employees were measured using whole body counters situated in Clinical Department of the Institute of Biophysics, which has represented the main body for medical assistance and expertise in these people including those, who suffered from acute radiation syndrome as well as the people engaged in all kinds of works at Chernobyl NPP site. Technical characteristics of the equipment and techniques used to assess the internal exposure are given. (author)

  16. Discounting and nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1984-01-01

    The paper describes the practice of discounting and its applicability to nuclear power, and the choice of discount rates. Opportunity cost of capital; risk; social time preference; intergenerational equity; non-monetary aspects; and discounting and nuclear energy; are all discussed. (U.K.)

  17. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  18. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  19. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1978-01-01

    A 'comic strip' account of nuclear power, covering weapons and weapons proliferation, reactor accidents involving human errors, radiation hazards, radioactive waste management and the fuel cycle, fast breeder reactors and plutonium, security, public relations and sociological aspects, energy consumption patterns, energy conservation and alternative energy sources, environmental aspects and anti-nuclear activities. (U.K.)

  20. Progress by nuclear power

    International Nuclear Information System (INIS)

    Creamer, A.

    1980-01-01

    United States scientist Petr Beckmann predicts that there will eventually be nuclear power stations in the Transvaal in South Africa. This will take place for two reasons: to decrease pollution problems and to ensure economic advancement. He also refers to the the toxicity of nuclear wastes and coal wastes

  1. Opening remarks at the International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Klein, D.E.

    2010-03-01

    The topic of this conference - human resources development and the expansion of nuclear power - is about the commitment and investment in people. The importance of this 'human side' of modern technology is sometimes forgotten or assumed to develop on its own once basic educational programs and institutions are put in place. In my view, the development and maintenance of a skilled national workforce is critical to the development of a stable, successful national nuclear power program

  2. International Economic Association on organization of co-operative production and development of equipment and providing technical assistance in construction of nuclear power plants - ''INTERATOMENERGO''

    International Nuclear Information System (INIS)

    Mal'tsev, N.D.

    1979-01-01

    History is stated of foundation of the International Economic Association ''Interatomenergo''. Structure is given of the Association and the list of main problems to be solved by it. Project is given of the programm of co-operation in the field of scientific and technical works as well as of design and projecting works in creation of new types of equipment for nuclear power plants, in particular, creation of serial power units with improved WWER-1000 reactor. Directions are stated of activity of the Association in the field of providing assistance in construction and exploitation of nuclear power plants as well as in training of operational personnel [ru

  3. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  4. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  5. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  6. International Working Group on Life Management of Nuclear Power Plants regular meeting. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The aim of this meeting is to review the IWG activities in 1992-1993, other relevant activities, national programmes, projects of international organizations and provide recommendations of the Agency's activities, forward programmes in this area, priority scope and content of publications and meetings to be organized and sponsored by the Agency. Refs, figs and tabs

  7. Nuclear power: the fifth horseman

    International Nuclear Information System (INIS)

    Hayes, D.

    1976-01-01

    ''Nuclear Power: The Fifth Horseman,'' is published in an attempt to identify and analyze emerging global trends and problems. This paper evaluates the future of nuclear power, subjecting it to several tests--those of economics, safety, adequacy of fuel supplies, environmental impact, and both national and international security. If the world is to ''go nuclear,'' adopting nuclear power as the principal source of energy, each of these criteria should be satisfied. In fact, none may be satisfied. Nuclear power is being re-examined in many quarters. Local communities throughout the world are concerned over reactor safety. Environmentalists and others are deeply concerned about the lack, or even the prospect, of satisfactory techniques for disposing of radioactive waste. Foreign policy analysts express grave concern over the weapons-proliferation implications of the spread of nuclear power, recognizing that sooner or later an unstable political leader or terrorist group will acquire this awesome weaponry. And, in 1975, the corporate executives who head electrical utilities in the United States cancelled or deferred 25 times as many new reactors as they ordered

  8. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  9. Nuclear power plants - Instrumentation and control systems important for safety - Classification (International Electrotechnical Commission Standard Publication 1226:1993)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1996-01-01

    This international standard established a method of classification of the information and command functions for nuclear power plants, and the I and C and equipment that provide those functions, into categories that designate the importance for safety of the functions, and the associated systems and equipment. The resulting classification then determines relevant design criteria. The design criteria are the measures of quality by which the adequacy of each functions, and the associated systems and equipment in relation to its importance to plant safety is ensured. In this standard, the criteria are those of functionality, reliability, performance, environmental durability and quality assurance. This standard is applicable to all the information and command functions, and the instrumentation and control systems and equipment that provide those functions. The functions, systems and equipment under consideration provide automated protection, closed or open loop control, and information to the operating staff. They keep the NPP conditions inside the safe operating envelope and provide automatic actions, or enable manual actions, that mitigate accidents or prevent or minimize radioactive releases to the site or wider environment. The functions, and the associated systems and equipment that fulfill these roles safeguard the health and safety of the NPP operators and the public. This standard complements, and does not replace or supersede, the Safety Guides and Codes of Practice published by the International Atomic Energy Agency

  10. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Warner, Sir F.

    1984-01-01

    The paper discusses the environmental aspects of nuclear power, including the problems of waste, with special reference to the effect on humans. The following aspects are covered: the public fear of the risk of cancer, the kind of exposure that people are likely to have, what can be and is being done about it; recommendations and activities of the International Commission on Radiological Protection, the UK Health and Safety Executive, the Nuclear Installations Inspectorate, the National Radiological Protection Board and other relevant organisations; public relations in relation to nuclear facilities' operations. (U.K.)

  11. Soviet Union's Nuclear Power Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Glasnost has dramatically increased the availability of information about the Soviet Union's nuclear industry. In the future, even more information is likely to become known as Soviet participation in international forums increases. Not only is much more general information now available, but up-to-date details are regularly provided, including information such as the Soviet nuclear industry's strategic direction and goals, recent reactor design changes, safety inspection results, and reports of public opposition and protest. This article summarizes the current status of the Soviet nuclear power program, reconciling the often conflicting reports from various public sources

  12. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  13. Internal dose evaluation from actinide intakes during nuclear power reactor spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pawar, S.K.; Kumar, Ranjeet; Gamre, Rupali; Purohit, R.G.

    2011-01-01

    Full text: Indian PHWR reactors are using natural uranium as fuel. After use they are discharged from the core and send for fuel reprocessing to extract the unused uranium and plutonium. Plutonium and other actinides are formed by activation of 238 U with neutrons and subsequent decay. During reprocessing of the spent fuel, major long lived actinides (Pu, Am and U) may become radiological safety hazard. Actinides intakes are more probable during declading and chopping of spent fuel. During routine plant operation in reprocessing, exposure to Pu is a major concern along with Am and U in working environment due to its higher radiological hazard and occupational workers are likely to get exposed to plutonium, Americium and Uranium mostly through inhalation. Internally deposited Pu-isotopes, Am-isotope and U-isotopes are estimated using techniques such as lung counting (in-vivo) and urine and faecal bioassay (in-vitro). Evaluation of internal dose of actinides is dependent upon urinary excreted activity. To estimate the internally deposited Pu, U and Am at an intake level of about one ALI (ICRP-78, 1997) of occupational workers, urine bioassay is the preferred technique due to high detection sensitivity, ease of sample handling and economical method. A small and measurable fraction of internally deposited Pu, Am and U are excreted through urine whose content is dependent on time of inhalation, quantity and type of chemical form of inhaled material (S and M class). A standardized radiochemical analysis method for separation and estimation of Pu, Am and U is used to evaluate the urinary excreted activity and internal dose. Several measurements techniques are employed for the estimation of plutonium, Americium and Uranium for example, Alpha Spectrometry, Gamma Spectrometry, Neutron Activation Analysis, Mass Spectrometry and Fission Track Analysis. The radiochemical separation followed by alpha counting and/or spectrometry is chosen due to its ease of handling and

  14. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  15. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  16. Economics of nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.; Derian, J.C.; Donsimoni, M.P.; Treitel, R.

    1975-01-01

    Present trends in nuclear reactor costs are interpreted as the economic result of a fundamental debate regarding the social acceptability of nuclear power. Rising capital costs for nuclear power plants are evaluated through statistical analysis of time-related factors, characteristics of licensing and construction costs, physical characteristics of reactors, and geographic and site-related factors. Conclusions are drawn regarding the impact of social acceptability on reactor costs, engineering estimates of future costs, and the possibility of increased potential relative competitiveness for coal-fueled plants. 7 references. (U.S.)

  17. Advances in the operational safety of nuclear power plants. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1996-01-01

    The main purpose of the Conference was to provide a forum for exchange of information among around 200 attending experts from 46 Member States and five international organizations, who altogether presented around 80 papers and posters. The Conference presentations were divided into four main topics: Managing and Regulating Safe Operation; Safety Performance and Lessons Learned; Improving Operational Safety Using PSA; Enhancing Safety. Refs, figs, tabs

  18. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  19. International nuclear law

    International Nuclear Information System (INIS)

    Mello, M.M. de.

    1981-01-01

    The peculiar feature of a developing nuclear law is discussed. Opinions from various writers and jurists are presented. It is concluded that it should be considered as international law, whose main sources are the various treaties, conventions and agreements. (A.L.) [pt

  20. International Working Group on Nuclear Power Plant Control and Instrumentation: Recent activities and future prospects

    International Nuclear Information System (INIS)

    Kossilov, A.

    1992-01-01

    The IWG-NPPCI working group exists to consider developments, disseminate and exchange experience in all aspects of instrumentation, control and information technology relevant to the safety and economics of NPP design and operation. The main topics dealt with are: nuclear instrumentation, control systems, protection systems, early failure detection and diagnosis, use of computer technology in NPP operation, instrumentation for accidental situation, operator support systems, man-machine interface. The main objectives of the IWG-NPPCI are: to assist the IAEA to provide the Member States with information and recommendations on technical aspects of the NPP control and instrumentation with the aim to assure reliable functions; to promote and exchange of information on national programs, new developments and experience from operating NPPs, and to stimulate the coordination of research on NPP control and instrumentation

  1. Recommended radiological air sampling and internal contamination control at nuclear power plants

    International Nuclear Information System (INIS)

    Rich, B.L.; Ritter, P.D.; Martz, D.E.

    1984-01-01

    It has long been recognized by the NRC Technical Staffs that estimating the quantity of radioactivity inhaled by an individual worker involved large uncertainties. General air samples usually produce concentrations lower than those in the workers Breathing Zone (BZ). NRC guides have recognized this problem by specifying air monitoring programs which sample the Breathing Zone or concentrations known to be higher than that actually inhaled. In addition the availability of suitable samplers to obtain BZ samples and the practicality of requiring their use was somewhat in question to the NRC technical staff. AN NRC development contract was issued to provide a detailed review of the technical aspects of the problems and recommendations for practical upgrade of federal guidance. This project accomplished a review of the nuclear industry experience and knowledge through a literature search, site visits to representative licensed facilities, telephone surveys of many others, laboratory testing of personal air samplers (lapel samplers) and aerosol diffusion experiments to verify key conclusions and assumptions

  2. International Working Group on Nuclear Power Plant Control and Instrumentation: Recent activities and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Kossilov, A [International Atomic Energy Agency, Vienna (Austria)

    1992-07-01

    The IWG-NPPCI working group exists to consider developments, disseminate and exchange experience in all aspects of instrumentation, control and information technology relevant to the safety and economics of NPP design and operation. The main topics dealt with are: nuclear instrumentation, control systems, protection systems, early failure detection and diagnosis, use of computer technology in NPP operation, instrumentation for accidental situation, operator support systems, man-machine interface. The main objectives of the IWG-NPPCI are: to assist the IAEA to provide the Member States with information and recommendations on technical aspects of the NPP control and instrumentation with the aim to assure reliable functions; to promote and exchange of information on national programs, new developments and experience from operating NPPs, and to stimulate the coordination of research on NPP control and instrumentation.

  3. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  4. Nuclear power prospects

    International Nuclear Information System (INIS)

    Staebler, K.

    1994-01-01

    The technical, economic and political prospects of nuclear power are described with regard to ecological aspects. The consensus talks, which failed in spite of the fact that they were stripped of emotional elements and in spite of major concessions on the part of the power industry, are discussed with a view to the political and social conditions. (orig.) [de

  5. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  6. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  7. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  8. LDC nuclear power: Egypt

    International Nuclear Information System (INIS)

    Selim, M.E.S.

    1982-01-01

    This chapter reviews the evolution of Egypt's nuclear program, the major factors that influenced the successive series of nuclear decisions, and the public debate over the far-reaching program attempted by the late President Anwar El-Sadat. Egypt's program is important, not only because it was the first Arab country to enter the nuclear age, but because it is an ambitious program that includes the installation of eight reactors at a time when many countries are reducing their commitment to nuclear power. Major obstacles remain in terms of human, organizational, and natural resource constraints. 68 references, 1 table

  9. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  10. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  11. Estimation of internal exposure dose due to Fukushima Daiichi nuclear power plant accidents

    International Nuclear Information System (INIS)

    Morita, Naoko; Takamura, Noboru; Kudo, Takashi; Yamashita, Shunichi; Miura, Miwa; Yoshida, Masahiro; Matsuda, Naoki; Ohtsuru, Akira

    2012-01-01

    Detailed analysis of internal exposure dose in 173 people sent for dealing with the Accident and stayed nearby during the period Mar 11-Apr 10, 2011, was reported. They were 156 men and 17 women, 42.2 years old in average and stayed for average 4.8 days. Analysis was done for following 4 groups of people: in group 1, 45 people had stayed during the period of Mar 11-18 for average 4.3 days; group 2, 66 people during Mar 14-22 for 2.0 days; group 3, 31 people during Mar 28-31 for 5.8 days; and group 4, 31 people during Mar 22-Apr 10 for 10.6 days. Internal radioactivity was measured for 20 min in the whole body counter placed in a low-background, iron-surrounded room in Nagasaki University. The detector was a pair of NaI (Tl) scintillator of 8 in. (diameter) x 4 in. (thickness) equipped at upper and lower portions. Nuclides measured were I-131 (at 0.364 MeV and others), Cs-134 (0.605, 0.796 MeV), Cs-137 (0.662 MeV), of which lowest detection limits were 68 Bq for I, and 28 Bq for Cs. Overall average detection rates of the respective nuclide above were found to be 31.8% (55/173 people), 37.6% (65) and 32.4% (56). In group 1, >800 Bq of the nuclides were found in the body, but in later groups, radioactivity was lower. Detection rate and internal radioactivity were thus found to be highest in those stayed immediately after the Accident. (T.T.)

  12. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  13. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  14. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  15. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  16. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  17. Nuclear power plants - Quality assurance

    International Nuclear Information System (INIS)

    1980-01-01

    This International Standard defines principles for the establishment and implementation of quality assurance programmes during all phases of design, procurement, fabrication, construction, commissioning, operation, maintenance and decommissioning of structures, systems and components of nuclear power plants. These principles apply to activities affecting the quality of items, such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling and modifying and eventually decommissioning. The manner in which the principles described in this document will be implemented in different organizations involved in a specific nuclear power project will depend on regulatory and contractual requirements, the form of management applied to a nuclear power project, and the nature and scope of the work to be performed by different organizations

  18. International working group on life management of nuclear power plants (IWG-LMNPP). Regular meeting. 30 August - 1 September 1995. Working material. V. 2

    International Nuclear Information System (INIS)

    1995-01-01

    This meeting of the International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) was organized to review the national programmes of the countries and to advise the IAEA on its technical meetings and activities in the subject areas taking into consideration current progress, problems and operating experience. Refs, figs and tabs

  19. International working group on life management of nuclear power plants (IWG-LMNPP). Regular meeting. 30 August - 1 September 1995. Working material. V. 1

    International Nuclear Information System (INIS)

    1995-01-01

    This meeting of the International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) was organized to review the national programmes of the countries and to advise the IAEA on its technical meetings and activities in the subject areas taking into consideration current progress, problems and operating experience. Refs, figs and tabs

  20. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  1. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  2. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  3. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  4. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  5. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  6. France without nuclear power

    International Nuclear Information System (INIS)

    Barre, B.; Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1995-01-01

    As environmental issues (particularly questions associated with the greenhouse effect) become a matter of increasing current concern, the French nuclear power programme can, in retrospect, be seen to have had a highly positive impact upon emissions of atmospheric pollutants. The most spectacular effect of this programme was the reduction of carbon dioxide emissions from 530 million tonnes per annum in 1973 to 387 million tonnes per annum today. Obviously, this result cannot be considered in isolation from the economic consequences of the nuclear power programme, which have been highly significant.The most obvious consequence of nuclear power has been the production of cheap electricity, while a further consequence has been the stability of electricity prices resulting from the increasing self-sufficiency of France in energy supplies (from 22% in 1973 to 49.% in 1992). Moreover, French nuclear industry exports. In 1993, 61.7 TW·h from nuclear production were exported, which contributed F.Fr. 14.2 billion to the credit side of the balance of payment. For the same year, Framatome exports are assessed at about F.Fr. 2 billion, corresponding to manufacturing and erection of heavy components, and maintenance services. Cogema, the French nuclear fuel operator, sold nuclear materials and services for F.Fr. 9.3 billion. Thus, nuclear activities contributed more than F.Fr. 25 billion to the balance of payment. Therefore, a numerical assessment of the macroeconomic impact of the nuclear power programme is essential for any accurate evaluation of the environmental consequences of that programme. For this assessment, which is presented in the paper, the Micro-Melodie macroeconomic and energy supply model developed by the Commissariat a l'energie atomique has been used. (author). 6 refs, 4 figs, 1 tab

  7. Direct measurements of employees involved in the Fukushima Daiichi Nuclear Power Station accident for internal dose estimates. JAEA's experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Osamu; Kanai, Katsuta; Nakagawa, Takahiro; Takada, Chie; Momose, Takumaro; Furuta, Sadaaki [Japan Atomic Energy Agency, Nuclear Fuel Cycle Engineering Laboratories, Tokai, Ibaraki (Japan)

    2012-11-15

    Japan Atomic Energy Agency (JAEA) performed internal dose measurements of employees involved in the Fukushima Daiichi nuclear power station accident. Nuclear Fuel Cycle Engineering Laboratories (NFCEL), one of the JAEA's core centers, examined 560 of these employees by direct (in vivo) measurements during the period from April 20 to August 5 in 2011. These measurements consisted of whole-body counting for radiocesium and thyroid counting for radioiodine. The whole-body counting was conducted with two types of whole-body counters (WBCs): a standing-type WBC with two large NaI(Tl) detectors (Fastscan{sup TM}, Canberra Inc.) and a chair-type WBC with HPGe detectors (GC5021, Canberra Inc.) installed in a shielded chamber made of 20-cm-thick steel. The thyroid counting was mainly performed using one of the two HPGe detectors equipped with the chair-type WBC. The subjects examined in this work were divided into two groups: Group 1 was the first 39 subjects who were measured up to June 17, 2011 and Group 2 was the remaining 521 subjects who were measured on and after June 18, 2011. The performance of our direct measurements was validated by comparing measurement results of the Group 1 subjects using two different methods (e.g., the standing-type WBC vs. the chair-type WBC). Tentative internal dose estimates of the subjects of Group 1 were also performed based on the assumption of a single intake scenario on either March 12, when the first hydrogen explosion occurred at the station or the first day of work after the accident. It was found that the contribution of {sup 131}I to the total internal dose greatly exceeded those of {sup 134}Cs and {sup 137}Cs, the other major nuclides detected in the measurements. The maximum committed effective dose (CED) was found in a male subject whose thyroid content of {sup 131}I was 9760 Bq on May 23, 2011; the CED of this subject was estimated to be 600 mSv including a small contribution of {sup 134}Cs and {sup 137}Cs. The typical

  8. Quality assurance for nuclear power plants. Proceedings of an international symposium organized by the IAEA and held in Paris, 11-15 May 1981

    International Nuclear Information System (INIS)

    1982-01-01

    The International Symposium on Quality Assurance for Nuclear Power Plants, organized by the International Atomic Energy Agency, was held in Paris from 11 to 15 May 1981. The main objectives of the symposium were the following: (1) To review the present requirements and practices in implementing quality assurance (QA) in nuclear power projects in Member States; (2) To identify the existing similarities and differences and to highlight those aspects of QA in Member States which are controversial and in need of harmonization; (3) To assess the practical use of the established requirements and recommendations of the IAEA Code of Practice on Quality Assurance for Safety in Nuclear Power Plants and the relevant Safety Guides. Because of the interdisciplinary nature of QA and the rather broad scope of its activities, only seven topics of QA were selected for review and discussion. They included, besides a general comparison of QA requirements and practices in IAEA Member States, methodologies for the selection of appropriate QA programme levels for specific items and services; the role of independent inspection in verification activities; economic aspects of QA; manpower requirements for QA in nuclear power projects; training, qualification and certification of QA personnel; and specific aspects of the implementation of QA in countries embarking on nuclear power projects. Each of these topics was treated in a separate session. These Proceedings include the full text of all invited papers and of a large part of the contributed papers. The contributed papers that are not published in full are represented by abstracts in the session summaries. The summaries of the sessions as prepared by the working groups appear at the end of the appropriate sessions. The holding of an international symposium on quality assurance appeared well timed. The importance of QA in the nuclear industry is constantly growing with the increasing requirements for safety and availability of nuclear

  9. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    International Nuclear Information System (INIS)

    1993-10-01

    This report presents the proceedings of the Specialist's Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately

  10. France without nuclear power

    International Nuclear Information System (INIS)

    Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1991-01-01

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  11. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  12. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  13. Faults simulation on reactor internals of Uljin 1 and 2 nuclear power plant

    International Nuclear Information System (INIS)

    Ryu, J. S.; Park, J. H.; Nam, H. Y.; Woo, J. S.; Kim, T. R.

    1999-01-01

    The dynamic characteristics analysis were performed for finite element model of Uljin 1 and 2 NPP reactor internals with artificial faults on the hold-down ring and the thermal shield. To prove the validity of the modelling, the fundamental beam and shell mode frequencies of core support barrel(CSB) in normal state are compared with those from the measurement results, which shows good agreement. According to the analysis results, the fundamental natural frequency of the CSB beam decreases by 5%, 18%, 54% and 92% for 10%, 20%, 50% and 80% partial faults of the hold-down ring respectively. And the fundamental shell natural frequency is within 5.3% for 20% partial faults, but decrease by 22% and 72% for 50% and 80% partial faults. For the faults of the thermal shield with the normal hold-down ring, frequency decreases of the higher shell modes are more than the beam modes and the 5th to 8th natural frequencies decrease by 5%, 9%, 13% and 20% for 25%, 50%, 75% and 100% partial faults respectively

  14. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  15. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  16. Learning from nuclear regulatory self-assessment. International peer review of the CSN report on lessons learnt from the essential service water system degradation event at the Vandellos nuclear power plant

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear regulatory self-assessment together with the benchmarking of regulatory practices against those of other countries operating nuclear power plants are key elements in maintaining a high level of nuclear safety. In that light, the Spanish Consejo de Seguridad Nuclear (CSN) formally asked the OECD Nuclear Energy Agency (NEA) to establish an international peer review team to assess the CSN report on the lessons learnt as a result of the 2004 Vandellos II event involving essential service water system degradation. The International Review Team considers the CSN report prepared in follow-up to the Vandellos event to be a commendable effort in regulatory self-assessment. The report, complemented by this international peer review, should enable the CSN to take appropriate action to ensure that its regulatory supervision is in line with best international practice. (authors)

  17. Current assessment and future potential of the international nuclear market

    International Nuclear Information System (INIS)

    Cassidy, P.R.

    1983-01-01

    This is a study of the current and future situation of the international nuclear market. This paper highlights the projections as seen not only by Bechtel Power Corporation, but also by the international nuclear community. It covers in particular the electric power growth projection; the percentage of probable nuclear power generation; operating services for existing nuclear power plants; and the nuclear fuel cycle. (NEA) [fr

  18. Environment and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  19. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  20. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  1. Pulsed nuclear power plant

    International Nuclear Information System (INIS)

    David, C.V.

    1986-01-01

    This patent describes a nuclear power plant. This power plant consists of: 1.) a cavity; 2.) a detonatable nuclear device in a central region of the cavity; 3.) a working fluid inside of the cavity; 4.) a method to denote a nuclear device inside of the cavity; 5.) a mechanical projection from an interior wall of the cavity for recoiling to absorb a shock wave produced by the detonation of the nuclear device and thereby protecting the cavity from damage. A plurality of segments defines a shell within the cavity and a plurality of shock absorbers, each connecting a corresponding segment to a corresponding location on the wall of the cavity. Each of these shock absorbers regulate the recoil action of the segments; and 6.) means for permitting controlled extraction of a quantity of hot gases from the cavity produced by the vaporization of the working fluid upon detonation of the nuclear device. A method of generating power is also described. This method consists of: 1.) introducing a quantity of water in an underground cavity; 2.) heating the water in the cavity to form saturated steam; 3.) detonating a nuclear device at a central location inside the cavity; 4.) recoiling plate-like elements inside the cavity away from the central location in a mechanically regulated and controlled manner to absorb a shock wave produced by the nuclear device detonation and thereby protect the underground cavity against damage; 5.) extracting a quantity of superheated steam produced by the detonation of the nuclear device; and 6.) Converting the energy in the extracted superheated steam into electrical power

  2. Misunderstanding nuclear power

    International Nuclear Information System (INIS)

    Tombs, F.

    1981-01-01

    The inaugural lecture of Sir Francis Tombs as newly installed President of the Institution of Electrical Engineers, on the reasons for the widely differing perceptions of opposing factions in the nuclear debate, is reviewed with extensive quotations. The lecturer pointed out that development of nuclear power as an energy source requires the consent of the majority and the uncommitted must be persuaded to spend the time necessary to understand the issues and to evaluate the arguments in an objective way. (U.K.)

  3. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  4. The future of nuclear power

    International Nuclear Information System (INIS)

    Maichel, G.

    2001-01-01

    The market and competition, political boundary conditions, ecological boundary conditions, science and technology as well as international aspects are factors decisive in the future use of nuclear power. The agreement reached between the federal government and the power utilities in June 2000 represents a workable compromise - without winners or losers - in a situation in which action was urgently required. Once the agreement has been put into effect by legislators and the executive, operation of the nuclear power plants still on stream can be continued on a long term basis under safe boundary conditions. This requires an amendment to the Atomic Energy Act reflecting the sense of the agreement reached, the constructive inclusion of the federal states, and the immediate, legally assured execution of necessary transports of spent fuel and the construction of on-site stores for spent fuel. In the common interest, the question of final storage should not suffer from politically motivated delays. Factors favoring the further use of nuclear power continue to be mainly ecological and economic ones. The economic performance of plants is being documented very clearly, especially in the course of the deregulation of the electricity market, and the objective of finding a power supply system which protects the climate seems to be attainable only by nuclear power also in countries other than Germany. In the course of globalization, and in the light of thoughts about building new nuclear power plants also in European countries, it must also be in the public interest to preserve competence in nuclear technology, together with a capable infrastructure, in Germany. In addition, strengthening research and development is important in securing the future technical performance capability of Germany. (orig.) [de

  5. International nuclear agreements

    International Nuclear Information System (INIS)

    Miatello, A.; Severino, R.

    1988-01-01

    This multilingual glossary, in the laborious compilation of which the authors have been greatly assisted by a group of professional translators and experts, presents for the first time a substantial number of entries in four languages (English, French, German and Italian), whose terminology and phraseology, all bearing the appropriate normative reference, has been drawn from the official text of the most relevant international agreements on nuclear policy. It is complemented by a thorough critical study on the status of nonproliferation by Lawrence Scheinman and Josef Pilat. Librarians, translators and interpreters as well as scholars and researchers in international law will find this volume a reference tool of specific interest

  6. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  7. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Last year, 2000, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 172 259 MWe and an aggregate gross capacity of 181 642 MWe were in operation (31.12.2000; 215 plants, 180 067 MWe (gross), 172 259 MWe (net)). One unit, i.e. Temelin in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin adds about 981 MWe (gross) and 912 MWe (net) to the electricity production capacity. Three units, Hinkley Point A1 and A2 in United Kingdom, and Chernobyl 3 in the Ukraine have been shut down during the year 2000. This means a loss of 1534 MWe gross capacity and 1420 MWe net capacity. Last year, 12 plants (31.12.2000: 11 plants) were under construction in Romania, Russia, Slovakia, the Czech Republic and the Ukraine, that is only in east european countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129 188 MWe and an aggregate net capacity of 123 061 MWe (31.12.2000: 144 plants, 128 613 MWe (gross), 122 627 MWe (net)). Net electricity production in 2000 in the EU amounts to approx. 818.8 TWh, which means a share of 35 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 76 per cent in France, 74 per cent in Lithuania, 57 per cent in Belgium and 47 per cent in the Ukraine. Nuclear power also provides an noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e. g. Italy, Portugal and Austria. (orig.) [de

  8. International power plant business

    Energy Technology Data Exchange (ETDEWEB)

    Grohe, R.

    1986-03-03

    At the Brown Boveri press seminar 'Energy' in Baden-Baden Rainer Grohe, member of the Brown Boveri board, Mannheim, gave a survey of the activities on the international power plant market in recent years. He showed the vacuities which must be taken into account in this sector today. The drastic escalation of demands on power plant suppliers has lead not to a reduction of protagonists but to an increase. (orig.).

  9. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  10. Comparison of ex-USSR norms and current international practice in design of seismic resistant nuclear power plants

    International Nuclear Information System (INIS)

    Hauptenbuchner, B.; David, M.

    1995-01-01

    Seismic hazard has been estimated according to ex-USSR norms in the original designs of WWER type Nuclear Power Plants (NPP) in former Soviet Union as well as in all former east European countries. For some steps of the design the national standards has been also taken into account. The original ex-USSR norms and instructions has been several times changed and improved during the time. This contribution is dealing with the development of ex-USSR norms and regulations with the aim to recognise some most important differentiations in comparison with corresponding western or international ones from point of view of civil structures. The understanding of relations of these documents is very important for seismic qualification and upgrading of WWER-type, NPPs. The main Soviet/Russian Standards and Regulations related to the seismic design and qualification of NPP structures as SNiP II-A.12-69, VSN 15-78, SNiP II-7-81, PiNAE G-7-002-86, NTD SEV etc. have been taken into consideration and compared with western or international standards as IAEA 50-SG-S1, IAEA 50-SG-D15, KTA 2201.1-6, ASCE 4-86 etc. The numerical examples of structural seismic qualification has been elaborated according to different standards for better understanding and in order to determine the degree of safety referring to corresponding standards. The authors has tried also to take into account the way of application of ex-USSR norms. The comparison of different norms and regulations has been analysed and corresponding conclusions and recommendations have been derived. These conclusions and recommendations can be helpful by the seismic qualification and upgrading of WWER-type NPPs. (author)

  11. Measures to assess and to assure the integrity of RPV-internals at Isar, Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Erve, M.; Bouecke, R.; Leibold, F.; Marschke, D.; Senski, G.; Maier, V.

    1998-01-01

    As visual examinations carried out in autumn 1994 detected cracks in a German BWR plant due to intergranular stress corrosion cracking in several core shroud components manufactured from 1.4550 steel, precautionary examinations and assessments were performed for all other plants. In accordance with these analyses, it can be stated for Isar, Unit 1 that the heat treatment to which the components in question were subjected in the course of manufacture cannot have caused sensitization of the material, and that crack formation due to the damage mechanism primarily identified in the reactor pressure vessel internals at Wuergassen Nuclear Power Station need not be feared. Although the material and corrosion-chemical assessments performed to date did not give any indications for the other crack formation mechanisms that are theoretically relevant for reactor pressure vessel internals (IGSCC due to weld sensitization, IASCC), visual examinations with a limited scope will be carried out with the independent expert's agreement during the scheduled inservice inspections. The fluid-dynamic and structure-mechanical analyses showed that the individual components are subjected only to low loadings, even in the event of accidents, and that the safety objectives shutdown and residual heat removal can be fulfilled even in the case of large postulated cracks. The fracture-mechanics analyses indicated critical through-wall crack lengths which, however, can be promptly and reliably detected during random inservice inspections even when assuming stress corrosion cracking and irradiation-induced low-toughness material conditions. In addition, both the VGB and the Isar, Unit 1 licensee are pursuing further prophylactic measures such as alternative water chemistry modes and an appropriate repair and replacement concept. (author)

  12. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1119 documents ageing assessment and management practices for PWR Reactor Vessel Internals (RVIs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. irradiation assisted stress corrosion cracking (IASCC) of baffle-former bolts, which threatened the integrity of the vessel internals. In addition, concern of fretting wear of control rod guide tubes has been raised in Japan. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1119 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update relevant sections of the existing IAEA-TECDOC- 1119 in order to provide current ageing management guidance for PWR RVIs to all involved in the operation and regulation of PWRs and thus to help ensure PWR safety in IAEA Member States throughout their entire service life

  13. Nuclear power and physics

    International Nuclear Information System (INIS)

    Xu Mi

    2006-01-01

    During the 30s and 40s of the last century atomic physicists discovered the fission of uranium nuclei bombarded by neutrons and realized the first self-sustaining controlled fission chain reaction, which ushered in the atomic age. After 50 years of electricity production, in 2003 nuclear power plants were generating 16% of the total electricity in the world. Of these, thermal neutron reactors make up over 99%. For the large scale production of nuclear power, say up to hundreds of GWe, it is very important to speed up the development and deployment of fast breeder reactors to avoid the future lack of uranium resources. (authors)

  14. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  15. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  16. Proceedings of the 14th International Meeting NUSIM 2006. Joint Slovak, Czech and German Seminar on Nuclear Power

    International Nuclear Information System (INIS)

    2006-01-01

    During April 26-28, 2006 was carried out The 14 th Annual Nuclear Safety Information Meeting, NUSIM 2006. Scientific conference deals with problems of reactor safety upgrading, mainly of two blocks of the NPP V-1 Bohunice as well as decommissioning of the NPP A-1 Bohunice. Other problems of the nuclear engineering were discussed. The Conference proceeded in the following sessions: (I) Survey on the Situation of Nuclear Power in the Partner Countries; (II) Experiences with WWER operation. Almost 100 participants from the Slovak Republic, Austria, Serbia and Montenegro, Czech Republic and Germany took part in the conference. Thirty-three scientific lectures and three papers were presented.

  17. Nuclear Power Plant Operating Experience from the IAEA/NEA International Reporting System for Operating Experience, 2005-2008

    International Nuclear Information System (INIS)

    2010-06-01

    The fundamental objective of the Incident Reporting System (IRS) is to contribute to improving the safety of commercial nuclear power plants which are operated worldwide. This fourth publication, covering the period 2005-2008, follows on the success of the previous three. It highlights important lessons learned based on a review of the approximately 200 event reports received from the participating countries over this period. The book is written both for a non-technical audience and for senior officials in industry and government who have decision making roles in the nuclear power industry.

  18. Nuclear power and the public

    International Nuclear Information System (INIS)

    Kovacs, P.; Gordelier, S.

    2009-01-01

    Issues such as climate change, energy security and the longer-term availability of fossil fuels are causing many governments to reconsider their national energy policies. Promotion of renewable energy sources is often a first policy response but, increasingly, it is being recognised that renewable sources may only provide a partial solution, especially in countries where heavy industry or large cities make intense demands on electricity supply. Governments are coming to recognize nuclear power as an attractive option because of its near absence of carbon dioxide emissions and the widespread availability of uranium which serves as fuel. Furthermore, the major uranium producers Canada and Australia are noted for their long term stability and good governance. The difficulty, of course, is that concerns over the safety and security of nuclear power often make it unpopular among the public. Hence, whether governments propose to introduce nuclear power for the first time, to simply replace existing ageing plant or to expand generating capacity, public acceptability questions must be faced. The apparent intractability of this issue has given rise to innumerable studies of public attitudes to nuclear power. The NEA has recently completed a review of this information what might be called a poll of polls. Particularly useful sources of information are surveys conducted for the European Commission (the Eurobarometer series) and the International Atomic Energy Agency (IAEA) between 2005 and 2007. Together, these provide in-depth information that helps to explain country-to-country differences and people's underlying reasons for supporting or opposing nuclear generated electricity. (author)

  19. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  20. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Sokolov, Y.

    2005-01-01

    Current trends in the interest in nuclear power development confirm important changes in opinions around the world about nuclear power's future. Much of the expansion of nuclear power in the sustainable development scenarios takes place in developing countries. For these countries to introduce nuclear power, they need to pass through three main steps: energy planning, infrastructure development and then deployment. The paper gives an overview of the IAEA's activity in this area. In order to meeting the energy needs of developed and developing countries, developing a global vision for nuclear energy, assessing and clarifying the afford ability and acceptability requirements for large-scale nuclear energy use in the 21st century in both developed and developed countries, facilitating international cooperation in developing different types of new generation nuclear energy systems which meet these requirement, and facilitating international discussions aimed at establishing enhanced institutional system acceptable to both developed and developing countries

  1. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  2. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  3. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  4. Nuclear power: Pt. 6

    International Nuclear Information System (INIS)

    Janse van Rensburg, H.J.

    1985-01-01

    Based on the annual growthrate of 2,5% in the need for energy and the present coal, oil, gas and uranium reserves, it is expected that there will be an energy deficiency early in the twentieth century. Coal-fired power stations have the disadvantage of pollution and a high water consumption. The use of nuclear power in South Africa is backed-up by its uranium reserves

  5. Nuclear power: Financing big projects

    International Nuclear Information System (INIS)

    Raabe, G.

    1992-01-01

    Since the early seventies, the Dresdner Bank AG has been intensively engaged in financing nuclear power plants, e.g., the Muelheim-Kaerlich Nuclear Power Station currently down because of legal technicaltities. The bank has also been involved in other large-scale projects in the energy sector and, in addition, has conceptually accompanied the stages of the nuclear fuel cycle, such as enrichment, fuel element fabrication, and reprocessing. However, for political reasons it has not been possible to carry out these projects and finance them in the Federal Republic. With appropriate modifications, these financial models can also be transferred to international projects; after all, the enrichment sector has always been characterized by trilateral ventures. (orig.) [de

  6. Nuclear power and public health

    International Nuclear Information System (INIS)

    1974-01-01

    The nuclear power industry has always emphasized the health and safety aspects of the various stages of power production. Nevertheless, the question of public acceptance is becoming increasingly important in the expansion of nuclear power programmes. Objections may arise partly from the tendency to accept familiar hazards but to react violently to unfamiliar ones such as radiation, which is not obvious to the senses and may result in delayed adverse effects, sometimes manifested only in the descendants of the individuals subjected to the radiation. The public health authorities therefore have an important role in educating the public to overcome these fears. However, they also have the duty to reassure the public and convince it that proper care has been taken to protect man and his environment. This duty can be fulfilled by means of independent evaluation and control to ensure that safe nuclear facilities are built, care is taken with their siting, they are operated safely, and the effects of possible accidents are minimized. The selection and development of a nuclear power facility should be carried out with a sound understanding of the factors involved. WHO has collaborated with the International Atomic Energy Agency (IAEA) in the preparation of a booklet summarizing the available information on the subject. It deals with the role of atomic energy in meeting future power needs, radiation protection standards, the safe handling of radioactive materials, disturbances of the environment arising from plant construction and ancillary operations, and the public health implications

  7. Nuclear power and public health

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-07-01

    The nuclear power industry has always emphasized the health and safety aspects of the various stages of power production. Nevertheless, the question of public acceptance is becoming increasingly important in the expansion of nuclear power programmes. Objections may arise partly from the tendency to accept familiar hazards but to react violently to unfamiliar ones such as radiation, which is not obvious to the senses and may result in delayed adverse effects, sometimes manifested only in the descendants of the individuals subjected to the radiation. The public health authorities therefore have an important role in educating the public to overcome these fears. However, they also have the duty to reassure the public and convince it that proper care has been taken to protect man and his environment. This duty can be fulfilled by means of independent evaluation and control to ensure that safe nuclear facilities are built, care is taken with their siting, they are operated safely, and the effects of possible accidents are minimized. The selection and development of a nuclear power facility should be carried out with a sound understanding of the factors involved. WHO has collaborated with the International Atomic Energy Agency (IAEA) in the preparation of a booklet summarizing the available information on the subject. It deals with the role of atomic energy in meeting future power needs, radiation protection standards, the safe handling of radioactive materials, disturbances of the environment arising from plant construction and ancillary operations, and the public health implications.

  8. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  9. Status of nuclear power industry in Ukraine

    International Nuclear Information System (INIS)

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  10. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2005-03-01

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  11. International School of Nuclear Law

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This is a report about the fourth International School of Nuclear Law (ISNL) held in Montpellier, France, on 23 August to 3 September 2004 by the OECD Nuclear Energy Agency (NEA) and the University of Montpellier 1 with the support of the International Nuclear Law Association (INLA), the European Commission, and the International Atomic Energy Agency (IAEA). (orig.)

  12. Nuclear power, politics and public opinion

    International Nuclear Information System (INIS)

    Allday, C.

    1979-01-01

    Following a brief review of the status of nuclear power, some of the difficulties facing the industry are considered. International and national problems in gaining recognition of the importance of nuclear power in meeting the world's energy requirements are discussed. (author)

  13. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  14. Report of the task group reviewing national and international activities in the area of ageing of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    1996-01-01

    After a background information on the mandate of the task group and its organisation, the longevity of nuclear power plants is first addressed: the present status of nuclear power plants in the 25 OECD Member Countries is summarised and the importance of ensuring continued safe operation of nuclear power plants described. Safety-related concrete structures (primarily containments) for several reactor concepts are briefly described as well as their materials of construction. Primary mechanisms that can produce adverse ageing of the concrete structures are described (e.g., chemical attack and corrosion of steel reinforcement). The overall performance of nuclear power plant concrete structures is described and age-related degradation incidences that have occurred are noted (e.g., corrosion of steel in water intake structures and corrosion of metal liners). National ageing management programmes of OECD Member Countries are then described with the emphasis placed on nuclear power plant safety-related concrete structures. Although the majority of these programmes are addressing components such as the reactor pressure vessel and steam generator, several national programmes have sophisticated activities that address the concrete structures (e.g., Canada, France, Japan, Switzerland, United Kingdom, and the United States). International ageing management activities are then summarised, primarily addressed under the auspices of the International Atomic Energy Agency (IAEA) (ageing management activities for concrete containment buildings) and the Commission of European Communities (CEC) (assessment of the long-term durability of reinforced and prestressed concrete structures and buildings, and steel containments in nuclear power plants). General conclusions and recommendations are provided at the end of the report

  15. LDC nuclear power: Indonesia

    International Nuclear Information System (INIS)

    Poneman, D.B.

    1982-01-01

    Indonesia's five-year plan to develop a research reactor is still in the feasibility stage of a policy to minimize domestic oil consumption. The evolution of a nuclear program in Indonesia illustrates the importance of strong political leadership in developing countries which lack technical skills and political and economic stability and the need for strong international support. 39 references

  16. International power opportunities

    International Nuclear Information System (INIS)

    Moon, A.

    1995-01-01

    Key factors in international development were discussed, using TransAlta Energy Corporation as an example. Trans-Alta is a company generating 4,500 MW of electricity from coal, hydro and natural gas. It has operating facilities in Canada, Argentina and New Zealand, including extensive coal mining interests in Canada. The climate for international opportunities in the energy field were judged to be very good in view of the projected requirement for some 900,000 MW of new power generation in different parts of the world by the year 2003. The five key factors identified for international power development were: (1) using core skills to add value, (2) have a long-term focus, (3) focus on specific countries and selected regions, (4) develop strong relationships with local partners, and (5) develop appropriate projects. 2 figs

  17. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  18. Nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  19. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  20. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  1. Nuclear Power in Space.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  2. Captivated by nuclear power

    International Nuclear Information System (INIS)

    Kaageson, P.; Kjellstroem, B.

    1984-01-01

    The Swedish decision to discontinue nuclear power production is discussed. The basis of the referendum is presented. A number of cases where the decision to stop production in the year 2010 is counteracted, are described. The political and technical steps to facilitate the settlement are presented. (GB)

  3. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  4. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  5. International conference: nuclear power for the 21 st century; Conference internationale: L'energie nucleaire au 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    It is widely recognised that global energy demand will rise substantially during this century. The increased industrialization and urbanization of developing countries will produce large increases in energy demand in regions that currently have very low per capita energy use. This increasing demand for energy will need to be met in order to improve living standards for at least half of the world population and to reduce the economic imbalances between countries and regions. At the same time the use of fossil fuel based energy is identified as a major cause of environmental damage. The release of greenhouse gases from burning of fossil fuel in power stations and for transport is seen as a contributor to global warming. It is widely recognised that continued exploitation of fossil fuels and release of carbon dioxide will need to be controlled. After a prolonged period of slow development of nuclear power, confined to some countries in the world, it is now being recognised that nuclear energy has a potentially significant role to play in meeting the energy needs of the planet without damaging the environment. Developments in technology make the economics of nuclear power more attractive, and they may become even more so as fossil fuel prices continue to rise.or a widespread use of nuclear power, however, there remain concerns on the safety, security, waste and proliferation aspects. The global application of safety standards and appropriate security measures are required to ensure acceptable levels of protection. Effective control measures are required to ensure that non-proliferation commitments are honored. Handling nuclear waste safely and securely is achievable, but continues to remain as a public concern. The broad strategic objectives of the Conference are the following: to review the role of nuclear power and to define the potential benefits (energy security, sustainability and improved environmental protection) that expanding nuclear power offers to meet the

  6. Safe nuclear power

    International Nuclear Information System (INIS)

    Cady, K.B.

    1992-01-01

    Nearly 22 percent of the electricity generated in the United States already comes from nuclear power plants, but no new plants have been ordered since 1978. This paper reports that the problems that stand in the way of further development have to do with complexity and perceived risk. Licensing, construction management, and waste disposal are complex matters, and the possibility of accident has alienated a significant portion of the public. But a national poll conducted by Bruskin/Goldring at the beginning of February shows that opposition to nuclear energy is softening. Sixty percent of the American people support (strongly or moderately) the use of nuclear power, and 18 percent moderately oppose it. Only 15 percent remain obstinately opposed. Perhaps they are not aware of recent advances in reactor technology

  7. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    regarding fire safety at nuclear power plants that have been studied are regulation from USA, Finland, Great Britain, Canada, Germany and the international organisations IAEA and WENRA. The conclusion of this study is that the differences between the regulations mostly are differences in detailed fire safety design. Some differences can not easily be explained by national. Differences and the resulting effect on the overall fire safety is very difficult to evaluate. Regarding how to improve the Swedish regulations regarding fire safety at nuclear power plants there are different possibilities. One is to complement the regulations with acceptable solutions on how to design the fire protection. If this shall be done IAEAs Safety Guides seem to be the easiest of the more detailed fire requirements to adopt to Swedish conditions. Another way of improving the regulation is to give more guidance on how to proof that the rules are fulfilled. In this case the Canadian guidelines may be a good source of ideas and information

  8. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  9. Can nuclear power compete?

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1993-01-01

    The competitiveness of electricity generation from new nuclear plant with that from fossil-fired plant depends on a number of factors, the most important of which are the future costs of fossil fuels and the required rate of return on capital. Nuclear power is generally expected to remain competitive for baseload generation in OECD countries except in regions with direct access to cheap fossil fuels, based on the economic criteria and price expectations prevailing in the different countries. The situation in the United Kingdom will be clearer later in 1993 when comparisons prepared for the Government's Nuclear Review are published, but on the basis of the information available new nuclear plants should be competitive with the other technical options available for deployment around the year 2000. (author)

  10. LDC nuclear power: Philippines

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1982-01-01

    The US created the need for nuclear power in the Phillipines and then provided the means to fill it, but the 20-year nuclear program was reversed in 1976 because of public opposition to heavy-handed government policies. The situation illustrates the overriding importance of foreign influence and political judgment. Despite substantial investments in the training of Filipino nuclear scientists and technicians, nuclear energy continues to be viewed as an alien technology by the people. Even the protracted debate over the first reactor has been dominated by US experts and advisers because the traditional transnational cooperation was extended beyond government to nongovernmental citizen organizations when Filipno protestors sought help from US groups. 120 references

  11. Facts about nuclear power

    International Nuclear Information System (INIS)

    Muench, E.

    1980-01-01

    The argument concerning the introduction and the further expansion of nuclear energy in the Federal Republic of Germany has been existing for several years in differing intensities and most different forms. The arguments and theses of the discussion deal with the various aspects of the reciprocity between nuclear energy and environment. This is the key-note for the scientists to treat the relevant problems and questions in the discussion about nuclear energy. The controversy in which often emotional theses are stated instead of reasonably deliberating the pros and contras includes civil initiatives, societies, and environment protection organisations on the one hand and authorities, producers, and operators of nuclear-technical plants on the other. And the scale of the different opinions reaches from real agreement to deep condemnation of a technology which represents an option to meet the energy need in the future. In this situation, this book is an attempt to de-emotionalize the whole discussion. Most of the authors of the articles come from research centres and have been working on the problems they deal with for years. The spectrum of the topics includes the energy-political coherences of nuclear energy, the technical fundaments of the individual reactor types, safety and security of nuclear-technical plants the fuel cycle, especially the waste management in nuclear power plants, environmental aspects of energy generation in general and nuclear energy in special, the question of Plutonium and the presentation of alternative energy sources including nuclear fusion. The arrangement of these topics is meant to help to clarify the complex coherences of nuclear energy and to help those interested in problems of energy policy to make their own personal decisions. (orig./RW) [de

  12. International aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Uematsu, K.

    1989-09-01

    The accident at Chernobyl revealed that there were shortcomings and gaps in the existing international mechanisms and brought home to governments the need for stronger measures to provide better protection against the risks of severe accidents. The main thrust of international co-operation with regard to nuclear safety issues is aimed at achieving a uniformly high level of safety in nuclear power plants through continuous exchanges of research findings and feedback from reactor operating experience. The second type of problem posed in the event of an accident resulting in radioactive contamination of several countries relates to the obligation to notify details of the circumstances and nature of the accident speedily so that the countries affected can take appropriate protective measures and, if necessary, organize mutual assistance. Giving the public accurate information is also an important aspect of managing an emergency situation arising from a severe accident. Finally, the confusion resulting from the unwarranted variety of protective measures implemented after the Chernobyl accident has highlighted the need for international harmonization of the principles and scientific criteria applicable to the protection of the public in the event of an accident and for a more consistent approach to emergency plans. The international conventions on third party liability in the nuclear energy sector (Paris/Brussels Conventions and the Vienna Convention) provide for compensation for damage caused by nuclear accidents in accordance with the rules and jurisdiction that they lay down. These provisions impose obligations on the operator responsible for an accident, and the State where the nuclear facility is located, towards the victims of damage caused in another country

  13. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  14. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  15. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  16. Economics of nuclear power

    International Nuclear Information System (INIS)

    Reichle, L.F.C.

    1977-01-01

    Mr. Reichle feels that the economic advantages of pursuing nuclear power should prompt Congress and the administration to seek ways of eliminating undue delays and enabling industry to proceed with the design, construction, and management of nuclear plants and facilities. Abundant, low-cost energy, which can only be supplied by coal and nuclear, is vital to growth in our gross national product, he states. While conservation efforts are commendable, we must have more energy if we are to maintain our standard of living. Current energy resources projections into the next century indicate an energy gap of 42 quads with a 3 percent growth and 72 quads with a 4 percent growth. Comparisons of fuel prices, plant capital investment, and electric generation costs are developed for both coal and nuclear energy; these show that nuclear energy has a clear advantage economically as long as light water reactors are supplemented by breeder reactor development and the nuclear industry can demonstrate that these reactors are safe, reliable, and compatible with the environment. Mr. Reichle says excessive regulation and legal challenges combined with public apathy toward developing nuclear energy are delaying decisions and actions that should be taken now

  17. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  18. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  19. Nuclear power: status and outlook

    International Nuclear Information System (INIS)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.

    2001-01-01

    Nuclear power plants worldwide make important contributions to energy production. A total of 439 plants are in operation; with nearly 10 000 years of operating history, they reliably provide some 16 percent of the world's electricity production. The growth rates of nuclear power expansion in the seventies and eighties are no longer achievable now. Growing operating experience and further optimization of plant operation have caused the electricity generation in existing plants to grow overproportionally, corresponding to a calculated equivalent of 28 000 MW of capacity increment in the nineties. The short-term perspectives of nuclear power generation until 2020 as outlined by the International Energy Agency (IEA) indicate a slight decrease of electricity production with a variety of different regional developments. Over the same period of time, there will mainly be further improvements in reliable operation, resulting in higher availability and added safety, as well as measures extending plant life. Studies going beyond the time frame of the IEA Study forecast a major increase in nuclear generating capacity for the period after 2020 up to 2050. The foreseeable long-term developments on the world energy markets, with their limited fossil energy resources, are seen as a reason why nuclear power and renewable energies jointly will be important components in meeting energy requirements and, simultaneously, fulfilling the needs of climate protection. Specific problems of nuclear power, which can be solved, are seen to be the development of innovative plants, a stable cost situation, and the reduction of economic risks because of the long periods of payback of the capital invested. (orig.) [de

  20. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)