WorldWideScience

Sample records for international non-ionizing radiation

  1. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  2. Comparison between radiological protection against ionizing radiation and non ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1992-01-01

    Protection against IR and NIR developed in completely different ways because of the very different evolution of the techniques they involve. While as soon as 1928, the International Society of Radiology created the International Commission of Radiological Protection, we had to wait until 1977 to see the creation of the International Committee for NIR (INIRC) by IRPA. To compare protection against Ionizing Radiations and Non Ionizing Radiations we will first carry out a general analysis of its components and then we will draw the general conclusions leading to a quite comparable evolution. (author)

  3. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  4. A History of the International Commission on Non-Ionizing Radiation Protection.

    Science.gov (United States)

    Repacholi, M H

    2017-10-01

    Concern about health risks from exposure to non-ionizing radiation (NIR) commenced in the 1950s after tracking radars were first introduced during the Second World War. Soon after, research on possible biological effects of microwave radiation in the former Soviet Union and the U.S. led to public and worker exposure limits being much lower in Eastern European than in Western countries, mainly because of different protection philosophies. As public concern increased, national authorities began introducing legislation to limit NIR exposures from domestic microwave ovens and workplace devices such as visual display units. The International Radiation Protection Association (IRPA) was formed in 1966 to represent national radiation protection societies. To address NIR protection issues, IRPA established a Working Group in 1974, then a Study Group in 1975, and finally the International NIR Committee (INIRC) in 1977. INIRC's publications quickly became accepted worldwide, and it was logical that it should become an independent commission. IRPA finally established the International Commission on Non-Ionizing Radiation Protection (ICNIRP), chartering its remit in 1992, and defining NIR as electromagnetic radiation (ultraviolet, visible, infrared), electromagnetic waves and fields, and infra- and ultrasound. ICNIRP's guidelines have been incorporated into legislation or adopted as standards in many countries. While ICNIRP has been subjected to criticism and close scrutiny by the public, media, and activists, it has continued to issue well-received, independent, science-based protection advice. This paper summarizes events leading to the formation of ICNIRP, its key activities up to 2017, ICNIRP's 25th anniversary year, and its future challenges.

  5. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  6. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  7. Non-ionizing radiations : physical characteristics, biological effects and health hazard assessment

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    1988-01-01

    The Workshop was a project of the International Non-Ionizing Radiation Committee of IRPA and comprised a series of educational lectures and demonstrations intended to give a comprehensive overview of non-ionizing electromagnetic radiation: physical characteristics, sources of concern, levels of exposure, mechanisms of interaction and reported effects of these fields and radiations with biological tissues, human studies, health risk assessment, national and international standards and guidelines, and protective measures

  8. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  9. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  10. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  11. Protection criteria from the non-ionizing radiations

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.

    2004-01-01

    The first objective of the protection philosophy is to determinate the relation reason-effect in order to establish the exposition thresholds to acceptable values. To establish the radioprotection criteria is important to considerate the following: a-) The damage and effects of the non-ionizing radiation; b-) The physical aspects of the fields exposition; and c-) The dosimetry of the involucrate tissues. The non-ionizing radiation includes the optics radiations (ultraviolet, visible, infrared and laser), and the electromagnetic radiations (microwave, radars, magnetic and electrostatics fields)

  12. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  13. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  14. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  15. Exposure to non-ionizing electromagnetic radiation and public health : review of safety levels

    International Nuclear Information System (INIS)

    Ubeda, A.; Trillo, M. A.

    2005-01-01

    The potential health effects of the exposure to non-ionizing electromagnetic radiation are a source of increasing interest on the part of the public and the authorities. This article summarizes the theoretical-experimental basis supporting the safety levels proposed by international committees, and reviews the recent scientific literature on non-ionizing radiation's bioeffects that are relevant to the validation or modification of the present exposure limits. Because of its social interest, special consideration is given to power frequency fields (50-60Hz) and to the radio communication signals of mobile telephony. The paper also describes how interpretations of the scientific evidence, other than those of the international committees, have generated some controversy and have provided a basis for more restrictive limits, like those adopted in Europe by Switzerland and Italy. The article also identifies some gaps in the present scientific knowledge on the bioelectromagnetics discipline and proposes that additional research is needed to complete our present knowledge on the biological responses to non-ionizing radiation. (Author) 80 refs

  16. Activities and future plans of the international commission on non-ionizing radiation protection (ICNIRP)

    International Nuclear Information System (INIS)

    Bernhardt, J.H.

    2000-01-01

    ICNIRP is an independent scientific organisation chartered by IRPA in May 1992. At that time ICNIRP took over the responsibility for Non-Ionizing Radiation (NIR) protection from its predecessor, the International Non-Ionizing Radiation Committee (INIRC) of IRPA, that commenced its work in 1977. ICNIRP was established for the purpose of advancing non-ionizing radiation protection for the benefit of people and the environment and in particular to provide guidance and recommendations on protection from non-ionising radiation exposure. Membership of ICNIRP comprises a Chairman, Vice-Chairman and up to twelve additional members. In addition, ICNIRP is served by four standing committees on Epidemiology, Biology, Physics and Optics. Members are selected on the basis of their independence, specialist expertise and geographical distribution. More information and a list of publications are available through ICNIRP's web page (http://www.icnirp.de). A revision of the Laser Guidelines were published in Health Physics in October 96, a confirmation of the UV-Guidelines in 12/96; guidelines on visible and infrared radiation in 9/97 and Guidelines on limiting exposure to electric, magnetic, and electromagnetic fields in 4/98. A revision of the Laser Guidelines is under consideration. Statements on health issues on radiotelephones and base transmitters were published in 4/96; about the Global Solar UV Index in 1/95 and on Laser pointers in 8/99. Statements on Light Emitting Diodes and on Pulsed Magnetic Fields are under consideration. A document on a General Approach to Protection against NIR will be finalized in 4/2000. Cooperation with International Organisations. The national societies of IRPA are involved in the review process of the draft ICNIRP guidelines. WHO is one of the most important INCIRP partners. Main issues are the WHO EMF Project and INTERSUN project and the collaboration in health risk assessment of exposure to NIR: Symposia on static, low and high frequency EMF

  17. Non-ionizing radiation protection training manual for radiation control. Lectures, demonstrations, laboratories and tours on the course on non-ionizing radiations. Final report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Burkhart, R.L.

    1976-03-01

    In late 1974, consultation with the National Training Coordination Committee of the Conference of Radiation Control Program Directors determined that State personnel needed training in order to fulfill their responsibility with respect to the growing number of non-ionizing radiation sources. A contract was awarded to the Georgia Institute of Technology to develop materials for a training program on non-ionizing radiation protection, pilot test these materials in a two-week presentation for Federal, State, and local government health personnel, and revise the materials as needed to produce a self-contained training manual. The materials were pilot-tested in March 1976, and then revised to provide the final manual. The course consists of three parts (1) general discussions of basic principles, properties, propagation and behavior of all types of non-ionizing radiations (2) an indepth study of all types and applications of coherent (laser) radiations, and (3) a study of ultraviolet, infrared, microwave, r.f., longwave and mechanical radiations as they may be used to have applications in hospitals and other medical institutions

  18. Tissue macrophage activation: a shared sign of exposure to ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Petrenyov, D.R.

    2012-01-01

    The features of oxidative metabolism of peritoneal macrophages were studied in rats exposed to ionizing and non-ionizing radiation. An increased RNS and ROS production reported in animals exposed to both source of radiation showing non-specific response of organism. (authors)

  19. Exposure to Non-Ionizing Radiation and Public Health: Basic Concepts and Safety Limits

    International Nuclear Information System (INIS)

    Ubeda-Maeso, A.; Vargas-Marcos, F.; Trillo-Ruiz, M.A.

    2003-01-01

    The potential health effects of exposure to non-ionizing electromagnetic radiation in public and residential environments are a source of increasing concern for both the public and authorities on environmental health. This work briefly summarizes the theoretical and experimental bases supporting the safety levels proposed by international committees. It also reviews the recent scientific literature on bioeffects on non-ionizing radiation that may prove potentially relevant to the validation or modification of present exposure limits. Because of their social interest, special consideration will be given to power frequency fields (50-60 Hz) and to the radio communication signals of mobile phones. We will also describe how interpretations of scientific evidence from sources other than international committees have generated some controversy and provided basis for more restrictive limits, such as those adopted in Europe by Switzerland and Italy. In addition, this work identifies some gaps in the present scientific knowledge of bioelectromagnetics. Such gaps are largely responsible for the existing controversy and differences in risk perception. This is why more research aimed at broadening and deepening our understanding of biological responses to non-ionizing radiation is urgently needed. (author)

  20. Biological effects of low-level ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1986-01-01

    Early in this century it was recognized that large doses of ionizing radiation could injure almost any tissue in the body, but small doses were generally thought to be harmless. By the middle of the century however it came to be suspected that even the smallest doses of ionizing radiation to the gonads might increase the risk of hereditary disease in subsequently-conceived offspring. Since then the hypothesis that carcinogenic and teratogenic effects also have no threshold has been adopted for purposes of radiological protection. It is estimated nevertheless that the risks that may be associated with natural background levels of ionizing irradiation are too small to be detectable. Hence validation of such risk estimates will depend on further elucidation of the dose-effect relationships and mechanisms of the effects in question, through studies at higher dose levels. In contrast to the situation with ionizing radiation, exposure to natural background levels of ultraviolet radiation has been implicated definitively in the etiology of skin cancers in fair-skinned individuals. Persons with inherited effects in DNA repair capacity are particularly susceptible. Non-ionizing radiations of other types can also affect health at high dose levels, but whether they can cause injury at low levels of exposure is not known

  1. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B.

    2001-01-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  2. Non-ionizing radiation: an occupational apathy

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2000-01-01

    Non-ionizing radiation, NIR, is widely used in various modern applications to the extent that its presence is common in some work places. However, due to inability of human beings to detect its presence make the radiation 'invisible' to the workers most of the time. Of late it is known that the radiation can be hazardous to human health if the exposure received is excessively high. Such proven health effects has led international organizations, such as, IRPA establishing standard guidelines and maximum permissible limits to control its exposure. Recent studies reveal that some work places do indicate the presence of the radiation at levels far exceeding the IRPA recommended limits. It is, therefore, the objective of this paper to highlight such hazardous situations, magnitude of the hazards involved and ways and means how to overcome the hazard so that workers can take necessary precaution and action to minimize the health risk associated with the hazard. However, due to time and space constraint, only five types of the NIR are elaborated in this paper, namely ELF, RF and microwave, UV, IR and laser

  3. Ionizing and non-ionizing radiation and the risk of childhood cancer-illustrated with domestic radon and radio frequency electromagnetic field exposure

    OpenAIRE

    Hauri, Dimitri

    2013-01-01

    Background Children are exposed to many different environmental factors, including exposure to low-dose ionizing radiation and to non-ionizing radiation. Low-dose ionizing radiation comprises anthropogenic modified radiation and natural ionizing radiation from cosmic rays from the atmosphere, terrestrial gamma radiation from radionuclides in rocks and soils and radiation from radon. Non-ionizing radiation comprises optical radiation and radiation from electromagnetic fields. The la...

  4. Human exposure to non-ionizing radiation and potential adverse health effects

    International Nuclear Information System (INIS)

    Vulevic, B.; Maric, B.; Zivkovic, D.

    1999-01-01

    The problem of protection from the non-ionizing radiation has presented an actual subject in the last twenty years both worldwide and in our country. Great attention has been paid to this problem throughout the world and there is not almost a field of human activities that disregards the effect of non-ionizing radiation to the human health.The object of this work is to point concisely, on the basis of numerous domestic and foreign referential data, to the potential adverse health effects caused by uncontrolled exposure to non-ionizing radiation. (author)

  5. Non-targeted and delayed effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Zuo Yahui; Tong Jian

    2007-01-01

    Non-targeted and delayed effects are relative phenomena in cellular responses to ionizing radiation. These effects (bystander effects, genomic instability and adaptive responses) have been studied most extensively for radiation exposures. It is clear that adaptive responses, bystander effects and genomic instability will play an important role in the low dose-response to radiation. This review will provide a synthesis of the known, and proposed interrelationships amongst low-dose cellular responses to radiation, It also will examine the potential biological significance of non-targeted and delayed effects of exposure to ionizing radiation. (authors)

  6. Targeted and non-targeted effects of ionizing radiation

    OpenAIRE

    Omar Desouky; Nan Ding; Guangming Zhou

    2015-01-01

    For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT), possible ris...

  7. The development of international standards for the protection of the environment from the effects of ionizing radiation

    International Nuclear Information System (INIS)

    Robinson, Carol

    2004-01-01

    There has been an increasing awareness over recent years of the need to develop an approach that specifically addresses the protection of non-human species from the effects of ionizing radiation, largely in response to national and international environmental legal instruments. The IAEA has a long history of involvement in assessing the impact of ionizing radiation on non-human species and has, in recent years, established a programme of work to address the development of safety standards on this issue, in co-operation with other relevant international organizations. This paper provides an overview of the status of international work in this regard, paying particular attention to the work of the IAEA, and the relevant task groups of the International Commission on Radiological Protection (ICRP). It includes a discussion of the ethics and principles of environmental protection, and issues related to the development of a practical framework for environmental assessment and decision-making. The future development of international safety standards for the control of releases of radionuclides to the environment will depend upon the findings and recommendations of the International Conference on Protection of the Environment from the Effects of Ionizing Radiation, held in Stockholm, Sweden, 6-10 October 2003. The main issues arising at that conference are summarised. (author)

  8. Mutagenic action of non-ionizing radiations: its implication in radiation protection

    International Nuclear Information System (INIS)

    Madhvanath, U.; Subrahmanyam, P.; Sankaranarayanan, N.; Singh, D.R.

    1977-01-01

    Mutagenic effects of non-ionizing radiations except in the ultraviolet and near ultraviolet region are just not known. Results of the investigation carried out using a sensitive diploid yeast system, are presented. The arginine requiring mutant yeast strain BZ34 reverts to prototrophy following exposure to ionizing radiation. Reversion frequencies were determined following exposure to UV (254 nm), near ultraviolet (313, 353 nm) visible region (480 nm), neodymium laser (1.01 μm) and microwave (2450 MHz) radiations. An Aminco - Bowman Spectrophotofluorimeter was used to obtain wavelengths from UV to visible region. Yeast suspensions (concentration of 10 7 cells/ml) were irradiated to doses ranging from 10 7 to 10 9 erg/cm 3 as determined with potassium ferri-oxalate system. Exposure to laser pulses and microwave radiation ranged up to 45 J/cm 2 and 60 mW-h/cm 2 respectively. Results showed that the reversion induction efficiency decreased by six orders of magnitude from ionizing radiations to ultraviolet for the same absorbed dose and this efficiency has further decreased by a factor of fifteen when the wavelength is increased from 254 nm to 313 nm. Although killing could be effected with laser beams (45 J/cm 2 for 50% survival) no increase in the reversion was observed than the background level. It is concluded that radiation of wavelengths higher than 450 nm up to 12 cm studied is not mutagenic and with sufficient intensities of these radiations only killing of cells is possible due to thermal effects. This finding is compared with other known functional and morphological effects at cellular level due to low-level exposures of non-ionizing radiations

  9. The study of the effects of ionizing and non-ionizing radiations on birth weight of newborns to exposed mothers.

    Science.gov (United States)

    Mortazavi, S M J; Shirazi, K R; Mortazavi, G

    2013-01-01

    Life evolved in an environment filled with a wide variety of ionizing and non-ionizing radiation. It was previously reported that medical exposures to pregnant women increases the risk of low birth weight. This study intends to investigate the relationship between exposure to ionizing and non-ionizing radiation and the risk of low birth weight. One thousand two hundred mothers with their first-term labor (vaginal or cesarean) whose newborns' history had been registered in neonates' screening program in Shiraz were interviewed and surveyed. Data collection was performed by the assessment of mother's history of radiography before and during pregnancy, physical examination of the mother for height and weight and weighing and examining the newborn for any diagnosis of disease and anomalies. There were no statistical significant differences between the mean weight of newborns whose mothers had been exposed to some common sources of ionizing and non-ionizing radiations such as dental or non dental radiographies, mobile phone, cordless phone and cathode ray tube (CRT) and those of non-exposed mothers. The findings of this study cast doubt on previous reports, which indicated that exposure to ionizing radiation during pregnancy increased the risk of low birth weight.

  10. Radiological protection requirements applicable to non-invasive inspection of charges with ionizing radiation

    International Nuclear Information System (INIS)

    Crespo, S.C.; Palmieri, J.A.S.; Silva, F.C.A. da

    2017-01-01

    The US twin towers attack in 2001 raised concerns about terrorism, illicit trafficking of materials and the possible use of a 'dirty bomb' (DDR), affecting the control of entry and exit of products. Thus, the use of ionizing radiation scanning systems of containers at ports and borders was started to investigate possible entries of illegal material. Brazil, adhering to this concern and due to the holding of major events such as RIO + 20, World Cup, Olympics, etc., increased safety in the movement of goods using non-invasive inspection. Linear electron accelerators, which produce high energy X-rays in the range of 1.5 to 9 MeV, are used to inspect the containers. Since in Brazil there is no specific technical regulation for the operation of non-invasive inspection equipment with X-rays and linear accelerators, ten main technical requirements are presented. It is essential that a technical regulation is drawn up by placing the system of non-invasive inspection of cargo with ionizing radiation in the international radiation protection standard

  11. The non ionizing radiations; Les rayonnements non ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, P. [Institut National de la Sante, Lab. de Physique, Rome (Italy); Souques, M. [Electricite de France (EDF), Service des Etudes Medicales, 75 - Paris (France); Lambrozo, J. [EDF/GDF, Service des Etudes Medicales, 75 - Paris (France)] [and others

    2003-07-01

    The biological effects of non ionizing radiations are studied in this part. The magnetic fields and the cardiac implants, melatonin secretion among the electricians exposed to magnetic fields of 50 hz, the effects of electromagnetic fields in professional medium, evaluation of the effect of an exposure to a signal of a mobile phone (GSM 900) on the skin are the different subjects discussed. (N.C.)

  12. History of international symbol for ionizing radiation

    International Nuclear Information System (INIS)

    Franic, Z.

    1996-01-01

    The year 1996 marks the 50th anniversary of the radiation warning symbol as we currently know it. It was (except the colours used) doodled out at the University of California, Berkeley, sometime in 1946 by a small group of people. The key guy responsible was Nelson Garden, then the head of the Health Chemistry Group, at the Radiation Laboratory. The radiation warning symbol should not be confused with the civil defence symbol (circle divided into six equal sections, three of these being black and three yellow), designed to identify fallout shelters. The basic radiation symbol was eventually internationally standardized by ISO code: 361-1975 (E). Variations of this symbol are frequently used in logotypes radiation protection organizations or associations. Particularly nice are those of International Radiation Protection Association (IRPA) and Croatian Radiation Protection Association (CRPA) that combines traditional Croatian motives with high technology. However, apart from speculations, there is no definite answer why did the Berkeley people chose this particular symbol. Whatever the reason was, it was very good choice because the ionizing radiation symbol is simple, readily identifiable, i.e., not similar to other warning symbols, and discernible at a large distance. (author)

  13. Guidance as to restrictions on exposures to time varying electromagnetic fields and the 1988 recommendations of the International Non-Ionizing Radiation Committee

    CERN Document Server

    Dennis, J A

    1989-01-01

    Under a direction from the Health Ministers, NRPB is required to advise on the acceptability to the United Kingdom of standards recommended or proposed by certain international bodies relating to protection from both ionising radiations and non-ionising electromagnetic radiations. This document contains the Board's advice in response to guidelines recommended by the International Non-Ionizing Radiation Committee (INIRC) on limiting exposures to electromagnetic fields in the frequency range 100 kHz to 300 GHz (Health Physics, 54, 115 (1988)). The Board's advice, however, extends over all frequencies up to 300 GHz. It has been prepared after considering advice from the Medical Research Council and responses to consultative documents published by the Board in 1982 and 1986. The Board's advice is intended to protect against the thermal effects of the absorption of electromagnetic energy and against the possibilities of electric shock and burn. It consists of a set of basic restrictions both on the average rate of...

  14. Non-ionizing radiation as threat in daily life | Syaza | Journal of ...

    African Journals Online (AJOL)

    Electromagnetic field (EMF) is a field of combination between electric and magnetic field. While electromagnetic radiation (EMR) can be divided into ionizing and non-ionizing radiation (NIR). This article review of published scientific studies about NIR and its effect on the human body. From this review, it is found that NIR ...

  15. The study of the effects of ionizing and non-ionizing radiations on birth weight of newborns to exposed mothers

    OpenAIRE

    Mortazavi, S. M. J.; Shirazi, K. R.; Mortazavi, G.

    2013-01-01

    Objectives: Life evolved in an environment filled with a wide variety of ionizing and non-ionizing radiation. It was previously reported that medical exposures to pregnant women increases the risk of low birth weight. This study intends to investigate the relationship between exposure to ionizing and non-ionizing radiation and the risk of low birth weight. Materials and Methods: One thousand two hundred mothers with their first-term labor (vaginal or cesarean) whose newborns? history had been...

  16. Ionizing radiation and non-ionizing radiation in educational environment

    International Nuclear Information System (INIS)

    Matsuzawa, Takao; Otsubo, Tomonobu; Ikke, Satoshi; Taguchi, Noriko; Takeda, Rie

    2005-01-01

    By chance, we measured gamma dose rates in our school, and around the JCO Tokai Plant during the criticality on September 30 in 1999, with our GM survey meter. At that time, we made sure to estimate the position of criticality reaction (source point), and the source intensity of criticality reaction, with our own data, measured along the public roads, route 6 and local road 62. The intensity of gamma dose rates along the road was analyzed as Lorentz functions. At the time, there were no environmental radiation data about the criticality accident, or all the data, especially radioactivity and dose rates around the JCO Tokai Plant, was closed to the public. Recently, we are interested in the intensity of non-ionizing radiation, especially extremely low frequency (ELF) magnetic field, and electric field, in our environment. We adopted the same method to analyze the source position and source intensity of an ELF magnetic field and electric behind a wall. (author)

  17. Comet assay as a procedure for detecting possible genotoxicity induced by non-ionizing radiation

    OpenAIRE

    Zsuzsanna Nemeth

    2015-01-01

    Non-ionizing radiation (NIR) is the term given to radiation in the part of the electromagnetic spectrum that does not have enough energy to ionize atoms or molecules directly. The NIR includes electric and magnetic fields up to 300 GHz, infrared, visible, and ultraviolet radiation (UV). People are exposed to non-ionizing radiation by several man-made sources every day. From highest to lowest energy, this includes for example microwave ovens, cell phones, baby monitors, cordless phones, ga...

  18. Medical uses non-ionizing radiation

    International Nuclear Information System (INIS)

    Ubeda Maeso, A.; Trillo Ruiz, M. A.

    2016-01-01

    This article reviews various clinical applications of non-ionizing radiation, focusing on the Hz-GHz frequency range. Depending on the signal characteristics, the applications cover several therapeutic areas, including osteology and traumatology, tissue regeneration, physiotherapy, chronic pain treatment, neurology, cardiology, urology and oncology. Electromagnetic therapies have proved simple, safe, low cost, devoid of side effects and able to treat the underlying pathology rather than simply alleviate the symptoms. Therefore, it is predictable that these therapies will have as serious impact on public health and associated costs. (Author)

  19. The International Commission of Non-Ionizing Radiation Protection: meeting the challenges in NIR protection

    Energy Technology Data Exchange (ETDEWEB)

    McKinlay, A [National Radiological Protection Board, Didcot (United Kingdom). ICNIRP

    2002-07-01

    This paper summarises ICNIRP's brief history from its beginnings as a committee of the International Radiation Protection Association (IRPA) to the present as an independent International Commission, and examines how it has structured itself to meet the challenges in non-ionising radiation (NIR) protection now and in the future.

  20. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    Science.gov (United States)

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comet assay as a procedure for detecting possible genotoxicity induced by non-ionizing radiation

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Nemeth

    2015-05-01

    In our laboratory we use comet assay for testing genotoxicity of non-ionizing radiation for more than ten years. In the experiments we use whole blood samples (human or dog, cell lines (e.g. H295R cell line or 3 dimensional in vitro skin tissue (epidermis models. In our protocol a slightly modified alkaline Comet assay method of Singh et al. (1988 is used. On our poster there will be presented a brief summary of our experiments with exposure to different types of radiation (ELF, RF, and intermediate frequency. In our protocols the non-ionizing radiation was often combined with ionizing radiation to see whether the non-ionizing radiation can influence the repair of the DNA damage induced by ionizing radiation. For the evaluation of the slides mainly Komet 4.0 image analysis system software (Kinetic Imaging, Liverpool, UK was used, but as we got familiarized with other methods for slide evaluation like grading the comets by visual scoring into 5 categories or the CaspLab software, the comparison of these three methods will be also presented.

  2. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  3. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    Science.gov (United States)

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  4. [Biological effects of non-ionizing electromagnetic radiation].

    Science.gov (United States)

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic

  5. Scientific colloquium on medical supervision of workers exposed to ionizing and non ionizing radiations

    International Nuclear Information System (INIS)

    1975-01-01

    The general principles of medical surveillance for workers exposed to ionizing radiation were defined in the Euratom Basic Standards in 1959. These principles, which are in accordance with the early IGRP publications, have been adopted by the national authorities and implemented without difficulty. However, because of the forthcoming publication of the revised Basic Standards- in accordance with recent IGRP recommendations, the Commission decided to organize a meeting of doctors responsible for the medical surveillance of workers exposed to ionizing radiation in order to disseminate as widely as possible the results of experience gained in the field of radiological protection and to pinpoint the practical difficulties which might arise when the principles were applied. The Commission also considered it important to inform doctors specializing in radiological protection about the principles to be followed by those responsible for the health protection of workers exposed to non-ionizing radiation, particularly microwaves and Laser beams. The complete text of each report in the original language is given in this volume

  6. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  7. Panel discussion on health effects of low-dose ionizing radiation. Scientific findings and non-threshold hypothesis

    International Nuclear Information System (INIS)

    1995-06-01

    This is a record of a panel discussion in the IAEA Interregional Training Course. In current radiation work, protection measures are taken on the assumption that any amount of radiation, however small, entails a risk of deleterious effects. This so-called non-threshold assumption of radiation effects, on the one hand, creates public distrust of radiation use. However, because the health effects of low-dose ionizing radiation are difficult to verify, wide views ranging from the non-threshold hypothesis to one which sees small amounts of radiation as rather useful and necessary are presented. In this panel discussion, how the health effects of low-dose ionizing radiation should be considered from the standpoint of radiation protection was discussed. Panelists included such eminent scientists as Dr. Sugahara and Dr. Okada, who are deeply interested in this field and are playing leading parts in radiobiology research in Japan, and Dr. Stather, deputy Director of NRPB, UK, who, in UNSCEAR and ICRP, is actively participating in the international review of radiation effects and the preparation of reports on radiation protection recommendations. They agreed with each other that although it is reasonable, under the current scientific understanding, to follow the recommendation of ICRP, research in this area should be strongly promoted hereafter, for basing radiation protection on firm scientific grounds. Many participants actively asked about and discussed problems in their own field. (author)

  8. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1998-01-01

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  9. What is ''ionizing radiation''?

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1997-01-01

    The scientific background of radiation protection and hence ''ionizing radiation'' is undergoing substantial regress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term ''ionizing radiation'' in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as ''ionizing'' is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of ''ionizing radiation''. (author)

  10. Study on the non-target effect of ionizing radiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Wang Yan; Li Deguan; Liu Jianfeng; Chu Liping; Liu Qiang

    2008-01-01

    Objective: To assess the non-target effect of ionizing radiation by single cell gel electrophoresis (SCGE). Methods: Cross incubated the irradiated( 137 Cs; 2Gy) or non-irradiated lymphocytes of human peripheral blood in the irradiated or non-irradiated plasma respectively, then, assess the DNA damage of lymphocytes using SCGE analysis. Results: The lymphocytes incubated in the irradiated plasma presented more obvious DNA damage than the incubated in the non-irradiated plasma dose (P<0.05). Conclusion: The non-target effect of ionizing radiation can be assessed by SCGE, and the results confirm that cytokines may play a great role in it. (authors)

  11. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  12. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Calvente, I.; Fernandez, M.F. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Villalba, J. [Department of Radiology, University of Granada, Granada (Spain); Olea, N. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Nunez, M.I., E-mail: isabeln@ugr.es [Department of Radiology, University of Granada, Granada (Spain)

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and 'window' of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  13. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    Science.gov (United States)

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  14. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review

    International Nuclear Information System (INIS)

    Calvente, I.; Fernandez, M.F.; Villalba, J.; Olea, N.; Nunez, M.I.

    2010-01-01

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and 'window' of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  15. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  16. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  17. Non-Ionizing Radiation: Nature and Protection

    International Nuclear Information System (INIS)

    Abukasem, E.; Abdemalek, H.; Mosbah, D. S.

    2011-01-01

    Last century, the humanity witnessed a vast development, after the industrial revolution, in many aspects of life. There was a real revolution in world of communications, the electromagnetic waves were produced and used in many applications like wireless communications, radio and television transmissions, information transfer, medical diagnosis and many other useful applications. Non-ionizing radiation, the radiation which has no enough energy to remove an electron from an atom, becomes indispensable life necessity and currently it is a subject of public debate about its effects and hazards on human life and environments. The Arab Atomic Energy Agency recognized this fact and tried to raise the public awareness towards by organizing seminars, workshops and expert meetings in the Arab region in order to study the theoretical and applies aspects of this type of radiation as well as to shed the light on its possible hazards and effects on human life. This booklet came as a result of many expert meetings to be an Arabic simple and comprehensive guide line about the nature of and the different methods of protection from its possible effects and hazards.(author)

  18. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  19. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90

    OpenAIRE

    Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J; López-Martín, Elena

    2015-01-01

    Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were i...

  20. Non-ionizing radiation

    International Nuclear Information System (INIS)

    1988-11-01

    The technical papers deal with health hazards from radiation, rules for the prevention of accidents, the risk of cancer and radiation effects, as well as the international standardization of UV, light, IR, LASER, static and low-frequency fields, electromagnetic fields, cardiac pacemakers, infrasound, ultrasound, and visual display units. (DG) [de

  1. Effects of ionizing radiation; Effecten van ioniserende straling

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M.; Hardeman, F.; Holmstock, L.; Hurtgen, C.; Mahieu, L.; Sohier, A.; Vandecasteele, C.; Vanhavere, F.; Vanmaercke, H.; Zeevaert, T

    1998-12-01

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on.

  2. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  3. Non-ionizing radiation and health protection problems

    International Nuclear Information System (INIS)

    Jammet, Henri.

    1979-01-01

    Wavelength and frequency are two closely related properties which determine the characteristics of any particular type of electromagnetic radiation and which can be used interchangeably to describe it. For protection purposes the determination of the energy absorbed (absorbed dose) and of its distribution within living systems, whatever the radiation concerned, is still one of the chief problems to be solved. Therefore, although thermal effects are often prevailing, no appropriate dose-effect relationships could be established in most cases and more particularly as far as non-thermal effects are concerned. The problems associated with the different types of NIR are briefly reviewed. An increasing number of countries is promulgating regulatory measures for limiting exposure to NIR of occupationally exposed individuals and of the general population. Harmonization of basic concepts and internationally acceptable protection standards are therefore urgently needed. IRPA is probably the only international, non-governmental scientific organization able to promote wide international and interdisciplinary cooperation in the field of health protection against NIR. Therefore, after having carefully considered the situation, IRPA felt that it was its responsibility to produce guidance on basic protection criteria and standards and created the International NIR-Committee with the objective of developing background documents and internationally accepted recommendations

  4. When theory and observation collide: Can non-ionizing radiation cause cancer?

    Science.gov (United States)

    Havas, Magda

    2017-02-01

    This paper attempts to resolve the debate about whether non-ionizing radiation (NIR) can cause cancer-a debate that has been ongoing for decades. The rationale, put forward mostly by physicists and accepted by many health agencies, is that, "since NIR does not have enough energy to dislodge electrons, it is unable to cause cancer." This argument is based on a flawed assumption and uses the model of ionizing radiation (IR) to explain NIR, which is inappropriate. Evidence of free-radical damage has been repeatedly documented among humans, animals, plants and microorganisms for both extremely low frequency (ELF) electromagnetic fields (EMF) and for radio frequency (RF) radiation, neither of which is ionizing. While IR directly damages DNA, NIR interferes with the oxidative repair mechanisms resulting in oxidative stress, damage to cellular components including DNA, and damage to cellular processes leading to cancer. Furthermore, free-radical damage explains the increased cancer risks associated with mobile phone use, occupational exposure to NIR (ELF EMF and RFR), and residential exposure to power lines and RF transmitters including mobile phones, cell phone base stations, broadcast antennas, and radar installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  6. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Daniel, E-mail: daniel.kersting@usp.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/USP), Sao Paulo, SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica; Marinucci, Gerson; Silva, Leonardo G.A. e, E-mail: marinuci@ipen.br, E-mail: gasilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  7. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    International Nuclear Information System (INIS)

    Kersting, Daniel; Wiebeck, Helio

    2013-01-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  8. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation; Peliculas delgadas depositadas por ablacion laser para la medicion de radiacion ionizante y no ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a {sup 60} Co source, beta radiation of a {sup 90} Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  9. Non-ionizing and ionizing dosimetry in a space radiation environment with GaAs and SiC LEDs

    International Nuclear Information System (INIS)

    Houdayer, A.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.C.; Carlone, C.; Simard, JF.

    1996-01-01

    This paper describes a dosimetry experiment that will be carried onboard the Russian MIR space station. The experiment will compare the ionizing and Non-ionizing Energy Loss (NEL) in semiconductors of the radiation encountered in space. The ionizing dose will be detected using ThermoLuminescent Dosimeter (TLD) whereas SiC and GaAs LEDs will be used to measure the nonionizing component. The tray will be mounted on the outside of the station for a minimum period of 4 months. The goal of the experiment is to determine the feasibility of using SiC and GaAs LEDs as NEL dosimeters in space. (author)

  10. International conference on the protection of the environment from the effects of ionizing radiation. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    An International Conference on the Protection of the Environment from the Effects of Ionizing Radiation, organized by the International Atomic Energy Agency (IAEA) in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the European Commission (EC) and the International Union of Radioecology (IUR), will be held in Stockholm, Sweden, from 6-10 October 2003. This Conference will be hosted by the Government of Sweden through the Swedish Radiation Protection Authority (SSI). This publication contains contributed papers submitted on issues within the scope of the conference, which were accepted following a review by the Conference Programme Committee. The primary objective of this Conference is to foster information exchange, with the aim of promoting the development of a coherent international policy on the protection of the environment from effects attributable to ionizing radiation. This Conference is one in a series of meetings organized by, or held in co-operation with, the IAEA on this subject. It will include a review of recent developments in this area, and consideration of their implications for future work at national and international levels. The topics on which contributed papers were requested are as follows: Existing environmental protection approaches; Development of an international assessment framework; The scientific basis for environmental radiation assessment; Development of management approaches.

  11. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  12. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    Science.gov (United States)

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. © 2014 The American Society of Photobiology.

  13. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    Campanella, L.; Dragone, R.; Pastorelli, A.

    2001-01-01

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs [it

  14. Determination of non-ionizing radiation at Ibrahim Yaakub College cafeteria facility, Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Mohamad Najmi Jahaya

    2012-01-01

    Radiation is a form of energy emitted by molecules or atoms and transmitted through matter in the form of a magnetic particle or wave. Every day we are exposed to various forms of radiation around us either we are aware of or not. Radiation is divided into two which are ionizing and non-ionizing radiation. Non-ionizing radiation is a radiation that cannot ionize the particles which pass through it such as electromagnetic waves. Electromagnetic waves consist of radio waves, micro waves, ultraviolet rays and infra-red. Radio frequency has range between 3 kHz and 300 GHz. The study was carried out at the cafeteria facility in Ibrahim Yaakub College. This study used RF EMF Strength Meter which can measure radio frequency (RF) in the range of 10 MHz to 8 GHz. Contour mapping is made 12 meters far and each interval with 2 meters far. Readings are taken every day for one month and taken at three different times which are at morning (8:00 am), lunch (12:00 noon) and afternoon (5:00 pm). This survey is to obtain radio frequency reading. Monitoring results will be compared with the standards sets by the Suruhanjaya Komunikasi Dan Multimedia Malaysia (SKMM) or Malaysian Communications and Multimedia Commission (MCMC), which is 450 x 104 μW/ m 2 , compared with exposure limit in New Zealand and Canada, which is 200 x 104 μW/ m 2 and 300 x 104 μW/ cm 2 , and also will be compared with the results of this study which has been done before with a different tool. The results showed only 0.188 %, 0.422 % and 0.281 % of the standard dose are radiated and this will not harm the students and staffs of Ibrahim Yaakub College. (author)

  15. Evaluation of non-radiologist physicians' knowledge on aspects related to ionizing radiation in imaging

    International Nuclear Information System (INIS)

    Madrigano, Renata Rodrigues; Abrao, Karen Cristine; Regacini, Rodrigo; Puchnick, Andrea

    2014-01-01

    Objective: to assess the non-radiologist physicians' knowledge on the use of ionizing radiation in imaging. Materials and Methods: cross-sectional study utilizing an anonymous questionnaire responded by physicians in clinical and surgical specialties, divided into two parts as follows: one including questions about the physicians' characteristics, frequency of imaging studies requests and participation in professional updating events, and another part including multiple choice questions approaching general knowledge about radiation, optimization principles and radioprotection. Results: from a total of 309 questionnaires, 120 (38.8%) were responded, 50% by physicians in surgical specialties and 50% in clinical specialties; respectively 45% and 2.5% of physicians responded that magnetic resonance imaging and ultrasonography use ionizing radiation. Overall, the average grade was higher for surgical specialists with no significant difference, except for the question about exposure in pregnant women (p = 0.047). Physicians who are professionally updated, particularly those attending clinical meetings (p = 0.050) and participating in teaching activities (p = 0.047), showed statistically superior knowledge about ionizing radiation as compared with others. Conclusion: the non-radiologist physicians' is heterogeneous and in some points needs to be improved. Multidisciplinary clinical meetings and teaching activities are important ways to disseminate information on the subject. (author)

  16. Quantitative modeling of responses to chronic ionizing radiation exposure using targeted and non-targeted effects.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available The biological effects of chronic ionizing radiation exposure can be difficult to study, but important to understand in order to protect the health of occupationally-exposed persons and victims of radiological accidents or malicious events. They include targeted effects (TE caused by ionizations within/close to nuclear DNA, and non-targeted effects (NTE caused by damage to other cell structures and/or activation of stress-signaling pathways in distant cells. Data on radiation damage in animal populations exposed over multiple generations to wide ranges of dose rates after the Chernobyl nuclear-power-plant accident are very useful for enhancing our understanding of these processes. We used a mechanistically-motivated mathematical model which includes TE and NTE to analyze a large published data set on chromosomal aberrations in pond snail (Lymnaea stagnalis embryos collected over 16 years from water bodies contaminated by Chernobyl fallout, and from control locations. The fraction of embryo cells with aberrations increased dramatically (>10-fold and non-linearly over a dose rate range of 0.03-420 μGy/h (0.00026-3.7 Gy/year. NTE were very important for describing the non-linearity of this radiation response: the TE-only model (without NTE performed dramatically worse than the TE+NTE model. NTE were predicted to reach ½ of maximal intensity at 2.5 μGy/h (0.022 Gy/year and to contribute >90% to the radiation response slope at dose rates <11 μGy/h (0.1 Gy/year. Internally-incorporated 90Sr was possibly more effective per unit dose than other radionuclides. The radiation response shape for chromosomal aberrations in snail embryos was consistent with data for a different endpoint: the fraction of young amoebocytes in adult snail haemolymph. Therefore, radiation may affect different snail life stages by similar mechanisms. The importance of NTE in our model-based analysis suggests that the search for modulators of NTE-related signaling pathways

  17. Non-ionizing radiation measurements and protection. V. 1,2

    International Nuclear Information System (INIS)

    Cornelius, W.A.; Delpizzo, V.; Joyner, K.H.; Roy, C.R.; Wilkinson, F.J.

    1985-09-01

    The use of non-ionizing radiation (NIR) sources in the scientific, medical, industrial and domestic areas is becoming increasingly widespread. Concern has been expressed of the increased possibility of exposure of employees and of the public to NIR. Regulatory authorities have the role of ensuring that all organisations using NIR source keep the exposure of all persons below prescribed limits. The lecture notes draw together the basic information on NIR protection including essential quantities and units, biological interactions, protection standards, measurement techniques and personnel protection

  18. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  19. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    Science.gov (United States)

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure.

  20. Review on evolvement of systems of ionizing radiation quantities and units

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zeng Zhi

    2009-01-01

    To scientifically and practically measure the ionizing radiation in unison is an indispensable prerequisite and foundation for the extensive uses of nuclear science and technology, development of radiological protection and safety standards, as well as prevention and treatment of ionizing radiation hazards. Concerning about the quantities and units of ionizing radiation as well as their corresponding measurement and application methods, relevant international organizations and all countries in the world generally adopt the systems proposed by the International Commission on Radiation Units and Measurements (ICRU) which is a well recognized and authoritative academic organization.In the paper,the major evolutions of the systems for ionizing radiation quantities and units in the past decades are summarized. (authors)

  1. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  2. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  3. Evaluation of non-radiologist physicians' knowledge on aspects related to ionizing radiation in imaging

    Energy Technology Data Exchange (ETDEWEB)

    Madrigano, Renata Rodrigues [Hospital Santa Helena, Santo Andre, SP (Brazil); Abrao, Karen Cristine; Regacini, Rodrigo, E-mail: regacini@gmail.com [Universidade Anhembi Morumbi, Sao Paulo, SP (Brazil). Escola de Medicina; Puchnick, Andrea [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina

    2014-07-15

    Objective: to assess the non-radiologist physicians' knowledge on the use of ionizing radiation in imaging. Materials and Methods: cross-sectional study utilizing an anonymous questionnaire responded by physicians in clinical and surgical specialties, divided into two parts as follows: one including questions about the physicians' characteristics, frequency of imaging studies requests and participation in professional updating events, and another part including multiple choice questions approaching general knowledge about radiation, optimization principles and radioprotection. Results: from a total of 309 questionnaires, 120 (38.8%) were responded, 50% by physicians in surgical specialties and 50% in clinical specialties; respectively 45% and 2.5% of physicians responded that magnetic resonance imaging and ultrasonography use ionizing radiation. Overall, the average grade was higher for surgical specialists with no significant difference, except for the question about exposure in pregnant women (p = 0.047). Physicians who are professionally updated, particularly those attending clinical meetings (p = 0.050) and participating in teaching activities (p = 0.047), showed statistically superior knowledge about ionizing radiation as compared with others. Conclusion: the non-radiologist physicians' is heterogeneous and in some points needs to be improved. Multidisciplinary clinical meetings and teaching activities are important ways to disseminate information on the subject. (author)

  4. Methodical assessment of all non-ionizing radiation sources that can provide a relevant contribution to public exposure. Final report

    International Nuclear Information System (INIS)

    Bornkessel, Christian; Schubert, Markus; Wuschek, Matthias; Brueggemeyer, Hauke; Weiskopf, Daniela

    2011-01-01

    The aim of the research project was to systematically identify artificial sources on non-ionizing radiation (electric, magnetic or electromagnetic fields in a frequency range from 0 Hz to 300 GHz, as well optical radiation in a wavelength range from 100 nm to 1 mm), that have relevant contribution to public exposure. The report includes the following chapters: (1) Concept for the relevance assessment for non-ionizing radiation sources; (2) concept for the systematic identification of sources from establishes technologies; (3) concept for the systematic identification of sources from new or foreseeable technologies; (4)overview of relevant radiation sources.

  5. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  6. Experimental Studies for the Evaluation of Non-Ionizing Radiation Levels

    International Nuclear Information System (INIS)

    Nasr, A.; Ashour, M.

    2008-01-01

    This article concerns the characteristic studies of non-ionizing; microwave, radiations. The power density levels, frequency ranges, modulation types, and the Fast Fourier Transform (FFT) are discussed. The experimental data are collected from the Egyptian Atomic Energy Authority (EAEA) locations in Nasr city and Anshas. This study has been carried out by Spectrum analyzer (SA) system, which implied radio frequency coaxial cable and horn antenna with height holders. The horn antenna was adjusted to scan all directions for investigating the signal strength. From this study, we obtain two main non-ionizing signals at center frequencies 900, and 1800 MHz, which are exploited by mobile communications networks. During the silence state, the measured maximum power densities levels for both frequencies are 0.553 μ W/cm 2 and 0.0191μW/cm 2 , respectively. While the measured maximum power densities, during alarm (ringing) state, are 98.67μ W/cm 2 and 2.961μ W/cm 2 for considered two frequencies, correspondingly. One can notice that the power densities are multiplied 178 times and 155 times for the same mentioned frequencies in that order. Moreover, these non-ionizing signals are analyzed theoretically and experimentally by utilizing FFT functions to clarify the Amplitude Modulations (AM) ratios and voltage strengths of these signals. Furthermore, the Occupied Band Width (OBW) ratio, and the division from the center frequency of the channel, (δFc) are clarified

  7. Non-carcinogenic late effects of ionizing radiation; human data

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1979-01-01

    The late effects of ionizing radiation may be somatic effect or potential effect, about which such informations as follows are required: teratogenesis the disturbances in growth and development, cataracts, infertility, cytogenetic aberration, and accelerated aging. Although much is known about the nature of the malformations produced by ionizing radiation, and about the vulnerability of human embryonal and fetal tissues during various stages of organogenesis, the quantitative information is uncertain and incomplete. The data on A-bomb survivors were flawed by confounding radiation dose with nutritional and other influences caused by the disasters created by war-time bombings. If the effects of radiation are real, they are quite small for the dose below 100 rad (kerma), are confined to the children of pre-pubertal age at the time of exposure, and are of much less consequence for low-LET radiation than for high. Radiation-induced lenticular changes are of graded severity, and as for cataracts, the threshold is in the range from 600 to 1,000 rad of low-LET radiation, and perhaps 75 to 100 rad for fast neutrons; the average latent period is 2 to 7 years. The estimate of the RBE for neutrons is in the range from 2 to 10, and dose-dependent. Ionizing radiation has important effects on fertility only at very high dose. The relationship of the quantitative aspects of the biologic significance of chromosomal aberration in somatic cells to dose may provide an interesting parallel to the carcinogenic effect. For neutrons, the dose-response curve appears to be linear, at least for stable aberration. (Yamashita, S.)

  8. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  9. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  10. Hygiene of ionizing radiations

    International Nuclear Information System (INIS)

    Legare, I.-M.; Conceicao Cunha, M. da

    1976-01-01

    The concepts of quality factor and rem are introduced and a table of biological effects of external ionizing radiation sources is presented. Natural exposures, with tables of background radiation sources and of doses due to cosmic rays on high altitude areas and their populations are treated, as well as medical exposures; artificial background; fallout; scientific, industrial and other sources. The maximum and limit doses for man are given and tables of maximum admissible doses of ionizing radiations for 16-18 year old workers professionaly exposed, for professionals eventually subjected to radiation in their work and for people eventually exposed. Professional protection is discussed and tables are given of half-value layer of water, concrete, iron and lead for radiations of different energies, as well as the classification of exposure zones to the radiations and of maximum acceptable contamination for surfaces. The basic safety standards for radiation protection are summarized; tables are given also with emergency references for internal irradiation. Procedures with patients which received radioisotopes are discussed. At last, consideration is given to the problem of radioactive wastes in connection with the medical use of radionuclides [pt

  11. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  12. International conference on non-military radiation emergencies: [Final technical report

    International Nuclear Information System (INIS)

    1986-01-01

    The subject of this report was limited to non-military radiation emergencies because such events needed to be addressed and the topic was considered to be manageable. The Conference theme developed around the lessons learned from the radiation emergencies at Chernobyl, Three Mile Island, and Windscale. Specific topics to be considered included acute and long-term effects of radiation exposure; frequency and nature of radiation emergencies; national standards for exposures to ionizing radiation; plans and procedures for responding to emergencies at the hospital, community, and national levels; and responsibilities of physicians and other health professionals regarding radiation exposures and emergencies

  13. Exposure to non-ionizing electromagnetic radiation and public health : review of safety levels; Exposicion a radiaciones no ionizantes ambientales y salud publica: Una revision de las bases biomedicas de los limites de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda, A.; Trillo, M. A.

    2005-07-01

    The potential health effects of the exposure to non-ionizing electromagnetic radiation are a source of increasing interest on the part of the public and the authorities. This article summarizes the theoretical-experimental basis supporting the safety levels proposed by international committees, and reviews the recent scientific literature on non-ionizing radiation's bioeffects that are relevant to the validation or modification of the present exposure limits. Because of its social interest, special consideration is given to power frequency fields (50-60Hz) and to the radio communication signals of mobile telephony. The paper also describes how interpretations of the scientific evidence, other than those of the international committees, have generated some controversy and have provided a basis for more restrictive limits, like those adopted in Europe by Switzerland and Italy. The article also identifies some gaps in the present scientific knowledge on the bioelectromagnetics discipline and proposes that additional research is needed to complete our present knowledge on the biological responses to non-ionizing radiation. (Author) 80 refs.

  14. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  15. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  16. Mortality from diseases other than cancer following low doses of ionizing radiation

    DEFF Research Database (Denmark)

    Vrijheid, M; Cardis, E; Ashmore, P

    2007-01-01

    BACKGROUND: Ionizing radiation at very high (radio-therapeutic) dose levels can cause diseases other than cancer, particularly heart diseases. There is increasing evidence that doses of the order of a few sievert (Sv) may also increase the risk of non-cancer diseases. It is not known, however......, whether such effects also occur following the lower doses and dose rates of public health concern. METHODS: We used data from an international (15-country) nuclear workers cohort study to evaluate whether mortality from diseases other than cancer is related to low doses of external ionizing radiation....... Analyses included 275 312 workers with adequate information on socioeconomic status, over 4 million person-years of follow-up and an average cumulative radiation dose of 20.7 mSv; 11 255 workers had died of non-cancer diseases. RESULTS: The excess relative risk (ERR) per Sv was 0.24 [95% CI (confidence...

  17. Radiation protection requirements for medical application of ionizing radiation in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Nestoroska, Svetlana; Angelovski, Goran; Shahin, Nuzi

    2010-01-01

    In this paper, the regulatory infrastructure in radiation protection in the Republic of Macedonia is presented. The national radiation protection requirements for the medical application of ionizing radiation are reviewed for both occupational exposed persons and patients undergoing a medical treatment with ionizing radiation and their compliance with the international standards is considered. The gaps identified on the national level are presented and steps for overcoming such gaps are analyzed.(Author)

  18. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    Science.gov (United States)

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  19. Suppression of non-photochemical quenching in Arabidopsis leaves to a ionizing radiation

    International Nuclear Information System (INIS)

    Yu Ran Moon; Jin-Hong Kim; Min Hee Lee; Byung Yeoup Chung; Jae-Sung Kim

    2007-01-01

    Complete text of publication follows. Non-photochemical quenching (NPQ) of chlorophyll fluorescence has been known to be involved in a protection of photosystems against photoinhibition through a dissipation of excess light absorbed by photosynthetic pigments. In the present study, we aimed to elucidate the effects of a ionizing radiation on NPQ by comparing alterations in the development and release of NPQ after gamma-irradiation between the wild-type (WT) and the npq1-2 mutant of Arabidopsis. The npq1-2 mutant can't develop with a normal NPQ under excess light, since it is defective in its de-epoxidase activity for conversion of violaxanthin to zeaxanthin. Gamma-irradiation with a dose of 200 Gy inhibited the development of NPQ in both the WT and mutant but more noticeably in the latter. Moreover, Fv/Fm as an indice of the photochemical efficiency of photosystem II (PSII) was almost the same in both the WT and npq1-2 mutant throughout the post-irradiation period of 5 d. The obtained results will be also discussed with those from photoinhibition induced by non-ionizing radiations such as visible light and UV-B.

  20. Bio-dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Kristova, R.; Stainova, A.; Deleva, S.; Popova, L.; Georgieva, D.

    2013-01-01

    Full text: Introduction: The impact of ionizing radiation in medical, occupational and accidental human exposure leads to adverse side effects such as increased mortality and carcinogenesis. Information about the level of absorbed dose is important for risk assessment and for implementation of appropriate therapy. In most cases of actual or suspected exposure to ionizing radiation biological dosimetry is the only way to assess the absorbed dose. What you will learn: In this work we discuss the methods for biodosimetry and technological developments in their application in various emergency situations. The application of biological dosimetry and assessment of the influence of external factors in the conduct of epidemiological studies of radiation effects in protracted low-dose ionizing radiation on humans is presented. Discussion: The results of cytogenetic analysis and biological evaluation of absorbed dose based on the analysis of dicentrics in peripheral blood lymphocytes of five people injured in a severe radiation accident in Bulgaria in 2011 are presented. The assessed individual doses of the injured persons are in the range of 1.2 to 5,2 Gy acute homogeneous irradiation and are in line with the estimates of international experts. Conclusion: An algorithm to conduct a biological assessment of the dose in limited radiation accidents and in large scale radiation accidents with large number irradiated or suspected for exposure persons is proposed

  1. Protection policies for ionizing and UV radiation

    International Nuclear Information System (INIS)

    Bosnjakovic, B.F.M.

    1987-01-01

    Although ultraviolet radiation is generally considered as being part of non-ionizing radiation, the existing similarities with ionizing radiation are too striking to be overseen. A comparison of these two agents is becoming important in view of the increasing awareness of various environmental and health risks and the tendency to develop more uniform risk management policies with respect to the different physical and chemical agents. This paper explores the similarities and differences of UV and ionizing radiation from the point of view of policies either adopted or in development. Policy determinants include, among others, the following factors: biological effects, dosimetric quantities, relative contribution to exposure from different sources, hazard potential of different sources, quantification of detrimental consequences, public perception of the radiation hazards and regulation developments. These factors are discussed

  2. The management of workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    1993-10-01

    In Canada, the regulation of radiation protection is a shared responsibility between the federal body (the Atomic Energy Control Board) and the appropriate provincial body (usually the Department of Health, or Department of Labour). The AECB is responsible, for example, for regulating the development, application and use of nuclear energy and radioisotopes, and the provinces are responsible for the regulation of all other forms of ionizing and non-ionizing radiations and for naturally-occurring radioactive material (NORM). Although there is consultation between the federal and provincial regulatory agencies, the division of jurisdictional authority has resulted in considerable differences in the approach towards implementation radiation protection programs in Canada. This is especially true in the management of workers occupationally exposed to ionizing radiation. These differences have produced unwarranted discrepancies in operating procedures and practices in the allocation of resources and manpower, and in the requirements governing radiological training, personnel monitoring and medical surveillance. In light of the General Amendments to the AEC Regulations, the 1990 Recommendations of the ICRP, and the IAEA recommendations on safety culture, the ACRP has considered it timely to undertake a study to examine the feasibility of establishing a more coherent approach to harmonize radiation protection practices within Canada. This study comprised an examination of the regulatory approach used in several countries: a review of the nature of radiation safety programs in various types of licensed institutions and facilities in Canada; and a review of recommendations of internationally-recognized authorities in radiation protection

  3. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  4. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  5. Medical examination of the workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kato, Toshio

    1991-01-01

    The hazardous effects of ionizing radiation to man are well recognized, and they are divided into two groups, the stochastic effects (hereditary and carcinogenic effect) and non-stochastic effects (somatic effects such as depression of hematopoiesis, chronic dermatitis and cataracta). The basic framework of the International Commission on Radiological Protection (ICRP) is intended to prevent the occurrence of non-stochastic effects, by keeping doses below the relevant thresholds, and to ensure that all reasonable aspects are taken to reduce the incidence of stochastic effects. In Japan, the regulatory provisions of radiological protection of the workers occupationally exposed to ionizing radiation are based on the recommendation of ICRP adopted in 1977. According to these regulations, the dose equivalent limits of occupational exposure of man has been decided at 50 mSv/year. The monitoring of exposure to the individual and the procedure of medical examination of the workers are briefly described and discussed. (author)

  6. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  7. Protection in handling ionizing radiation sources in national economy

    International Nuclear Information System (INIS)

    1986-01-01

    The collection of study texts is divided into 13 chapters giving an explanation of the structure of the atom, the properties of ionizing radiation and its interactions, quantities and units used, basic dosimetric methods, biological radiation effects, the sources of population exposure, the principles of radiation protection, technological applications of ionizing radiation, the monitoring of personnel and environment, the method of recording and filing, the method of protection from external radiation and internal contamination, health care, and requirements for protection in handling nonsealed sources. (M.D.)

  8. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    Science.gov (United States)

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  9. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  10. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    Science.gov (United States)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  11. Ionizing-radiation warning - Supplementary symbol

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies the symbol to warn of the presence of a dangerous level of ionizing radiation from a high-level sealed radioactive source that can cause death or serious injury if handled carelessly. This symbol is not intended to replace the basic ionizing radiation symbol [ISO 361, ISO 7010:2003, Table 1 (Reference number W003)], but to supplement it by providing further information on the danger associated with the source and the necessity for untrained or uninformed members of the public to stay away from it. This symbol is recommended for use with International Atomic Energy Agency (IAEA) Category 1, 2, and 3 sealed radioactive sources. These sources are defined by the IAEA as having the ability to cause death or serious injuries. The paper informs about scope, shape, proportions and colour of the symbol, and application of the symbol. An annex provides the technical specifications of the symbol

  12. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  13. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90

    Science.gov (United States)

    Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J

    2015-01-01

    Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic–pituitary–thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. PMID:25649190

  14. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  15. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  16. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  17. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  18. Medical uses non-ionizing radiation; Uso medicos de radiaciones no ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda Maeso, A.; Trillo Ruiz, M. A.

    2016-08-01

    This article reviews various clinical applications of non-ionizing radiation, focusing on the Hz-GHz frequency range. Depending on the signal characteristics, the applications cover several therapeutic areas, including osteology and traumatology, tissue regeneration, physiotherapy, chronic pain treatment, neurology, cardiology, urology and oncology. Electromagnetic therapies have proved simple, safe, low cost, devoid of side effects and able to treat the underlying pathology rather than simply alleviate the symptoms. Therefore, it is predictable that these therapies will have as serious impact on public health and associated costs. (Author)

  19. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  20. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  1. Interactive visual intervention planning in particle accelerator environments with ionizing radiation

    CERN Document Server

    Fabry, Thomas

    Radiation is omnipresent. It has many interesting applications: in medicine, where it allows curing and diagnosing patients; in communication, where modern communication systems make use of electromagnetic radiation; and in science, where it is used to discover the structure of materials; to name a few. Physically, radiation is a process in which particles or waves travel through any kind of material, usually air. Radiation can be very energetic, in which case it can break the atoms of ordinary matter (ionization). If this is the case, radiation is called ionizing. It is known that ionizing radiation can be far more harmful to living beings than non-ionizing radiation. In this dissertation, we are concerned with ionizing radiation. Naturally occurring ionizing radiation in the form of radioactivity is a most natural phenomenon. Almost everything is radioactive: there is radiation emerging from the soil, it is in the air, and the whole planet is constantly undergoing streams of energetic cosmic radiation. Sinc...

  2. Protection during work with ionizing radiation sources; Ochrana pri praci se zdroji ionizujiciho zareni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The publication has been set up as a textbook for training courses dealing with health protection during work with ionizing radiation, designed for supervisory staff and persons directly responsible for activities which involve the handling of ionizing radiation sources. The book consists of a preface and the following chapters: (1) Fundamentals of ionizing radiation physics; (2) Quantities and units used in ionizing radiation protection; (3) Principles of ionizing radiation dosimetry; (4) Biological effects of ionizing radiation; (5) An overview of sources of public irradiation; (6) Principles and methods of health protection against ionizing radiation; (7) Examples of technical applications of sources of ionizing radiation; (8) Personnel and working environment monitoring; (9) Documentation maintained at sites with ionizing radiation sources; (10) Methods of personnel protection against external irradiation and internal radionuclide contamination; (11) Radiation incidents and accidents; (12) Health care of personnel exposed to the ionizing radiation risk; (12) Additional radiation protection requirements in handling radioactive substances other than sealed sources; (13) Measurement and metrology. (P.A.).

  3. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90.

    Science.gov (United States)

    Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J; López-Martín, Elena

    2015-09-01

    Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic-pituitary-thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. © 2015 by the Society for Experimental Biology and Medicine.

  4. NMR Metabolomics in Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.

    2016-09-08

    Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as a chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.

  5. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  6. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  7. Monitoring occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.B.C. [Radiation Safety Consultancy, Engadine, NSW (Australia)

    1997-12-31

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives. 8 refs., 9 tabs.

  8. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  9. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  10. Review Ionizing Radiation In The Environment

    International Nuclear Information System (INIS)

    Hassan, K.M.

    2007-01-01

    Our environment is pervaded by ionizing radiation of natural origin including terrestrial radionuclides and extra-terrestrial sources but man's activities can increase radiation levels by acting on natural sources or by producing artificial radionuclides. The energy released by radionuclides can be measured. The amount of energy generated in our bodies from the radioactive decay of within- body radionuclides is called internal dose. External dose results from gamma rays emitted by terrestrial sources such as the ground, building materials and from extraterrestrial sources. The major contributors to human exposure are radon and its daughters in the air that we breathe. Ionizing radiation can penetrate into matter and thus, causing damage by interacting with the atoms and molecules of the medium. If the medium is living tissue, damage to cells can take place. Very large doses of radiation will result in serious tissue, damage that may lead to death of the organism. Lower doses may also be harmful and do not cause the immediate damage of high doses but instead act to increase the likelihood of developing cancer. So, exposure to ionizing radiation can have health consequences, which is why we are concerned about and, to a large extent, is why this review paper was written. Exposure to ionizing radiation should be kept as minimum as practically possible. People are advised to monitor the concentrations of radon in their houses. In addition, the levels of radionuclides in drinking water should also be monitored in accordance with the guidelines used in the USA

  11. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  12. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models.

    Science.gov (United States)

    König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja

    2018-01-01

    Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.

  13. Internal Dose Conversion Coefficients of Domestic Reference Animal and Plants for Dose Assessment of Non-human Species

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2009-01-01

    Traditionally, radiation protection has been focused on a radiation exposure of human beings. In the international radiation protection community, one of the recent key issues is to establish the methodology for assessing the radiological impact of an ionizing radiation on non-human species for an environmental protection. To assess the radiological impact to non-human species dose conversion coefficients are essential. This paper describes the methodology to calculate the internal dose conversion coefficient for non-human species and presents calculated internal dose conversion coefficients of 25 radionuclides for 8 domestic reference animal and plants

  14. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  15. Effects on vegetable seeds due to non ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Acri, G.; Oliva, A.; Falcone, G. [Universita della Calabria, Dipt. di Fisica, Cosenza (Italy); Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G. [Universita della Calabria, Dipt. di Ecologia, Cosenza (Italy); Bitonti, M.B.; Chiappetta, A. [Universita di Messina, Dipt. di Protezionistica Ambientale, Sanitaria, Sociale ed Industriale, Messina (Italy)

    2006-07-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  16. Effects on vegetable seeds due to non ionizing radiation

    International Nuclear Information System (INIS)

    Acri, G.; Oliva, A.; Falcone, G.; Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G.; Bitonti, M.B.; Chiappetta, A.

    2006-01-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  17. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  18. Radioprotection in the medical applications of the ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    This publication presents information about of the radiological safety in the medical application of the ionizing radiation compiled in 11 chapter and 1 annex. The first four chapters are principally dedicated to technical uses in radioprotection, the external and internal irradiation and the biological radiation effects. The radioprotection principles, the individual monitoring techniques, and the radioprotection systems are developed afterwards in the followings three chapters. The second half of the document is dedicated entirely to the medical practices using ionizing radiations, specially to the radioprotection aspects in radiodiagnosis, nuclear medicine and radiotherapy. The final chapter is dedicated to radiological accidents happened worldwide in the field of the medical applications of the ionizing radiations. The annex, about of the regulatory area, established a set of standards, laws, decrees and other force regulations in radiological safety, related in radiodiagnosis, nuclear medicine and radiotherapy

  19. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  20. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  1. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    Science.gov (United States)

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  2. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  3. Legislations for regulating the work with ionizing radiations in the arab counties a comparative analytical study

    International Nuclear Information System (INIS)

    El-Baroudy, M.M.

    2005-01-01

    In the framework of the developments taking place in nuclear sciences and technologies during the twentieth century and the resulting increase of useful applications of these technologies, the international efforts aiming at helping different countries to establish nuclear safety systems. This was also increased through the promulgation of legislations that render the practices, which could be accompanied with exposure to ionizing radiations, more safe within a firm legal system that is also backed by promulgating suitable executive regulations. Most Arab countries are keen to promulgate their legislations for regulating the work with ionizing radiations and protection against their dangers. Those legislations usually get their genesis and provisions from the international recommendations as well as from the general legal system of the country. The present work consists of four chapters. The first chapter deals with the definition of legislations for regulating the work with ionizing radiations. Chapter two discusses the international trend to promulgate legislations for protection against ionizing radiations. Chapter three includes an analytical comparative study on the legislations that regulates the work with ionizing radiations in the Arab countries. Finally, chapter four deals with the legislations for protection against ionizing radiations in the Arab Republic of Egypt

  4. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  5. Process of defect formation in alkaline halogenides contaminated with Eu2+ induced by non ionizing radiation

    International Nuclear Information System (INIS)

    Pedroza M, M.; Melendrez, R.; Barboza F, M.; Castaneda, B.

    2004-01-01

    The creation of defects in polluted alkaline halogenides with divalent impurities exposed to ionizing radiation is explained by means of the creation of auto trapped excitons (STE), which can be formed by means of the excitement of the halogen ion or through the trapping of electrons in centers V K taken place during the process of ionization of the halogen ion. The luminescent recombination of the exciton auto trapped produces a characteristic exciton luminescence and the recombination non radiative causes the formation of the Frenkel type defects, even of centers F - H. Experimentally has been demonstrated that the same type of glasses, exposed to radiation non ionizing of the type UV of around 230 nm, they produce defects similar Frenkel. The situation is interesting all time that photons of 230 nm (5.3 eV) they cannot create excitons directly since they are in an energy level of approximately 2.4 inferior eV to the necessary energy for the production of the same ones. In order to investigating the type of process of creation of defects with UV light energy below the energy of the band prohibited in polluted alkaline halogenides with Eu 2+ , mainly looking for experimental information that allows to explain the creation of defects taken place by the radiation non ionizing, one carries out the present work. It was found that, independently of the energy of the radiation used for the excitement, the emission comes from the transition 4f 6 5d(t 2g )-4f 7 ( 8 S 7/2 ) of the ion Eu 2+ characterized by a wide band centered in 420 nm and an additional component in 460 nm of possibly intrinsic origin. It was determined that so much the F centers and F z participate in the thermoluminescent processes and of optically stimulated luminescence, achieving to identify those peaks of Tl strictly associated to the F centers (peak in 470 K for the KCl: Eu 2+ ) and F z (peak in 370 K). Also, by means of a process of selective photo stimulation evidence was obtained that the F

  6. 29 CFR 1910.1096 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Ionizing radiation. 1910.1096 Section 1910.1096 Labor... Ionizing radiation. (a) Definitions applicable to this section. (1) Radiation includes alpha rays, beta... the quantity of ionizing radiation absorbed, per unit of mass, by the body or by any portion of the...

  7. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  8. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  9. The influence of electromagnetic interference and ionizing radiation on cardiac pacemakers

    International Nuclear Information System (INIS)

    Salmi, J.; Malmivuo, J.A.V.

    1990-01-01

    Adverse effects of the ionizing and non-ionizing electromagnetic fields on five pacemaker models have been tested. The study consisted of three parts: 1. measurement of magnetic fields in a radiotherapy room (microtron MM14), 2. the application of non-ionizing electromagnetic fields on pacemakers in a test laboratory (1 ... 1000 μT, 10 ... 10 000 Hz), and 3. the application of ionizing radiation of different types of radiotherapy devices on the pacemakers. The magnetic field strength in the microtron treatment room was found to be under 7.5 μT, which is one order of magnitude lower than the tolerance level obtained for the pacemakers in the test laboratory. All the tested pacemakers tolerated the ionizing radiation dose levels (less than 60 Gy) which are used in the radiotherapy. (orig.) [de

  10. Code of practice : safe use of ionizing radiation

    International Nuclear Information System (INIS)

    1988-07-01

    Ionizing radiation is used extensively in the field of scientific research. The risk of uncontrolled exposure to both the worker and the environment is ever present. The purpose of this Code is to set out practices considered by the CSIRO Health and Safety Committee to be appropriate for CSIRO staff and, if followed, they will result in appropriate protection for research staff and the environment. The Code does not cover sources of non-ionizing radiation such as microwave ovens, RF generators and laser sources

  11. Code of Practice for the Use of Ionizing Radiations in Secondary Schools.

    Science.gov (United States)

    National Health and Medical Research Council, Canberra (Australia).

    The appreciation of the potential hazard of ionizing radiation led to the setting up of national, and later, international commissions for the defining of standards of protection for the occupationally exposed worker in the use of ionizing radiation. However, in the last twenty years, with the large scale development of nuclear energy, the need…

  12. Epidemiological studies on the effects of low-level ionizing radiation on cancer risk

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2010-01-01

    The health effects of low-level ionizing radiation are yet unclear. As pointed out by Upton in his review (Upton, 1989), low-level ionizing radiation seems to have different biological effects from what high-level radiation has. If so, the hazard identification of ionizing radiation should he conducted separately for low- and high-level ionizing radiation; the hazard identification of low-level radiation is yet to be completed. What makes hazard identification of ionizing radiation difficult, particularly in the case of carcinogenic effect, is the difficulty in distinguishing radiation-induced cancer from other cancers with respect to clinicopathological features and molecular biological characteristics. Actually, it is suspected that radiation-induced carcinogenesis involves mechanisms not specific for radiation, such as oxidative stress. Excess risk per dose in medium-high dose ranges can be extrapolated to a low-dose range if dose-response can be described by the linear-non-threshold model. The cancer risk data of atomic-bomb survivors describes leukemia risk with a linear-quadratic (LQ) model and solid-cancer risk with linear non-threshold (LNT) model. The LQ model for leukemia and the LNT model for solid cancer correspond to the two-hit model and the one-hit model, respectively. Although the one-hit model is an unlikely dose-response for carcinogenesis, there is no convincing epidemiological evidence supporting the LQ model or non-threshold model for solid cancer. It should be pointed out, however, even if the true dose response is non-linear various noises involved in epidemiological data may mask the truth. In this paper, the potential contribution of epidemiological studies on nuclear workers and residents in high background radiation areas will be discussed. (author)

  13. A MULTIWAVELENGTH STUDY ON THE FATE OF IONIZING RADIATION IN LOCAL STARBURSTS

    International Nuclear Information System (INIS)

    Hanish, D. J.; Oey, M. S.; Rigby, J. R.; Lee, J. C.; De Mello, D. F.

    2010-01-01

    The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions (SEDs) of a sample of local star-forming galaxies, containing 13 local starburst galaxies and 10 of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs are much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24 μm, 70 μm, and 160 μm MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the Galaxy Evolution Explorer bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small Hα fractions of the diffuse, warm ionized medium (WIM) in starburst galaxies are apparently due to temporarily boosted Hα luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.

  14. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  15. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  16. Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards

    International Nuclear Information System (INIS)

    1992-01-01

    The 1977 Recommendations of the International Commission on Radiological Protection stated that the commission believes that if man is adequately protected from radiation, other organisms are also likely to be sufficiently protected. The present report examines this statement by considering the effects of ionizing radiation on animals and plants in both terrestrial and aquatic ecosystems. The conclusions are that chronic dose rates of IMGy.d -1 or less are unlikely to cause measurable deleterious effects in terrestrial populations, and that in the aquatic environment limiting chronic dose rates to 10MGy.d -1 to the maximally exposed individuals would provide adequate protection for the population. Thus specific radiation protection standards for non-human organisms are not needed. 193 refs, 2 figs, 7 tabs

  17. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  18. 29 CFR 1926.53 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  19. Ionizing radiation in medical education in the National University of Cuyo

    International Nuclear Information System (INIS)

    Lopez Vernengo, Andrea B.

    2009-01-01

    Medical irradiations constitute the most important contribution to the human exposure to ionizing radiations of artificial origin. The world-wide statistics indicate an increasing tendency in the annual number of these practices based on the development of new techniques of diagnosis by images, the application of new drugs labeled with diverse isotopes and novel advances in cancer treatments. Due to this widespread use, Radiation Protection (RP) has become an excellent subject for scientific societies and regulating organisms. In this sense, most of the European countries have implemented plans of action for the radiological safety of the patient. An example is the guide RP/116 reported by the European Commission in the year 2000, which recommends including a course about RP in the study programs of Schools of Medicine and Dentistry. Consequently, the general purpose of this research project was to critically describe and to analyze the present situation of educational contents referred to the use of ionizing radiations in the Career of Medicine of the National University of Cuyo. The main results show that there is no curricular subject or area of study which includes in its syllabus minimum compulsory contents about RP or basic knowledge about Radiation Physics. In addition, RP and environmental topics related to the use of ionizing radiations in Medicine are not developed according to the 4 recommendations published by specialized International Organisms. Considering that many methods of diagnosis by images use ionizing radiations, it is suggested that that the curriculum of the Medical Career include contents related to this issue. The aim is to incorporate the culture of RP in the formative process of future professionals and, consequently, to reduce the execution of non-justified practices that threaten both individual and environmental health. (authors) [es

  20. Leukaemia risks and exposure to ionizing radiations. ASN seminar, Tuesday, June 9, 2015, report

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe; Samain, Jean-Paul; Colonna, Marc; Maynadie, Marc; Richardson, David; Bey, Pierre; Leuraud, Klervi; Laurier, Dominique; Hemon, Denis; Spycher, Ben; Kosti, Ourania; Bouville, Andre; Grosche, Bernd; Ziegelberger, Gunde; Kesminiene, Ausrele; Clavel, Jacqueline; Smeesters, Patrick; Murith, Christophe

    2015-08-01

    This seminar aims at proposing a review of present knowledge on leukaemia risks for children and adults associated with ionizing radiations, and at sharing knowledge between experts. After an introduction which outlined the interest of the ASN in research issues, and the importance awarded by the ASN to the variety of points of view, a first session addressed leukaemia and exposures to ionizing radiations. The contributions addressed some general aspects (an overview of leukaemia in France, the different types of adult and child leukaemia), leukaemia and acute exposures to ionizing radiations (ionizing radiation and leukaemia among Japanese bomb survivors, risks of leukaemia after radiotherapy), leukaemia and chronic exposures to ionizing radiations (assessment of epidemiological studies for adult chronic exposures). The second session addressed childhood leukaemia and ionizing radiations. The contributions of this second session more particularly addressed the following topics: childhood leukaemia and natural radioactivity (French studies, synthesis of international studies and a new Swiss study), childhood leukaemia and proximity of nuclear base installations (assessment of national and international studies, analysis of cancer risks in populations near nuclear facilities in the US, calculation of dose at the medulla as example of dosimetry of ionizing radiations and leukaemia, conclusions of the 2012 MELODI workshop), childhood leukaemia and scanner (recent results and perspectives), childhood leukaemia and other risk factors (etiology of childhood leukaemia - presentation of French studies initiated by the INSERM, and presentation of studies initiated by BfS)

  1. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation.

    Science.gov (United States)

    Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D

    2016-03-22

    Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.

  2. Ionizing radiation and life.

    Science.gov (United States)

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  3. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  4. Inconsistencies and open questions regarding low-dose health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Nussbaum, R.H.; Koehnlein, W.

    1994-01-01

    The state of knowledge of health effects from low-dose exposures to ionizing radiation has recently been reviewed in extensive reports by three prestigious national and international commissions of scientific and medical experts with partially overlapping membership, known by their acronyms UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), BEIR V (Biological Effects of Ionizing Radiation), and ICRP (International Commission on Radiological Protection). Publication of these reports was followed by a number of summaries in scientific journals, authored by recognized radiation experts, that purport to present a scientific consensus of low-dose effects in a more accessible format for health professionals. A critical comparison between various presentations of accepted views, however, reveals inconsistencies regarding open-quotes establishedclose quotes facts and unsettled questions

  5. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  6. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi.

    Science.gov (United States)

    Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2007-05-23

    Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.

  7. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  8. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  9. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  10. Health risks of exposure to non-ionizing radiation--myths or science-based evidence.

    Science.gov (United States)

    Hietanen, Maila

    2006-01-01

    The non-ionizing radiation (NIR) contains large range of wavelengths and frequencies from vacuum ultraviolet (UV) radiation to static electric and magnetic fields. Biological effects of electromagnetic (EM) radiation depend greatly on wavelength and other physical parameters. The Sun is the most significant source of environmental UV exposure, so that outdoor workers are at risk of chronic over-exposure. Also exposure to short-wave visible light is associated with the aging and degeneration of the retina. Especially hazardous are laser beams focused to a small spot at the retina, resulting in permanent visual impairment. Exposure to EM fields induces body currents and energy absorption in tissues, depending on frequencies and coupling mechanisms. Thermal effects caused by temperature rise are basically understood, whereas the challenge is to understand the suspected non-thermal effects. Radiofrequency (RF) fields around frequencies of 900 MHz and 1800 MHz are of special interest because of the rapid advances in the telecommunication technology. The field levels of these sources are so low that temperature rise is unlikely to explain possible health effects. Other mechanisms of interaction have been proposed, but biological experiments have failed to confirm their existence.

  11. International panoram and Spanish contribution to the dissemination and evaluation of reference data for the ionizing radiations: Project BANDRRI

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Gonzalez, A.; Bailador, A.; Gonzalez, A.; Sanchez, E.; Gorostiza, C.; Ortiz, F.

    1998-01-01

    The present work shows the international panorama of the diverse sources of reference data commonly used in the environment of the radiations ionizantes, as well as the organized Spanish contribution recently around the project of the database of Reference for the radiations ionizantes (BANDRRI), developed jointly by the Unit of Metrology of Ionizing Radiations (UMRI) of the center of Environmental and Technological Investigations (CIEMAT), clerk of the Ministry of Industry and Spanish Energy, the University of Education to Distance and the Address of Computer science of the CIEMAT

  12. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  13. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Jin [Dept. of Radiological Science, Dongseo University, Busan (Korea, Republic of); Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-09-15

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science.

  14. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    International Nuclear Information System (INIS)

    Jung, Young Jin; Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan

    2016-01-01

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science

  15. Compensation for damage to workers health exposed to ionizing radiation in Argentina

    CERN Document Server

    Sobehart, L J

    2003-01-01

    The objective of this report is to analyze the possibility to establish a scheme to compensate damage to workers health exposed to ionizing radiation in Argentina for those cases in which it is possible to assume that the exposure to ionizing radiation is the cause of the cancer suffered by the worker. The proposed scheme is based on the recommendations set out in the 'International Conference on Occupational Radiation Protection: Protecting Workers against Exposure to Ionization Radiation, held in Geneva, Switzerland, August 26-30, 2002. To this end, the study analyzes the present state of scientific knowledge on cancer causation due to genotoxic factors, and the accepted form of the doses-response curve, for the human beings exposure to ionization radiation at low doses with low doses rates. Finally, the labor laws and regulations related to damage compensation; in particular the present Argentine Labor Law; the National Russian Federal Occupational Radiological Health Impairment and Workmen Compensation, t...

  16. Choosing an alpha radiation weighting factor for doses to non-human biota

    International Nuclear Information System (INIS)

    Chambers, Douglas B.; Osborne, Richard V.; Garva, Amy L.

    2006-01-01

    The risk to non-human biota from exposure to ionizing radiation is of current international interest. In calculating radiation doses to humans, it is common to multiply the absorbed dose by a factor to account for the relative biological effectiveness (RBE) of the radiation type. However, there is no international consensus on the appropriate value of such a factor for weighting doses to non-human biota. This paper summarizes our review of the literature on experimentally determined RBEs for internally deposited alpha-emitting radionuclides. The relevancy of each experimental result in selecting a radiation weighting factor for doses from alpha particles in biota was judged on the basis of criteria established a priori. We recommend a nominal alpha radiation weighting factor of 5 for population-relevant deterministic and stochastic endpoints, but to reflect the limitations in the experimental data, uncertainty ranges of 1-10 and 1-20 were selected for population-relevant deterministic and stochastic endpoints, respectively

  17. Natural and artificial ultraviolet radiation and skin cancer risk: what's new? Proceedings of the SFRP Non-ionizing radiation section round table

    International Nuclear Information System (INIS)

    Douki, Thierry; Boniol, Mathieu; Dore, Jean-Francois

    2015-12-01

    The Non-ionizing radiation section of the French Society of Radiation Protection (SFRP) organized a technical meeting on the current knowledge of UV mutagenicity mechanisms, on professional exposures and on the risks linked with artificial tanning and their prevention. This document brings together the 3 available presentations (slides) of the talks given at the meeting: 1 - UV induction of DNA photoproducts: recent data (Thierry DOUKI, CEA Grenoble); 2 - Professional exposure to UV radiations (Mathieu BONIOL, IPRI); 3 - Artificial tanning: a major but avoidable public health problem (Jean-Francois DORE, Centre de Recherche en Cancerologie)

  18. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  19. Ionizing radiation biological effects and the proper protective measures against it's harmful effects

    International Nuclear Information System (INIS)

    Hhalel, A.M.

    1990-01-01

    This book intrduces a good knowledge in specifications of ionizing radiation biological effects and the proper protective measures againest harmful effectes. The book is devided in to five main sections, the first one introduces the hostorical bachground of the contributions of a number of scietists in the basic knolwledge of radiation and its biological effects. The second section deals with the physical and chemical principles of radiation the third one talks about radiation detection. While the fourth section talks (via seven chapter) about the effectes of ionizing radiation on living organisms molecules cells, tissues organs systems and the living organism the fifth section talks about the uses of radiation sources, the probability of radiation accidents, protective measures, international recommendations related to doses and safe use of ionizing radiation. (Abed Al-wali Al-ajlouni). 53 refs., 107 figs., 13 tabs

  20. Compensation for damage to workers health exposed to ionizing radiation in Argentina

    International Nuclear Information System (INIS)

    Sobehart, Leonardo J.

    2003-01-01

    The objective of this report is to analyze the possibility to establish a scheme to compensate damage to workers health exposed to ionizing radiation in Argentina for those cases in which it is possible to assume that the exposure to ionizing radiation is the cause of the cancer suffered by the worker. The proposed scheme is based on the recommendations set out in the 'International Conference on Occupational Radiation Protection: Protecting Workers against Exposure to Ionization Radiation, held in Geneva, Switzerland, August 26-30, 2002. To this end, the study analyzes the present state of scientific knowledge on cancer causation due to genotoxic factors, and the accepted form of the doses-response curve, for the human beings exposure to ionization radiation at low doses with low doses rates. Finally, the labor laws and regulations related to damage compensation; in particular the present Argentine Labor Law; the National Russian Federal Occupational Radiological Health Impairment and Workmen Compensation, the United Kingdom Compensation Scheme for Radiation-linked Diseases and the United States Energy Employees Occupational Illness Compensation Program are described. (author)

  1. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  2. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  3. Ionizing radiation and cancer prevention

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation in unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. 9 refs., 1 fig., 5 tabs

  4. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  5. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  6. Down syndrome and ionizing radiation.

    Science.gov (United States)

    Verger, P

    1997-12-01

    This review examines the epidemiologic and experimental studies into the possible role ionizing radiation might play in Down Syndrome (trisomy 21). It is prompted by a report of a temporal cluster of cases of this chromosomal disorder observed in West Berlin exactly 9 mo after the radioactive cloud from Chernobyl passed. In approximately 90% of cases, Down Syndrome is due to the nondisjunction of chromosome 21, most often in the oocyte, which may be exposed to ionizing radiation during two separate periods: before the completion of the first meiosis or around the time of ovulation. Most epidemiologic studies into trisomies and exposure to ionizing radiation examine only the first period; the Chernobyl cluster is related to the second. Analysis of these epidemiologic results indicates that the possibility that ionizing radiation might be a risk factor in Down Syndrome cannot be excluded. The experimental results, although sometimes contradictory, demonstrate that irradiation may induce nondisjunction in oogenesis and spermatogenesis; they cannot, however, be easily extrapolated to humans. The weaknesses of epidemiologic studies into the risk factors for Down Syndrome at birth (especially the failure to take into account the trisomy cases leading to spontaneous abortion) are discussed. We envisage the utility and feasibility of new studies, in particular among women exposed to prolonged or repeated artificially-produced ionizing radiation.

  7. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  8. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference. Refs, figs, tabs.

  9. Ionizing radiation and thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hall, P. (Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine); Holm, L.E. (Swedish Radiation Protection Inst., Stockholm (Sweden))

    1994-01-01

    Epidemiological studies provide the primary data source on cancer risk in man after exposure to ionizing radiation. The present paper discusses methodological difficulties in epidemiological studies and reviews current epidemiological knowledge on radiation-induced thyroid cancer. Most studies of radiation-induced cancer are of a ''historical observational'' type and are also non-experimental in design. Seldom is there an opportunity to consider other factors playing on cancer risk. Since many of the study subjects were exposed a long time ago there could also be difficulties in calculating the radiation doses, and to identify and follow the exposed subjects. Short exposure to low doses of gamma radiation can induce thyroid cancer in children, whereas a relationship between protracted low-dose exposure and thyroid cancer has not been established so far. The most important future issues concerning radiation-induced thyroid cancer are the risks following low radiation doses and/or protracted radiation exposure and cancer risks after [sup 131]I exposure in childhood. (authors). 35 refs., 3 tabs.

  10. Prenatal exposition on ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    The Sessions on Prenatal Exposition on Ionizing Radiations was organized by the Argentine Radioprotection Society, in Buenos Aires, between 8 and 9, November 2001. In this event, were presented papers on: biological effects of ionizing radiation; the radiation protection and the pregnant woman; embryo fetal development and its relationship with the responsiveness to teratogens; radioinduced delayed mental; neonatal irradiation: neurotoxicity and modulation of pharmacological response; pre implanted mouse embryos as a model of uranium toxicity studies; hereditary effects of the radiation and new advances from the UNSCEAR 2001; doses estimation in embryo

  11. Non-ionizing radiation protection summary of research and policy options

    CERN Document Server

    Karipidis, Ken

    2017-01-01

    This book explains the characteristics of all forms of electromagnetic non-ionizing radiation (NIR) and analyzes the relationship between exposure and its biological effects, as well as the known dose-response relationships associated with each. Taking a uniquely holistic approach to the concept of health that builds upon the WHO definition to include not only absence of disease, but the physical, mental and social well-being of individuals and the population, it reviews established and potential risks and protections, along with regulatory issues associated with each. The risks to public health of NIR, whether in the form of UV light, radio waves from wireless devices, or electric and magnetic fields associated with electrical power systems, is currently a cause of great concern among members of the public and lawmakers. But in order to separate established science from speculation and make informed decisions about how to mitigate the risks of NIR and allocate precious resources, policymakers, manufacturers...

  12. MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA

    International Nuclear Information System (INIS)

    Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.

    2011-01-01

    We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

  13. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    1995-01-01

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger) [es

  14. On the common mechanism for initiation of different effects of low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Ehjdus, L.Kh.

    1996-01-01

    Main regularities of different endpoints of ionizing radiation low dose effects (adaptive response, stimulation of proliferation, special radiosensitivity of lymphoid cells, and others) have been examined. It has been shown that these endpoints have a commonness for the dose interval, the shape of the dose-response curve, the reverse effect of dose rate, non-specificity toward initiating agents, and others. An explanation is suggested for the common mechanism of the initiation of all the studied low dose effects, basing on the theory of the non-specific reaction of cell to external influences. It is concluded that initiation of the low dose effects is conditioned by radiation induced damage of functions of plasmic and internal membranes

  15. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    International Nuclear Information System (INIS)

    Andreo, P.

    1996-01-01

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs

  16. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, P [Lunds Hospital, Lund (Sweden). Radiophysics Dept.; Almond, P R [J.G. Brown Cancer Center, Univ. of Lousville, Lousville, KY (United States). Dept. of Radiation Oncology; Mattsson, O [Sahlgrenska Hospital, Gothenburg (Sweden). Dept. of Radiation Physics; Nahum, A E [Royal Marsden Hospital, Sutton (United Kingdom). Joint Dept. of Physics; Roos, M [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1996-08-01

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs.

  17. Proceedings of the colloquium on the biological and health effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    Point, Sebastien; Boulenguez, Pierre; Martinsons, Christophe; Carre, Samuel; Torriglia, Alicia; Jaadane, Imene; Behar-Cohenz, Francine; Savoldelliz, Michele; Jonetz, Laurent; Chahory, Sabine; Dore, Jean-Francois; Clavel, Jacqueline; Boniol, Mathieu; Greinert, Ruediger; Gandini, Sara; Cesarini, Jean-Pierre; Dieudonne, Mael; Lagroye, Isabelle; Poulletier de Gannes, Florence; Veyret, Bernard; Macrez, Nathalie; Ruffie, Gilles; Haro, Emmanuelle; Hurtier, Annabelle; Taxile, Murielle; Masuda, Hiroshi; Bontempi, Bruno; Nicole, Olivier; Seze, Rene de; Cagnon, Patrice; Thuroczy, Georges; Mauger, Samuel; Mazet, Paul; Agnani, Jean-Benoit; Gaudaire, Francois; Caudeville, Julien; Selmaoui, Brahim; Percherancier, Yann; Veyret, B.; Kohler, Sophie; Leveque, P.; Legros, Alexandre; Modolo, Julien; Thomas, Alex W.; Goulet, Daniel; Plante, Michel; Ostiguy, Genevieve; Souques, Martine; Lambrozo, Jacques; Deschamps, Francois; Magne, Isabelle; Remy, Emmanuel; Souques, Martine; Duburcq, Anne; Bureau, Isabelle; Gercek, Cihan; Kourtiche, Djilali; Scmitt, Pierre; Roth, Patrice; Nadi, Mustapha; Korpinen, Leena

    2014-10-01

    This colloquium was organized by the 'non-ionizing radiations section' of the French Society of Radiation Protection (SFRP). Its goal is to review the works carried out in France regarding the electromagnetic fields risk, the wave-matter interactions and the medical applications. This conference day is the occasion for the scientific actors of the domain to exchange and encourage the pluri-disciplinary collaborations on the biological, clinical, epidemiological, dosimetric and regulatory aspects of the exposure to non-ionizing radiations. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Retinal risk in blue light: standard requirements for LED lighting systems (S. Point); 2 - RETINALED: in-vivo study of blue light-related risk - towards a better understanding of retinal pathologies and a better risk assessment (P. Boulenguez); 3 - Can solar UV radiations have a beneficial effect for some cancers? The HeLME-UV project: domestic exposure to solar UV light and malignant lymphoid homeopathies of the child (J.F. Dore); 4 - A major public health problem: UV tanning devices should be prohibited (J.F. Dore); 5 - Is electro-hypersensitivity the result of a nocebo effect? (M. Dieudonne); 6 - Effects of repeated Wi-Fi signal exposure on glial and micro-glial activation in the mouse (I. Lagroye); 7 - RF residential exposure measurements in the French program of the Operative Committee (R. De Seze); 8 - Real-time study of RF fields global cellular effects (Y. Percherencier); 9 - Electromagnetic fields and neuro-degenerative diseases (I. Lagroye); 10 - Example of direct biophysical effect in the domain of ultra-low frequencies: the perception of magnetic phosphenes (A. Legros); 11 - French population exposure to the 50 Hz magnetic field: update of the Expers study (I. Magne); 12 - Cardiac implants immunity with respect to 50/60 Hz electric fields (C. Gercek); 13 - Cardiac implants and

  18. Code of Nursing Practice for Staff Exposed to Ionizing Radiation (1984)

    International Nuclear Information System (INIS)

    1984-01-01

    This Code, published by the National Health and Medical Research Council and intended for nurses and auxiliary staff provides general guidance on radiation protection. The Code is supplementary to radiation control legislation relating to the use of ionizing radiation in medical practice. The principles established by the recommendations of the International Commission on Radiological Protection (ICRP) have been taken into account. (NEA) [fr

  19. Ionizing radiation interactions with DNA: nanodosimetry

    International Nuclear Information System (INIS)

    Bug, Marion; Nettelbeck, Heidi; Hilgers, Gerhard; Rabus, Hans

    2011-01-01

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction id of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  20. Exposure of ionizing radiation to non-radiation workers from nuclear medicine patients

    International Nuclear Information System (INIS)

    Janssen, J.; Smart, R.C.; McKay, E.

    1999-01-01

    Full text: Occasionally, patients are required to have several tests in one day. They may be injected with radio-isotopes in the morning, have other investigations during the absorption period and then return to nuclear medicine for imaging later in the day. Recently, the NSW Department of Health issued a circular concerning exposure to sonographers from ionizing radiation emitted from nuclear medicine patients. The object of this study is to establish a model of emissions from nuclear medicine patients and to measure the exposure to other health workers who may be in close contact with these patients. Dose rate measurements were acquired for patients injected with 99 Tc m and 67 Ga for the following studies: heart, thyroid, lung, bone, biliary and lymphoma. Measurements were taken at 10 cm increments to 1 m and at time intervals of 0,1,2 and 24 h post-injection. In addition, 5 sonographers were issued with TLDs to be worn on the waist and fingers for a period of 3 months. The dose limit for a non-radiation worker is 1000 μSv (ICRP 60). The external dose rate measurements indicate that, assuming a sonographer is seated approximately 30 cm from a patient injected with 800 MBq 99 Tc m -HDP for a bone scan, 1 h post-injection, the sonographer would receive a dose of 11 μSv for a 30 min ultrasound scan. In practice, only 4 nuclear medicine patients were scanned in the ultrasound department during the 5 week monitoring period and the sonographers' TLDs recorded no radiation dose. In conclusion, the average exposure to sonographers from nuclear medicine patients is well within the limits recommended by the ICRP. However, in accordance with the ALARA principle where practicable, any ultrasound examination should be performed prior to nuclear medicine studies

  1. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  2. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  3. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  4. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  5. Counseling Patients Exposed to Ionizing Radiation in Diagnostic Radiology During Pregnancy

    International Nuclear Information System (INIS)

    Brnic, Z.; Leder, N.I.; Popic Ramac, J.; Vidjak, V.; Knezevic, Z.

    2013-01-01

    There are many false assumptions regarding influence of radiation on pregnant patients and fetus during diagnostic procedures in spite of scientific facts based on studies (both in general population and among physicians). These false assumptions are mostly based on the idea that every diagnostic procedure that uses ionizing radiation is a cause for serious concern and consideration for artificial abortion as a possible solution. We have analysed the data of counselling of pregnant patients exposed to ionizing radiation during diagnostic procedures in University Hospital Merkur, during a period of four years. In this period we had 26 patients come in counselling due to exposure to ionizing radiation during pregnancy. Results show that most of these patients have been exposed to radiation between 2nd and 3rd week of gestation (36 %), between 4th and 5th week - 32 %; before 2nd week - 24%; and after 6th week of gestation less than 8 %. Average doses were: up to 0.01 cGy in 46.2 % patients; 0.01 - 0.15 cGy in 19.2 % patients; 0.2 - 1 cGy in 26.9 % and 1 cGy or more in 7.7 % of patients. No one of the counselled patients had a medical indication for abortion, even though in a small percentage of patients abortion was a personal subjective decision. Considering that there are no Croatian guidelines for counselling patients exposed to ionizing radiation during pregnancy, recommendation is to use International Commission on Radiological Protection (ICRP) guidelines for management of pregnant patients exposed to ionizing radiation.(author)

  6. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  7. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Science.gov (United States)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.

    2007-10-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements

  8. Research into the biological effects of ionizing radiation somatic effects II: non-cancer

    International Nuclear Information System (INIS)

    Bond, V.P.

    1980-01-01

    Somatic effects of radiation can be considered in two categories: low and high level effects. In the low level exposure region (defined here arbitrarily as a single dose of the order of 10 rads or less, or higher doses at very low dose rates), the only somatic effects other than cancer known definitely at present to have health significance are those on fertiltiy and on the developing individual from conception to near birth. Knowledge of these effects is inadequate at present, and the bulk of this report will be devoted to discussing the types of additional investigations required. With respect to non-cancer somatic effects of radiation at intermediate to high doses and dose rates, enough is known to describe in general the course of early (over the first days to perhaps six weeks) effects, following different doses of external radiation. In particular, the non-cancer late effects of intermediate to high doses of internal and external radiation need better definition. The distinction between non-cancer and cancer-related somatic effects is blurred, at least at high dose levels

  9. Non-melanoma skin cancer in relation to ionizing and ultraviolet radiation among radiologic technologists in the United States

    International Nuclear Information System (INIS)

    Yoshinaga, S.; Hauptmann, M.; Sigurdson, A.J.; Doody, M.M.; Freedman, D.M.; Linet, M.S.; Ron, E.; Mabuchi, K.

    2003-01-01

    Ionizing and ultraviolet (UV) radiations are known to increase the risk of non-melanoma skin cancer. However, the effect of chronic or protracted exposure to ionizing radiation and the modifying effect of UV exposure on skin cancer risk are not well defined. We evaluated risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin among radiologic technologists in the United States. A total of 1,355 incident cases with BCC and 270 with SCC were ascertained in 65,304 white technologists between the baseline questionnaire survey in 1983-1989 and the follow-up survey in 1994-1998. Analysis by Cox's proportional hazard model, stratified by birth cohort and adjusted for potential confounders including pigmentation characteristics (skin complexion, eye and hair color) and estimated index of residential UV exposure, indicated significantly increased relative risks for BCC, but not for SCC, among early technologists who likely had high radiation exposure. Relative risks of BCC were 1.42 (95% CI: 1.12-1.79), 2.04 (95% CI: 1.44-2.88), and 2.17 (95% CI: 1.14-4.10) among those who first worked in the 1950s, 1940s, and before 1940, respectively (p for trend: <0.01), compared with technologists who first worked after 1960. The effects of ionizing radiation on BCC were not significantly modified by UV exposure (p for effect modification: 0.31), but they were modified by eye and hair color (p=0.01 and 0.03), with light eye or hair color conferring a higher radiation-related risk. In contrast, relative risks of both BCC and SCC significantly increased with increasing residential UV exposure index, and no modifying effects of pigmentation characteristics were observed. This study provides evidence of increased BCC risk associated with chronic, occupational exposure to a low-to-moderate level of ionizing radiation, which may be modified by pigmentation characteristics

  10. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    Science.gov (United States)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  11. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  12. Coatings hardenable by ionizing radiation and their applications

    International Nuclear Information System (INIS)

    Aronoff, E.J.; Labana, S.S.

    1976-01-01

    The invention deals with the production of a coating medium which can be hardened by ionizing radiation. The composition includes tetravinyl compounds containing no free hydroxyl groups which were obtained by the conversion of di-epoxides with acryl or methacryl acid via the intermediary step of a divinyl ester condensation product. The intermediary product is converted with acryloyl or methacryloyl halides. The mass still contains non-polymerisable solvent (such as tolual, xylol), pigments and fillers. It is of advantage if the di-epoxide has a molecular weight of 140 to 500. Furthermore, coatings are to be made of this coating medium which are hardened by ionizing radiation at temperatures between 20 0 C and 70 0 C. 19 examples. (HK) [de

  13. Health and biological effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    De Seze, R.; Souques, M.; Aurengo, A.; Bach, V.; Burais, N.; Cesarini, J.P.; Cherin, A.; Decobert, V.; Dubois, G.; Hours, M.; Lagroye, I.; Leveque, Ph.; Libert, J.P.; Lombard, J.; Loos, N.; Mir, L.; Perrin, A.; Poulletier De Gannes, F.; Thuroczy, G.; Wiart, J.; Lehericy, St.; Pelletier, A.; Marc-Vergnes, J.P.; Douki, Th.; Guibal, F.; Tordjman, I.; Gaillot de Saintignon, J.; Collard, J.F.; Scoretti, R.; Magne, I.; Veyret, B.; Katrib, J.

    2011-01-01

    This document gathers the slides of the available presentations given during this conference day on the biological and health effects of non-ionizing radiations. Sixteen presentations out of 17 are assembled in the document and deal with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes; 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - modulation of brain activity during a tapping task after exposure to a 3000 μT magnetic field at 60 Hz (M. Souques and A. Legros); 10 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 11 - French population exposure to the 50 Hz magnetic field (I. Magne); 12 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Veyret); 13 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 14 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 15 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); French physicians and electromagnetic fields (M. Souques). (J.S.)

  14. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  15. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  16. Occupational Diseases Caused by Ionizing Radiation in Poland, 1971-2006

    International Nuclear Information System (INIS)

    Wilczynska, U.; Szeszenia-Dabrowska, N.

    2008-01-01

    The whole spectrum of disorders of the hematopoietic tissue, eye and skin induced by ionizing radiation covers complex pathologies termed as a postirradiation syndrome, as well as various malignancies. The aim of this work is to present the data on incidence of occupational diseases with ionizing radiation as a causative agent. The work is based on the data compiled from 'Occupational Diseases Reporting Forms' for the years 1971-2006 collected in the Central Register of Occupational Diseases. The incidence of certified occupational diseases with ionizing radiation as a causative agent is expressed in absolute numbers and the rate per 100 000 employees. The data comprise information on disease entities, gender, age, exposure duration and the branch of national economy. In total, 599 diseases (0.2% of all occupational diseases) were diagnosed as those induced by ionizing radiation. Annual incidence rates per 100 000 employees fell within the range of 0.0-0.7. Miners formed the major (51.9%) occupational group affected by ionizing radiation. They were followed by health care (34.3%) and construction (6.4%) workers. Cancers made over 50% of pathologies located at 28 sites. These included cancers of lung (59.2%), skin (10.0%) and hematopoietic tissue (8.7%). Almost all (99.35) diseases recorded in the mining industry were cancers. Non-cancer diseases were more frequent in health care workers, among them postradiation cataract occupied the first place. A great deal of reported cancer sites give rise to controversy in terms of the cause-effect association with ionizing radiation exposure and also due to incomplete data on exposure duration. Postradiation cancers among health care workers have not been registered over recent years, which means that occupational exposure surveillance carried out for many years proves to be effective. Distant effects of exposure to ionizing radiation, revealed in workers of no longer existing uranium mine, appeared to be a particular problem

  17. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  18. Basic symbol for ionizing radiations (second revision)

    International Nuclear Information System (INIS)

    1992-01-01

    Includes a detailed description of basic symbol for ionizing radiations to be used to prevent about the presence, or possibility of presence, of ionizing radiations (X-ray, gamma radiation, particles, electrons, neutrons and protons), as well as to identify radioactive devices and materials

  19. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  20. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  1. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  2. Protection of the patient from ionizing radiation in medical exposure in Israel

    International Nuclear Information System (INIS)

    Schlesinger, T.; Ben Shlomo, A.; Berlovitz, Y.

    2002-01-01

    The ICRP issued in 1991 its recent recommendations related to the protection of the worker, the public and the patient from ionizing radiation. In 1996 the IAEA together with the WHO, the ILO and other major international bodies published the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the BSS). The BSS are based on the core principles of Justification, Optimization and Dose Limitation. Many countries adopted the radiation protection philosophy and the administrative framework presented in the BSS as the basis for their legal radiation protection system. Following the publication of the BSS, the EC published in 1997 its Medical Exposure Directive 97/43 /Euratom. Article 14 of the ME Directive requires that EC member states bring into force the laws and administrative provisions necessary to comply with this directive before 13 May 2000. Most EC member states have complied with this requirement and issued the relevant laws and /or regulations. The Ionizing Radiation (Medical Exposure) Regulations that came into force in the UK on 13 May 2000 are a good example

  3. Radiation hormesis: an outcome of exposure to low level ionizing radiation

    International Nuclear Information System (INIS)

    Kant, Krishan

    2012-01-01

    Ionizing radiation is a benign environmental agent at background levels. Human population is always exposed to ionizing radiation from natural sources. Important sources are cosmic rays which come from outer space and from the surface of the sun, terrestrial radionuclides which occur in the earths crust in various geological formations in soils, rocks, building materials, plants, water, food, air and in the human body itself. With the increasing use of radiation in health facilities, scientific research, industry and agriculture, the study of impact of low-level ionizing radiation on environment and possible health effects on future generations has been a cause of concern in recent years. As regards the effects, it is established fact that high doses of ionizing radiation are harmful to health, there exists, however, a substantial controversy regarding the effects of low doses of ionizing radiation (LLIR). In the present paper, brief review of the available literature, data and reports on stimulation by low-dose irradiation and recent data supporting radiation hormesis. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to the Indian population. This overview summarizes various reports

  4. Safe use of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    Based on the ''Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use'' (CIS 74-423), this handbook shows how hospital staff can avoid exposing themselves and others to these hazards. It is designed particularly for junior and student nurses. Contents: ionizing radiations, their types and characteristics; their uses and dangers; basic principles in their safe use; safe use in practice; explanation of terms.

  5. Code of practice for ionizing radiation

    International Nuclear Information System (INIS)

    Khoo Boo Huat

    1995-01-01

    Prior to 1984, the use of ionizing radiation in Malaysia was governed by the Radioactive Substances Act of 1968. After 1984, its use came under the control of Act 304, called the Atomic Energy Licensing Act 1984. Under powers vested by the Act, the Radiation Protection (Basic Safety Standards) Regulations 1988 were formulated to regulate its use. These Acts do not provide information on proper working procedures. With the publication of the codes of Practice by The Standards and Industrial Research Institute of Malaysia (SIRIM), the users are now able to follow proper guidelines and use ionizing radiation safely and beneficially. This paper discusses the relevant sections in the following codes: 1. Code of Practice for Radiation Protection (Medical X-ray Diagnosis) MS 838:1983. 2. Code of Practice for Safety in Laboratories Part 4: Ionizing radiation MS 1042: Part 4: 1992. (author)

  6. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  7. Epidemiology and ionizing radiations

    International Nuclear Information System (INIS)

    Bourguignon, M.; Masse, R.; Slama, R.; Spira, A.; Timarche, M.; Laurier, D.; Billon, S.; Rogel, A.; Telle Lamberton, M.; Catelinois, O.; Thierry, I.; Grosche, B.; Ron, E.; Vathaire, F. de; Cherie Challine, L.; Donadieu, J.; Pirard, Ph.; Bloch, J.; Setbon, M.

    2004-01-01

    The ionizing radiations have effects on living being. The determinist effects appear since a threshold of absorbed dose of radiation is reached. In return, the stochastic effects of ionizing radiations are these ones whom apparition cannot be described except in terms of probabilities. They are in one hand, cancers and leukemia, on the other hand, lesions of the genome potentially transmissible to the descendants. That is why epidemiology, defined by specialists as the science that studies the frequency and distribution of illness in time and space, the contribution of factors that determine this frequency and this distribution among human populations. This issue gathers and synthesizes the knowledge and examines the difficulties of methodologies. It allows to give its true place to epidemiology. (N.C.)

  8. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  9. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  10. The revision of dose limits for exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Hughes, D.

    1990-01-01

    The paper reviews the current dose limits for exposure to ionizing radiations and the risk factors on which they are based, and summarizes the revised risk factors and the draft proposals for new dose limits published by the International Commission on Radiological Protection. (author)

  11. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  12. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  13. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  14. Interactive visual intervention planning in particle accelerator environments with ionizing radiation

    International Nuclear Information System (INIS)

    Fabry, Thomas

    2014-01-01

    Radiation is omnipresent. It has many interesting applications: in medicine, where it allows curing and diagnosing patients; in communication, where modern communication systems make use of electromagnetic radiation; and in science, where it is used to discover the structure of materials; to name a few. Physically, radiation is a process in which particles or waves travel through any kind of material, usually air. Radiation can be very energetic, in which case it can break the atoms of ordinary matter (ionization). If this is the case, radiation is called ionizing. It is known that ionizing radiation can be far more harmful to living beings than non-ionizing radiation. In this dissertation, we are concerned with ionizing radiation. Naturally occurring ionizing radiation in the form of radioactivity is a most natural phenomenon. Almost everything is radioactive: there is radiation emerging from the soil, it is in the air, and the whole planet is constantly undergoing streams of energetic cosmic radiation. Since the beginning of the twentieth century, we are also able to artificially create radioactive matter. This has opened a lot of interesting technological opportunities, but has also given a tremendous responsibility to humanity, as the nuclear accidents in Chernobyl and Fukushima, and various accidents in the medical world have made clear. This has led to the elaboration of a radiological protection system. In practice, the radiological protection system is mostly implemented using a methodology that is indicated with the acronym ALARA: As Low As Reasonably Achievable. This methodology consists of justifying, optimizing and limiting the radiation dose received. This methodology is applied in conjunction with the legal limits. The word 'reasonably' means that the optimization of radiation exposure has to be seen in context. The optimization is constrained by the fact that the positive effects of an operation might surpass the negative effects caused by the

  15. Activities of Protection against Ionizing Radiation in Niger

    International Nuclear Information System (INIS)

    Kando Hamadou, M.

    2008-01-01

    Niger, sahelian country of Western Africa, is limited to North by Libya and Algeria, to the South by Nigeria and the Benin, to the East by Chad and the West by Mali and Burkina Faso. It covers a surface of 1 267 000 km2 and has a population of approximately 12 000 000 inhabitants. Niger is a large uranium producer with two extraction and treatment development companies of uranium ore which are the company of the mines of Air (SOMAIR) created in 1971 and the mining company of Akouta (COMINAK) created in 1978. Beyond the mining sector, ionizing radiation sources are used in the fields of industry, health, teaching and research. The first lawful text of protection against ionizing radiation was signed on December 5, 1979 and specifically related to the mining activities of uranium. With the multiform assistance of International Atomic Energy Agency (IAEA) protection against radiation knew a significant evolution. A national centre of protection against radiation was created in 1998, two laws relating to the field were adopted in June 2006 and three lawful texts of application of these laws are in the process of finalization

  16. Non-occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of non-occupational exposure is presented. The special problems in connection with assessments of collective doses (time, geographical extension, cut-off, uncertainties) are discussed. Examples of methods and principles for monitoring and dose assessments used for various sources of radiation are given and data on public exposure are presented and discussed. (author)

  17. Response of GaAs charge storage devices to transient ionizing radiation

    Science.gov (United States)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  18. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, E.G. (Molecular and Cellular Pathology Laboratories, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee, Scotland (United Kingdom))

    2008-12-15

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  19. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Wright, E.G.

    2008-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  20. Bystander effects of the ionizing radiation and his implications in radiotherapy and radioprotection

    International Nuclear Information System (INIS)

    Mendez Ayala, Irene Maria; Sanchez Luthard, Maria de los Angeles; Martins Schmitz; Gomez, Silvia

    2009-01-01

    According to the classical paradigm, biological effects of ionizing radiation are attributed to DNA damage induced in each irradiated cell. Demonstration of ionizing radiation-induced bystander effects (RIBE) has generated a deep change in current understanding of radiobiology. RIBE are radiation-induced effects produced in cells that have not been actually irradiated. Several technical advances, particularly the use of microbeams, allowed in vitro study of RIBE. There are two known ways by which irradiated cells can communicate with non-irradiated cells, namely: through gap junctions connecting the cytoplasms of adjacent cells, and through the secretion of soluble factors to the extracellular medium. These factors include several cytokines and reactive species of oxygen and nitrogen. In the affected cells, signalling pathways mostly involve activation of mitogen-activated protein kinases (MAPK), NF-kB transcription factor and of the enzymes cyclooxygenase 2, nitric oxide synthase 2 and NAD (P)H oxidase. RIBE induce point mutations and epigenetic changes. Effects on cellular signalling pathways can persist indefinitely and even be transmitted to the progeny of affected cells. Paradoxically, under certain conditions RIBE may be adaptive, which means that they turn affected cells more resistant to ionizing radiation. Adaptation demands protein synthesis. It enhances DNA repair mechanisms and resistance to oxidative stress. RIBE have also been demonstrated in vivo. Thus, they may have important implications for radiotherapy, both to improve therapeutic efficacy and to reduce the incidence of adverse effects. Furthermore, a better understanding of RIBE may have an influence on international radioprotection standards. (authors) [es

  1. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  2. [Occupational diseases caused by ionizing radiation in Poland, 1971-2006].

    Science.gov (United States)

    Wilczyńska, Urszula; Szeszenia-Dabrowska, Neonila

    2008-01-01

    The whole spectrum of disorders of the hematopoietic tissue, eye and skin induced by ionizing radiation covers complex pathologies termed as a postirradiation syndrome, as well as various malignancies. The aim of this work is to present the data on incidence of occupational diseases with ionizing radiation as a causative agent. The work is based on the data compiled from "Occupational Diseases Reporting Forms" for the years 1971-2006 collected in the Central Register of Occupational Diseases. The incidence of certified occupational diseases with ionizing radiation as a causative agent is expressed in absolute numbers and the rate per 100 000 employees. The data comprise information on disease entities, gender, age, exposure duration and the branch of national economy. In total, 599 diseases (0.2% of all occupational diseases) were diagnosed as those induced by ionizong radiation. Annual incidence rates per 100,000 employees fell within the range of 0.0-0.7. Miners formed the major (51.9%) occupational group affected by ionizing radiation. They were followed by health care (34.3%) and construction (6.4%) workers. Cancers made over 50% of pathologies located at 28 sites. These included cancers of lung (59.2%), skin (10.0%) and hematopoietic tissue (8.7%). Almost all (99.35) diseases recorded in the mining industry were cancers. Non-cancer diseases were more frequent in health care workers, among them postradiation cataract occupied the first place. A great deal of reported cancer sites give rise to controversy in terms of the cause-effect association with ionizing radiation exposure and also due to incomplete data on exposure level. Postradiation cancers among health care workers have not been registered over recent years, which means that occupational exposure surveillance carried out for many years proves to be effective. Distant effects of exposure to ionizing radiation, revealed in workers of no longer existing uranium mine, appeared to be a particular problem

  3. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  4. The role of ionizing radiation in biological control of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2011-01-01

    Although the commercial biological control industry is growing, it still represents only a small portion of the international market of pest control sales (about 3%). This low ratio is due to several factors including high cost of production of biological control agents and technical and regulatory difficulties that complicate the shipping procedures and create trade barriers. This article summarizes the role of ionizing radiation in supporting the use of biological control agents in insect pest control and concentrates on its role in the production, transport, distribution, and release of parasites and predators and the advantages that ionizing radiation can offer, in comparison with traditional techniques. (author)

  5. Conference on the public health aspects of protection against ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-07-01

    The Conference on Public Health Aspects of Protection against Ionizing Radiation was convened by the World Health Organization at Duesseldorf, Germany, from 25 June - 4 July 1962. It was designed to examine the part which public health authorities should play in controlling the hazards of ionizing radiation, and it was attended by 63 participants from 36 countries and from a number of international organizations. The aims of the Conference were: a) to specify the role of public health services in respect of radiation protection; b) to review, on the basis of existing material and information to be made available at the Conference, the present situation of radiation protection services in different countries and to discuss desirable trends in the organization and administration of these services within the public health services; and c) to consider requirements as regards qualifications and training of public health personnel in charge of radiation protection services. The programme of the Conference centred around seven major topics: 1) ionizing radiation as a public health problem; 2) principles of public health in radiation protection; 3) review of existing laws, regulations, codes of practice and examples of radiation protection services; 4) the role of public health radiation protection services; 5) the role of public health services in planning for and dealing with emergencies (incidents and accidents); 6) qualifications and training of public health personnel in charge of radiation protection services; 7) health education of the public in the field of radiation protection.

  6. Conference on the public health aspects of protection against ionizing radiation

    International Nuclear Information System (INIS)

    1963-01-01

    The Conference on Public Health Aspects of Protection against Ionizing Radiation was convened by the World Health Organization at Duesseldorf, Germany, from 25 June - 4 July 1962. It was designed to examine the part which public health authorities should play in controlling the hazards of ionizing radiation, and it was attended by 63 participants from 36 countries and from a number of international organizations. The aims of the Conference were: a) to specify the role of public health services in respect of radiation protection; b) to review, on the basis of existing material and information to be made available at the Conference, the present situation of radiation protection services in different countries and to discuss desirable trends in the organization and administration of these services within the public health services; and c) to consider requirements as regards qualifications and training of public health personnel in charge of radiation protection services. The programme of the Conference centred around seven major topics: 1) ionizing radiation as a public health problem; 2) principles of public health in radiation protection; 3) review of existing laws, regulations, codes of practice and examples of radiation protection services; 4) the role of public health radiation protection services; 5) the role of public health services in planning for and dealing with emergencies (incidents and accidents); 6) qualifications and training of public health personnel in charge of radiation protection services; 7) health education of the public in the field of radiation protection

  7. Determination of non-ionizing radiation dose in Tun Seri Lanang Library (PTSL), Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Nur Farhana Mohd Aisa

    2012-01-01

    Application of non-ionizing radiation in life is growing along with the technological developments. This study was conducted to measure and map the contours of non-ionizing radiation transmission station in Tun Seri Lanang Library, Universiti Kebangsaan Malaysia. This study was conduct with the use of RF EMF Strength Meter. There was five base stations in the study area and six contours were mapped at each transmitter station and the distance of each contour are 5 meters and the distance between base stations and the final contour are 30 meters. There were eight points that were measure at every contour and every point was monitor three times at three different times; in the morning, afternoon and night for four weeks. This study has found that the reading of radiofrequency within the contour of the study was lower than the reading set by the Malaysian Communications and Multimedia Commission (MCMC), which is 0.14 % in the morning, 0.155 % in the evening and 0.159 % at night than the limit 450 x 10 4 μW/ m 2 . Previous studies showed that the reading of the radiofrequency is only 0.04 % than the limit value. Weather does not effect the frequency reading and the highest readings are in the evening where it is peak hours in the use of telecommunications equipment. In conclusion, the radio frequencies generated by the transmitting stations in the study area are not dangerous to the public who live or work near the area. (author)

  8. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    Angelis, G. De; Ballard, T.; Lagorio, S.; Verdecchia, A.

    2000-01-01

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  10. A novel database of bio-effects from non-ionizing radiation.

    Science.gov (United States)

    Leach, Victor; Weller, Steven; Redmayne, Mary

    2018-06-06

    A significant amount of electromagnetic field/electromagnetic radiation (EMF/EMR) research is available that examines biological and disease associated endpoints. The quantity, variety and changing parameters in the available research can be challenging when undertaking a literature review, meta-analysis, preparing a study design, building reference lists or comparing findings between relevant scientific papers. The Oceania Radiofrequency Scientific Advisory Association (ORSAA) has created a comprehensive, non-biased, multi-categorized, searchable database of papers on non-ionizing EMF/EMR to help address these challenges. It is regularly added to, freely accessible online and designed to allow data to be easily retrieved, sorted and analyzed. This paper demonstrates the content and search flexibility of the ORSAA database. Demonstration searches are presented by Effect/No Effect; frequency-band/s; in vitro; in vivo; biological effects; study type; and funding source. As of the 15th September 2017, the clear majority of 2653 papers captured in the database examine outcomes in the 300 MHz-3 GHz range. There are 3 times more biological "Effect" than "No Effect" papers; nearly a third of papers provide no funding statement; industry-funded studies more often than not find "No Effect", while institutional funding commonly reveal "Effects". Country of origin where the study is conducted/funded also appears to have a dramatic influence on the likely result outcome.

  11. Strain differences in mouse skin carcinogenesis experiments using ionizing radiation and the tumor promoter TPA

    International Nuclear Information System (INIS)

    Jaffe, D.R.; Bowden, G.T.

    1985-01-01

    Ionizing radiation has been shown to be a complete carcinogen in rodent skin when administered repeatedly. The initiating potential of ionizing radiation in mouse skin was tested in a classical two-stage protocol in both CD-1 and Sencar mice. Beta radiation (0.5, 1.5, 3.0 and 5.0 Gy) was administered by a strontium 90 applicator followed two weeks later by twice weekly application of 5 μg TPA. A statistical difference in the papilloma incidence between radiation initiated, TPA promoted versus non-initiated TPA promoted groups was not found (25-35% animals with papillomas and 0.35-0.45 papillomas per mouse at 65 weeks of promotion for both initiated and non-initiated mice). There appeared to be no strain differences between the CD-1 and Sencar in response to the initiating effects if ionizing radiation. This is in direct contrast to the studies showing Sencar mice to be much more sensitive than CD-1 to the initiating effects of chemical carcinogens

  12. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  13. Protective legislation, ionizing radiation and health: a new appraisal and international survey

    International Nuclear Information System (INIS)

    Stellman, J.M.

    1987-01-01

    Restrictive regulations (protective legislation) on employment conditions of female workers limiting maximum hours of work and prohibiting certain toxic exposures have existed for decades. In some countries, such as the United States, Canada and the Nordic countries, the growth of civil rights and equal opportunity legislation has led to their elimination, either in fact or in practice, and only a small number of disparate regulations for male and female workers still exist. Most other industrialized countries, as well as the International Labour Office of the United Nations, still have active restrictive rules for women's employment. However, restrictive regulation is an area of active policy debate around the world. International examples of the debate on protective legislation are given here. A specific case study of the occupational health standards governing exposure to ionizing radiation is used and its technical rationale discussed as an illustration of the basic issues. These include: overbroad categorization of all women as potential childbearers, no matter what their childbearing intentions; failure to recognize the full range of potential adverse health effects to males; disparate application of the restrictive regulations, generally to occupations or areas of employment that are traditionally held by men, while traditional female jobs with the same exposures are excluded from the regulatory restriction

  14. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Delincee, H.

    1998-01-01

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  15. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  16. Radiation protection in the application of ionizing radiation in industry

    International Nuclear Information System (INIS)

    Mohamad Yusof Mohamad Ali

    1987-01-01

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  17. Improved capacity in ionizing radiation metrology at SANAEM

    International Nuclear Information System (INIS)

    Yucel, U.

    2014-01-01

    Full text : Turkey is planning to build nuclear power plants in the south and north coasts to supply the ever-increasing energy demand. The nuclear power plants based on old soviet technology in Armenia and Bulgaria close to Turkey's borders also makes constant monitoring of environmental radioactivity extremely important due to public health and environment contamination concerns. Radiation Metrology Division at SANAEM has been established in 2012 to provide uniformity and reliability of the measurements in the field of ionizing radiation metrology by R and D studies and by constituting, developing, keeping and extending internationally accepted reference measurement standards and techniques

  18. Quality assurance in ionizing radiation application

    International Nuclear Information System (INIS)

    Rastkhah; Nasser.

    1995-01-01

    Quality assurance is a mean for controlling all the activities within an organization which affect the quality of the product or service. A series of international standards have been prepared which incorporate the accumulated knowledge and provide guidance on what activities within an organization should be controlled. A proposal on a quality assurance system to be implemented in ionizing radiation application centers is the primary concern of Atomic Energy Organization of Iran is represented. The Objectives were identification of quality related problems ;Comply with national and international requirements ;Controlling all activities within an organization which affects the quality and assurance of maintaining the quality within organization. In performing protection measures, risk, cost, benefit consideration, cause of problems and the classic solution are summarized in four chapters

  19. Consultative committee on ionizing radiation: Impact on radionuclide metrology

    International Nuclear Information System (INIS)

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. - Highlights: • Influence of CIPM MRA on radionuclide metrology at laboratories around the world. • CCRI strategy: to be the “undisputed hub for ionizing radiation global metrology.” • CCRI Strategic Plan stresses importance of measurement confidence for stakeholder. • NMIs increasing role in radionuclide metrology by designating institutions (DIs). • NMIs and DIs establish quality systems; validate capabilities through comparisons.

  20. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  1. Modern state of the application of ionizing radiation for protection of environment. 1. Ionizing radiation sources. Purification of natural and drinking water (review)

    International Nuclear Information System (INIS)

    Pikaev, AK.

    2000-01-01

    Review of modern state of the application of ionizing radiations for protection of environment and natural and drinking water purification is presented. Building of installations with electron accelerators with summarized power of beam ∼0.6 MW signifies that application of ionizing radiation for ecological needs increase. It is pointed out that extensible application of electron accelerators is explained by their safety and efficiency as compared with gamma-sources. New information about ionizing radiation sources, radiation-chemical purification of polluted natural and drinking water, mechanisms of processes taking place during treatment by ionizing radiations are generalized [ru

  2. Risk of occupational exposure to ionizing radiation among medical workers in Canada

    International Nuclear Information System (INIS)

    Zielinski, Jan M.; Band, Pierre R.; Garner, Michael J.; Krewski, Daniel; Shilnikova, Natalia S.; Jiang, Huixia; Ashmore, Patrick J.; Sont, Willem N.; Fair, Martha E.; Letourneau, Ernest G.; Semenciw, Robert

    2010-01-01

    Medical workers are exposed to chronic low dose ionizing radiation from a variety of sources. Potential cancer risks associated with ionizing radiation exposures have been derived from cohorts experiencing acute high intensity exposure, most notably the Japanese atomic bomb survivors. Since such extrapolations are subject to uncertainty, direct information on the risk associated with chronic low dose occupational exposure to ionizing radiation is needed. We examined possible associations with cancer incidence and mortality in a cohort of medical workers ascertained by the National Dose Registry of Canada (NDR). Data from the NDR were used to assess the exposure to ionizing radiation incurred between 1951 to 1987 inclusive in a cohort of 67,562 subjects classified as medical workers. Standardized mortality (SMRs) and incidence (SIRs) ratios were ascertained by linking NDR data with the data maintained by Statistics Canada in the Canadian Mortality and in the Canadian Cancer Incidence Databases respectively. Dosimetry information was obtained from the National Dosimetry Services of the Radiation Protection Bureau of Health Canada. There were 23,580 male and 43,982 female medical workers in the cohort. During the follow-up period, 1309 incident cases of cancer (509 in males, 800 in females) and 1,325 deaths (823 in males, 502 in females) were observed. Mortality from cancer and non-cancer causes was generally below expected compared to the Canadian population. Thyroid cancer incidence was significantly elevated in both males and females, with a combined SIR of 1.74 and 90% confidence interval (90% CI: 1.40-2.10). Our result of an increased risk of thyroid cancer among medical workers occupationally exposed to ionizing radiation confirms previous reports. Over the last 50 years, radiation protection measures have been effective in reducing occupational exposures of medical workers to ionizing radiation to current very low levels. (author)

  3. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  4. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    Radunovic, Miodrag; Nikolic, Krsto; Rakic, Goran

    2008-01-01

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  5. Density meters utilizing ionizing radiation: definitions and test methods

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard is applicable to density meters utilizing ionizing radiation, designed for the measurement of the density of liquids, slurries or fluidized solids. The standard applies to transmission-type instruments only. Reference to compliance with this standard shall identify any deviations and the reasons for such deviations. Safety aspects are not included but should fulfill the requirements of all relevant internationally accepted standards

  6. Hazards of ionizing radiations for human beings and environment with respect to nuclear facilities

    International Nuclear Information System (INIS)

    Huebner, Felix; Jung, Jennifer Jana; Schultmann, Frank

    2017-01-01

    Worldwide, nuclear fission is used to produce electricity. On the one hand, the low emission of CO_2 is often mentioned as an advantage of this technology. On the other hand, warnings about the dangers of nuclear fission are mentioned. Consequently, an overview about the dangers of ionizing radiation to human beings as well as animals and the environment is important. However, the focus will be on possible health effects for humans with regards to nuclear power plants. In nuclear power plants, both natural types of radiation and artificially produced radiation occur. During normal operation, it is possible that small quantities of this ionizing radiation are released to the environment. In case of nuclear disasters or faults during decommissioning and dismantling processes the consequences of thereby emitted quantities can be even more severe. Reference nuclides vary by reactor type, operating stage and respective incident. At the beginning, different types of radiation and their characteristics and effects on the affected organism are explained. Sensitive organs are emphasized in this context. The individual risk is determined by numerous factors and therefore cannot be predicted. Based on scientific studies and medical publications the hazards of ionizing radiation are compiled. Effects of high exposure of ionizing radiation are well-investigated. Scientists are still divided over the connection between several diseases and the exposure to low doses of ionizing radiation. For this reason, the positions of different international organizations are critically contrasted in this study.

  7. Evoked bioelectrical brain activity following exposure to ionizing radiation.

    Science.gov (United States)

    Loganovsky, K; Kuts, K

    2017-12-01

    The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.

  8. Regulatory control for safe usage of ionizing radiation sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2008-01-01

    Full text: In Bangladesh, there is a widespread and continuos growth in the use of the ionizing radiation sources both radioactive materials and radiation generating equipment in the field of industry, medicine, agriculture, research, teaching etc. In industry, they are employed in production as well as quality control such as non-destructive testing (radiography), nucleonic gauging, radiotracer techniques and in radiation processing. Medical applications of ionizing radiation include X-ray radiography, X-ray fluoroscopy, CT scan, mammography, nuclear medicine, beam therapy and brachytherapy. Besides radioisotopes are also used for research applications, viz., scattering experiments, tracer studies, etc. In agriculture, the uptake of nutrients by soil, and parts of plants are studied using suitable radionuclides. In all the above applications radioisotopes in two forms namely sealed sources and open sources in different chemical forms are employed with source strengths varying from micro curies to mega curies. The benefits to man from the use of ionizing radiation and sources of radiation are accompanied by risks which may result from exposure of man to ionizing radiation. In order to have an effective control on the use of radiation sources and to ensure radiological safety of the user as well as the public, Government of Bangladesh has promulgated Nuclear Safety and Radiation Control (NSRC) rules 1997 under the NSRC Act 1993. The Bangladesh Atomic Energy commission (BAEC) is the competent authority for formulating rules and regulations for ensuring radiological safety. BAEC is legally responsible for developing and strengthening the necessary radiation protection infrastructure in the country through the effective enforcement and implementation of regulatory requirements, criteria, obligations, guiding, codes etc. in order to save man and the related environment from the deleterious effects of ionizing radiation. In Bangladesh, only those persons who have been

  9. Ambient radioactivity levels and radiation doses. Annual report 2011

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2013-07-01

    The annual report 2011 on ambient radioactivity levels and radiation doses covers the following issues: Part A: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B; Current data and their evaluation: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. The Appendix includes Explanations of terms, radiation doses and related units, external and internal radiation exposure, stochastic and deterministic radiation effects, genetic radiation effects, induction of malignant neoplasm, risk assessment, physical units and glossary, laws, ordinances, guidelines, recommendations and other regulations concerning radiation protection, list of selected radionuclides.

  10. Effect of ionizing radiation on rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Boraks, George; Tampelini, Flavio Silva; Pereira, Kleber Fernando; Chopard, Renato Paulo [University of Sao Paulo (USP), SP (Brazil). Inst. of Biomedical Sciences. Dept. of Anatomy]. E-mail: rchopard@usp.br

    2008-01-15

    A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolisation, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis). (author)

  11. The normative power of the international commission of radiation protection on the approval of the international and communal jurisprudence

    International Nuclear Information System (INIS)

    Lajoinie, O.

    2006-01-01

    From an original synthesis of the jurisprudence given by the regular control agency of the international work organization concerning the Convention OIT 115 relative to the protection of workers against the ionizing radiations, as well as an alternative analysis of a communal jurisprudence (CJCE, C-376/90, 25 November 1992: Commission of the European Communities against the Belgium kingdom), this work aims to bring a new way to see the power that exerts a non governmental organization with a scientific character: the International Commission for Radiologic Protection (ICRP) when it gives its 'recommendations'. (O.M.)

  12. Ethical considerations in protecting the environment from the effects of ionizing radiation. A report for discussion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    In recent years awareness of the vulnerability of the environment has increased and the need to protect it against the effects of industrial pollutants has been recognized. This trend is reflected in new and developing international policies for environmental protection. In the context of protection of the environment against ionizing radiation, the existing international approach is based on providing for the protection of humans. The current recommendations of the International Commission on Radiological Protection (ICRP) include the statement that {sup t}he standard of environmental control needed to protect man to the degree currently thought desirable will ensure that other species are not put at risk... {sup .} In the light of the new focus of concern for the environment, this statement is being critically reviewed in several international fora. The IAEA has, over many years, sponsored studies of the effects of ionizing radiation on species other than humans. Most recently it published a discussion report as IAEA-TECDOC-1091 (1999) in which the need for developing a system for protecting the environment against the effects of ionizing radiation was elaborated and in which various related technical and philosophical issues for resolution were discussed. The current report explores the ethical principles that could underlie a system of environmental protection. It is intended as one step in the development of a framework for the protection of the environment from the effects of ionizing radiation, and is being published in order to promote awareness of the current developments in this field as well as to encourage discussion amongst those involved.

  13. Ethical considerations in protecting the environment from the effects of ionizing radiation. A report for discussion

    International Nuclear Information System (INIS)

    2002-02-01

    In recent years awareness of the vulnerability of the environment has increased and the need to protect it against the effects of industrial pollutants has been recognized. This trend is reflected in new and developing international policies for environmental protection. In the context of protection of the environment against ionizing radiation, the existing international approach is based on providing for the protection of humans. The current recommendations of the International Commission on Radiological Protection (ICRP) include the statement that t he standard of environmental control needed to protect man to the degree currently thought desirable will ensure that other species are not put at risk... . In the light of the new focus of concern for the environment, this statement is being critically reviewed in several international fora. The IAEA has, over many years, sponsored studies of the effects of ionizing radiation on species other than humans. Most recently it published a discussion report as IAEA-TECDOC-1091 (1999) in which the need for developing a system for protecting the environment against the effects of ionizing radiation was elaborated and in which various related technical and philosophical issues for resolution were discussed. The current report explores the ethical principles that could underlie a system of environmental protection. It is intended as one step in the development of a framework for the protection of the environment from the effects of ionizing radiation, and is being published in order to promote awareness of the current developments in this field as well as to encourage discussion amongst those involved

  14. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-07-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs.

  15. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-01-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs

  16. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  17. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  18. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  19. The French Central Service for Protection against ionizing radiations (SCPRI), its activity

    International Nuclear Information System (INIS)

    Pellerin, P.; Moroni, J.P.

    1979-01-01

    The French Central Service for Protection against Ionizing Radiations (SCPRI), a service of Public Health and Labour departments, is entrusted by the French radioprotection regulations, of the control on a national scale, of all activities involving the use of ionizing radiations. It uses on this purpose, 4000 square meters of laboratories equiped with important radioanalyze and counting facilities (among them, a 100 low background β counters room). The SCPRI has also been nominated by WHO, as International Reference Center for radioactivy measurements in the environment. These duties have led the SCPRI to develop a drastic quality control of the techniques of preparation and verification of standard sources and reference samples [fr

  20. Modulation of the Inflammatory Response by Ionizing Radiation and the Possible Role of Curcumin

    International Nuclear Information System (INIS)

    Hegazy, M.El.A.

    2009-01-01

    The increasing use of radiation and the recent incidents of massive radiation exposure give an importance to study possible radiation hazards. Radiation-induced cell changes may result in death of the organism, death of the cells, modulation of physiological activity, or cancers that have no features distinguishing them from those induced by other types of cell injury (Valko et al., 2004). Electromagnetic radiation is divided into non-ionizing and ionizing radiation according to the energy required to eject electrons from molecules (Bessonov, 2006). Ionizing radiation, which may exhibit the properties of both waves and particles, has sufficient energy to produce ionization in matter. The ionizing radiation that exhibits corpuscular properties include alpha and beta particles, while those that behave more like waves of energy include x-rays and gamma-rays (γ-rays) (Bessonov, 2006). Radiation exposure comes from many sources and may be directly or indirectly ionizing. Directly ionizing radiation carries an electric charge that directly interacts, by electrostatic attraction or repulsion, with atoms in the tissue or the exposed medium. On the other hand, indirectly ionizing radiation is not electrically charged but results in production of charged particles by which its energy is absorbed (Metting et al., 1988). One of the characteristics of charged particles produced directly or indirectly is the linear energy transfer (LET), the energy loss per unit of distance traveled, usually expressed in kilo-electron volts (keV) per micrometer (μm). The LET, depending on the velocity and charge of the particles, may vary from about 0.2 to more than 1000 keV/μm (Table (1)). Radiation interacts with matter by direct and indirect processes to form ion pairs, some of which may be free radicals. These ion pairs rapidly interact with themselves and other surrounding molecules to produce free radicals. Both the indirect and direct activities of ionizing radiation lead to molecular

  1. The Effects of Ionizing Radiation on the Oral Cavity.

    Science.gov (United States)

    de Barros da Cunha, Sandra Ribeiro; Ramos, Pedro Augusto Mendes; Nesrallah, Ana Cristina Aló; Parahyba, Cláudia Joffily; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2015-08-01

    The aim of this study is to present a literature review on the effects of the ionizing radiation from radiotherapy treatment on dental tissues. Among the effects of increasing global life expectancy and longevity of the teeth in the oral cavity, increasing rates of neoplastic diseases have been observed. One of the important treatment modalities for head and neck neoplastic diseases is radiotherapy, which uses ionizing radiation as the main mechanism of action. Therefore, it is essential for dentists to be aware of the changes in oral and dental tissues caused by ionizing radiation, and to develop treatment and prevention strategies. In general, there is still controversy about the effects of ionizing radiation on dental structures. However, qualitative and quantitative changes in saliva and oral microbiota, presence of oral mucositis and radiation-related caries are expected, as they represent the well-known side effects of treatment with ionizing radiation. Points that still remain unclear are the effects of radiotherapy on enamel and dentin, and on their mechanisms of bonding to contemporary adhesive materials. Ionizing radiation has shown important interaction with organic tissues, since more deleterious effects have been shown on the oral mucosa, salivary glands and dentin, than on enamel. With the increasing number of patients with cancer seeking dental treatment before and after head and neck radiotherapy, it is important for dentists to be aware of the effects of ionizing radiation on the oral cavity.

  2. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  3. Atmospheric Ionizing Radiation (AIR) Project Review

    Science.gov (United States)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  4. Radiation ionization is an underestimated industrial technique

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Industrial radiation ionization requires electron beams coming from an accelerator or gamma radiation from a radioactive source (Co 60 ). The energy deposed in the irradiated material modifies its chemical bounds or kills micro-organisms. This process is used in medical material sterilization, in disinfestation of stored and packaged food products, in the production of plastic, in the coloring of glass, in the hardening of electronic components and in the modification of the properties of semi-conductors. For 40 years radiation ionization has been investigated, UNO (United Nations Organization) and WHO (World Health Organisation) recommend it for food processing. With a growing rate of 15% per year for the last 15 years, radiation ionization is now widely used. More than 170 gamma irradiation facilities are operating throughout the world. (A.C.)

  5. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  6. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  7. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  8. Application of ionizing radiation to preservation of mushrooms

    International Nuclear Information System (INIS)

    Smierzchalska, K.; Gubrynowicz, E.

    1979-01-01

    The influence of ionizing radiation on prolongation of preservation time and quality of mushrooms is discussed. Some numerical data are cited. The influence of ionizing radiation on growth rate and physiological processes is also presented. (A.S.)

  9. Pregnancy and ionizing radiation

    International Nuclear Information System (INIS)

    Plataniotis, Th.N.; Nikolaou, K.I.; Syrgiamiotis, G.V.; Dousi, M.; Panou, Th.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In this report there will be presented the effects of ionizing radiation at the fetus and the necessary radioprotection. The biological results on the fetus, caused by the irradiation, depend on the dose of ionizing radiation that it receives and the phase of its evolution. The imminent effects of the irradiation can cause the fetus death, abnormalities and mental retardation, which are the result of overdose. The effects are carcinogenesis and leukemia, which are relative to the acceptable irradiating dose at the fetus and accounts about 0,015 % per 1 mSv. The effects of ionizing radiation depend on the phase of the fetus evolution: 1 st phase (1 st - 2 nd week): presence of low danger; 2 nd phase (3 rd - 8 th week): for doses >100 mSv there is the possibility of dysplasia; 3 rd phase (8 th week - birth): this phase concerns the results with a percentage 0,015 % per 1 mSv. We always must follow some rules of radioprotection and especially at Classical radiation use of necessary protocols (low dose), at Nuclear Medicine use of the right radioisotope and the relative field of irradiation for the protection of the adjacent healthy tissues and at Radiotherapy extreme caution is required regarding the dose and the treatment. In any case, it is forbidden to end a pregnancy when the pregnant undergoes medical exams, in which the uterus is in the beam of irradiation. The radiographer must always discuss the possibility of pregnancy. (author)

  10. Ionizing radiation in the education of medicine

    International Nuclear Information System (INIS)

    Ivanova, N.

    2016-01-01

    Physics is a fundamental science that finds its applications in all areas of our lives. Its application in modern medicine is undeniable. In today’s medical practice special attention is dedicated to the use of ionizing radiation. The wide range of modern science and technology offers enormous possibilities for creation and implementation of new equipment using adequate doses of ionizing radiation. For accurate medical diagnostics and effective treatment of patients, this type of equipment must provide the necessary information to the physicians. On the other hand, the physicians should possess enough knowledge in the relative field of medicine. This paper contains information about the knowledge communicated to the students of the graduate program Medical Physics and Biophysics in the discipline Medicine in the first year of graduate study at the Medical University “Prof. Dr. Paraskev Stoyanov” of Varna. Firstly, we discuss the topics in the lectures of these two disciplines, concerning knowledge about ionizing radiation. Secondly, the respective laboratory exercises are described that illustrate the lectures in the graduate programs Medical Physics and Biophysics. Keywords: ionizing radiation, education, medicine, medical physics, biophysics

  11. Ionizing radiation and wild birds: a review

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Schultz, V.

    1975-01-01

    Since the first atomic explosion, 16 July 1945 at the Trinity Site in south-central New Mexico, the impact of ionizing radiation on bird populations has been of concern to a few individuals. The proliferation of nuclear power plants has increased public concern as to possible deleterious effects of nuclear power plant operation on resident and migratory bird populations. Literature involving wild birds and ionizing radiation is not readily available, and only a few studies have been anywhere near comprehensive, with most effort directed towards monitoring radionuclide concentration in birds. The objective of the paper is to document the literature on wild birds and ionizing radiation including a brief description of pertinent papers

  12. Non controlled effect of ionizing radiations : involvement for radiation protection; Efectos no dirigidos de la radiacion ionizante: implicaciones para la proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Little, J. B.

    2005-07-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs.

  13. Some immune reactions of the personnel, subjected to combined effect of ionizing radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Shubin, V.M.; Litver, B.Ya.; Zykova, I.A.

    1978-01-01

    Some factors of nonspecific bodily protection (bactericidal capacity, complement, lysozyme, beta lysins of blood serum) are analyzed in gamma defectoscopists and in workers exposed to occupational factors of nonradiation nature. A number of alterations in immunity indices in persons exposed to combined radiation and nonradiation factors (stimulation of beta lysins, increased levels of antitissue antibodies, etc.) had has been revealed. These alterations appear to have resulted from the potentiation of the effects from ionizing radiation and nonradiation nature factors

  14. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  15. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  16. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  17. Six categories of ionizing radiation quantities practical in various fields

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zhuo Weihai

    2011-01-01

    This paper is the part of review on the evolvement of the systems for ionizing radiation quantities and units. In the paper, for better understanding and correct use of the relevant quantities of ionizing radiation, the major ionizing radiation quantities in various fields are divided into six categories. (authors)

  18. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Pourzand, C.; Zhong, J.L.

    2003-01-01

    The ultraviolet A (320 - 380 nm) component of sunlight generates an oxidative stress in skin which contributes to both the acute (sunburn) and chronic (aging, skin cancer) effects of sunlight. The damaging effects occur via generation of active oxygen species and will be exacerbated by the presence of catalytically reactive iron so that the observation that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts and keratinocytes via the proteolysis of ferritin is likely to be biologically significant. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme. The well-characterised activation of heme oxygenase 1 by UVA radiation will lead to breakdown of heme and further release of iron. Overall these interactions generate a strong oxidative stress on cells. Both the basal and UVA-induced levels of labile iron are 2-4 times higher in fibroblasts than keratinocytes and this is consistent with the higher resistance of keratinocytes to UVA-induced necrotic cell death. Modulating cellular iron levels by hemin (to enhance the levels) or iron chelators (to reduce the levels) has the predicted effect on levels of necrotic cell death. Overall these studies further illustrate the potent oxidising nature of UVA radiation. A series of genes activated by UVA radiation including heme oxygenase 1 (HO-1), ferritin and superoxide dismutase (SOD) may be involved in protection against the damaging effects of this oxidising carcinogen. HO will act by removing free heme and possibly by promoting the efflux of free iron, ferritin will bind free iron and SOD will remove superoxide anion. The strong response of HO-1 to oxidants in human skin fibroblasts provides a useful molecular model to study this inducible enzyme which appears to play a major role in anti-inflammatory activity in mammals and could play a significant role in preventing atherosclerosis. Several indirect lines of evidence support the role of UVA

  19. Ionizing radiation regulations and the dental practitioner: 1. The nature of ionizing radiation and its use in dentistry.

    Science.gov (United States)

    Rout, John; Brown, Jackie

    2012-04-01

    Legislation governing the use of ionizing radiation in the workplace and in medical treatment first became law in 1985 and 1988, being superseded by the Ionizing Radiations Regulations 1999 (IRR99) and the Ionizing Radiation (Medical Exposure) Regulations 2000, (IR(ME)R 2000), respectively. This legislation ensures a safe environment in which to work and receive treatment and requires that those involved in the radiographic process must be appropriately trained for the type of radiographic practice they perform. A list of the topics required is detailed in Schedule 2 of IR(ME)R 2000 and is paraphrased in Table 1, with the extent and amount of knowledge required depending on the type of radiographic practice undertaken. Virtually all dental practitioners undertake radiography as part of their clinical practice. Legislation requires that users of radiation, including dentists and members of the dental team, understand the basic principles of radiation physics, hazards and protection, and are able to undertake dental radiography safely with the production of high quality, diagnostic images.

  20. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  1. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  2. 21 CFR 579.22 - Ionizing radiation for treatment of animal diets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ionizing radiation for treatment of animal diets..., AND HANDLING OF ANIMAL FEED AND PET FOOD Radiation and Radiation Sources § 579.22 Ionizing radiation for treatment of animal diets. Ionizing radiation for treatment of complete diets for animals may be...

  3. Effect of Exposure to Non-ionizing Radiation (Electromagnetic Fields on Human System: A Literature Review

    Directory of Open Access Journals (Sweden)

    Paula Rubya Souza C and acirc;mara

    2014-08-01

    Full Text Available The indiscriminate presence of radio base stations, which emit non-ionizing radiation (NIR, as well as the frequent use of mobile phones, can cause increased susceptibility of populations to the emergence of diseases such as cancers of the head and neck, biochemical, hematopoietic and hepatic changes, among others. Exposure to physical contamination, including NIR, has been implicated in numerous diseases, raising concerns about the widespread sources of exposure to this type of radiation. This paper reviews studies that have assessed associations between likely exposure to electromagnetic fields, such as radiofrequency transmissions, and many kinds of human diseases including cancer, as well as alerts to the current knowledge on the association between environmental exposure to NIR and the risk of development of adverse human health effects. This way, there appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research. [J Interdiscipl Histopathol 2014; 2(4.000: 187-190

  4. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  5. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  6. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  7. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  8. Radiation, people and the environment

    International Nuclear Information System (INIS)

    Ford, J.

    2004-02-01

    Radiation is a fact of life. We live in a world in which radiation is naturally present everywhere. Light and heat from nuclear reactions in the Sun are essential to our existence. Radioactive materials occur naturally throughout the environment, and our bodies contain radioactive materials such as carbon-14, potassium-40 and polonium-210 quite naturally. All life on Earth has evolved in the presence of this radiation. Since the discovery of X rays and radioactivity more than 100 years ago, we have found ways of producing radiation and radioactive materials artificially. The first use of X rays was in medical diagnosis, within six months of their discovery in 1895. So a benefit from the use of radiation was established very early on, but equally some of the potential dangers of radiation became apparent in the doctors and surgeons who unwittingly overexposed themselves to X rays in the early 1900s. Since then, many different applications of radiation and radioactive materials have been developed. We can classify radiation according to the effects it produces on matter, into ionizing and non-ionizing radiation. Ionizing radiation includes cosmic rays, X rays and the radiation from radioactive materials. Non-ionizing radiation includes ultraviolet light, radiant heat, radio waves and microwaves. This book deals with ionizing radiation, a term, which for simplicity, is often shortened to just radiation. It has been prepared by the International Atomic Energy Agency (IAEA) in co-operation with the National Radiological Protection Board (United Kingdom) as a broad overview of the subject of ionizing radiation, its effects and uses, as well as the measures in place to use it safely. As the United Nations agency for nuclear science and its peaceful applications, the IAEA offers a broad spectrum of expertise and programmes to foster the safe use of radiation internationally

  9. Use of non-ionizing electromagnetic fields for the treatment of cancer.

    Science.gov (United States)

    Jimenez, Hugo; Blackman, Carl; Lesser, Glenn; Debinski, Waldemar; Chan, Michael; Sharma, Sambad; Watabe, Kounosuke; Lo, Hui-Wen; Thomas, Alexandra; Godwin, Dwayne; Blackstock, William; Mudry, Albert; Posey, James; O'Connor, Rodney; Brezovich, Ivan; Bonin, Keith; Kim-Shapiro, Daniel; Barbault, Alexandre; Pasche, Boris

    2018-01-01

    Cancer treatment and treatment options are quite limited in circumstances such as when the tumor is inoperable, in brain cancers when the drugs cannot penetrate the blood-brain-barrier, or when there is no tumor-specific target for generation of effective therapeutic antibodies. Despite the fact that electromagnetic fields (EMF) in medicine have been used for therapeutic or diagnostic purposes, the use of non-ionizing EMF for cancer treatment is a new emerging concept. Here we summarize the history of EMF from the 1890's to the novel and new innovative methods that target and treat cancer by non-ionizing radiation.

  10. Radiological protection requirements applicable to non-invasive inspection of charges with ionizing radiation; Requisitos de proteção radiológica aplicáveis em inspeção não invasiva de cargas com radiação ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, S.C.; Palmieri, J.A.S. [Faculdade Casa Branca, SP (Brazil). Pós-Graduação de Proteção Radiológica em Aplicações Médicas, Industriais e Nucleares; Lima, C.M.A. [MAXIM Cursos, Rio de Janeiro, RJ (Brazil); Silva, F.C.A. da, E-mail: franciscodasilva13uk@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The US twin towers attack in 2001 raised concerns about terrorism, illicit trafficking of materials and the possible use of a 'dirty bomb' (DDR), affecting the control of entry and exit of products. Thus, the use of ionizing radiation scanning systems of containers at ports and borders was started to investigate possible entries of illegal material. Brazil, adhering to this concern and due to the holding of major events such as RIO + 20, World Cup, Olympics, etc., increased safety in the movement of goods using non-invasive inspection. Linear electron accelerators, which produce high energy X-rays in the range of 1.5 to 9 MeV, are used to inspect the containers. Since in Brazil there is no specific technical regulation for the operation of non-invasive inspection equipment with X-rays and linear accelerators, ten main technical requirements are presented. It is essential that a technical regulation is drawn up by placing the system of non-invasive inspection of cargo with ionizing radiation in the international radiation protection standard.

  11. Preventive medical programmes to personnel exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Estrada F, E.

    1996-01-01

    The increasing use of ionizing radiation in the medical field as well as in industry and research grants has special importance to the security aspects related to the individual as well as his surroundings, reason for which the implementation of effective Occupational Radiation Protection Programmes constitutes a priority. Presently, in Guatemala, an Occupational Medicine Programme, directed to the Radiosanitary watch over of occupationally exposed personnel does not exist. It is the goal in this project to organize and establish such programme, based on protective and training actions focused toward the employee as the main entity, his specific activities and his work surroundings. Medical watch over together with Radiation Protection will permit the reduction of the occurrence probability of accidents or incidents, as well as the limitation of stochastic effects to the undermost values. The application scope of the present project is, in the first place, directed to the occupationally exposed personnel of the Direcci[n General de Energ[a Nuclear, as regulatory entity of these activities, and afterwards, its application in the different institutions which work with ionizing radiations. All the previously exposed is based on the Nuclear Legislation prevailing in Guatemala as well as the recommendations of international organizations. (author)

  12. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  14. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    Science.gov (United States)

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  15. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  16. Health surveillance of persons occupationally exposed to ionizing radiation: Guidance for occupational physicians

    International Nuclear Information System (INIS)

    1998-01-01

    This Safety Report is intended mainly for occupational physicians, as well as for occupational health service personnel, to assist them in routine practice by specifying the features of work under radiation conditions, the general rules of radiological protection for occupational exposure and the organization of the medical surveillance of workers occupationally exposed to radiation. The Report is consistent with the recommendations of the International Commission on Radiological Protection presented in its Publication 60 (1990) and with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources published by the IAEA in 1966. It supersedes Safety Series No.83 (Radiation Protection in Occupational Health: Manual for Occupational Physicians) published by the IAEA in 1987

  17. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  18. Responses of populations of small mammals to ionizing radiation

    International Nuclear Information System (INIS)

    Kitchings, J.T.

    1978-01-01

    Studies on the responses of small mammals to ionizing radiation have, over the past 30 years, documented numerous effects on direct mortality, reproduction, the hemopoietic systems, and radionuclide metabolism. Three general findings have resulted from past efforts: (1) ionizing radiation is a factor in environmental stress, (2) the response of wild small mammals to ionizing radiation is a mosaic of varying radiosensitivities interacting with environmental variables, and (3) one of the most sensitive organismal processes to radiation is reproduction. While an excellent understanding of the biological effects resulting from high or intermediate-level radiation exposures has been developed, this is not the case for effects of low-level doses

  19. The handling with orphan sources of ionizing radiation in Belarus

    International Nuclear Information System (INIS)

    Dubrovskij, A.I.; Beresneva, V.A.; Pribylev, S.V.

    2013-01-01

    In Belarus, the emergency response actions, when detecting orphan sources, provide specific organs of government within their competence. Overall coordination and work on the collection, processing, exchange, accounting and transfer in the established order information about the sources of ionizing radiation interacting organs and relevant international organizations assigned to the Emergency Situations Ministry. Created in Belarus response system in case of detection of orphan sources can provide the level of emergency preparedness and response, and generally satisfy international best practice in this area. (authors)

  20. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  1. Clinical practitioners' knowledge of ionizing radiation doses in ...

    African Journals Online (AJOL)

    Questions on radiosensitivity of different organs, imaging modalities that use ionizing radiation and considerations for the choice of ionizing radiation (IR) based examinations were included. Participants were also asked for their preferred methods of filling any knowledge gap on IR issues. Responses were presented in ...

  2. Experiments on the Scaling of Ionization Balance vs. Electron and Radiation Temperature in Non-LTE Gold Plasmas

    International Nuclear Information System (INIS)

    Heeter, R.F.; Hansen, S.B.; Beiersdorfer, P.; Foord, M.E.; Fournier, K.B.; Froula, D.H.; Mackinnon, A.J.; May, M.J.; Schneider, M.B.; Young, B.K.F.

    2004-01-01

    Understanding and predicting the behavior of high-Z non-LTE plasmas is important for developing indirect-drive inertial confinement fusion. Extending earlier work from the Nova laser, we present results from experiments using the Omega laser to study the ionization balance of gold as a function of electron and radiation temperature. In these experiments, gold samples embedded in Be disks expand under direct laser heating to ne ≅ 1021cm-3, with Te varying from 0.8 to 2.5 keV. An additional finite radiation field with effective temperature Tr up to 150 eV is provided by placing the gold Be disks inside truncated 1.2 mm diameter tungsten-coated cylindrical hohlraums with full laser entrance holes. Densities are measured by imaging of plasma expansion. Electron temperatures are diagnosed with either 2ω or 4ω Thomson scattering, and also K-shell spectroscopy of KCl tracers co-mixed with the gold. Hohlraum flux and effective radiation temperature are measured using an absolutely-calibrated multichannel filtered diode array. Spectroscopic measurements of the M-shell gold emission in the 2.9-4 keV spectral range provide ionization balance and charge state distribution information. The spectra show strong variation with Te, strong variation with the applied Tr, at Te below 1.6 keV, and relatively little variation with Tr at higher Te (upwards of 2 keV). We summarize our most recent spectral analyses and discuss emerging and outstanding issues

  3. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  4. The possibility of the dose limitation system application non-ionizing radiation protection

    International Nuclear Information System (INIS)

    Ranisavljevic, M., Markovic, S.

    1997-01-01

    Modern conception of the ionizing radiation protection is based on Dose Limitation System. In the base of every human decision lies compromise. Balance between positive and negative factors, benefit and detriment, profit and expense includes the decision about possibilities for realization any defined radiation practice. The optimal option for the given value of the varying parameter gives the maximum benefit and the minimum detriment. In radiation protection field, detriment is related with human health or expenses, and varying parameter is level of radiation protection (for example dimensions of the installed shielding). The problem lies in fact that for the given value of the varying shielding parameter the maximum benefit and the minimum detriment are not achievable simultaneously because the greater benefit includes the greater expense. The problems which have to be solved because of introducing Dose Limitation System, in regard to create Modified Dose Limitation System, are presented. (author)

  5. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    Science.gov (United States)

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  6. Basic concepts in dosimetry. A critical analysis of the concepts of ionizing radiation and energy imparted

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The concepts of ionizing radiation and energy imparted defined by the ICRU in 1971 (Radiation Quantities and Units, Report 19, International Commission on Radiation Units and Measurements, Washington, D.C., 1971) are critically analyzed. It is found that the definitions become more consistent by changing them at two points. Charged particles with insufficient kinetic energy to ionize by collision but which are capable of initiating nuclear and elementary particle transformations are suggested to be classified as ionizing particles. In addition, the expressions ''the energy released'' or the ''energy expended'' in a nuclear or elementary particle transformation are suggested to be specified as ''the change in rest-mass energy of nuclei and elementary particles.'' Then the ionization caused by, for instance, nuclear reactions contributes to the energy imparted and the Q-value of an excitation or deexcitation of the electron structure, regarded as an elementary particle transformation, is zero

  7. Influence of ionizing radiation on human body

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2016-06-01

    Full Text Available This article describes positive and negative aspects of ionizing radiation and its effects on human body. Being a part of various medical procedures in medicine, ionising radiation has become an important aspect for both medical practitioners and patients. Commonly used in treatment, diagnostics and interventional radiology, its medical usage follows numerous rules, designed to reduce excessive exposure to ionizing radiation. Its widespread use makes it extremely important to research and confirm effects of various doses of radiation on patients of all ages. Two scientific theories, explaining radiation effects on human organism, stand in contrast: commonly accepted LNT-hypothesis and yet to be proven hormesis theory. Despite the fact that the current radiation protection standards are based on the linear theory (LNT-hypothesis, the hormesis theory arouses more and more interest, and numerous attempts are made to prove its validity. Further research expanding the knowledge on radiation hormesis can change the face of the future. Perhaps such researches will open up new possibilities for the use of ionizing radiation, as well as enable the calculation of the optimal and personalised radiation dose for each patient, allowing us to find a new “golden mean”. The authors therefore are careful and believe that these methods have a large future, primarily patient’s good should however be kept in mind.

  8. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  9. Ionizing radiation environment for the TOMS mission

    Science.gov (United States)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  10. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  11. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  12. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  13. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  14. Effect of the ionizing radiation in the sensorial characteristics of the pineapple

    International Nuclear Information System (INIS)

    Silva, Josenilda Maria da; Spoto, Marta Helena Fillet; Silva, Juliana Pizarro

    2007-01-01

    The post-harvest quality of the pineapple cultivar Smooth Cayenne was evaluated after the fruit was irradiated with doses of 100 and 150 Gy and stored for 10, 20 and 30 days at 12 deg C ( +-1) and relative humidity of 85% (+- 5). The controls were untreated fruits. Sensorial analyses were made for each storage period to obtain information about the effects of ionizing radiation on the quality of the fruit. The ionizing radiation dosage had little effect on the sensorial characteristics of the pineapple, although the best results were obtained with fruit irradiated with 100 Gy. The 20-day storage period resulted in the highest consumer acceptability, while the 30-day storage period impaired the fruit's external and internal appearance. (author)

  15. Non-Linear Adaptive Phenomena Which Decrease The Risk of Infection After Pre-Exposure to Radiofrequency Radiation

    OpenAIRE

    Mortazavi, S.M.J.; Motamedifar, M.; Namdari, G.; Taheri, M.; Mortazavi, A.R.; Shokrpour, N.

    2013-01-01

    Substantial evidence indicates that adaptive response induced by low doses of ionizing radiation can result in resistance to the damage caused by a subsequently high-dose radiation or cause cross-resistance to other non-radiation stressors. Adaptive response contradicts the linear-non-threshold (LNT) dose-response model for ionizing radiation. We have previously reported that exposure of laboratory animals to radiofrequency radiation can induce a survival adaptive response. Furthermore, we ha...

  16. Standardization of ionizing radiation in industry and environment

    International Nuclear Information System (INIS)

    1990-03-01

    In this account a new standardization system is described. This system is intended for the protection of environment, people and employees against the harmful consequences of ionizing radiation. This new system is based upon the actual knowledge of the harmful effects of ionizing radiation and joins to the starting points and objectives of the environment- and industry-protectional policies and is explained for both policies separately. The starting points and objectives are presented of the actual environment- and industry-protectional policies and of the radiation-protection policy pursued up till now. The harmful effects of radiation, the importance of the of the most recent scientific developments and the results of the investigation performed in the framework of this account, are described. Conclusions about these harmful affects are given. The systematics of the standardization are described. Subsequently are considered the radiation sources, their classification, the risk limits for regular situations and for large accidents, the justification principle and the ALARA-principle, emission- and product requirements, objectives for environment quality, standards for combat of the consequences of accidents, the policy with regard to 'building and dwelling' and finally standards for protection of employees. The consequences of the systematics of standardization, which are described in this account, are indicated for environment- as well as industry-protectional policy. Per radiation-source category the corresponding risks are indicated and at which term which continuation activities are necessary. The consequences for the set of instruments and some international aspects are considered. Finally the activity list gives a survey of the continuation activities and the terms at which these have to be carried out. (H.W.). 4 figs.; 1 tab

  17. Basic ionizing radiation symbol

    International Nuclear Information System (INIS)

    1987-01-01

    A description is given of the standard symbol for ionizing radiation and of the conditions under which it should not be used. The Arabic equivalent of some English technical terms in this subject is given in one page. 1 ref., 1 fig

  18. Sources of ionizing radiation and their interactions with matter

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Particles or photons are said to be ionizing if they are capable of removing electrons from matter. For this to happen, the energy per photon or the kinetic energy per particle must be greater than the minimum binding energy of the electrons of the medium. Radiation is thus ionizing relative to the medium. The main constituents of organic matter are carbon, oxygen, nitrogen, and hydrogen. The values of the primary ionization potentials (minimum energy required to remove the least bound electron from an atom) of these elements are: C : 11.24 eV; H : 13.60 eV; O : 13.57 eV; and N : 14.20 eV. The minimum energy required to remove an electron from a biological medium may in fact be less than these values; the binding energy of electrons in a molecule may be of the order of 10 eV, or even lower. The most energetic UV photons, those of wavelength 0.1 μm, have an energy of 12.4 eV, which is enough to ionize biological media. Similarly, X- and γ-rays are ionizing. However, the near UV, visible, IR, micro and radio waves are non-ionizing. In general, particles possessing a kinetic energy larger than 10 eV are ionizing

  19. Role of ionizing radiation in chemical evolution studies

    International Nuclear Information System (INIS)

    Albarran, G.; Negron-Mendoza, A.; Trevino, C.; Torres, J.L.

    1988-01-01

    The purpose of this paper is to emphasize the role of ionizing radiation in radiation-induced reactions in prebiotic chemistry. The use of ionizing radiation as an energy source is based on its unique qualities, its specific manner of energy deposition and its abundance in the Earth's crust. As an example of radiation-induced reactions, the radiolysis of malonic acid was investigated. Malonic acid is converted into other carboxylic acids. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. (author)

  20. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  1. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  2. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  3. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  4. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  5. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  6. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  7. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  8. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  9. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... to ionizing radiation. 3.311 Section 3.311 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Evaluations; Service Connection § 3.311 Claims based on exposure to ionizing radiation. (a) Determinations of... to ionizing radiation in service, an assessment will be made as to the size and nature of the...

  10. Specification for symbol for ionizing radiation

    International Nuclear Information System (INIS)

    1974-01-01

    This Malaysia Standard specification specifies a symbol recommended for use only to signify the actual or potential presence of ionizing radiation (#betta#, α, #betta# only) and to identify objects, devices, materials or combinations of materials which emit such radiation. (author)

  11. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    Science.gov (United States)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  12. Code of Practice for the Protection of Persons against Ionizing Radiations arising from Medical and Dental Use

    Energy Technology Data Exchange (ETDEWEB)

    1972-01-01

    This Code is a revision of the 1964 Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use. This revised Code (which does not have the force of law) applies to the use of ionizing radiations arising from all forms of medical and dental practice and from allied research involving human subjects. It covers both workers, patients and members of the public. Although the arrangements recommended relate primarily to institutions they should be applied, as far as possible, by all medical and dental practitioners. The Code has been drawn up in the light of the recommendations of the International Commission on Radiological Protection (ICRP) and of the views of the Medical Research Council's Committee on Protection against Ionizing Radiations.

  13. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  14. EURADOS. A success story for European cooperation in the dosimetry of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, Neuherberg (Germany). German Research Center for Environmental Health (GMBH); Schuhmacher, Helmut [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2017-10-01

    EURADOS (European Radiation Dosimetry Group) is a European research platform aiming at the promotion of research and development and European cooperation in the field of the dosimetry of ionizing radiation (www.eurados.org). Initially founded in 1982, it was established in 2008 as a non-profit registered society under German law and is currently based in Neuherberg, Germany.

  15. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    International Nuclear Information System (INIS)

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, william F.

    2006-01-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizing radiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation

  16. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    International Nuclear Information System (INIS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.

    1994-01-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to γ radiation form a 60 Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers

  17. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  18. Ionizing radiation, nuclear energy and radiation protection for school

    International Nuclear Information System (INIS)

    Lucena, E.A.; Reis, R.G.; Pinho, A.S.; Alves, A.S.; Rio, M.A.P.; Reis, A.A.; Silva, J.W.S.; Paula, G.A. de; Goncalves Junior, M.A.

    2017-01-01

    Since the discovery of X-rays in 1895, ionizing radiation has been applied in many sectors of society, such as medicine, industry, safety, construction, engineering and research. However, population is unaware of both the applications of ionizing radiation and their risks and benefits. It can be seen that most people associate the terms 'radiation' and 'nuclear energy' with the atomic bomb or cancer, most likely because of warlike applications and the stealthy way radioactivity had been treated in the past. Thus, it is necessary to clarify the population about the main aspects related to the applications, risks and associated benefits. These knowledge can be disseminated in schools. Brazilian legislation for basic education provides for topics such as nuclear energy and radioactivity to high school students. However, some factors hamper such an educational practice, namely, few hours of class, textbooks do not address the subject, previous concepts obtained in the media, difficulty in dealing with the subject in the classroom, phobia, etc. One solution would be the approximation between schools and institutions that employ technologies involving radioactivity, which would allow students to know the practices, associated radiological protection, as well as the risks and benefits to society. Currently, with the increasing application of ionizing radiation, especially in medicine, it is necessary to demystify the use of radioactivity. (author)

  19. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    Science.gov (United States)

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  20. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  1. The exemption from the requirement of registration and/or licensing of some sources. machines and devices emitting ionizing and /or on ionizing radiation: a proposed draft for Israeli regulations

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T; Margaliot, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1997-11-16

    The licensing and authorization of the import, purchase, distribution, transportation and application of radioactive materials and devices emitting ionizing and/or non-ionizing radiation are carried out in Israel by the Ministries of the Environment and of Health. The legal basis for file authority of these Ministries in radiation protection matters is file {sup P}harmacists Regulation- Radioactive Elements and Products Thereof, 1981 (revision 1994) (PRREPT). Licenses are issued by the Chief Radiation Executive (CUE) appointed by the Minister of the Environment and the Minister of Health. The Regulations include a clause which enables the CUE to exempt certain amounts of radioactive materials from file requirements laid down in the PRREPT. The exemption clause is general and does not indicate the types and amounts of radioactive material may be exempted. The proposed draft Israeli regulations are related to exemption of some sources, machines and devices emitting ionizing and non-ionizing radiation, wife a suggestion to extend file above mentioned exemption clause to include some machines and devices and to provide an explicit and detailed list of materials, sources and devices to be exempted. Among these are the following: (authors)

  2. The exemption from the requirement of registration and/or licensing of some sources. machines and devices emitting ionizing and /or on ionizing radiation: a proposed draft for Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Margaliot, M.

    1997-01-01

    The licensing and authorization of the import, purchase, distribution, transportation and application of radioactive materials and devices emitting ionizing and/or non-ionizing radiation are carried out in Israel by the Ministries of the Environment and of Health. The legal basis for file authority of these Ministries in radiation protection matters is file P harmacists Regulation- Radioactive Elements and Products Thereof, 1981 (revision 1994) (PRREPT). Licenses are issued by the Chief Radiation Executive (CUE) appointed by the Minister of the Environment and the Minister of Health. The Regulations include a clause which enables the CUE to exempt certain amounts of radioactive materials from file requirements laid down in the PRREPT. The exemption clause is general and does not indicate the types and amounts of radioactive material may be exempted. The proposed draft Israeli regulations are related to exemption of some sources, machines and devices emitting ionizing and non-ionizing radiation, wife a suggestion to extend file above mentioned exemption clause to include some machines and devices and to provide an explicit and detailed list of materials, sources and devices to be exempted. Among these are the following: (authors)

  3. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  4. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  5. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  6. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  7. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  8. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  9. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  10. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  11. Ionizing radiation sources management in the Commonwealth of Independent States - CIS

    International Nuclear Information System (INIS)

    Iskra, A.; Bufetova, M.

    2006-01-01

    Ionizing radiation sources cover a broad band of power: from powerful NPP reactors and research reactors to portable radioisotope ionizing radiation sources applied in medicine, agriculture, industry and in the energy supply systems of remote facilities. At present, scales and use field of radionuclide sources in the CIS have the tendency to increase. In this connection, the issues of ionizing radiation sources management safety at all stages of their life cycle, from production to treatment, have been of a great importance. The materials on ionizing radiation sources inventory and treatment in the CIS (Russia, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan and Ukraine) are presented in the report. It is shown that in some republics, there is difficulty in ionizing radiation sources accounting and control system; the national regulatory and legal framework bases regulating activity on radioactive sources use, localization and treatment require update. Many problems are connected with the sources beyond state accounting. The problem of ionizing radiation sources use safety is complicated by the growing activity of various terrorist groups. The opportunity to use ionizing radiation sources with terrorism goals requires the application of defined systems of security and physical protection at all stages of their management. For this purpose a collective, with all CIS countries, organization of radioactive sources accounting and control as well as countermeasures on their illegal transportation and use are necessary. In this connection, the information collection regarding situation with providing of ionizing radiation sources safety, conditions of equipment and storage facilities, radioactive materials accounting and control system in the CIS countries is vitally needed

  12. Impact of non-anastomotic biliary strictures after liver transplantation on healthcare consumption, use of ionizing radiation and infectious events.

    Science.gov (United States)

    de Vries, A Boudewijn; Koornstra, Jan J; Lo Ten Foe, Jerome R; Porte, Robert J; van den Berg, Aad P; Blokzijl, Hans; Verdonk, Robert C

    2016-01-01

    Non-anastomotic biliary strictures (NAS) after orthotopic liver transplantation (OLT) have a negative influence on graft survival. Expert opinion suggests a negative effect of NAS on other important aspects of post-transplant care, although its impact is largely unknown as data are scarce. This retrospective single center study analyzed data on healthcare consumption, use of ionizing radiation, infectious complications and development of highly resistant microorganisms (HRMO) in adult patients with NAS. A comparison with a matched control group was made. Forty-three liver recipients with NAS and 43 controls were included. Hospital admissions were higher in patients with NAS. Most common reason for admission was bacterial cholangitis (BC), with 70% of the patients having at least one episode compared to 9% in the control group. In patients with NAS, 67% received at least one ERCP compared to 21% in the control group (p = 0.001). This resulted in a larger yearly received radiation dose for patients with NAS (p = 0.001). Frequency of intravenous antibiotic therapy was higher (p = 0.001) for patients with NAS, consistently resulting in a higher number of cultures found with HRMO (p = 0.012). NAS after OLT have a negative effect on post-transplant care, increasing readmission rates, interventional procedures, exposure to ionizing radiation, use of antibiotics, and development of HRMO. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Güven, O.; Barsbay, M.; Ateş,; Akbulut, M. [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2009-07-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers.

  14. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Güven, O.; Barsbay, M.; Ateş; Akbulut, M.

    2009-01-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers

  15. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  16. Code of Practice for the Protection of Persons against Ionizing Radiations arising from Medical and Dental Use

    International Nuclear Information System (INIS)

    1972-01-01

    This Code is a revision of the 1964 Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use. This revised Code (which does not have the force of law) applies to the use of ionizing radiations arising from all forms of medical and dental practice and from allied research involving human subjects. It covers both workers, patients and members of the public. Although the arrangements recommended relate primarily to institutions they should be applied, as far as possible, by all medical and dental practitioners. The Code has been drawn up in the light of the recommendations of the International Commission on Radiological Protection (ICRP) and of the views of the Medical Research Council's Committee on Protection against Ionizing Radiations. (NEA) [fr

  17. Survey of ionizing radiations to workers in Carlos Andrade Hospital during March 1998 and December 2000

    International Nuclear Information System (INIS)

    Del Pino Albuja, Norma Josefina

    2005-01-01

    Ionizing radiation represents a daily risk for the people who work occupationally exposed to radiations at Carlos Andrade Marin hospital. For that reason, the knowledge of the basic concepts of the physical phenomenon of ionizing radiation and the study of dosimetry that is carried out to occupationally exposed workers at Carlos Andrade Marin hospital are very important to manage ionizing radiations as a risk factor. This study shows the system of dosimetry of Carlos Andrade Marin hospital. Moreover, it includes an analysis between the doses received by workers occupationally exposed of Carlos Andrade Marin hospital and the limit dose internationally recommended. For this investigation, it was used bibliographical revision, descriptive, historical, and inductive study, and descriptive statistics with the software Microsoft Office Excel 2003. The hypothesis of this research is that the workplaces exposed to ionizing radiations at Carlos Andrade Marin hospital have an appropriate dosimetry system. Furthermore, it considers superficial and deep doses of occupationally exposed workers of both genders and age. The obtained results of the studied period 1998 to 2000 are: i) The 99% of the occupationally exposed workers used the dosimeter. ii) The higher superficial dose -13,34mSv - corresponds to a Hemodynamic doctor. iii) The higher deep dose -7,1mSv - corresponds to a Nuclear Medicine medical technologist. iv) The higher doses mentioned above are under the limits internationally recommended by the International Commission on International Protection. These limits are 20mSv per year and 100mSv per 5 years respectively. The conclusions of the investigation are: i) Carlos Andrade Marin hospital has an adequate Dosimetry system and the occupationally exposed workers are permanently monitored with the dosimeter. ii) The Nuclear Medicine workers have the higher doses of exposition related to the other areas of Carlos Andrade Marin hospital. iii) The most exposed

  18. Erythrocytes antioxygant parameters in works occupationally to law levels of ionizing radiation

    International Nuclear Information System (INIS)

    Klucinski, P.; Martirosian, G.; Wojcik, A.; Grabowska-Bochenek, R.; Gminmski, J.; Mazur, B.; Hrycek, A.; Cieslik, P.

    2008-01-01

    It has been postulated that ionizing radiation generates reactive oxygen species (ROS). ROS are annihilated by an intracellular enzymatic system composed mainly of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Workers of X-ray departments are occupationally exposed to long-term low levels of ionizing radiation, which may affect their antioxidant status. Erythrocyte activities of SOD, CAT and GPx were measured in 45 workers of X-ray departments and 30 persons who constituted the control group. Subgroups with respect to sex and cigarette smoking were selected. Colorimetric method was used for determination erythrocyte activities of SOD, CAT and GPx. A significant decrease of GPx, SOD and CAT activity in workers as compared to controls was observed. Lower activity of SOD and GPx in female and GPx in male subgroup was found. SOD was significantly more elevated in smoking workers than in the non-smoking staff. Moreover non-smoking employees showed lower SOD and GPx activity in comparison to the non-smoking control. GPx decrease was found in smoking workers in comparison to the smoking control. Additionally, smoking workers showed lower activity of GPx and CAT compared to non-smoking control. (author)

  19. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    Science.gov (United States)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  20. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  1. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  2. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  3. [INFLUENCE OF IONIZING RADIATION ON THE LOCOMOTOR ACTIVITY AND BODY WEIGHT OF RATS].

    Science.gov (United States)

    Saimova, A; Chaizhunusоva, N; Kairkhanova, Y; Uzbеkоv, D; Hоshi, М

    2017-02-01

    The aim of our study was to study influence of ionizing radiation on the locomotor activity and body weight of rats, for this animals was irradiated by via inhalation. Beta- emitter 56Mn was obtained by neutron activation of powdered MnО2 by using nuclear reactor IVG.1M (experimental facility «Baikal-1», Kurchatov, Kazakhstan). Exposure of rats to radioactive powder had two way, the first experiment was contained only air filter for animal's breathing and the second with the system of forced ventilation. Also we developed the method for observation of the locomotor activity of rats, based on quantitative data. The experiment was conducted on 8 «Wistar» breed white laboratory rats. Statistical analysis was performed using descriptive statistics and non-parametric test. Based on our data, we can say that our method has the advantage over the others is that there is no need to move about the animal out of the box in the test field. So we reduce animal stress factor, as the transfer of an animal from one to second place creates additional stress for him. The initial activity of the pulverized powder in both experiments were 2,74х108Bq, but in the second experiment when we used the system of forced ventilation, internal radiation doses were 0.041±0.0075 Gy, this didn't have effect on locomotor activity of rats (Z= -0,841, р=0,4). In the first experiment where we used only air filter for animal's breathing internal radiation doses were 0.15±0.025 Gr, that showed a decrease in locomotor activity in rats (Z=-6,653, р=0,001). After exposure to ionizing radiation changes in the mammals' weight were not found. Thus, based on our data we have made conclusion, that even after a single irradiation at low dose 0.15±0.025 Gr changes occur in the nervous system.

  4. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    International Nuclear Information System (INIS)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  5. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  6. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  7. Proposal for regulation of logging activities in oil wells using ionizing radiation sources

    International Nuclear Information System (INIS)

    Hidrowoh, Jacob R.

    2000-01-01

    It covers general aspects of nuclear energy and the suitable legal frame for its application related to oil industry. Besides, a regulation proposal to control logging activities in Ecuador using ionizing radiation sources in oil wells. It was prepared taking into account the Ecuadorian Atomic Energy Commission criteria and international regulations

  8. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  9. Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation

    CERN Document Server

    Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.

    2016-01-01

    The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...

  10. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  11. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  12. Information and energetic approaches to the influence of ionizing radiation on the organism

    International Nuclear Information System (INIS)

    Bulanova, K.Ya.; Lobanok, L.M.; Kundas, S.P.; Konoplya, E.F.

    2005-01-01

    In order to reveal the regularities of interaction of organism with low-intensive ionizing radiation, cybernetic approaches are needed. The living organisms are self-regulating system of a behavioural type. The complexity of the organization is determined by the hierarchy of controlling system. Relation between systems are not of physico-chemical nature; they are based on control, i.e. on information processes. In information system, all the weak influences (including ionizing radiation ) are perceived in the form of signal. Signal information of a natural radiation background is vitally important for organisms as in conversed type, as bioradiation, it is used for management initiation, i. e. self-regulation, self-development and so on. In the case of a superfluous surge of information at man-caused impacts of ionizing radiation (up to 10 Gr) the information system loses its ability to solve information tasks quickly and begins to experience the state of tension. Brought to a very tensed state it is able to lose its balance, its stability, i.e. to die. The signal-information perception of radiation explains the effects of its low dose, non-linear character of dependence of biologic response of irradiated dose, hormesis phenomenon, apoptosis, remote consequences of irradiation, bystander effect and other postradiation effects. (authors)

  13. To manage the ionizing radiations risks

    International Nuclear Information System (INIS)

    Metivier, H.; Romerio, F.

    2000-01-01

    Mister Romerio's work tackles the problem of controversy revealed by the experts in the field of estimation and management of ionizing radiations risks. The author describes the three paradigms at the base of the debate: the relationship without threshold (typified by the ICRP and its adepts), these ones that think that low doses risks are overestimated ( Medicine Academia for example) or that ones that believe that dose limits are too severe and induce unwarranted costs; then that ones that think that these risks are under-estimated and limits should be more reduced, even stop these practices that lead to public exposure to ionizing radiations. The author details the uncertainties about the risk estimations, refreshes the knowledge in radiation protection with the explanations of the different paradigms. At the end a table summarize the positions of the three paradigms

  14. Ionizing radiation calculations and comparisons with LDEF data

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  15. THz waves: biological effects, industrial and medical applications. Meeting of the non-ionizing radiation section of the French radiation protection society (SFRP). Conference review

    International Nuclear Information System (INIS)

    Souques, M.; Magne, I.

    2011-01-01

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFRP) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document summarizes the content of the different presentations: THz spectro-imaging technique: status and perspectives (P. Mounaix); THz technology: seeing the invisible? (J.P. Caumes); interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); Tera-Hertz: biological and medical applications (G. Gallot); Tera-Hertz: standards and recommendations (B. Veyret); Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); Body scanners and civil aviation security (J.C. Guilpin). (J.S.)

  16. Application of Ionizing Radiation on the Cork Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P. M.P.; Silva, T.; Leal, J. P.; Botelho, M. L. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Sacavém (Portugal)

    2012-07-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  17. Application of Ionizing Radiation on the Cork Wastewater Treatment

    International Nuclear Information System (INIS)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P.M.P.; Silva, T.; Leal, J.P.; Botelho, M.L.

    2012-01-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  18. Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Osawa, Misako; Taguchi, Mitsumasa

    2012-01-01

    Pharmaceuticals in wastewater were treated by the combined method of activated sludge and ionizing radiation in laboratory scale. Oseltamivir, aspirin, and ibuprofen at 5 μmol dm −3 in wastewater were decomposed by the activated sludge at reaction time for 4 h. Carbamazepine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac were not biodegraded completely, but were eliminated by γ-ray irradiation at 2 kGy. The rate constants of the reactions of these pharmaceuticals with hydroxyl radicals were estimated by the competition reaction method to be 4.0–10×10 9 mol −1 dm 3 s −1 . Decompositions of the pharmaceuticals in wastewater by ionizing radiation were simulated by use of the rate constants and the amount of total organic carbon as parameters. Simulation curves of concentrations of these pharmaceuticals as a function of dose described the experimental data, and the required dose for the elimination of them in wastewater by ionizing radiation can be estimated by this simulation. - Highlights: ► We treat pharmaceuticals in wastewater by activated sludge and ionizing radiation. ► Activated sludge decreases the amounts of total organic carbons in wastewater. ► Pharmaceuticals were decomposed by γ-ray irradiation at 2 kGy. ► We construct simulation for treatment of pharmaceuticals by ionizing radiation.

  19. Genetic effects of ionizing radiation – some questions with no answers

    International Nuclear Information System (INIS)

    Mosse, Irma B.

    2012-01-01

    There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses – are they harmful or beneficial? The “hormesis” phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation. - Highlights: ► There are a lot of questions about genetic effects of ionizing radiation. ► Does ionizing radiation induce mutations in human? ► During evolution germ cell selection ex vivo has been changed to a selection in vivo. ► Radioadaptive response proves positive effects of low radiation doses. ► Many uncontrolled factors may be responsible for significant biodosimetry mistakes.

  20. The situation of knowledge on ionizing radiation

    International Nuclear Information System (INIS)

    2005-01-01

    Occupational exposure to ionizing radiation occurs: during sources use, during the use of matter including radioactivity used for other properties than their radioactivity, in presence of natural radioactivity on the working area, following an accident during an industrial process. to protect man taken into account the incurred risk, goes by the risk evaluation, in taking into account the industrial process and exposure conditions of persons, then by the application of prevention measures that aim to control the contamination risks by radioactive matters as well as the exposure risks to ionizing radiations. (N.C.)

  1. Atmospheric Ionizing Radiation and the High Speed Civil Transport. Chapter 1

    Science.gov (United States)

    Maiden, D. L.; Wilson, J. W.; Jones, I. W.; Goldhagen, P.

    2003-01-01

    Atmospheric ionizing radiation is produced by extraterrestrial radiations incident on the Earth's atmosphere. These extraterrestrial radiations are of two sources: ever present galactic cosmic rays with origin outside the solar system and transient solar particle events that are at times very intense events associated with solar activity lasting several hours to a few days. Although the galactic radiation penetrating through the atmosphere to the ground is low in intensity, the intensity is more than two orders of magnitude greater at commercial aircraft altitudes. The radiation levels at the higher altitudes of the High Speed Civil Transport (HSCT) are an additional factor of two higher. Ionizing radiation produces chemically active radicals in biological tissues that alter the cell function or result in cell death. Protection standards against low levels of ionizing radiation are based on limitation of excess cancer mortality or limitation of developmental injury resulting in permanent damage to the offspring during pregnancy. The crews of commercial air transport operations are considered as radiation workers by the EPA, the FAA, and the International Commission on Radiological Protection (ICRP). The annual exposures of aircrews depend on the latitudes and altitudes of operation and flight time. Flight hours have significantly increased since deregulation of the airline industry in the 1980's. The FAA estimates annual subsonic aircrew exposures to range from 0.2 to 9.1 mSv compared to 0.5 mSv exposure of the average nuclear power plant worker in the nuclear industry. The commercial aircrews of the HSCT may receive exposures above recently recommended allowable limits for even radiation workers if flying their allowable number of flight hours. An adequate protection philosophy for background exposures in HSCT commercial airtraffic cannot be developed at this time due to current uncertainty in environmental levels. In addition, if a large solar particle event

  2. Identifying and managing the risks of medical ionizing radiation in endourology.

    Science.gov (United States)

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  3. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  4. Legal aspects of recent studies on the health effects of radiation

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    The risk of ionising radiation has recently been reviewed by three different high-level bodies. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) issued in 1988 a report to the General Assembly with the title ''Sources, Effects and Risks of Ionising Radiation''. A review of the biological effects of ionizing radiations has also been performed by the United States National Research Council's Committee BEIR V, published in 1989, with the title ''Health Effects of Exposure to Low Levels of Ionising Radiation''. The International Commission on Radiological Protection (ICRP) has in November 1990 adopted its new recommendations issued as ICRP Publication 60. One of the newer health hazards is non-ionizing radiation (NIR), exposure to which extends from occupational into the field of public health. There are also collaborate studies on the health risks of non-ionizing radiation performed by e.g. the World Health Organization (WHO) and the International Radiation Protection Association (IRPA). The most recent studies on the health effects of radiation are discussed in the paper. (author)

  5. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  6. Performance of a pencil ionization chamber in various radiation beams

    International Nuclear Information System (INIS)

    Maia, A.F.; Caldas, L.V.E.

    2003-01-01

    Pencil ionization chambers were recommended for use exclusively in the computed tomography (CT) dosimetry, and, from the start, they were developed only with this application in view. In this work, we studied the behavior of a pencil ionization chamber in various radiation beams with the objective of extending its application. Stability tests were performed, and calibration coefficients were obtained for several standard radiation qualities of the therapeutical and diagnostic levels. The results show that the pencil ionization chamber can be used in several radiation beams other than those used in CT

  7. 26183 - Royal Decree 2519/1982 of 12 August approving the Regulations on Protection Against Ionizing Radiation

    International Nuclear Information System (INIS)

    1981-01-01

    This Royal Decree approves the Regulations on Protection against Ionizing Radiation. The purpose of the Regulations is to implement the radiation protection principles laid down in the framework Act on Nuclear Energy of 29th April 1964, as amended. They supersede all existing national rules in the same field and contain administrative and technical provisions governing nuclear and radioactive installations and activities, including the use of radiation-emitting equipment. They were made in compliance with the most recent international regulations on radiation protection and safety, in particular the Recommendations of the International Atomic Energy Agency (IAEA); the Regulations also take into account the recent Euratom Directives. (NEA) [fr

  8. Effect of ionizing radiation on the activity of pectinesterase in papaya (cultivar solo)

    International Nuclear Information System (INIS)

    Iaderoza, M.; Bleinroth, E.W.; Azuma, E.HG.

    1988-01-01

    Papaya fruits (Carica papaya L.) were exposed to ionizing radiation gamma type ( sup(60)Co), using a dose of 0.7kGy, and then stored in a cold room at 10C with a relative humidity of 85% for a period of 25 days. The pectinesterase activity of the irradiated fruits was found to be similar to that of the non-irradiated fruits during the storage period. The radiation dose maintained the texture and enzyme activity of the irradiated fruits the same as that of the non-irradiated fruits. (author)

  9. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  10. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  11. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  12. Ionizing radiations and health. Exposures, epidemiological surveillance and sociological monitoring measurements

    International Nuclear Information System (INIS)

    Spira, Alfred; Boutou, Odile

    1999-01-01

    This paper draws attention to the epidemiological effect of natural and artificial ionizing radiation exposures on man. It describes ionizing radiation sources from nuclear facilities and medical establishments. The case here is in the region of La Hague in France where 4800 employees are exposed to ionizing radiations. The topic of leukemia research and thyroid studies for children in the region are discussed. The impact of radiations on fertility, life quality is covered. Finally, national propositions to establish a monitoring measurement system is also discussed including the personnel and the general population exposed

  13. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  14. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  15. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.

    Science.gov (United States)

    Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori

    2011-06-01

    For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.

  16. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  17. Sensorial analysis evaluation in cereal bars preserved by ionizing radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Araujo, M.M.; Fanaro, G.B.; Rela, P.R.; Mancini-Filho, J.

    2007-01-01

    Gamma-rays utilized as a food-processing treatment to eliminate insect contamination is well established in food industries. Recent troubles in Brazilian cereal bars commercialization require a special consumer's attention because some products were contaminated by insects. To solve the problem, food-irradiation treatment was utilized as a safe and effective solution. The final product was free of insect contamination. The aim of this study was to determine the best radiation dose processing utilized to disinfestations and detect some change on sensorial characteristic by sensorial analysis in cereal bars. In this study, three different kinds of cereal bars were purchased in Sao Paulo (Brazil) in supermarkets and irradiated with 1.0, 2.0 and 3.0 kGy at 'Instituto de Pesquisas Energeticas e Nucleares' (IPEN-CNEN/SP). The samples were treated with ionizing radiation using a 60 Co gamma-ray facility (Gammacell 220, A.E.C.L.). That radiation doses were used successfully as an anti-insect treatment in the cereal bars, since in some food industries doses up to 3.0 kGy are used to guarantee at least a dose of 1.0 kGy in internal cereal bars package. Sensorial analysis was necessary since cereal bars contain ingredients very sensitive to ionizing radiation process

  18. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  19. Social trust and ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Meadd, E. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2002-07-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  20. Social trust and ionizing radiation

    International Nuclear Information System (INIS)

    Meadd, E.

    2002-01-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  1. The non-easily ionized elements as spectrochemical buffers

    International Nuclear Information System (INIS)

    Tripkovic, M.; Radovanov, S.; Holclajtner-Antunovic, I.; Todorovic, M.

    1985-01-01

    A method is developed for determining trace elements (In, Ga, B, V, Mo, Mn, Pt, P, Be) in graphite with the aid of a low current d.c. arc. The method makes use of the enhancement of the radiation intensities of trace elements by non-easily ionized elements (NEIE). As a NEIE, this method uses Cd which is added up to a concentration of 150 mg/g sample. The absolute detection limits for all of the above mentioned elements are at the ng-level. (orig.) [de

  2. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  3. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    non -linearly mobile internal interfaces, e.g. domain walls and eventual phase boundaries. Radiation exposure is expected...zirconate titanate; PZT; actuator; radiation ; gamma; total ionization dose; TID; top electrode; Pt; IrO2; polarization; PE; hysteresis; permittivity...Hayashigawa, et. al., “A 2 Mbit Radiation Hardened Stackable Ferroelectric Memory” Non - Volatile Memory Technology Symposium, NVMTS 07, Nov 10-13, 2007 Albuquerque, NM, USA

  4. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  5. Non-targeted effects of low dose ionizing radiation act via TGF-beta to promote mammary carcinogenesis

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a genome-wide approach to identifying genes persistently induced in the mouse mammary gland by acute whole body low dose ionizing radiation (10cGy) 1 and 4...

  6. Occupational radiation exposure in international recommendations on radiation protection: Basic standards under review

    International Nuclear Information System (INIS)

    Kraus, W.

    1996-01-01

    The ICRP publication 60 contains a number of new recommendations on the radiological protection of occupationally exposed persons. The recommendations have been incorporated to a very large extent in the BSS, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, a publication elaborated by the IAEA in cooperation with many other international organisations, and in the Euratom Basic Safety Standards (EUR) to be published soon. However, there exist some considerable discrepancies in some aspects of the three publications. The ICRP committee has set up a task group for defining four general principles of occupational radiation protection, and a safety guide is in preparation under the responsibility of the IAEA. ''StrahlenschutzPraxis'' will deal with this subject in greater detail after publication of these two important international publications. The article in hand discusses some essential aspects of the recommendations published so far. (orig.) [de

  7. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1992-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation. (authors). 8 refs., 4 figs., 5 tabs

  8. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1990-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation

  9. Ionizing radiation decreases human cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1997-01-01

    Information from nine studies with exposed nuclear workers and military observers of atmospheric bomb explosions confirms the results from animal studies which showed that low doses of ionizing radiation are beneficial. The usual ''healthy worker effect'' was eliminated by using carefully selected control populations. The results from 13 million person-years show the cancer mortality rate of exposed persons is only 65.6% that of carefully selected unexposed controls. This overwhelming evidence makes it politically untenable and morally wrong to withhold public health benefits of low dose irradiation. Safe supplementation of ionizing radiation should become a public health service. (author)

  10. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Kobayashi, Yasuhiko; Matsumoto, Hideki

    2007-01-01

    A rapidly growing body of experimental evidence indicates that ionizing radiation induces biological effects in non-irradiated bystander cells that have received signals from adjacent or distant irradiated cells. This phenomenon, which has been termed the ionizing radiation-induced bystander effect, challenges the long-standing paradigm that radiation traversal through the nucleus of a cell is a prerequisite to elicit genetic damage or a biological response. Bystander effects have been observed in a number of experimental systems, and cells whose nucleus or cytoplasm is irradiated exert bystander responses. Bystander cells manifest a multitude of biological consequences, such as genetic and epigenetic changes, alterations in gene expression, activation of signal transduction pathways, and delayed effects in their progeny. Several mediating mechanisms have been proposed. These involve gap junction-mediated intercellular communication, secreted soluble factors, oxidative metabolism, plasma membrane-bound lipid rafts, and calcium fluxes. This paper reviews briefly the current knowledge of the bystander effect with a focus on proposed mechanisms. The potential benefit of bystander effects to cancer radiotherapy will also be discussed. (author)

  11. Ionizing radiation control of Tribolium castaneum in wheat flour type 000

    International Nuclear Information System (INIS)

    Ritacco, M.

    1988-01-01

    The insects, mainly those of the coleoptera order, produce serious changes on the grains and flours, producing in some regions up to 50 % loss. Taking in account the information available up to date, this experiment consists of putting under the effect of the ionizing radiation specimens of Tribolium castaneum feeded with bread flour type 000, with the purpose of controling their biological cycle. They received gamma radiation doses between 250 and 2000 Gy, using 60 Co source. The daily observation made over a population of 590 insects, indicates the efficiency of the procedure, non toxic, which provokes the sterility at 250 Gy and inmediate dead starting at 1750 Gy. On the other hand, it was verified that the DL 50 on the insects irradiated at the lower of eight different doses applied, reaches 15,3 days, against the 162,6 days of the reference Tribolium. Then it is concluded that it is technologically feasible the application of ionizing radiation to the bread wheat flour type 000 for controling this main plage. (Author) [es

  12. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Sabanero, M.; Flores V, L. L.; Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M.; Castruita D, J. P.; Barbosa S, G.

    2015-10-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H 2 O 2 /1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  13. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  14. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  15. Sensitivity of the human breast to cancer induction by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H [Medical Research Council, Harwell (UK). Radiobiological Research Unit

    1978-06-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure.

  16. Ionizing radiation from tobacco

    International Nuclear Information System (INIS)

    Westin, J.B.

    1987-01-01

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed

  17. Director's Report on the Activity and Management of the International Bureau of Weights and Measures (BIPM) - (1 January 2013 - 31 December 2013) - Supplement: Ionizing Radiation Department

    International Nuclear Information System (INIS)

    Milton, M.; Los Arcos, J.M.; Burns, D.T.; Kessler, C.; Picard, S.; Roger, P.; Courte, S.; Michotte, C.; Nonis, M.; Ratel, G.

    2014-03-01

    This BIPM Director's Report describes the activity of the BIPM. In order to carry out its mission of ensuring and promoting the global comparability of measurements, the BIPM operates laboratories in the fields of mass, time, electricity, ionizing radiation and chemistry. All of the laboratory work addresses one or more of the agreed objectives for the BIPM, which are: - To establish and maintain appropriate reference standards for use as the basis of a limited number of key international comparisons at the highest level. - To coordinate international comparisons of national measurement standards through the Consultative Committees of the CIPM; taking the role of coordinating laboratory for selected comparisons of the highest priority and undertaking the scientific work necessary to enable this to be done. - To provide selected calibrations for Member States. In this document some highlights of the work carried out during 2013 are presented. Extended reports of the work of each department are available at http://www.bipm.org/en/publications/directors_report/. This document comprises the Director's report with its supplement describing the work of the Ionizing Radiation Department (X- and γ-rays, Radionuclides, Thermometry)

  18. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  19. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  20. Ionizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia.

    Science.gov (United States)

    Radivoyevitch, Tomas; Sachs, Rainer K; Gale, Robert Peter; Smith, Mitchell R; Hill, Brian T

    2016-04-01

    Exposure to ionizing radiation is not thought to cause chronic lymphocytic leukemia (CLL). Challenging this notion are recent data suggesting CLL incidence may be increased by radiation exposure from the atomic bombs (after many decades), uranium mining and nuclear power facility accidents. To assess the effects of therapeutic ionizing radiation for the treatment of solid neoplasms we studied CLL risks in data from the Surveillance, Epidemiology, and End Results (SEER) Program. Specifically, we compared the risks of developing CLL in persons with a 1(st) non-hematologic cancer treated with or without ionizing radiation. We controlled for early detection effects on CLL risk induced by surveillance after 1(st) cancer diagnoses by forming all-time cumulative CLL relative risks (RR). We estimate such CLL RR to be 1.20 (95% confidence interval, 1.17, 1.23) for persons whose 1(st) cancer was not treated with ionizing radiation and 1.00 (0.96, 1.05) for persons whose 1(st) cancer was treated with ionizing radiations. These results imply that diagnosis of a solid neoplasm is associated with an increased risk of developing CLL only in persons whose 1(st) cancer was not treated with radiation therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Administration of ionizing radiation to human subjects in medical research

    International Nuclear Information System (INIS)

    1985-01-01

    Any administration of ionizing radiation to human subjects for the purposes of diagnostic or therapeutic research involving either irradiation or the administration of radionuclides, should be undertaken only after approval by an institutional ethics committee. The ethics committee should obtain advice from a person experienced in radiation protection before granting approval. The research proposal must conform to regulatory requirements relating to the use of ionizing radiation

  2. Ionizing radiation dose control for workers in a nuclear plant working with unsealed sources

    International Nuclear Information System (INIS)

    Gerulis, Eduardo

    2006-01-01

    With the liberation of the use of the nuclear energy for peaceful applications, International Commission Radiological Protection, ICRP, founded in 1928, created a system of protection of the undesirable doses of ionizing radiation in 1958. This has been received by workers, members of the public and environment and hence it became possible for the introduction of these applications. This protection system is adopted by the International Agency of Energy Atomic, IAEA, that publishes recommendations in safety series, 88 and by the Comissao Nacional de Energia Nuclear, CNEN, which publishes these regulations. The international recommendations and national regulations were adapted and they need to be applied in this way. The present paper uses recommendations of the publication 75 from ICRP, of the publication 115 from 88 and regulations of the regulation NN 3.01 from CNEN to present, through radiological protection measures, the ionizing radiation dose control for workers in a nuclear plant that works in the research, production, division and packing of unsealed sources to be used in clinical applications. In that way it is possible to prevent appropriately the undesirable doses and to confirm the received doses. (author)

  3. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  4. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  5. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  6. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  7. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  8. Biological effects of ionizing radiation - changing worker attitudes

    International Nuclear Information System (INIS)

    Johnson, N.; Schenley, C.

    1989-01-01

    Training Resources and Data Exchange (TRADE) Radiation Protection Training Special Interest Group has taken an innovative approach to providing DOE contractors with radiation worker training material information. Newly-hired radiation workers may be afraid to work near radiation and long-term radiation workers may become indifferent to the biological hazard of radiation. Commercially available training material is often presented at an inappropriate technical level or in an uninteresting style. These training problems have been addressed in the DOE system through development of a training videotape and supporting material package entitled Understanding Ionizing Radiation and its Biological Effects. The training package, developed and distributed by TRADE specifically to meet the needs of DOE contractor facilities, contains the videotape and accompanying paper supporting materials designed to assist the instructor. Learning objectives, presentation suggestion for the instructor, trainee worksheets, guided discussion questions, and trainee self-evaluation sheets are included in the training package. DOE contractors have agreed that incorporating this training module into radiation worker training programs enhances the quality of the training and increase worker understanding of the biological effects of ionizing radiation

  9. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961.

  10. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    International Nuclear Information System (INIS)

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961

  11. Si no. 43 of 1991 - European Communities (ionizing radiation) regulations, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    These Regulations entered into force on 5 April 1991 and repeal the Factories Ionizing Radiations (Sealed Sources) Regulations, 1972 and the Factories Ionizing Radiations (Unsealed Sources) Regulations, 1972. They were made in implementation of the European Communities' Council Directive 80/836 Euratom of 15 July 1980, as amended by Council Directive 84/467 Euratom of 3 September 1984, laying down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation. They also complement the Nuclear Energy (General Control of Fissile Fuels, Radioactive Substances and Irradiation Apparatus) Order, 1977 with regard to licensing requirements. They apply to the production, processing, handling, use, transport, storage, etc. of natural and artificial radioactive substances and to any other activity which involves a hazard arising from ionizing radiation. (NEA) [fr

  12. Time-dependent theory of double ionization of helium under XUV radiation

    International Nuclear Information System (INIS)

    Nikolopoulos, L A A; Lambropoulos, P

    2007-01-01

    We present non-perturbative time-dependent calculations of single and double ionization of helium, under XUV radiation of photon energy ranging from 40 to 45 eV, through the direct propagation of the time-dependent Schroedinger equation. The time-dependent wavefunction of the atom under the field is expanded in terms of correlated multichannel states normalized with incoming-wave boundary conditions. In addition to presenting a new non-perturbative approach to the three-body problem, in a fully correlated scheme, capable of providing in the same calculation photoelectron energy and angularly resolved spectra, as well as cross sections through the lowest non-vanishing order transition amplitude, we also present a detailed comparison of the values of certain key quantities that have been obtained through a variety of other methods. The degree of agreement we find, while lending credence to the approach and its versatility, also highlights the remaining open questions in this novel context of double ionization

  13. Ionizing radiation sources used in medical applications in Brazil

    International Nuclear Information System (INIS)

    Araujo, A.M.C.; Carlos, M.T.; Cruz, L.R.F.; Domingues, C.; Farias, J.T.; Ferreira, R.; Figueiredo, L.; Peixoto, J.E.; Oliveira, S.M.V.; Drexler, G.

    1991-02-01

    Preliminary data about ionizing radiation sources used in medical applications and obtained through a national programme by IRD/CNEN together with Brazilian health authorities are presented. The data presentation follows, as close as possible, recommendations given by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). This programme has two main aims: First: to contribute for research in the field of ionizing radiation effects and risks including information about equipment quality control and procedures adopted by professionals working in Radiation Medicine. Second: to investigate the radiation protection status in Brazil, in order to give assistance to Brazilian health authorities for planning regional radiation programmes and training programmes for medical staffs. (F.E.). 13 refs, 19 figs, 34 tabs

  14. Origin of irradiations by ionizing radiations

    International Nuclear Information System (INIS)

    Metivier, H.

    1998-01-01

    Irradiations by ionizing radiations proceed from two main sources: the natural radiations from the environment and the sources of 'human' origin, i.e. linked with modern technology. In most countries the irradiation by natural sources remains the most important. The irradiations for medical purposes comes in second position and depends on the degree of technological evolution of the country, and in the last position are the irradiations linked with nuclear industry. The inventory of these irradiations is regularly updated by the Scientific Committee of the United Nations for the study of ionizing radiation effects (UNSCEAR). In France the mean individual irradiation due to natural radioactivity is of 2 mSv per year of efficient dose and can vary with a factor 3 from one region to the other. Irradiation of medical diagnosis origin is of about 1 mSv per year. This paper presents successively: the natural irradiation sources (cosmic radiation, cosmic rays and cosmogenic radionuclides, the Earth's radiations, primary radionuclides and radon), the natural sources modified by the technology (extraction industries, fossil fuels and phosphated ores, aerial transports and space activities, consumer products), the irradiation sources of technological origin (nuclear weapons, electric power production, major accidents, occupational irradiations), and the medical irradiations (diagnosis techniques, radiology, nuclear medicine and therapeutic uses). (J.S.)

  15. Ionizing radiation and water reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Sampa, Maria Helena de Oliveira; Oikawa, Hiroshi; Silveira, Carlos Gaia da; Duarte, Celina Lopes; Cherbakian, Eloisa Helena

    2002-01-01

    The aim of the present paper is to point out the possibility of including ionizing radiation for wastewater treatment and reuse. Radiation processing is an efficient technology which can be useful for water reuse once the process can reduce not only the biological contamination but also organic substances, promoting an important acute toxicity removal from aquatic resources. Final secondary effluents from three different wastewater treatment plant were submitted to electron beam radiation and the process efficacy was evaluated. Concerning disinfection, relatively low radiation doses (2,0 - 4,0 kGy) accounted for 4 to 6 cycle log reduction for total coliforms. When radiation was applied for general wastewater improvement related to the chemical contamination, radiation process reduced from 78% up to 100% the total acute toxicity, measured for crustaceans, D. similis, and for V. fiscehri bacteria. (author)

  16. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  17. Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…

  18. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  19. measurement of indoor background ionizing radiation in some

    African Journals Online (AJOL)

    Administrator

    Measurement of the background ionizing radiation profile within the. Chemistry Research Laboratory and Physics Laboratory III all of the. University of Jos and their immediate neighbourhood were carried out. These science laboratories also harbour a number of active radiation sources. The radiation levels were measured ...

  20. Long-term effects to ionizing radiation in crustacean Daphnia magna

    International Nuclear Information System (INIS)

    Sarapul'tseva, E.I.

    2016-01-01

    The results of this study have provided strong evidence for the trans generational effects of parental exposure to ionizing radiation in crustacean Daphnia magna. To establish whether parental irradiation can affect the survival, life span and fertility of directly exposed organisms and their non-exposed offspring, D. magna were given 10, 100, 1000 and 10,000 mGy of acute γ-rays. MTT-assay was first applied for the investigation in vivo of the mechanisms of trans generational low doses effects of radiation and development of stress in Daphnia. Our dates strongly support MTT assay results as a good bio marker of survival and fertility effects at D. magna. (authors)

  1. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  2. Risks from ionizing radiation during pregnancy

    Directory of Open Access Journals (Sweden)

    mehrdad Gholami

    2007-04-01

    Full Text Available Gholami M1, Abedini MR2, Khossravi HR3, Akbari S4 1. Instructor, Department of medical physics, Faculty of medicine, Lorestan University of medical sciences 2. Assistant professor, Department of radiology, Faculty of medicine, Lorestan University of medical sciences 3. Assistant professor, Department of radiation protection, Iranian Atomic Energy Organization 4. Assistant professor, Department of gynecology, Faculty of medicine, Lorestan University of medical sciences Abstract Background: The discovery of the X-ray in November 1895 by the W. C. Roentgen caused the increasing use of x-ray, because of the benefits that patients get from the resultant the diagnosis. Since medical radiation exposure are mainly in artificial radiation sources, immediately after the x- ray discovery, progressive dermatitis and ophthalmic diseases were occurred in the early physicians and physicists. But delay effects were observed approximately 20 years after the x-ray discovery. History: Based on the studies, ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to pregnant women is a standard practice in radiology, unless there are important clinical indications. Due to difference in stages of fetus development, using of the current radiation protection standards includes: justification of a practice, optimization of radiation protection procedures and dose limitation to prevent of serious radiation induced conditions is necessary. Conclusion: Conversely the somatic and genetic effects of x-rays, since the X-ray has the benefit effects, special in diagnostic and treatment procedures, there is increasing use of x-ray, so using of the latest radiation protection procedures is necessary. Radiation protection not only is a scientific subject but also is a philosophy, Moral and reasonable. since the ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to the pregnant

  3. Ionizing radiation dose due to the use of agricultural fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy Kuniko

    2007-01-01

    Among several agents that exist in the environment which can expose to different risks and effects, there is the ionizing radiation whose knowledge of dose is of importance to the effective control and prevention of possible damages to human beings and to the environment. The transfer of radionuclides from fertilizers to/and soils to the foodstuffs can result as an increment in the internal dose when they are consumed by the human beings. This work evaluates the contribution of fertilizers to the ionizing radiation dose in the environment and in the human being. Samples of fertilizers, soils and vegetables produced in fertilized soils were analysed through gamma spectrometry with the use of a hyper pure germanium detector. Measurements of ambient dose with thermoluminescent dosimeters were also performed. In the fertilized soil samples values of specific activities from 36 to 342 Bq/kg for K-40, from 42 to 142 Bq/kg for U-238 and from 36 to 107 Bq/kg for Th-232 were obtained. In the vegetables the values varied from 21 to 118 Bq/kg for K-40 and for the elements of uranium and thorium series the values were less than 2 Bq/kg. In fertilizers the maximum value of 5800 Bq/kg was obtained for K-40, 430 Bq/kg for U-238 and 230 Bq/kg for Th-232. The average values of soil to plant transfer factor were not significantly different among the types of vegetables. The annual committed effective dose of 0.882 μSv due to the ingestion of K-40 from the analysed vegetables is very small if compared to the reference value of 170 μv given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). The thermoluminescent dosimetry provided the annual ambient dose equivalent from 1.5 to 1.8 mSv without differences between cultivated and non cultivated fields. Through the results obtained, it was not observed a significant transfer of radionuclides from fertilizers to soils and to foodstuffs in the conditions adopted in this work and consequently there

  4. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  5. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.

    1993-01-01

    The aim of the monograph is to review practical aspects of dosimetry. The work describes basic units which are used in dosimetry and natural as well as industrial sources of ionizing radiation. Information given in the monograph help in assessment of the radiation risk. 8 refs, 15 tabs

  6. Dosimetry methods for the estimation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Lopez Bejarano, Gladys

    2012-01-01

    Ionizing radiations, by their nature, have required for their detection the use of suitable devices generically referred detecting systems. The detection of secondary particles arising during the processes of ionization and excitation to the passage of radiation in the environment, have constituted the basis of the measurement methods. A detector system is a device that converts the energy of the incident radiation on a signal (electrical, photochemical, etc.) that is easily processable from the technological point of view, but without distorting the original information. These devices have provided qualitative or quantitative information about the radiation of interest. The detector system is a set of a detector together with a processing system. This system has based its operation in methods of: gas ionization, scintillation, semiconductor, film, thermoluminescence, among others. (author) [es

  7. Trans-generational effects induced by alpha and gamma ionizing radiations at Daphnia magna

    International Nuclear Information System (INIS)

    Parisot, Florian

    2015-01-01

    Anthropogenic activities related to the nuclear industry contribute to continuous discharges of radionuclides into terrestrial and aquatic ecosystems. Over the past decades, the ecological risk of ionizing radiation has become a growing public, regulatory and scientific concern for ecosystems protection. Until recently, only few studies focus on exposure situations at low doses of irradiation, although these situations are representative of realistic environmental conditions. Understanding how ionizing radiation affects species over several generations and at various levels of biological organization is a major research goal in radioecology. The aim of this PhD was to bring new knowledge on the effects of ionizing radiation during a multi-generational expose of the aquatic invertebrate, Daphnia magna. A two-step strategy was implemented. First, an external gamma radiation at environmentally relevant dose rates was performed on D. magna over three successive generations (F0, F1 and F2). The objective of this experiment was to examine whether low dose rates of radiation induced increasing effects on survival, growth and reproduction of daphnids over generations and to test a possible accumulation and transmission of DNA alterations from adults to offspring. Results showed an accumulation and a transmission of DNA alterations over generations, together with an increase in effect severity on growth and reproduction from generation F0 to generation F2. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in generation F1. Second, data from the external gamma irradiation and those from an earlier study of internal alpha contamination were analyzed with DEBtox models (Dynamic Energy Budget applied to toxicology), to identify and compare the causes of the trans-generational increase in effect severity between the two types of radiation. In each case, two distinct metabolic modes of action were necessary to explain effects on

  8. V. Physical effects in ionizing radiation passage through matter

    International Nuclear Information System (INIS)

    1984-01-01

    The ionization of the medium during absorption of alpha particles is described. The ranges are given of alpha particles in the air and in certain liquids and solids. The absorption of protons and deuterons takes place similarly as in alpha particles but protons and deuterons have a bigger range at the same energy. The term half-thickness has been introduced for the absorption of beta particles. For different energies of beta particles the absorption of these particles is graphically represented for different materials. The greatest attention is devoted to the absorption of electromagnetic radiation, i.e., X radiation and gamma radiation. The mechanisms are explained of absorption by photoelectric effect, the Compton effect and electron pair formation. In X radiation radiotherapy, filters are used, mostly aluminium, copper or zinc plates. The values are given of radiation intensity for different thicknesses of aluminium and copper filters and a survey is given of combined filters for 220 to 400 kV. For radiotherapy purposes great attention is devoted to the calculation of the depth dose. The effects are discussed of ionizing radiation on photographic emulsion, on changes in the colouring of some substances and fluorescence. Also given are the biological effects of ionizing radiation and the theory of direct and indirect effects is briefly described. (E.S.)

  9. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing.

    Science.gov (United States)

    Postek, Michael T; Poster, Dianne L; Vládar, András E; Driscoll, Mark S; LaVerne, Jay A; Tsinas, Zois; Al-Sheikhly, Mohamad I

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H 2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  10. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing

    Science.gov (United States)

    Postek, Michael T.; Poster, Dianne L.; Vládar, András E.; Driscoll, Mark S.; LaVerne, Jay A.; Tsinas, Zois; Al-Sheikhly, Mohamad I.

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining by-products, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  11. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  12. Effects of ionizing radiation and partial hepatectomy on messenger RNA synthesis

    International Nuclear Information System (INIS)

    Abdel-Halim, M.N.

    1979-01-01

    Newly synthesized messenger RNA, as measured by a 40 min uptake of the radioactive precursor (6- 14 C) orotic acid, was studied in the regenerating livers of non-irradiated and gamma-irradiated (1800 rad) adrenal-intact and adrenalectomized rats 24 and 48 hours after partial hepatectomy. Two groups of rats, one with and one without adrenal glands were each divided into four subgroups: (1) control rats, (2) irradiated rats, (3) partially hepatectomized rats and (4) irradiated, partially hepatectomized rats. The radioactive profile of polyribosome formation and distribution was determined by sucrose density gradient centrifugation (10 to 40 per cent). The result of this study indicates that ionizing radiation decreases the synthesis of newly formed messenger RNA in regenerating livers of adrenal-intact rats. However, adrenalectomy largely abolished that inhibition. These data suggest that the decrease in messenger RNA synthesis may be explained by the disturbance of adrenal hormones induced by partial hepatectomy and ionizing radiation. (author)

  13. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation

    OpenAIRE

    Eva Yi Kong; Shuk Han Cheng; Kwan Ngok Yu

    2016-01-01

    Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into ?targeted? effects and ?non-targeted? effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a sci...

  14. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  16. Ionization radiations - basis, risks and benefits

    International Nuclear Information System (INIS)

    Bodart, F.

    1991-01-01

    An attempt is made to discuss the use of ionizing radiations in an impartial way. Ionizing radiation is potentially harmfull; excessive doses have a devastating effect on living cells. However, there is no direct, conclusive evidence of human disability, either in the form of cancer or genetic anomalies, arising as a consequence of low-level doses of x- or gamma-rays of about 0.01 Gray (1 rad) the entire dose range involved in medical radiography or in nuclear industry. Statements appearing in the press that a certain number of excess cancers will be produced are estimates, based maybe on plausible assumptions, but estimates nevertheless; they are not measured quantities or established facts. A balanced view of radiation must include appreciation of the substantial benefits which result from their use in both medicine and industry. The risks are small and hard to demonstrate, and it is instructive to make a comparison with the other hazards occuring continually in an industrialized society, such as driving a motorcar or smoking cigarettes. (Author)

  17. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  18. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    Science.gov (United States)

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genetic variation in resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1991-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ''null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ''null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele

  20. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  1. Study of genomic instability induced by low dose ionizing radiation

    International Nuclear Information System (INIS)

    Seoane, A.; Crudeli, C.; Dulout, F.

    2006-01-01

    The crews of commercial flights and services staff of radiology and radiotherapy from hospitals are exposed to low doses of ionizing radiation. Genomic instability includes those adverse effects observed in cells, several generations after the exposure occurred. The purpose of this study was to analyze the occurrence of genomic instability by very low doses of ionizing radiation [es

  2. Food preservation by ionizing radiation in Nigeria. Present and future status

    International Nuclear Information System (INIS)

    Olorunda, A.O.; Aboaba, F.O.

    1978-01-01

    Research into the use of ionizing radiation in food preservation in Nigeria is still in its very infancy and most of the work done to date is at the exploratory stage. Such work has, however, demonstrated the potential of ionizing radiation in prolonging the shelf-life of yams and, possibly, onions. The paper reviews the present status of the use of radiation food preservation in Nigeria. The present research programme of the Faculty of Technology, University of Ibadan, which includes a wider application of ionizing radiation to fruit and vegetable preservation and grain storage, is also highlighted. The primary objectives of this programme are to establish the wholesomeness of the irradiated foods and the economics of the process. (author)

  3. The Enceladus Ionizing Radiation Environment: Implications for Biomolecules

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Davila, A. F.; McKay, C.; Dartnell, L.

    2016-12-01

    Enceladus' subsurface ocean is a possible abode for life, but it is inaccessible with current technology. However, icy particles and vapor are being expelled into space through surface fractures known as Tiger Stripes, forming a large plume centered in the South Polar Terrains. Direct chemical analyses by Cassini have revealed salts and organic compounds in a significant fraction of plume particles, which suggests that the subsurface ocean is the main source of materials in the plume (i.e. frozen ocean spray). While smaller icy particles in the plume reach escape velocity and feed Saturn's E-ring, larger particles fall back on the moon's surface, where they accumulate as icy mantling deposits at practically all latitudes. The organic content of these fall-out materials could be of great astrobiological relevance. Galactic Cosmic Rays (GCRs) that strike both Enceladus' surface and the lofted icy particles produce ionizing radiation in the form of high-energy electrons, protons, gamma rays, neutrons and muons. An additional source of ionizing radiation is the population of energetic charged particles in Saturn's magnetosphere. The effects of ionizing radiation in matter always involve the destruction of chemical bonds and the creation of free radicals. Both affect organic matter, and can damage or destroy biomarkers over time. Using ionizing radiation transport codes, we recreated the radiation environment on the surface of Enceladus, and evaluated its possible effects on organic matter (including biomarkers) in the icy mantling deposits. Here, we present full Monte-Carlo simulations of the nuclear reactions induced by the GCRs hitting Enceladus's surface using a code based on the GEANT-4 toolkit for the transport of particles. To model the GCR primary spectra for Z= 1-26 (protons to iron nuclei) we assumed the CREAME96 model under solar minimum, modified to take into account Enceladus' location. We considered bulk compositions of: i) pure water ice, ii) water ice

  4. First Patagonian Course on 'Diagnosis and Therapy of Injuries Induced by Ionizing Radiation'

    International Nuclear Information System (INIS)

    Bellotti, Mariela I.

    2013-01-01

    In Patagonia there are academic centers, health and industrial facilities that use ionizing radiations in its usual practices. However, they do not have protocols that respond to local needs. For this reason was held from October 5 to November 10, 2012 in Bariloche Atomic Center, a training course for health personnel. The range of topics covered ranged from the definition of dosimetry quantities, types of radiation and biological dosimetry, biological effects, radiation acute syndrome, radiation-induced cutaneous syndrome, internal contamination, screening in radiological emergencies, etc.The course provided a theoretical and practical guide about how to recognize and treat people exposed to radiations, guidelines for acting in radiological emergencies and a perception of the psychosocial impact of the radiation accidents.The result was a pocket book for health personnel that will be used in case of having a patient with radiation induced injury

  5. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  6. Side effects of ionizing radiation on healthy tissues and organs at risk

    International Nuclear Information System (INIS)

    Cosset, J.M.

    2010-01-01

    Ionizing radiations induce cell death, causing deterministic or stochastic side-effects. This paper briefly summarizes the biological mechanisms of early and late side-effects of ionizing radiations on healthy tissue. (author)

  7. Progress in research on ionizing radiation-induced microRNA

    International Nuclear Information System (INIS)

    Hu Zheng; Tie Yi; Sun Zhixian; Zheng Xiaofei

    2011-01-01

    MicroRNAs (miRNAs) are small single-stranded noncoding RNAs consisting of 21-23 nucleotides that play important gene-regulatory roles in eukaryotes by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. A growing body of evidence indicates that alterations in miRNA expression may occur following exposure to several oxidative stress including ionizing radiation. So miRNAs may serve as potential new targets for co-therapies aiming to improve the effects of radiation disease therapy in cancer patients. The progress in research on ionizing radiation-induced miRNAs is reviewed in this paper. (authors)

  8. Possible use of ionizing radiation in food preservation

    International Nuclear Information System (INIS)

    Salkova, Z.

    1975-01-01

    An informative survey is presented of the application of ionizing radiation in the food industry based on experiments performed and literary data. The possibility of radiation treatment of potatoes, onions and strawberries is discussed and the positive effect of experimentally determined gamma radiation doses on the extension of storage of meat is shown

  9. The sensitivity of the human breast to cancer induction by ionizing radiation

    International Nuclear Information System (INIS)

    Mole, R.H.

    1978-01-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure. (U.K.)

  10. Regulatory control of ionizing radiations in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-03-01

    This document deals with legal aspects for controlling ionizing radiations, radiological safety regulations and objectives, scopes and features of the national radioprotection planning in Ecuador. (The author)

  11. Literature search on risks related to ionizing radiations

    International Nuclear Information System (INIS)

    Abou Anoma, G.; Bijaoui, A.; Gauron, C.

    2013-09-01

    The authors propose a selection of information sources regarding risks related to ionizing radiations. They present knowledge bases which can be found on different Internet sites belonging to different bodies and agencies (IRSN, CEA, INRS, SFRP, CNRS, Radioprotection Cirkus, EDF) and in different books. They present information sources dealing with radionuclides which can be found in French and international Internet sites and in books, information sources concerning different professional activities and sectors (ASN, IRSN, INRS, medical-professional sheets proposed by the CISME, sheets proposed by the Labour Ministry and other bodies). It presents information sources dealing with radiological incidents, accidents and emergencies, dealing with radioactive wastes, with the legal European and French framework. Some additional tools of general or more detailed information are indicated (CIPR, IAEA, UNSCAR, IRPA, IRSN, SFRP, CEA, CEPN, Radiation Cirkus, books). Ways to get an updated search are indicated for different databases, as well as some practical services

  12. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  13. F--Ray: A new algorithm for efficient transport of ionizing radiation

    Science.gov (United States)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  14. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    Science.gov (United States)

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  15. Ionizing radiation sensitivity and the rate of gross chromosomal rearrangement in yeast

    International Nuclear Information System (INIS)

    Brown, J.A.; Brown, M.

    2003-01-01

    Full text: Many of the genes conferring resistance to DNA damage in the yeast Saccharomyces cerevisiae have been identified. The systematic deletion of every open reading frame presents the opportunity to make great strides in determining the physiological role of many genes whose function has remained elusive. The ability to discriminate among all of the strains carrying unique non-essential gene deletions in a pool has allowed us to screen for novel genes required for survival to ionizing radiation. Many of these genes have not yet been characterized. A possible role for these genes could be in the initial sensing of the double strand break introduced by ionizing radiation, the cell cycle arrest permitting the cell time for the repair process, or directly in the repair. A consequence of a failure of any of these functions could result in an increase in mutation rate as well the more detrimental gross chromosomal rearrangement (GCR). We tested the hypothesis that any gene which when deleted caused an increase in ionizing radiation sensitivity would also demonstrate an increase in mutation rate and GCR. This turned out not to be the case with many having no significant increase and one in particular which caused a significant decrease in GCR. Data on several of the more intriguing genes will be presented

  16. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  17. Cytogenetic monitoring of hospital workers exposed to low-level ionizing radiation

    International Nuclear Information System (INIS)

    Bigatti, P.; Lamberti, L.; Ardito, G.; Armellino, F.

    1988-01-01

    In the present study the cytogenetic effects in hospital workers exposed to low-level radiation were evaluated. Samples of peripheral blood were collected from 63 subjects working in radiodiagnostics and from 30 subjects, working in the same hospitals, who were used as controls. A higher number of cells with chromosome-type aberrations (CA) was observed in the exposed workers vs. the controls and the difference was statistically significant (p<0.05). No correlation was, on the contrary, found between CA and years of exposure. A significant difference was observed in the incidence of cells with CA between smokers and non-smokers, but in the control group only. In contrast, in the workers exposed to ionizing radiation, the frequency of cells with CA was very similar in smokers and non-smokers. 13 refs.; 4 tabs

  18. International and national organizations within nuclear energy

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1975-03-01

    A survey is given of the organization, objective and action of international and national organizations working with nuclear energy. Five types of organizations are treated: international governmental organizations, international non-governmental organizations, international organizations dealing with ionizing radiation, nordic organizations, and Swedish organizations. Special attention is payed to the Swedish participation in the different organizations. (K.K)

  19. Ionizing radiation and risk of chronic lymphocytic leukemia in the 15-country study of nuclear industry workers

    DEFF Research Database (Denmark)

    Vrijheid, Martine; Cardis, Elisabeth; Ashmore, Patrick

    2008-01-01

    In contrast to other types of leukemia, chronic lymphocytic leukemia (CLL) has long been regarded as non-radiogenic, i.e. not caused by ionizing radiation. However, the justification for this view has been challenged. We therefore report on the relationship between CLL mortality and external...... ionizing radiation dose within the 15-country nuclear workers cohort study. The analyses included, in seven countries with CLL deaths, a total of 295,963 workers with more than 4.5 million person-years of follow-up and an average cumulative bone marrow dose of 15 mSv; there were 65 CLL deaths....... In conclusion, the largest nuclear workers cohort study to date finds little evidence for an association between low doses of external ionizing radiation and CLL mortality. This study had little power due to low doses, short follow-up periods, and uncertainties in CLL ascertainment from death certificates...

  20. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.