WorldWideScience

Sample records for international asteroid mission

  1. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  2. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  3. Ground operations and logistics in the context of the International Asteroid Mission

    Science.gov (United States)

    The role of Ground Operations and Logistics, in the context of the International Asteroid Mission (IAM), is to define the mission of Ground Operations; to identify the components of a manned space infrastructure; to discuss the functions and responsibilities of these components; to provide cost estimates for delivery of the spacecraft to LEO from Earth; to identify significant ground operations and logistics issues. The purpose of this dissertation is to bring a degree of reality to the project. 'One cannot dissociate development and set up of a manned infrastructure from its operational phase since it is this last one which is the most costly due to transportation costs which plague space station use' (Eymar, 1990). While this reference is to space stations, the construction and assembly of the proposed crew vehicle and cargo vehicles will face similar cost difficulties, and logistics complexities. The uniqueness of long duration space flight is complicated further by the lack of experience with human habitated, and non-refurbishable life support systems. These problems are addressed.

  4. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  5. Near-Earth Asteroid Rendezvous: mission overview

    Science.gov (United States)

    Cheng, A. F.; Santo, A. G.; Heeres, K. J.; Landshof, J. A.; Farquhar, R. W.; Gold, R. E.; Lee, S. C.

    1997-10-01

    The Near-Earth Asteroid Rendezvous (NEAR) mission, the first launch of NASA's Discovery Program, will be the first mission to orbit an asteroid. NEAR will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. NEAR launched successfully on February 17, 1996, aboard a Delta II-7925. It will orbit the 20-km-diameter near-Earth asteroid 433 Eros for about 1 year, at a minimum orbit radius of about 35 km from the center of the asteroid. The NEAR is a solar-powered, three-axis stabilized spacecraft with a launch mass including propellant of 805 kg. NEAR uses X band telemetry to the NASA Deep Space Network, with the data rates at Eros up to 8.8 kbits/s using a 34-m High Efficiency (HEF) dish, and up to 26.5 kbits/s using a 70-m dish. A solid-state recorder is accommodated with a memory capacity of 1.8 Gbytes. Attitude control is to 1.7 mrad, line-of-sight pointing stability is within 50 μrad over 1 s, and post processing attitude knowledge is within 50 μrad. NEAR accommodates 56 kg of instruments and provides them with 84 W. The instruments are a multispectral imager (MSI), a near-infrared spectrograph (NIS), an X ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science (RS) investigation uses the coherent X band transponder. NEAR will make a flyby of the C-type asteroid 253 Mathilde in June 1997 and will rendezvous with 433 Eros in February 1999. It will execute an initial slow flyby of Eros, with a flyby speed of 5 m/s and a closest approach distance of 500 km. Subsequently, its orbit will be lowered to 35 km. The NEAR Mission Operations Center and the Science Data Center are at the Johns Hopkins Applied Physics Laboratory. The Science Data Center will maintain the entire NEAR data set on-line, and data from all instruments can be accessed by every member of the NEAR Science Team. Data, including images, are released over

  6. Asteroid Redirection Mission Evaluation Using Multiple Landers

    Science.gov (United States)

    Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-01-01

    In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.

  7. International CJMT-1 Workshop on Asteroidal Science

    Science.gov (United States)

    Ip, Wing-Huen

    2014-03-01

    An international workshop on asteroidal science was held between October 16 and 17, 2012, at the Macau University of Science and Technology gathering together experts on asteroidal study in China, Japan, Macao and Taiwan. For this reason, we have called it CJMT-1 Workshop. Though small in sizes, the asteroids orbiting mainly between the orbit of Mars and of Jupiter have important influence on the evolution of the planetary bodies. Topics ranging from killer asteroids to space resources are frequently mentioned in news reports with prominence similar to the search for water on Mars. This also means that the study of asteroids is very useful in exciting the imagination and interest in science of the general public. Several Asian countries have therefore developed long-term programs integrating ground-based observations and space exploration with Japan being the most advanced and ambitious as demonstrated by the very successful Hayabusa mission to asteroid 25143 Itokawa. In this volume we will find descriptions of the mission planning of Hayabusa II to the C-type near-Earth asteroid, 1999 JU3. Not to be outdone, China's Chang-E 2 spacecraft was re-routed to a flyby encounter with asteroid 4179 Toutatis in December 2012. It is planned that in the next CJMT workshop, we will have the opportunity to learn more about the in-depth data analysis of the Toutatis observations and the progress reports on the Hayabusa II mission which launch date is set to be July 2014. Last but not least, the presentations on the ground-based facilities as described in this volume will pave the way for coordinated observations of asteroidal families and Trojan asteroids - across Asia from Taiwan to Uzbekistan. Such international projects will serve as an important symbol of good will and peaceful cooperation among the key members of this group. Finally, I want to thank the Space Science Institute, Macao University of Science and Technology, for generous support, and its staff members

  8. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  9. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning

    2004-01-01

    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus....... Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected......The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target...

  10. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  11. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  12. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  13. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    Czech Academy of Sciences Publication Activity Database

    Cheng, A.F.; Michel, R.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, Petr; Richardson, D.C.

    2016-01-01

    Roč. 121, February (2016), s. 25-37 ISSN 0032-0633 Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.892, year: 2016

  14. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    Science.gov (United States)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  15. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  16. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  17. Human spaceflight and an asteroid redirect mission: Why?

    Science.gov (United States)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  18. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  19. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  20. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    Science.gov (United States)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  1. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    Science.gov (United States)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  2. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  3. Asteroid retrieval missions enabled by invariant manifold dynamics

    Science.gov (United States)

    Sánchez, Joan Pau; García Yárnoz, Daniel

    2016-10-01

    Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.

  4. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  5. The Mission Accessibility of Near-Earth Asteroids

    Science.gov (United States)

    Barbee, Brent W.; Abell, P. A.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Taylor, P.; hide

    2015-01-01

    The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public.

  6. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near-Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent William

    2015-01-01

    Collisions from near-Earth asteroids (NEAs) have the potential to cause widespread harm to life on Earth. The hypervelocity nature of these collisions means that a relatively small asteroid (about a quartermile in diameter) could cause a global disaster. Proposed strategies for deflecting or disrupting such a threatening asteroid include detonation of a nuclear explosive device (NED) in close proximity to the asteroid, as well as intercepting the asteroid with a hypervelocity kinetic impactor. NEDs allow for the delivery of large amounts of energy to a NEA for a given mass launched from the Earth, but have not yet been developed or tested for use in deep space. They also present safety and political complications, and therefore may only be used when absolutely necessary. Kinetic impactors require a relatively simple spacecraft compared to NEDs, but also deliver a much lower energy for a given launch mass. To date, no demonstration mission has been conducted for either case, and such a demonstration mission must be conducted prior to the need to utilize them during an actual scenario to ensure that an established, proven system is available for planetary defense when the need arises. One method that has been proposed to deliver a kinetic impactor with impact energy approaching that of an NED is the "billiard-ball" approach. This approach would involve capturing an asteroid approximately ten meters in diameter with a relatively small spacecraft (compared to the launch mass of an equivalent direct kinetic impactor), and redirecting it into the path of an Earth-threatening asteroid. This would cause an impact which would disrupt the Earth-threatening asteroid or deflect it from its Earth-crossing trajectory. The BILLIARDS Project seeks to perform a demonstration of this mission concept in order to establish a protocol that can be used in the event of an impending Earth/asteroid collision. In order to accomplish this objective, the mission must (1) rendezvous with a

  7. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  8. Asteroid Rendezvous Mission Design Using Multiobjective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ya-zhong Luo

    2014-01-01

    Full Text Available A new preliminary trajectory design method for asteroid rendezvous mission using multiobjective optimization techniques is proposed. This method can overcome the disadvantages of the widely employed Pork-Chop method. The multiobjective integrated launch window and multi-impulse transfer trajectory design model is formulated, which employes minimum-fuel cost and minimum-time transfer as two objective functions. The multiobjective particle swarm optimization (MOPSO is employed to locate the Pareto solution. The optimization results of two different asteroid mission designs show that the proposed approach can effectively and efficiently demonstrate the relations among the mission characteristic parameters such as launch time, transfer time, propellant cost, and number of maneuvers, which will provide very useful reference for practical asteroid mission design. Compared with the PCP method, the proposed approach is demonstrated to be able to provide much more easily used results, obtain better propellant-optimal solutions, and have much better efficiency. The MOPSO shows a very competitive performance with respect to the NSGA-II and the SPEA-II; besides a proposed boundary constraint optimization strategy is testified to be able to improve its performance.

  9. Poor Man's Asteroid Sample Return Missions

    Science.gov (United States)

    Landis, R. R.; Graham, L. D.

    2018-02-01

    A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.

  10. NEOWISE REACTIVATION MISSION YEAR TWO: ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Bauer, J.; Kramer, E. A.; Masiero, J.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  11. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E. [Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, MS 183-301, Pasadena, CA 91109 (United States); Nugent, C.; Cutri, R. M. [California Institute of Technology, Infrared Processing and Analysis Center, 1200 California Boulevard, Pasadena, CA 91125 (United States); Wright, E. L. [University of California, Los Angeles, CA 90095 (United States); Bauer, J. M. [University of Maryland, College Park, MD 20742 (United States); Grav, T.; Sonnett, S., E-mail: Joseph.Masiero@jpl.nasa.gov [Planetary Science Institute, 1700 E Fort Lowell Road #106, Tucson, AZ 85719 (United States)

    2017-10-01

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.

  12. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    International Nuclear Information System (INIS)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E.; Nugent, C.; Cutri, R. M.; Wright, E. L.; Bauer, J. M.; Grav, T.; Sonnett, S.

    2017-01-01

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.

  13. NASA's Human Mission to a Near-Earth Asteroid: Landing on a Moving Target

    Science.gov (United States)

    Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2011-01-01

    This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending versus not sending one or more robotic surveyor missions prior to a human mission to land on an asteroid. The expected value of sample information based on productivity combined with parametric variations in the prior probability an asteroid might be found suitable for landing were used to assess the optimal number of spacecraft and asteroids to survey. The analysis supports the value of surveyor missions to asteroids and indicates one launch with two spacecraft going simultaneously to two independent asteroids appears optimal.

  14. The flyby of Rosetta at asteroid Šteins - mission and science operations

    Science.gov (United States)

    Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard

    2010-07-01

    The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.

  15. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  16. Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins

    Science.gov (United States)

    Ryan, E. L.

    2017-12-01

    Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.

  17. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent W.

    2015-01-01

    Currently, no planetary defense demonstration mission has ever been flown. While Nuclear Explosive Devices (NEDs) have significantly more energy than a kinetic impactor launched directly from Earth, they present safety and political complications, and therefore may only be used when absolutely necessary. The Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System (BILLIARDS) is a demonstration mission for planetary defense, which is capable of delivering comparable energy to the lower range of NED capabilities in the form of a safer kinetic impactor. A small asteroid (disrupt the larger asteroid. To reduce the cost and complexity, an asteroid pair which has a natural close approach is selected.

  18. Mitigation-relevant science with Don Quijote - a European-led mission to a near-Earth asteroid

    Science.gov (United States)

    Harris, A. W.; Galvez, A.; Benz, W.; Fitzsimmons, A.; Green, S. F.; Michel, P.; Valsecchi, G.; Paetzold, M.; Haeusler, B.; Carnelli, I.

    The Don Quijote concept includes a rendezvous spacecraft and an impactor vehicle The main aim of the mission is to carry out an experiment to demonstrate the modification of a near-Earth asteroid s orbit in a controlled way as a first step in establishing mitigation measures against an eventual hazardous object In particular the spacecraft would study the physical properties of the target asteroid and the effects of a kinetic impact on its dynamical state It is also expected that some spacecraft resources will be available for more general solar-system science investigations The Don Quijote mission is currently at the phase-A stage during which a number of European consortia of industrial and scientific partners will study its technical feasibility and potential scientific return The basic mission concept current scientific issues and the possibilities for international participation in the mission will be discussed

  19. Asteroids

    International Nuclear Information System (INIS)

    Bell, J.F.; Gaffey, M.J.

    1989-01-01

    During the past 15 yr much progress has been made in the study of the asteroids with optical, infrared, and radar telescopes. Simultaneously a vast body of petrologic, chemical and isotopic data has been acquired for meteorites, which are actual samples of asteroids. This work has demonstrated that asteroids vary widely in composition and thermal history in a systematic but complex way with orbital position and size. The authors report that it appears that these variations can be explained to first order by a simple model invoking three principal mechanisms: condensation of various known and unknown classes of chondritic material at radial locations in the nebula controlled by the temperature and composition; intense metamorphic heating after accretion which declined rapidly with both increasing solar distance and smaller planetesimal size, producing complete differentiation in some inner belt objects, incomplete differentiation in many more, and extensive metamorphism and aqueous alteration in middle-belt objects; and complex collisional fragmentation often controlled by internal strength gradients due to irregular distribution of metal

  20. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  1. Prospects for asteroid mass determination from close encounters between asteroids: ESA's Gaia space mission and beyond

    Science.gov (United States)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Eggl, Siegfried

    2018-04-01

    We present a catalog of potential candidates for asteroid mass determination based on mutual close encounters of numbered asteroids with massive perturbers (D>20 km). Using a novel geometric approach tuned to optimize observability, we predict optimal epochs for mass determination observations. In contrast to previous studies that often used simplified dynamical models, we have numerically propagated the trajectories of all numbered asteroids over the time interval from 2013 to 2023 using relativistic equations of motion including planetary perturbations, J2 of the Sun, the 16 major asteroid perturbers and the perturbations due to non-sphericities of the planets. We compiled a catalog of close encounters between asteroids where the observable perturbation of the sky plane trajectory is greater than 0.5 mas so that astrometric measurements of the perturbed asteroids in the Gaia data can be leveraged. The catalog v1.0 is available at ftp://dosya.akdeniz.edu.tr/ivantsov.

  2. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  3. Geophysical Evolution of Ch Asteroids and Testable Hypotheses for Future Missions

    Science.gov (United States)

    Castillo, J. C.

    2017-12-01

    The main population of asteroids related to meteorites in the collections remains to be explored in situ. Ch asteroids are the only midsized asteroids that display a signature of hydration (besides Pallas) and the spectral connection between Ch asteroids and CM chondrites suggests that the former represent potential parent bodies for the latter. This class of asteroids is particularly interesting because it hosts many objects 100-200 km in size, which are believed to belong to a primordial population of planetesimals. This presentation will explore multiple evolution pathways for Ch-asteroids leading to possible hypotheses on the geological, petrological, and geophysical properties that a disrupted parent body would present to a future mission. This work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  4. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  5. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    Czech Academy of Sciences Publication Activity Database

    Michel, P.; Cheng, A.; Kueppers, M.; Pravec, Petr; Blum, J.; Delbó, M.; Green, S.; Rosenblatt, P.; Tsiganis, K.; Vincent, J.B.; Biele, J.; Ciarletti, V.; Herique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L. A. M.; Naidu, S.P.; Barnouin, O.; Richardson, D.C.; Rivkin, A. S.; Scheirich, Peter; Moskovitz, N.; Thirouin, A.; Schwartz, S.R.; Campo Bagatin, A.; Yu, Y.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2529-2547 ISSN 0273-1177 R&D Projects: GA ČR GA15-07193S Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  6. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the

  7. MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission

    Science.gov (United States)

    Ho, Tra-Mi; Baturkin, Volodymyr; Grimm, Christian; Grundmann, Jan Thimo; Hobbie, Catherin; Ksenik, Eugen; Lange, Caroline; Sasaki, Kaname; Schlotterer, Markus; Talapina, Maria; Termtanasombat, Nawarat; Wejmo, Elisabet; Witte, Lars; Wrasmann, Michael; Wübbels, Guido; Rößler, Johannes; Ziach, Christian; Findlay, Ross; Biele, Jens; Krause, Christian; Ulamec, Stephan; Lange, Michael; Mierheim, Olaf; Lichtenheldt, Roy; Maier, Maximilian; Reill, Josef; Sedlmayr, Hans-Jürgen; Bousquet, Pierre; Bellion, Anthony; Bompis, Olivier; Cenac-Morthe, Celine; Deleuze, Muriel; Fredon, Stephane; Jurado, Eric; Canalias, Elisabet; Jaumann, Ralf; Bibring, Jean-Pierre; Glassmeier, Karl Heinz; Hercik, David; Grott, Matthias; Celotti, Luca; Cordero, Federico; Hendrikse, Jeffrey; Okada, Tatsuaki

    2017-07-01

    On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d'Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System.

  8. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    Science.gov (United States)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  9. ASPECT CubeSat mission to a binary asteroid

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Näsilä, A.; Tikka, T.; Muinonen, K.; Penttilä, A.; Kestilä, A.; Kallio, E.

    2016-01-01

    Roč. 88, Special volume (2016), s. 283-283 ISSN 0367-5211. [ Nordic Geological Winter Meeting /32./. 13.01.2016-15.01.2016, Helsinki] Institutional support: RVO:67985831 Keywords : CubeSat * asteroid * AIDA * reflectance spectra ASPECT Subject RIV: DB - Geology ; Mineralogy http://www.geologinenseura.fi/bulletin/Special_Volume_1_2016/BGSF-NGWM2016_Abstract_Volume.pdf

  10. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Science.gov (United States)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  11. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    Science.gov (United States)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  12. A CubeSat Asteroid Mission: Design Study and Trade-Offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa; hide

    2014-01-01

    There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat

  13. Small D-type asteroids in the NEO population: new targets for space missions

    Science.gov (United States)

    Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.

    2018-06-01

    In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.

  14. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    Science.gov (United States)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  15. Design and validation of a GNC system for missions to asteroids: the AIM scenario

    Science.gov (United States)

    Pellacani, A.; Kicman, P.; Suatoni, M.; Casasco, M.; Gil, J.; Carnelli, I.

    2017-12-01

    Deep space missions, and in particular missions to asteroids, impose a certain level of autonomy that depends on the mission objectives. If the mission requires the spacecraft to perform close approaches to the target body (the extreme case being a landing scenario), the autonomy level must be increased to guarantee the fast and reactive response which is required in both nominal and contingency operations. The GNC system must be designed in accordance with the required level of autonomy. The GNC system designed and tested in the frame of ESA's Asteroid Impact Mission (AIM) system studies (Phase A/B1 and Consolidation Phase) is an example of an autonomous GNC system that meets the challenging objectives of AIM. The paper reports the design of such GNC system and its validation through a DDVV plan that includes Model-in-the-Loop and Hardware-in-the-Loop testing. Main focus is the translational navigation, which is able to provide online the relative state estimation with respect to the target body using exclusively cameras as relative navigation sensors. The relative navigation outputs are meant to be used for nominal spacecraft trajectory corrections as well as to estimate the collision risk with the asteroid and, if needed, to command the execution of a collision avoidance manoeuvre to guarantee spacecraft safety

  16. Trajectory design for a lunar mapping and near-Earth-asteroid flyby mission

    Science.gov (United States)

    Dunham, David W.; Farquhar, Robert W.

    1993-01-01

    In August, 1994, the unusual asteroid (1620) Geographos will pass very close to the Earth. This provides one of the best opportunities for a low-cost asteroid flyby mission that can be achieved with the help of a gravity assist from the Moon during the years 1994 and 1995. A Geographos flyby mission, including a lunar orbiting phase, was recommended to the Startegic Defense Initiative (SDI) Office when they were searching for ideas for a deep-space mission to test small imaging systems and other lightweight technologies. The goals for this mission, called Clementine, were defined to consist of a comprehensive lunar mapping phase before leaving the Earth-Moon system to encounter Geographos. This paper describes how the authors calculated a trajectory that met the mission goals within a reasonable total Delta-V budget. The paper also describes some refinements of the initially computed trajectory and alternative trajectories were investigated. The paper concludes with a list of trajectories to fly by other near-Earth asteroids during the two years following the Geographos opportunity. Some of these could be used if the Geographos schedule can not be met. If the 140 deg phase angle of the Geographos encounter turns out to be too risky, a flyby of (2120) Tantalus in January, 1995, has a much more favorable approach illumination. Tantalus apparently can be reached from the same lunar orbit needed to get to Geographos. However, both the flyby speed and distance from the Earth are much larger for Tantalus than for Geographos.

  17. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  18. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  19. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration

  20. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Science.gov (United States)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  1. Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids

    Science.gov (United States)

    Perozzi, Ettore; Rossi, Alessandro; Valsecchi, Giovanni B.

    2001-01-01

    Missions to asteroids and comets are becoming increasingly feasible both from a technical and a financial point of view. In particular, those directed towards the Near-Earth Asteroids have proven suitable for a low-cost approach, thus attracting the major space agencies as well as private companies. The choice of a suitable target involves both scientific relevance and mission design considerations, being often a difficult task to accomplish due to the limited energy budget at disposal. The aim of this paper is to provide an approach to basic trajectory design which allows to account for both aspects of the problem, taking into account scientific and technical information. A global characterization of the Near-Earth Asteroids population carried out on the basis of their dynamics, physical properties and flight dynamics considerations, allows to identify a group of candidates which satisfy both, the scientific and engineering requirements. The feasibility of rendezvous and flyby missions towards them is then discussed and the possibility of repeated encounters with the same object is investigated, as an intermediate scenario. Within this framework, the capability of present and near future launch and propulsion systems for interplanetary missions is also addressed.

  2. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    Science.gov (United States)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  3. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  4. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    Science.gov (United States)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  5. Electric solar-wind sail for asteroid touring missions and planetary protection

    Science.gov (United States)

    Janhunen, P.

    2014-07-01

    The electric solar-wind sail (electric sail, E-sail [1,2]) is a relatively new concept for moving around in the solar system without consuming propellant and by using the thrust provided by the natural solar wind to produce propulsion. The E-sail is based on deploying, using the centrifugal force, a set of long, thin metallic tethers and charging them to high positive voltage by actively removing negative charge from the system by an electron gun. To make the tethers resistant towards inevitable wire cuts by micrometeoroids, they must be made by bonding from multiple (typically 4) thin (25--50 μ m) aluminium wires. Production of the tethers was a technical challenge which was recently overcome. According to present numerical estimates, the E-sail could produce up to 1 N of propellantless thrust out of less than 200 kg package which is enough to give characteristic acceleration of 1 mm/s^2 to a spacecraft weighing 1 tonne, thus producing 30 km/s of delta-v per year. The thrust scales as ˜ 1/r where r is the solar distance. There are ways to control and vector the thrust enough to enable inward and outward spiralling missions in the solar system. The E-sail working principle has been indirectly measured in a laboratory, and ESTCube-1 CubeSat experiment is underway in orbit (in late March 2014 it was waiting to be started) to measure the E-sail thrust acting on a short 10-m long tether. A full-scale mission requires ˜ 1000 km of tether altogether (weighing ˜10 kg). The production of a 1-km piece of tether has been demonstrated in laboratory [3]. If the E-sail holds up its present promise, it would be ideally suited for asteroid missions because it enables production of similar level of thrust than ion engines, but needs only a small fraction of the electric power and never runs out of propellant because it does not use any (the ''propellant'' being the natural solar-wind plasma flow). Here we consider especially a mission which would tour the asteroid belt for a

  6. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  7. On the cutting edge technology enabling the challenging missions to asteroids and comets, our primitive neighbors

    Science.gov (United States)

    Kawaguchi, J.

    2014-07-01

    The world's first sample-and-return mission from an object orbiting outside the sphere of influence of the Earth was successfully performed through Hayabusa in 2010, an engineering demonstration mission of JAXA. And it was followed by another technology demonstrator, Ikaros, the world's first solar-sail mission launched in 2010, the same year of the Hayabusa return. These two demonstrations represent the significance of the technology development that shall precede the real science missions that will follow. The space-exploration community focuses its attention on the use of asteroids and comets as one of the most immediate destinations. Humans will perform voyages to those objects sooner or later. And we will initiate a kind of research as scientific activity for those objects. The missions may include even sample-and-return missions to those bodies for assessing the chance of possible resource utilization in future. The first step for it is, needless to say, science. Combining the sample-and-return technology using the ultra-high-speed reentry for sample recovery with the new propulsion system using both electric and photon force will be the direct conclusion from Hayabusa and Ikaros. And key elements such as autonomy are also among the essential factors in making the sophisticated operation possible around asteroids and comets avoiding the communication difficulty. This presentation will comprehensively touch on what those technology skills are, and how they are applicable to the subsequent new missions, from the mission leader's point of view. They are probably real requisites for planning brand-new innovative challenges in the ACM community.

  8. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  9. Trajectory design for a rendezvous mission to Earth's Trojan asteroid 2010 TK7

    Science.gov (United States)

    Lei, Hanlun; Xu, Bo; Zhang, Lei

    2017-12-01

    In this paper a rendezvous mission to the Earth's Trojan asteroid 2010 TK7 is proposed, and preliminary transfer trajectories are designed. Due to the high inclination (∼ 20.9°) of the target asteroid relative to the ecliptic plane, direct transfers usually require large amounts of fuel consumption, which is beyond the capacity of current technology. As gravity assist technique could effectively change the inclination of spacecraft's trajectory, it is adopted to reduce the launch energy and rendezvous velocity maneuver. In practical computation, impulsive and low-thrust, gravity-assisted trajectories are considered. Among all the trajectories computed, the low-thrust gravity-assisted trajectory with Venus-Earth-Venus (V-E-V) swingby sequence performs the best in terms of propellant mass. For a spacecraft with initial mass of 800 kg , propellant mass of the best trajectory is 36.74 kg . Numerical results indicate that both the impulsive and low-thrust, gravity-assisted trajectories corresponding to V-E-V sequence could satisfy mission constraints, and can be applied to practical rendezvous mission.

  10. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  11. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  12. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  13. Radar Observations of Asteroid 101955 Bennu and the OSIRIS-REx Sample Return Mission

    Science.gov (United States)

    Nolan, M. C.; Benner, L.; Giorgini, J. D.; Howell, E. S.; Kerr, R.; Lauretta, D. S.; Magri, C.; Margot, J. L.; Scheeres, D. J.

    2017-12-01

    On September 24, 2023, the OSIRIS-REx spacecraft will return a sample of asteroid (101955) Bennu to the Earth. We chose the target of this mission in part because of the work we did over more than a decade using the Arecibo and Goldstone planetary radars to observe this asteroid. We observed Bennu (then known as 1999 RQ36) at Arecibo and Goldstone in 1999 and 2005, and at Arecibo in 2011. Radar imaging from the first two observing epochs provided a shape and size for Bennu, which greatly simplified mission planning. We know that the spacecraft will encounter a roundish asteroid 500 m in diameter with a distinct equatorial ridge [Nolan et al., 2013]. Bennu does not have the dramatic concavities seen in Itokawa and comet 67P/Churyumov-Gerasimenko, the Hayabusa and Rosetta mission targets, respectively, which would have been obvious in radar imaging. Further radar ranging in 2011 provided a detection of the Yarkovsky effect, allowing us to constrain Bennu's mass and bulk density from radar measurement of non-gravitational forces acting on its orbit [Chesley et al., 2014]. The 2011 observations were particularly challenging, occurring during a management transition at the Arecibo Observatory, and would not have been possible without significant extra cooperation between the old and new managing organizations. As a result, we can predict Bennu's position to within a few km over the next 100 years, until its close encounter with the Earth in 2135. We know its shape to within ± 10 m (1σ) on the long and intermediate axes and ± 52 m on the polar diameter, and its pole orientation to within 5 degrees. The bulk density is 1260 ± 70 kg/m3 and the rotation is retrograde with a 4.297 ± 0.002 h period The OSIRIS-REx team is using these constraints to preplan the initial stages of proximity operations and dramatically reduce risk. The Figure shows the model and Arecibo radar images from 1999 (left), 2005 (center), and 2011 (right). Bennu is the faint dot near the center of

  14. Asteroid team

    International Nuclear Information System (INIS)

    Matson, D.L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue

  15. Asteroid team

    Science.gov (United States)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  17. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  18. MASCOT2, a Lander to Characterize the Target of an Asteroid Kinetic Impactor Deflection Test (AIM) Mission

    Science.gov (United States)

    Biele, J.; Ulamec, S.; Krause, C.; Cozzoni, B.; Lange, C.; Grundmann, J. T.; Grimm, C.; Ho, T.-M.; Herique, A.; Plettemeier, D.; Grott, M.; Auster, H.-U.; Hercik, D.; Carnelli, I.; Galvez, A.; Philippe, C.; Küppers, M.; Grieger, B.; Gil Fernandez, J.; Grygorczuk, J.

    2017-09-01

    In the course of the AIDA/AIM mission studies [1,2] a lander, MASCOT2, has been studied to be deployed on the moon of the binary Near-Earth Asteroid system, (65803) Didymos. The AIDA technology demonstration mission, composed of a kinetic impactor, DART, and an observing spacecraft, AIM, has been designed to deliver vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof that the asteroid has been deflected at all. A landed asset on the target asteroid greatly supports analyzing its dynamical state, mass, geophysical properties, surface and subsurface structure. The lander's main instrument is a bistatic, low frequency radar (LFR) [3a,b] to sound the interior structure of the asteroid. It is supported by a camera (MasCAM) [4], a radiometer (MARA)[5], an accelerometer (DACC [9]), and, optionally regarding the science case, also a magnetometer (MasMAG)[6].

  19. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  20. International partnership in lunar missions

    Indian Academy of Sciences (India)

    related to space science and Moon missions are being addressed in this conference. .... flight. The studies in India suggest that an 'aerobic' space transportation vehicle can indeed have a ... space from Earth at very, very low cost first before.

  1. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  2. Sample Curation in Support of the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Righter, Kevin; Nakamura-Messenger, Keiko

    2017-01-01

    The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu Sept. 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After sample is stowed and confirmed the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah [2] and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston [3]. The materials curated for the mission are described here. a) Materials Archive and Witness Plate Collection: The SRC and TAGSAM were built between March 2014 and Summer of 2015, and instruments (OTES,OVIRS, OLA, OCAMS, REXIS) were integrated from Summer 2015 until May 2016. A total of 395 items were received for the materials archive at NASA-JSC, with archiving finishing 30 days after launch (with the final archived items being related to launch operations)[4]. The materials fall into several general categories including metals (stainless steel, aluminum, titanium alloys, brass and BeCu alloy), epoxies, paints, polymers, lubricants, non-volatile-residue samples (NVR), sapphire, and various miscellaneous materials. All through the ATLO process (from March 2015 until late August 2016) contamination knowledge witness plates (Si wafer and Al foil) were deployed in the various cleanrooms in Denver and KSC to provide an additional record of particle counts and volatiles that is archived for current and future scientific studies. These plates were deployed in roughly monthly increments with each unit containing 4 Si wafers and 4 Al foils. We archived 128 individual witness plates (64 Si wafers and 64 Al foils); one of each witness plate (Si and Al) was analyzed immediately by the science team after archiving, while the remaining 3 of each are archived indefinitely. Information about each material archived is stored in an extensive database at NASA-JSC, and key

  3. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  5. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    Science.gov (United States)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  6. 2015 Barcelona Asteroid Day

    CERN Document Server

    Gritsevich, Maria; Palme, Herbert

    2017-01-01

    This volume is a compilation of the research presented at the International Asteroid Day workshop which was celebrated at Barcelona on June 30th, 2015. The proceedings discuss the beginning of a new era in the study and exploration of the solar system’s minor bodies. International Asteroid Day commemorates the Tunguska event of June 30th, 1908. The workshop’s goal was to promote the importance of dealing proactively with impact hazards from space. Multidisciplinary experts contributed to this discussion by describing the nature of comets and asteroids along with their offspring, meteoroids. New missions to return material samples of asteroids back to Earth such as Osiris-REx and Hayabusa 2, as well as projects like AIM and DART which will test impact deflection techniques for Potentially Hazardous Asteroids encounters were also covered. The proceedings include both an outreach level to popularize impact hazards and a scientific character which covers the latest knowledge on these topics, as well as offeri...

  7. A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter

    2016-01-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  8. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  9. Lessons for Interstellar Travel from the Guidance and Control Design of the Near Earth Asteroid Scout Solar Sail Mission

    Science.gov (United States)

    Diedrich, Benjamin; Heaton, Andrew

    2017-01-01

    NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.

  10. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Masatoshi [Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Sánchez, Diego Paul [Senior Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu [Richard Seebass Chair, Professor, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States)

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  11. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Scheeres, Daniel J.

    2015-01-01

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode

  12. Radiation effects in the Si-PIN detector on the Near Earth Asteroid Rendezvous mission

    CERN Document Server

    Starr, R; Evans, L G; Floyd, S R; McClanahan, T P; Trombka, J I; Goldsten, J O; Maurer, R H; McNutt, R L; Roth, D R

    1999-01-01

    A Si-PIN photodiode is being used as a solar X-ray monitor on the X-ray/gamma-ray spectrometer experiment which is flying on the Near Earth Asteroid Rendezvous spacecraft. Since its launch in February 1996 this photodiode has experienced several brief failures. These anomalies and other performance characteristics will be described. Efforts to reproduce these failures in ground tests with flight spare equipment will also be discussed.

  13. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    Science.gov (United States)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  14. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary

  15. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  16. A Howardite-Eucrite-Diogenite (HED) Meteorite Compendium: Summarizing Samples of ASteroid 4 Vesta in Preparation for the Dawn Mission

    Science.gov (United States)

    Garber, J. M.; Righter, K.

    2011-01-01

    The Howardite-Eucrite-Diogenite (HED) suite of achondritic meteorites, thought to originate from asteroid 4 Vesta, has recently been summarized into a meteorite compendium. This compendium will serve as a guide for researchers interested in further analysis of HEDs, and we expect that interest in these samples will greatly increase with the planned arrival of the Dawn Mission at Vesta in August 2011. The focus of this abstract/poster is to (1) introduce and describe HED samples from both historical falls and Antarctic finds, and (2) provide information on unique HED samples available for study from the Antarctic Meteorite Collection at JSC, including the vesicular eucrite PCA91007, the olivine diogenite EETA79002, and the paired ALH polymict eucrites.

  17. Internal gravity, self-energy, and disruption of comets and asteroids

    Science.gov (United States)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2018-03-01

    The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary

  18. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  19. Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission

    Science.gov (United States)

    Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven

    2012-09-01

    In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.

  20. An ISU study of asteroid mining

    Science.gov (United States)

    Burke, J. D.

    During the 1990 summer session of the International Space University, 59 graduate students from 16 countries carried out a design project on using the resources of near-earth asteroids. The results of the project, whose full report is now available from ISU, are summarized. The student team included people in these fields: architecture, business and management, engineering, life sciences, physical sciences, policy and law, resources and manufacturing, and satellite applications. They designed a project for transporting equipment and personnel to a near-earth asteroid, setting up a mining base there, and hauling products back for use in cislunar space. In addition, they outlined the needed precursor steps, beginning with expansion of present ground-based programs for finding and characterizing near-earth asteroids and continuing with automated flight missions to candidate bodies. (To limit the summer project's scope the actual design of these flight-mission precursors was excluded.) The main conclusions were that asteroid mining may provide an important complement to the future use of lunar resources, with the potential to provide large amounts of water and carbonaceous materials for use off earth. However, the recovery of such materials from presently known asteroids did not show an economic gain under the study assumptions; therefore, asteroid mining cannot yet be considered a prospective business.

  1. Astronomy from the Moon and International Lunar Observatory Missions

    Science.gov (United States)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  2. IAEA Sends International Fact-finding Expert Mission to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency will dispatch an international expert fact-finding mission to Japan. Based upon the agreement between the IAEA and the Government of Japan, the mission, comprising nearly 20 international and IAEA experts from a dozen countries, will visit Japan between 24 May and 2 June 2011. Under the leadership of Mr. Mike Weightman, HM Chief Inspector of Nuclear Installations of the United Kingdom, the mission will conduct fact-finding activities at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) site and in other locations. The expert mission will make a preliminary assessment of the safety issues linked with TEPCO's Fukushima Dai-ichi NPS accident following the Great East Japan Earthquake and Tsunami. During the mission, areas that need further exploration or assessment based on the IAEA safety standards will also be identified. In the course of the IAEA mission, the international experts will become acquainted with the Japanese lessons learned from the accident and will share their experience and expertise in their fields of competence with the Japanese authorities. Mr. Weightman will present the mission's report at the Ministerial Conference on Nuclear Safety organised by the IAEA in Vienna from 20 to 24 June 2011, as an important input in the process of reviewing and strengthening the global nuclear safety framework that will be launched by the Conference. (IAEA)

  3. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    Science.gov (United States)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass-filter No Filter, 750 nm (1) AR coating (3) Bandpass-filter 915 nm (2) Longpass-filter 960 nm (4) Band- Band- Figure 4: Basalt and Olivine sample ­ entire image (left) and passfilter passfilter 915 nm 750 nm visible part () (6) (7) Bandpass- More than 150 images were acquired during this validation filter 847

  4. In-Situ Sampling Analysis of a Jupiter Trojan Asteroid by High Resolution Mass Spectrometry in the Solar Power Sail Mission

    Science.gov (United States)

    Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.

    2017-12-01

    The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.

  5. Navigation of Chang'E-2 asteroid exploration mission and the minimum distance estimation during its fly-by of Toutatis

    Science.gov (United States)

    Cao, Jianfeng; Liu, Yong; Hu, Songjie; Liu, Lei; Tang, Geshi; Huang, Yong; Li, Peijia

    2015-01-01

    China's space probe Chang'E-2 began its asteroid exploration mission on April 15, 2012 and had been in space for 243 days before its encounter with Toutatis. With no onboard navigation equipment available, the navigation of CE-2 during its fly-by of the asteroid relied totally on ground-based Unified S-Band (USB) and Very Long Baseline Interferometry (VLBI) tracking data. The orbit determination of Toutatis was achieved by using a combination of optical measurements and radar ranging. On November 30, 2012, CE-2 was targeted at a destination that was 15 km away from the asteroid as it performed its third trajectory correction maneuver. Later orbit determination analysis showed that a correction residual was still present, which necessitated another maneuver on December 12. During the two maneuvers, ground-based navigation faced a challenge in terms of the orbit determination accuracy. With the optimization of our strategy, an accuracy of better than 15 km was finally achieved for the post-maneuver orbit solution. On December 13, CE-2 successfully passed by Toutatis and conducted continuous photographing of Toutatis during the entire process. An analysis of the images that were taken from the solar panel monitoring camera and the satellite attitude information demonstrates that the closest distance obtained between CE-2 and Toutatis (Toutatis's surface) was 1.9 km, which is considerably better than the 30 km fly-by distance that we originally hoped based on the accuracies that we can obtain on the satellite and Toutatis' orbits.

  6. The scientific objectives of the International Solar Polar Mission

    International Nuclear Information System (INIS)

    Wenzel, K.-P.

    1980-01-01

    The International Solar Polar Mission (I.S.P.M.), originally known as the Out-of-Ecliptic Mission, will be the first spacecraft mission to explore the third dimension of the heliosphere within a few astronomical units of the Sun and to view the Sun over the full range of heliographic latitudes. Its main objectives are to investigate, as a function of solar latitude, the properties of the interplanetary medium and the solar corona. The I.S.P.M. is a two spacecraft venture jointly conducted by E.S.A. and N.A.S.A. The two spacecraft will be injected into elliptical heliocentric orbits approximately at right angles to the ecliptic plane, by using the Jupiter gravity assist method, one northwards and the other southwards. After passing nearly above the poles of the Sun, each spacecraft crosses the ecliptic plane and passes over the other solar pole. The complete mission time from launch, foreseen for February 1983, to the second polar passage is approximately 42/3 years. This paper summarizes the main scientific objectives of the instruments to be carried on this exploratory mission. It concludes with an outline of the payload, the spacecraft, the trajectory and the mission schedule. (author)

  7. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  8. Academic general internal medicine: a mission for the future.

    Science.gov (United States)

    Armstrong, Katrina; Keating, Nancy L; Landry, Michael; Crotty, Bradley H; Phillips, Russell S; Selker, Harry P

    2013-06-01

    After five decades of growth that has included advances in medical education and health care delivery, value cohesion, and integration of diversity, we propose an overarching mission for academic general internal medicine to lead excellence, change, and innovation in clinical care, education, and research. General internal medicine aims to achieve health care delivery that is comprehensive, technologically advanced and individualized; instills trust within a culture of respect; is efficient in the use of time, people, and resources; is organized and financed to achieve optimal health outcomes; maximizes equity; and continually learns and adapts. This mission of health care transformation has implications for the clinical, educational, and research activities of divisions of general internal medicine over the next several decades.

  9. A Management Model for International Participation in Space Exploration Missions

    Science.gov (United States)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  10. The Double Asteroid Redirection Test (DART)

    Science.gov (United States)

    Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.

    2017-12-01

    The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a

  11. Mission X: Train Like an Astronaut. International Fitness Challenge

    Science.gov (United States)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  12. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  13. LISA and asteroids

    International Nuclear Information System (INIS)

    Vinet, Jean-Yves

    2006-01-01

    LISA is a joint ESA-NASA mission aiming for cosmic gravitational wave detection and analysis. We address here the question of a special kind of signal caused by asteroid encounters. We present a short theory of the detection of such signals

  14. Three Dimensional Structures of Particles Recovered from the Asteroid Itokawa by the Hayabusa Mission and a Role of X-Ray Microtomography in the Preliminary Examination

    Science.gov (United States)

    Tsuchiyama, A.; Uesugi, M.; Uesugi, K.; Nakano, T.; Nakamura, T.; Noguchi, T.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; hide

    2011-01-01

    Particles of regolith on S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (Japan Aerospace Exploration Agency). Near-infrared spectral study of Itokawa s surface indicates that these particles are materials similar to LL5 or LL6 chondrites. High-resolution images of Itokawa's surface suggest that they may be breccias and some impact products. At least more than 1500 particles were identified as Itokawa origin at curation facility of JAXA. Preliminary analysis with SEM/EDX at the curation facility shows that they are roughly similar to LL chondrites. Although most of them are less than 10 micron in size, some larger particles of about 100 micron or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team, and sequential examination will start from January 2011 by Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). In mainstream of the analytical flow, each particle will be examined by microtomography, XRD and XRF first as nondestructive analyses, and then the particle will be cut by an ultra-microtome and examined by TEM, SEM, EPMA, SIMS, PEEM/XANES, and TOF-SIMS sequentially. Three-dimensional structures of Itokawa particles will be obtained by microtomography sub-team of HASPET. The results together with XRD and XRF will be used for design of later destructive analyses, such as determination of cutting direction and depth, to obtain as much information as possible from small particles. Scientific results and a role of the microtomography in the preliminary examination will be presented.

  15. SAC-C mission, an example of international cooperation

    Science.gov (United States)

    Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.

    In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference

  16. Asteroid Composite Tape

    Science.gov (United States)

    1998-07-01

    This is a composite tape showing 10 short segments primarily about asteroids. The segments have short introductory slides, which include brief descriptions about the shots. The segments are: (1) Radar movie of asteroid 1620 Geographos; (2) Animation of the trajectories of Toutatis and Earth (3) Animation of a landing on Toutatis; (4) Simulated encounter of an asteroid with Earth, includes a simulated impact trajectory; (5) An animated overview of the Manrover vehicle; (6) The Near Earth Asteroid Tracking project, includes a photograph of USAF Station in Hawaii, and animation of Earth approaching 4179 Toutatis and the asteroid Gaspara; (7) live video of the anchor tests of the Champoleon anchoring apparatus; (8) a second live video of the Champoleon anchor tests showing anchoring spikes, and collision rings; (9) An animated segment with narration about the Stardust mission with sound, which describes the mission to fly close to a comet, and capture cometary material for return to Earth; (10) live video of the drop test of a Stardust replica from a hot air balloon; this includes sound but is not narrated.

  17. Asteroids@Home

    Science.gov (United States)

    Durech, Josef; Hanus, J.; Vanco, R.

    2012-10-01

    We present a new project called Asteroids@home (http://asteroidsathome.net/boinc). It is a volunteer-computing project that uses an open-source BOINC (Berkeley Open Infrastructure for Network Computing) software to distribute tasks to volunteers, who provide their computing resources. The project was created at the Astronomical Institute, Charles University in Prague, in cooperation with the Czech National Team. The scientific aim of the project is to solve a time-consuming inverse problem of shape reconstruction of asteroids from sparse-in-time photometry. The time-demanding nature of the problem comes from the fact that with sparse-in-time photometry the rotation period of an asteroid is not apriori known and a huge parameter space must be densely scanned for the best solution. The nature of the problem makes it an ideal task to be solved by distributed computing - the period parameter space can be divided into small bins that can be scanned separately and then joined together to give the globally best solution. In the framework of the the project, we process asteroid photometric data from surveys together with asteroid lightcurves and we derive asteroid shapes and spin states. The algorithm is based on the lightcurve inversion method developed by Kaasalainen et al. (Icarus 153, 37, 2001). The enormous potential of distributed computing will enable us to effectively process also the data from future surveys (Large Synoptic Survey Telescope, Gaia mission, etc.). We also plan to process data of a synthetic asteroid population to reveal biases of the method. In our presentation, we will describe the project, show the first results (new models of asteroids), and discuss the possibilities of its further development. This work has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation and by the Research Program MSM0021620860 of the Ministry of Education of the Czech Republic.

  18. Anchoring a lander on an asteroid using foam stabilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a...

  19. Experiences in Interagency and International Interfaces for Mission Support

    Science.gov (United States)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  20. Project RAMA: Reconstructing Asteroids Into Mechanical Automata

    Science.gov (United States)

    Dunn, Jason; Fagin, Max; Snyder, Michael; Joyce, Eric

    2017-01-01

    Many interesting ideas have been conceived for building space-based infrastructure in cislunar space. From O'Neill's space colonies, to solar power satellite farms, and even prospecting retrieved near earth asteroids. In all the scenarios, one thing remained fixed - the need for space resources at the outpost. To satisfy this need, O'Neill suggested an electromagnetic railgun to deliver resources from the lunar surface, while NASA's Asteroid Redirect Mission called for a solar electric tug to deliver asteroid materials from interplanetary space. At Made In Space, we propose an entirely new concept. One which is scalable, cost effective, and ensures that the abundant material wealth of the inner solar system becomes readily available to humankind in a nearly automated fashion. We propose the RAMA architecture, which turns asteroids into self-contained spacecraft capable of moving themselves back to cislunar space. The RAMA architecture is just as capable of transporting conventional-sized asteroids on the 10-meter length scale as transporting asteroids 100 meters or larger, making it the most versatile asteroid retrieval architecture in terms of retrieved-mass capability. This report describes the results of the Phase I study funded by the NASA NIAC program for Made In Space to establish the concept feasibility of using space manufacturing to convert asteroids into autonomous, mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, is designed to leverage the future advances of additive manufacturing (AM), in-situ resource utilization (ISRU) and in-situ manufacturing (ISM) to realize enormous efficiencies in repeated asteroid redirect missions. A team of engineers at Made In Space performed the study work with consultation from the asteroid mining industry, academia, and NASA. Previous studies for asteroid retrieval have been constrained to studying only asteroids that are both large enough to be discovered, and small enough to be

  1. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  2. Astrobiology: guidelines and future missions plan for the international community

    Science.gov (United States)

    French, L.; Miller, D.

    The search for extra-terrestrial life has been going on ever since humans realized there was more to the Universe than just the Earth. These quests have taken many forms including, but not limited to: the quest for understanding the biological origins of life on Earth; the deployment of robotic probes to other planets to look for microbial life; the analysis of meteorites for chemical and fossil remnants of extra - terrestrial life; and the search of the radio spectrum for signs of extra-solar intelligence. These searches so far have yielded hints, but no unambiguous proof of life with origins from off Earth. The emerging field of astrobiology studies the origin, distribution, and future of life in the Universe. Technical advances and new, though not conclusive, evidence of extinct microbial life on Mars have created a new enthusiasm for astrobiology in many nations. However, the next steps to take are not clear, and should a positive result be returned, the follow-on missions are yet to be defined. This paper reports on the results of an eight-week study by the students of the International Space University during the summer of 2002. The study created a source book that can be used by mission designers and policy makers to chart the next steps in astrobiology. In particular, the study addresses the following questions:1.What is the full set of dimensions along which we can search forextra-terrestrial life?2.What activities are currently underway by the internationalcommunity along each of these dimensions?3.What are the most effective next steps that can be taken by theinternational space community in order to further this search (from a policy,sociological and mission point of view)?4.What are the proper steps for eliminating possible contaminationof the Earth's biosphere?5.What are the issues with planetary quarantine with regards tounwanted contamination of other biospheres with terrestrial organisms? Integrating all the considerations affecting the search for

  3. Identification, Calculation Of The Three Dimensional Orbit, And Flux Of Asteroid 2007 TD14

    Science.gov (United States)

    Pereira, Vincent; Martin, E.; Millan, J.

    2012-01-01

    In recent years the rate of discovery of asteroids has improved dramatically and has far outstripped efforts to physically characterize them. In this work, we took part in the International Astronomical Search Campaign and confirmed the discovery of asteroid 2007 TD14. We then calculated the two and three dimensional orbit of the asteroid around the sun, given its six elements of orbit. Once the heliocentric and geocentric distances are known, and the visual magnitude of the asteroid obtained through photometry, its diameter can be calculated assuming a suitable value for the albedo. The diameter was 0.718 km and the albedo was 0.039. Using the Standard Thermal Model we calculated the temperature distribution on the surface of the asteroid and the flux of the asteroid in the thermal infrared (1.095 mJy at 22 microns on March 19, 2010). To the best of our knowledge there have been no previous reports of the diameter and flux of the asteroid. Our ultimate goal is to compare our flux values with newly released data from NASA Wide-field Infrared Survey Explorer Mission and thus obtain better estimates of the asteroid diameter and albedo.

  4. Asteroid taxonomy

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 μm can be used to classify these objects onto several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11 or 14 different classes, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population

  5. Asteroid named after CAS scientist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ An asteroid has been named after CAS astronomy historian XI Zezong with the approval of the International Minor Planet Nomenclature Committee (IMPNC), announced China's National Astronomical Observatories at CAS (NAOC) on 17 August.

  6. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  7. NASA and international studies of the Solar Probe Mission

    Science.gov (United States)

    Randolph, James E.

    1992-01-01

    A review is presented summarizing the history and current status of the studies of the Solar Probe Mission by NASA and other space agencies. The technology and scientific challenges of the mission are addressed in these studies and can be met with current instrument and technology capabilities. The specific set of experiments recommended by a scientific advisory group to the NASA study for integration into the design concept is discussed.

  8. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  9. Space Radiation Cancer, Circulatory Disease and CNS Risks for Near Earth Asteroid and Mars Missions: Uncertainty Estimates for Never-Smokers

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Wang, Minli; Kim, Myung-Hee

    2011-01-01

    history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).

  10. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  11. Tumbling asteroids

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.; Scheirich, Peter; Kušnirák, Peter; Kotková, Lenka; Hergenrother, C.; Mottola, S.; Hicks, M. D.; Masi, G.; Krugly, Yu. N.; Shevchenko, V. G.; Nolan, M. C.; Howell, E. S.; Kaasalainen, M.; Galád, Adrián; Brown, P.; DeGraff, D. R.; Lambert, J.V.; Cooney, W.R.; Foglia, S.

    2005-01-01

    Roč. 1, č. 173 (2005), s. 108-131 ISSN 0019-1035 R&D Projects: GA AV ČR IAA3003204 Keywords : near-Earth objects * fast-rotating asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.244, year: 2005

  12. Asteroids II

    International Nuclear Information System (INIS)

    Binzel, R.P.; Gehrels, T.; Matthews, M.S.

    1989-01-01

    This book presents an introduction to asteroids. A description of exploration techniques, details on their physical properties, discussions of their origin and evolution, an examination of their interrelations with meteorites and comets followed by an attempt at a big picture framework are given

  13. UV Spectroscopy of Metallic Asteroid (16) Psyche

    Science.gov (United States)

    Cunningham, N. J.; Becker, T. M.; Retherford, K. D.; Roth, L.; Feaga, L. M.; Wahlund, J.-E.; Elkins-Tanton, L. T.

    2017-09-01

    Asteroid (16) Psyche is the largest M-type asteroid, and the planned destination of the NASA Discovery mission Psyche and the proposed ESA M5 mission Heavy Metal. Psyche is considered to be the exposed core of a differentiated asteroid, whose mantle has been stripped by collisions; but other histories have been proposed. We observed Psyche with the Space Telescope Imaging Spectrograph (STIS) and Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, to obtain a full ultraviolet (UV) spectrum of both of Psyche's hemispheres. We seek to test three possible scenarios for Psyche's origin: Is Psyche the exposed core of a differentiated asteroid? Is it an asteroid with high olivine content that has been space-weathered? Or did Psyche accrete as-is in a highly-reducing environment early in the history of the solar system? We will present the UV spectra and their implications for Psyche's history.

  14. Asteroids: up close and personal

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Clark R. [Southwest Research Institute (United States)

    2001-06-01

    Think of our solar system. The Sun, the Moon and the nine planets come to mind first, followed by the moons of other planets and other small bodies like asteroids. In 1991, almost 30 years after planetary exploration began, an asteroid was visited by a passing spacecraft for the first time. Nearly another decade elapsed before the first dedicated asteroid mission went into orbit around Eros, a city-sized object some 34 km long. And earlier this year, the NEAR, Shoemaker spacecraft daringly descended to the surface of Eros and landed safely. Asteroids have been pushed to the tail-end of the itinerary of solar-system exploration because of their diminutive sizes. Indeed, the wealth of low-gravity phenomena associated with asteroids has captured the imagination of both researchers and the public alike. In the June issue of Physics World Clark R Chapman of the Southwest Research Institute, US, explains how the landing of a spacecraft on the asteroid Eros earlier this year has given space scientists the best view yet of small planetary bodies and has opened a new window on the solar system. (U.K.)

  15. Identifying the Globalist and Internationalist Missions of International Schools.

    Science.gov (United States)

    Cambridge, James

    2003-01-01

    Discusses internationalism and globalization as contexts for international education. Argues that the values of the British-style international schools include a commitment to world peace and understanding between nations. States that the globalist perspective sees education as a product subject to global quality standards. (Contains 11…

  16. IAEA Coordinates International Mission on Remediation of Areas Off-site Fukushima Daiichi NPP

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency (IAEA) will dispatch an international expert mission to Japan to assist the country in its planning to remediate the areas off-site from the Fukushima Daiichi Nuclear Power Plant. Following a request by the Government of Japan, the mission, comprising 12 international and IAEA experts from several countries, will visit Japan between 7 and 15 October 2011 under the leadership of Mr. Juan Carlos Lentijo, General Director for Radiation Protection at Spain's nuclear regulatory authority. The team will go to several locations in the Fukushima Prefecture and conduct meetings in Tokyo with Japanese officials to: Provide assistance to Japan in its plans to manage remediation efforts; Review the country's remediation strategies, plans and work; and Share its findings with the international community. The IAEA mission will provide an opportunity for the international experts to exchange views with the Japanese authorities involved in the decontamination effort and other interested parties. It will also provide an opportunity for the IAEA to take stock of lessons learned from this important decontamination initiative. At the end of the mission a preliminary summary report will be provided to the Government of Japan and be made publically available. The team is also planning to hold a press briefing at the end of the mission. The final report of the mission will be presented to the Government in the month following the conclusion of the mission. Background The accident at Fukushima Daiichi Nuclear Power Plant has led to the radiological contamination of large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA organized an International Fact Finding Expert Mission Of The Fukushima Daiichi Nuclear Power Plant Accident Following The Great East Japan Earthquake And Tsunami, which was held between 24 May and 2 June 2011. The current mission is a

  17. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

    Science.gov (United States)

    Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.

    2017-10-01

    In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  18. PREMISES FOR A MORE EFFICIENT INTERNAL AUDIT MISSION

    Directory of Open Access Journals (Sweden)

    BOGDAN RĂVAŞ

    2016-10-01

    Full Text Available The theoretical research in the fields - internal audit aims to explain why successful companies have failed to implement effective strategies and policies and effective internal audit through the application of appropriate models for assessment and analysis activities and specific processes and identifying good practices. The scientific approach was based on the analysis of the operational performance of processes and activities of internal audit and the size analysis behaviors of the organization as a component of their economic strategy, which together with marketing strategy and production, are part of a strategic plan of the company.

  19. The International Association for Promoting Geoethics: Mission, Organization, and Activities

    Science.gov (United States)

    Kieffer, S. W.; Peppoloni, S.; Di Capua, G.

    2017-12-01

    The International Association for Promoting Geoethics (IAPG) was founded in 2012, during the 34th IGC in Brisbane (Australia), to provide a multidisciplinary platform for widening the discussion and creating awareness about principles and problems of ethics as applied to the geosciences. It is a scientific, non-governmental, non-political, non-profit, non-party institution, headquartered at the Italian Institute of Geophysics and Volcanology in Rome, Italy. IAPG focuses on behaviors and practices where human activities interact with the Earth system, and deals with the ethical, social and cultural implications of geoscience knowledge, education, research, practice and communication. Its goal is to enhance awareness of the social role and responsibility of geoscientists in conducting their activities such as geoeducation, sustainability, and risk prevention. IAPG is a legally recognized non-profit association with members in 115 countries on 5 continents, and currently has 26 national sections. As of the date of this abstract, IAPG has been involved with approximately 70 international meetings (scientific conferences, symposia, seminars, workshops, expositions, etc.). Other activities range from exchanging information with newsletters, blogs, social networks and publications; promoting the creation of working groups and encouraging the participation of geoscientists within universities and professional associations for the development of geoethics themes; and cooperating with national and international organizations whose aims are complementary, e.g., International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), Geological Society of London (GSL), Geoscience Information in Africa - Network (GIRAF), American Geophysical Union (AGU), International Association for Engineering Geology and the Environment (IAEG), International Association of Hydrogeologists (IAH), Association of Environmental & Engineering

  20. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  1. New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu

    Science.gov (United States)

    Busarev, Vladimir V.; Makalkin, Andrei B.; Vilas, Faith; Barabanov, Sergey I.; Scherbina, Marina P.

    2018-04-01

    For the first time, spectral signs of subtle coma activity were observed for four main-belt primitive asteroids (145) Adeona, (704) Interamnia, (779) Nina, and (1474) Beira around their perihelion distances in September 2012, which were interpreted as manifestations of the sublimation of H2O ice in/under the surface matter (Busarev et al., 2015a, 2015b). We confirm the phenomenon for Nina when it approached perihelion in September 2016. At the same time, based on results of spectral observations of near-Earth asteroid (162,173) Ryugu (Vilas, 2008) being a target of Japan's Hayabusa 2 space mission, we suspected a periodic similar transient activity on the Cg-type asteroid. However, unlike the main-belt primitive asteroids demonstrating sublimation of ices close to their perihelion distances, the effect on Ryugu was apparently registered near aphelion. To explain the difference, we calculated the subsolar temperature depending on heliocentric distance of the asteroids, considered qualitative models of internal structure of main-belt and near-Earth primitive asteroids including ice and performed some analytical estimations. Presumed temporal sublimation/degassing activity of Ryugu is a sign of a residual frozen core in its interior. This could be an indication of a relatively recent transition of the asteroid from the main asteroid belt to the near-Earth area.

  2. CFI funded icebreaker sets sail on its first international mission

    CERN Multimedia

    2003-01-01

    Today was the official inauguration ceremony of a Canadian research icebreaker. The ship, which received $27.7 million from the CFI in April 2003, provides Canadian and international researchers with a world-class facility to undertake a variety of environmental and marine science projects (1/2 page).

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Colombia

    International Nuclear Information System (INIS)

    1984-01-01

    A full report has been released describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Colombia. The Mission suggests that the speculative uranium resources of the country could be within the very wide range of 20 000 tonnes of 220 000 tonnes of uranium metal. The Mission finds that the area with the highest potential is the Llanos Orientales (Interior Zone), which has the potential of hosting quartz-pebble conglomerate deposits, Proterozoic unconformity-related deposits and sandstone deposits. The Mission recommends that approximately US$80 million should be expended in a phased ten-year exploration programme. It is likely that the majority of the funds will be needed for drilling, followed by ground surveys and airborne radiometry. It is the opinion of the Mission that the considerable funds required for the proposed programme could most suitably be raised by inviting national or foreign commercial organizations to participate under a shared production agreement. (author)

  4. Asteroids, Comets, Meteors 2014

    Science.gov (United States)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Turkey

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Turkey. The IUREP Orientation Phase mission to Turkey estimates that the Speculative Resources of that country fall within the range of 21 000 to 55 000 tonnes of uranium. This potential is expected to lie in areas of Neogene and possibly other Tertiary sediments, in particular in the areas of the Menderes Massif and Central Anatolia. The mission describes a proposed exploration programme with expenditures over a five year period of between $80 million and $110 million, with nearly half of the amount being spent on drilling. (author)

  6. Mission and activities of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Clements, C.H.

    2018-01-01

    The International Commission on Radiological Protection (ICRP), formed in 1928, develops the System of Radiological Protection for the public benefit. The objective of the recommendations is to contribute to an appropriate level of protection for people and the environment against the harmful effects of radiation exposure without unduly limiting the individual or societal benefits of activities involving radiation. In developing its recommendations, ICRP considers advances in scientific knowledge, evolving social values, and practical experience. These recommendations are the basis of radiological protection standards and practice worldwide

  7. Optimized Bucket Wheel Design for Asteroid Excavation

    OpenAIRE

    Nallapu, Ravi Teja; Thoesen, Andrew; Garvie, Laurence; Asphaug, Erik; Thangavelautham, Jekanthan

    2017-01-01

    Current spacecraft need to launch with all of their required fuel for travel. This limits the system performance, payload capacity, and mission flexibility. One compelling alternative is to perform In-Situ Resource Utilization (ISRU) by extracting fuel from small bodies in local space such as asteroids or small satellites. Compared to the Moon or Mars, the microgravity on an asteroid demands a fraction of the energy for digging and accessing hydrated regolith just below the surface. Previous ...

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  9. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    -sunward tail seen in most comets. Still, these observations indicate that the object resembles a typical comet much more than originally thought. This is also supported by the fact that its orbit, calculated on the basis of positional observations during the past month, has been found to be moderately elongated (eccentricity 0.36). The mean distance to the Sun is 6.67 AU (1000 million kilometres), but it comes as close as 4.25 AU (635 million kilometres) at its perihelion. The orbital period is about 17 years. More observations needed! It will be interesting to follow this new object in coming years. Will it remain `cometary' or will the unusual tail disappear after a while? Could it be that some `asteroids' in `cometary' orbits, if observed in more detail with a larger telescope, as was done in this case with the NTT, will also turn out to have a faint coma and even a tail? It is at this moment still unknown which implications the discovery of apparently `intermediate' objects may have on our understanding of the origin and evolution of the solar system. In particular, it is not at all clear whether they represent a completely new class of objects with an internal structure (and composition?) that is significantly different from a `dirty-snowball' cometary nucleus or a rocky asteroid. It may also be that some asteroids have substantial deposits of icy material on or near the surface that may be set free under certain circumstances and mimic cometary activity. This might in theory happen by collisions with other, smaller objects or due to an internal heat source. Only further observations of such objects will allow to tell. Where to find more information Here are some WWW-addresses where more useful information may be obtained about the comet/asteroid phenomenon: * http://www.dlr.de/Berlin/ - Small Bodies Group at the DLR (Berlin, Germany) * http://www.astro.uu.se/planet/asteroid - Asteroids' page of the Uppsala planetary system group (Sweden) * http

  10. Aligning internal organizational factors with a service excellence mission: an exploratory investigation in health care.

    Science.gov (United States)

    Ford, Robert C; Sivo, Stephen A; Fottler, Myron D; Dickson, Duncan; Bradley, Kenneth; Johnson, Lee

    2006-01-01

    In today's competitive health care environment, service excellence is rapidly becoming a major differentiating advantage between health care providers. Too often, senior executives talk about their commitment to a mission statement that extols the virtues of providing world class service to their patients only to undermine those statements with what they do, write, and say. This article presents an exploratory investigation into a new application of an internal mission alignment instrument that seeks to assess the extent to which an organization's internal processes are aligned with its service mission. This instrument was sent to 250 randomly selected employees from all clinical departments of a large southeastern hospital to explore the underlying alignment factors. A factor analysis of the data revealed eight factors that predicted beneficial employee outcomes such as organizational commitment and satisfaction with the job and organization.

  11. Classification of IRAS asteroids

    International Nuclear Information System (INIS)

    Tedesco, E.F.; Matson, D.L.; Veeder, G.J.

    1989-01-01

    Albedos and spectral reflectances are essential for classifying asteroids. For example, classes E, M and P are indistinguishable without albedo data. Colorometric data are available for about 1000 asteroids but, prior to IRAS, albedo data was available for only about 200. IRAS broke this bottleneck by providing albedo data on nearly 2000 asteroids. Hence, excepting absolute magnitudes, the albedo and size are now the most common asteroid physical parameters known. In this chapter the authors present the results of analyses of IRAS-derived asteroid albedos, discuss their application to asteroid classification, and mention several studies which might be done to exploit further this data set

  12. 3D Imaging Cubesat Lidar for Asteroid and Planetary Sciences, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is actively pursuing guidance and control light detection and ranging (lidar) systems for upcoming exploration missions including asteroid, comet, planet, and...

  13. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  14. Anaphylaxis, Intra-Abdominal Infections, Skin Lacerations, and Behavioral Emergencies: A Literature Review of Austere Analogs for a near Earth Asteroid Mission

    Science.gov (United States)

    Chough, Natacha G.; Watkins, Sharmi; Menon, Anil S.

    2012-01-01

    As space exploration is directed towards destinations beyond low-Earth orbit, the consequent new set of medical risks will drive requirements for new capabilities and more resources to ensure crew health. The Space Medicine Exploration Medical Conditions List (SMEMCL), developed by the Exploration Medical Capability element of the Human Research Program, addresses the risk of "unacceptable health and mission outcomes due to limitations of in-flight medical capabilities". It itemizes 85 evidence-based clinical requirements for eight different mission profiles and identifies conditions warranting further research and technology development. Each condition is given a clinical priority for each mission profile. Four conditions -- intra-abdominal infections, skin lacerations, anaphylaxis, and behavioral emergencies -- were selected as a starting point for analysis. A systematic literature review was performed to understand how these conditions are treated in austere, limited-resource, space-analog environments (i.e., high-altitude and mountain environments, submarines, military deployments, Antarctica, isolated wilderness environments, in-flight environments, and remote, resource-poor, rural environments). These environments serve as analogs to spaceflight because of their shared characteristics (limited medical resources, delay in communication, confined living quarters, difficulty with resupply, variable time to evacuation). Treatment of these four medical conditions in austere environments provides insight into medical equipment and training requirements for exploration-class missions.

  15. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Rwanda

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Rwanda. The IUREP Orientation Phase Mission to Rwanda estimates that the Speculative Resources of that country fall within the range of 500 to 5 000 tonnes of uranium. The majority of this potential is expected to be located in the Precambrian Ruzizian, especially in conjunction with tectonized pegmatoidal remobilizations of metamorphic sediments of western Rwanda. Other favourable geological environments include lamprophyric dikes and post tectonic granites of central Rwanda. The Mission recommends that over a period of five years approximately US$4.2 million be spent on exploration in Rwanda. The majority of this would be spent on airborne and ground geophysical surveys ($1.5 million) and exploration drilling ($1 million). Prospecting, trenching and tunneling and analytical work would require the remainder of the $4.2 million ($1.7 million). (author)

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Burundi

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Burundi. The IUREP Orientation Phase Mission to Burundi estimates that the Speculative Resources of that country fall within the range of 300 to more than 4 100 tonnes of uranium. The potential is rather evenly distributed throughout the Proterozoic of Burundi in various geological environments (unconformity, hydrothermal, fault controlled, etc.). The mission recommends that over a period of five years U.S. $ 3 to 4.5 million be spent on exploration in Burundi, with even spending on the various exploration techniques as e.g. prospecting, drilling trenching, geophysical surveys, analyses, etc. (author)

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Bolivia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Bolivia. The IUREP Orientation Phase mission to Bolivia estimates that the Speculative Uranium Resources of that country fall within the range of 100 to 107 500 tonnes uranium. The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the southwestern part of the Central Brazilian Shield. Other potentially favourable geologic environments include Palaeozoic two mica granites and their metasedimentary hosts, Mesozoic granites and granodiorites as well as the intruded formations and finally Tertiary acid to intermediate volcanics. The mission recommends that approximately US$ 13 million be spent on exploration in Bolivia over a five-year period. The majority of this expenditure would be for airborne and surface exploration utilising geologic, magnetometric, radiometric, and geochemical methods and some pitting, trenching, tunneling and drilling to further evaluate the discovered occurrences. (author)

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Venezuela

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Venezuela. The IUREP Orientation Phase mission to Venezuela estimates that the Speculative Resources of that country fall within the range 2,000 to 42,000 tonnes uranium.- The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the Guayana Shield. Other potentially favorable geologic environments include Cretaceous phosphorite beds, continental sandstone and granitic rocks. The mission recommends that approximately US $18 million be spent on exploration in Venezuela over the next five years. The majority of this expenditure would be for surface surveys utilizing geologic studies, radiometric and geochemical surveys and some drilling for geologic information. Additional drilling would be required later to substantiate preliminary findings. (author)

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Peru

    International Nuclear Information System (INIS)

    1984-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (TUREP) Mission to Peru. The IUREP Orientation Phase Mission to Peru estimates that the Speculative Resources of that country fall within the range of 6 000 to 11 000 tonnes uranium. The majority of this potential is expected to be located in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Other favourable geological environments include calcretes, developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert in southern Peru, and Hercynian subvolcanic granites in the eastern Cordillera of southern Peru. The Mission recommends that over a period of five years approximately U.S. $10 million be spent on exploration in Peru. The majority of this would be spent on drilling ($5 million) and tunnelling ($2 million) with an additional $3 million on surface and airborne radiometric surveys. (author)

  1. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Ghana

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Ghana. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of that country fall within the range of 15 000 to 40 000 tonnes of uranium. The majority of this potential is expected to be located in the Proterozoic Panafrican Mobile Belt (up to 17 000 tonnes uranium) and the Paleozoic Obosum Beds of the Voltaian basin (up to 15 000 tonnes uranium), the remainder being associated with various other geological environments. The mission recommends that over a period of three (3) years approximately U.S. $5 million) would be spent on exploration in Ghana. A major part of this (U.S $2 million) would be spent on an airborne spectrometer survey over the Voltaian basin (Obosum beds), much of the remainder being spent on ground surveys, trenching and percussion drilling. (author)

  2. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  3. THE ORIGIN OF ASTEROID 162173 (1999 JU3)

    International Nuclear Information System (INIS)

    Campins, Humberto; De León, Julia; Morbidelli, Alessandro; Gayon-Markt, Julie; Delbo, Marco; Michel, Patrick; Licandro, Javier

    2013-01-01

    Near-Earth asteroid (162173) 1999 JU 3 (henceforth JU 3 ) is a potentially hazardous asteroid and the target of the Japanese Aerospace Exploration Agency's Hayabusa-2 sample return mission. JU 3 is also a backup target for two other sample return missions: NASA's OSIRIS-REx and the European Space Agency's Marco Polo-R. We use dynamical information to identify an inner-belt, low-inclination origin through the ν 6 resonance, more specifically, the region with 2.15 AU 3 is 0.07 ± 0.01, and this inner-belt region contains four well-defined low-albedo asteroid families (Clarissa, Erigone, Polana, and Sulamitis), plus a recently identified background population of low-albedo asteroids outside these families. Only two of these five groups, the background and the Polana family, deliver JU 3 -sized asteroids to the ν 6 resonance, and the background delivers significantly more JU 3 -sized asteroids. The available spectral evidence is also diagnostic; the visible and near-infrared spectra of JU 3 indicate it is a C-type asteroid, which is compatible with members of the background, but not with the Polana family because it contains primarily B-type asteroids. Hence, this background population of low-albedo asteroids is the most likely source of JU 3

  4. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    International Nuclear Information System (INIS)

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-01-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  5. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  6. Female leaders in an international evangelical mission organisation: an empirical study of Youth With A Mission in Germany

    Directory of Open Access Journals (Sweden)

    F.A.S. Hornstra-Fuchs

    2010-07-01

    Full Text Available Evangelicals are frequently perceived as conservative, for instance in their perspective on women. There is indeed a widespread evangelical hierarchical or complementarian theological view which objects to women in church leadership. There is, however, a growing egalitarian counter position, sometimes also referred to as “evangelical feminism”, which supports female leadership. This article concentrates on the international missionary organisation Youth With A Mission (YWAM, which clearly endorses female leaders in formal statements. In YWAM Germany, however, women are under-represented in leadership positions. The article seeks to explain this under-representation, especially in terms of the role played by Scripture. By means of interviews with leaders in YWAM Germany, possible answers were explored. Surprisingly, for an evangelical organisation, the interpretation of Scripture proved not to be a significant factor. Factors that do play a role are church background, the lack of female role models, lower self-confidence of women, family responsibilities, and the role of incumbent leadership. The latter appears to be the most crucial factor, since the incumbent leaders, who mostly are men, select and appoint new leaders. It is likely that in this they are influenced by stereotypical conceptions of the leader as male and are inclined to appoint leaders similar to themselves.

  7. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  8. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  9. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  10. Habitability constraints/objectives for a Mars manned mission: internal architecture considerations.

    Science.gov (United States)

    Winisdoerffer, F; Soulez-Larivière, C

    1992-01-01

    It is generally accepted that high quality internal environment shall strongly support crew's adaptation and acceptance to situation of long isolation and confinement. Thus, this paper is an attempt to determine to which extent the resulting stress corresponding to the anticipated duration of a trip to Mars (1 and a half years to 2 and a half years) could be decreased when internal architecture of the spacecraft is properly designed. It is assumed that artificial gravity shall be available on board the Mars spacecraft. This will of course have a strong impact on internal architecture as far as a 1-g oriented design will become mandatory, at least in certain inhabited parts of the spacecraft. The review of usual Habitability functions is performed according to the peculiarities of such an extremely long mission. A particular attention is paid to communications issues and the need for privacy. The second step of the paper addresses internal architecture issues through zoning analyses. Common, Service and Personal zones need to be adapted to the constraints associated with the extremely long duration of the mission. Furthermore, due to the nature of the mission itself (relative autonomy, communication problems, monotony) and the type of selected crew (personalities, group structure) the implementation of a "fourth zone", so-called "recreational" zone, seems to be needed. This zoning analysis is then translated into some internal architecture proposals, which are discussed and illustrated. This paper is concluded by a reflection on habitability and recommendations on volumetric requirements. Some ideas to validate proposed habitability items through simulation are also discussed.

  11. The DLR AsteroidFinder for NEOs

    Science.gov (United States)

    Mottola, Stefano; Kuehrt, Ekkehard; Michaelis, Harald; Hoffmann, Harald; Spietz, Peter; Jansen, Frank; Thimo Grundmann, Jan; Hahn, Gerhard; Montenegro, Sergio; Findlay, Ross; Boerner, Anko; Messina, Gabriele; Behnke, Thomas; Tschentscher, Matthias; Scheibe, Karsten; Mertens, Volker; Heidecke, Ansgar

    Potential Earth-impacting asteroids that spend most of their time interior to Earth's orbit are extremely difficult to be observed from the ground and remain largely undetected. Firstly, they are mostly located at small solar elongations, where the sky brightness and their faintness due to the large phase angle prevents their discovery. Secondly, these objects tend to have very long synodic orbital periods, which makes observation opportunities rare and impact warning times short. Because of these limitations, even the advent of next generation ground-based asteroid surveys is not likely to radically improve the situation (Veres et al. Icarus 203, p472, 2009). On the other hand, a small satellite with a suitable design can observe close to the Sun and detect these objects efficiently against a dark sky background. For this reason, DLR, the German Aerospace Center, has selected AsteroidFinder as the first experiment to be launched under its new compact satellite national program. The primary goal of the mission is to detect and characterize Near Earth Objects (NEOs), with a particular focus on the population of objects completely contained within Earth's orbit (IEOs or Inner Earth Objects). Current dynamical models predict the existence of more than 1000 such objects down to a size of 100m, of which, due to the abovementioned observation difficulties, only 10 have been discovered to date. Benefitting from the vantage point of a Low Earth Orbit (LEO), AsteroidFinder makes use of a small optical telescope to scan those regions of the sky that are close to the Sun, and therefore beyond the reach of ground based observatories. By estimating the population, the size and the orbital distribution of IEOs, AsteroidFinder will contribute to our knowledge of the inner Solar System, and to the assessment of the impact hazard for the Earth. A secondary goal of the mission is to demonstrate techniques that enable the space-based detection of space debris in the cm size range

  12. The medical contribution to assessing allegations of torture in international fact-finding missions.

    Science.gov (United States)

    Pounder, Derrick J

    2011-05-20

    International fact-finding missions directed towards the exposure of possible ill-treatment of persons deprived of their liberty have become increasingly common within the framework of international treaties. Such country visits occur with the consent and co-operation of government, provide unfettered access to all places of detention and allow private interviews with detainees. The Committee for the Prevention of Torture of the Council of Europe, the United Nations Special Rapporteur on Torture, and the United Nations Subcommittee on Prevention of Torture all engage in such missions, and make use of a medical professional as part of the investigative team. The medical contribution to fact finding missions assessing ill-treatment of detainees includes an assessment of the conditions of detention, the regime and the medical services. Custody doctors and their records can be a rich source of information about physical ill-treatment. The interview and examination of detainees often occurs in circumstances which are far from ideal. The safety and wellbeing of the detainees, including protection from reprisals, is always paramount. A medical examination may disclose injuries corroborative of specific allegations. More often, a medical history of the effects of ill treatment and the description of resolved transient injuries provides corroboration, and also forms part of assessing the overall credibility of the detainee. Equally important is the consistency of the allegation with other evidence obtained from a wide variety of sources including the inspection of the place of alleged ill-treatment. The evolved working methods draw on the basic principles underlying police criminal investigations and crime scene examinations as well as forensic medicine. A forensic medical expert can be a useful part of the team in such international fact finding missions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Working Group Reports and Presentations: Asteroids

    Science.gov (United States)

    Lewis, John

    2006-01-01

    The study and utilization of asteroids will be an economical way to enable exploration of the solar system and extend human presence in space. There are thousands of near-earth objects (NEOs) that we will be able to reach. They offer resources, transportation, and exploration platforms, but also present a potential threat to civilization. Asteroids play a catastrophic role in the history of the Earth. Geological records indicate a regular history of massive impacts, which astronomical observations confirm is likely to continue with potentially devastating consequences. However, study and exploration of near earth asteroids can significantly increase advanced warning of an Earth impact, and potentially lead to the technology necessary to avert such a collision. Efforts to detect and prevent cataclysmic events would tend to foster and likely require international cooperation toward a unified goal of self-preservation. Exploration of asteroids will help us to understand our history and perhaps save our future. Besides the obvious and compelling scientific and security drivers for asteroid research and exploration, there are numerous engineering and industrial applications for near-term asteroid exploration. We have strong evidence that some asteroids are metal rich. Some are water and organic rich. They can be reached with a very low fuel cost compared to other solar system destinations. Once we reach them, there are efficient, simple extraction technologies available that would facilitate utilization. In addition, the costs of returning extracted resources from asteroids will be a fraction of the cost to return similar resources from the moon to Low Earth Orbit (LEO). These raw materials, extracted and shipped at relatively low cost, can be used to manufacture structures, fuel, and products which could be used to foster mankind s further exploration of the solar system. Asteroids also have the potential to offer transport to several destinations in the solar system

  14. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Each of these themes were then further subdivided into categories to address specific SKG issues. Robotic Precursor Contributions to SKGs: Robotic reconnaissance missions should be able to address specific aspects related to SKG themes 1 through 4. Theme 1 deals with the identification of human mission targets within the NEA population. The current guideline indicates that human missions to fastspinning, tumbling, or binary asteroids may be too risky to conduct successfully from an operational perspective. However, no spacecraft mission has been to any of these types of NEAs before. Theme 2 addresses the concerns about interacting on the small body surface under microgravity conditions, and how the surface and/or sub-surface properties affect or restrict the interaction for human exploration. The combination of remote sensing instruments and in situ payloads will provide good insight into the asteroid's surface and subsurface properties. SKG theme 3 deals with the environment in and around the small body that may present a nuisance or hazard to any assets operating in close proximity. Impact and surface experiments will help address issues related to particle size, particle longevity, internal structure, and the near-surface mechanical stability of the asteroid. Understanding or constraining these physical characteristics are important for mission planning. Theme 4 addresses the resource potential of the small body. This is a particularly important aspect of human exploration since the identification and utilization of resources is a key aspect for deep space mission architectures to the Martian system (i.e., Phobos and Deimos). Conclusions: Robotic reconnaissance

  15. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Portugal

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Portugal. The IUREP Orientation Phase mission to Portugal estimates that the Speculative Resources of that country fall within the range 20,000 to 80,000 tonnes uranium. The majority of this potential is expected to be located in intergranitic vein deposits and in pre-Ordovician schists, but other favourable geological environments include episyenites and Meso-Cainozoic continental sediments. The mission recommends that approximately US$25 million be spent on exploration in Portugal over the next 10 years. The majority of this ($18 million) would be spent on drilling, with a further $7 million on surface surveys and airborne radiometric surveys. It is the opinion of the IUREP Orientation Phase Mission that the considerable funding required for the outlined programme would most suitably be realized by inviting national or foreign commercial organisations to participate in the exploration effort under a partnership or shared production arrangements. (author)

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  17. Deep Space Gateway "Recycler" Mission

    Science.gov (United States)

    Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.

    2018-02-01

    Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Madagascar

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been made public which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Madagascar. The IUREP Orientation Phase Mission to Madagascar estimates the Speculative Resources of that country to be within the wide range of 4 000 to 38 000 tonnes uranium. Such resources could lie in areas with known occurrences (uranothorianite, Ft. Dauphin up to 5 000 t U, i.e. 'pegmatoids'; uranocircite, Antsirabe up to 3 000 t U in Neogene sediments; carnotiteautonite, Karoo area up to 30 000 t U in sandstones and in areas with as yet untested environments (e.g. related to unconformities and calcretes). Modifications to existing uranium exploration programmes are suggested and policy alternatives reviewed. No specific budget is proposed. (author)

  19. A Vision for an International Multi-Sensor Snow Observing Mission

    Science.gov (United States)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Cameroon

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Cameroon. The IUREP Orientation Phase Mission to Cameroon estimates the Speculative Resources of that country to be in the order of 10 000 tonnes uranium for syenite-associated U-deposits in southern Cameroon, and in the order of 5 000 tonnes uranium for uranium deposits associated with albitized and desilicified late tectonic Panafrican granites (episyenite) and Paleozoic volcanics in northern Cameroon. No specific tonnage is given for Francevillian equivalents (DJA-Series) and for Mesozoic and Cenozoic sedimentary basins, which are thought to hold limited potential for sandstone hosted uranium. However the Douala basin, consisting of mixed marine and continental sequences merits some attention. No specific budget and programme for uranium exploration are proposed for Cameroon. Instead specific recommendations concerning specific potential environments and general recommendation concerning the methodology of exploration are made. (author)

  1. Communication from the Permanent Mission of Israel to the International Atomic Energy Agency regarding nuclear export controls

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General of the International Atomic Energy Agency has received a letter dated 13 July 2004 from the Permanent Mission of Israel providing information on Israel's nuclear export policies and practices. As requested by the Permanent Mission, the letter and document attached to it are reproduced herein for the information of Member States

  2. Abodes for life in carbonaceous asteroids?

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2011-05-01

    Thermal evolution models for carbonaceous asteroids that use new data for permeability, pore volume, and water circulation as input parameters provide a window into what are arguably the earliest habitable environments in the Solar System. Plausible models of the Murchison meteorite (CM) parent body show that to first-order, conditions suitable for the stability of liquid water, and thus pre- or post-biotic chemistry, could have persisted within these asteroids for tens of Myr. In particular, our modeling results indicate that a 200-km carbonaceous asteroid with a 40% initial ice content takes almost 60 Myr to cool completely, with habitable temperatures being maintained for ˜24 Myr in the center. Yet, there are a number of indications that even with the requisite liquid water, thermal energy sources to drive chemical gradients, and abundant organic "building blocks" deemed necessary criteria for life, carbonaceous asteroids were intrinsically unfavorable sites for biopoesis. These controls include different degrees of exothermal mineral hydration reactions that boost internal warming but effectively remove liquid water from the system, rapid (1-10 mm yr -1) inward migration of internal habitable volumes in most models, and limitations imposed by low permeabilities and small pore sizes in primitive undifferentiated carbonaceous asteroids. Our results do not preclude the existence of habitable conditions on larger, possibly differentiated objects such as Ceres and the Themis family asteroids due to presumed longer, more intense heating and possible long-lived water reservoirs.

  3. Do asteroids have satellites

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Paolicchi, P.; Zappala, V.

    1989-01-01

    A substantial body of indirect evidence suggests that some asteroids have satelities, although none has been detected unambiguously. Collisions between asteroids provide physically plausible mechanisms for the production of binaries, but these operate with low probability; only a small minority of asteroids are likely to have satellites. The abundance of binary asteroids can constrain the collisional history of the entire belt population. The allowed angular momentum of binaries and their rate of tidal evolution limit separations to no more than a few tens of the primary's radii. Their expected properties are consistent with failure to detect them by current imaging techniques

  4. Communication of 23 March 1995 received from the Permanent Mission of Ukraine to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 23 March 1995 from the Permanent Mission of Ukraine providing information on the nuclear export policies and practices of the Government of Ukraine

  5. Communication of 31 March 1995 received from the Permanent Mission of South Africa to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 31 March 1995 from the Permanent Mission of South Africa providing information on the nuclear export policies and practices of the Government of South Africa

  6. Communication of 31 March 1995 received from the Permanent Mission of South Africa to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-12

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 31 March 1995 from the Permanent Mission of South Africa providing information on the nuclear export policies and practices of the Government of South Africa.

  7. Communication of 28 February 1995 from the Permanent Mission of Croatia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General has received a note verbale of 28 February 1995 from the Permanent Mission of Croatia to the International Atomic Energy Agency providing information on the nuclear export policies and practices of the Government of Croatia

  8. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    Science.gov (United States)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Zambia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Zambia. The IUREP Orientation Phase mission to Zambia estimates that the Speculative Resources of that country fall within the range of 33 000 and 100 000 tonnes uranium. The majority of these resources are believed to exist in the Karoo sediments. Other potentially favourable geological environments are the Precambrian Katanga sediments, as well as intrusive rocks of different chemical compositions and surficial duricrusts. Previous unofficial estimates of Zambia's Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) are considered to be still valid: the total RAR amount to 6 000 tonnes uranium, located in Karoo (4 000 tonnes) and Katanga (2 000 tonnes) sediments, while the EAR are believed to total 4 000 tonnes being found only in Karoo sediments. The mission recommends that approximately US$ 40 million be spent on uranium exploration in Zambia over 10 years. The largest part of this expenditure would be for drilling, while the remainder should be spent on airborne and ground surveys, as well as on interpretative work on previous airborne data, Landsat imageries, etc. (author)

  10. Asteroids mass determination

    International Nuclear Information System (INIS)

    Hoffmann, M.

    1989-01-01

    Basic methods for asteroid mass determinations and their errors are discussed. New results and some current developments in the astrometric method are reviewed. New methods and techniques, such as electronic imaging, radar ranging and space probes are becoming important for asteroid mass determinations. Mass and density estimations on rotational properties and possible satelites are also discussed

  11. Maintaining a Twitter Feed to Advance an Internal Medicine Residency Program’s Educational Mission

    Science.gov (United States)

    Narang, Akhil; Arora, Vineet M

    2015-01-01

    Background Residency programs face many challenges in educating learners. The millennial generation’s learning preferences also force us to reconsider how to reach physicians in training. Social media is emerging as a viable tool for advancing curricula in graduate medical education. Objective The authors sought to understand how social media enhances a residency program’s educational mission. Methods While chief residents in the 2013-2014 academic year, two of the authors (PB, AN) maintained a Twitter feed for their academic internal medicine residency program. Participants included the chief residents and categorical internal medicine house staff. Results At the year’s end, the authors surveyed residents about uses and attitudes toward this initiative. Residents generally found the chief residents’ tweets informative, and most residents (42/61, 69%) agreed that Twitter enhanced their overall education in residency. Conclusions Data from this single-site intervention corroborate that Twitter can strengthen a residency program’s educational mission. The program’s robust following on Twitter outside of the home program also suggests a need for wider adoption of social media in graduate medical education. Improved use of data analytics and dissemination of these practices to other programs would lend additional insight into social media’s role in improving residents’ educational experiences. PMID:27731845

  12. MIT Project Apophis: Surface Evaulation & Tomography (SET) Mission Study for the April 2029 Earth Encounter

    Science.gov (United States)

    Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.

    2017-12-01

    Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis

  13. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the

  14. BAOBAB (Big And Outrageously Bold Asteroid Belt) Project

    Science.gov (United States)

    Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.

    2017-01-01

    One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.

  15. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author)

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author) [fr

  18. The Scintillation Prediction Observations Research Task (SPORT): an International Science Mission Using a Cubesat

    Science.gov (United States)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Fry, Craig; hide

    2017-01-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat mission to address the compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at a single site, within a single longitude sector, from Jicamarca, Peru. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to enhance understanding between geography and magnetic geometry. SPORT is an international partnership between National Aeronautics and Space Administration (NASA), the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA), and encouraged by U.S. Southern Command. This talk will present an overview of the SPORT mission, observation strategy, and science objectives to improve predictions of ionospheric disturbances that affect radio propagation of telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator.

  19. Asteroid clusters similar to asteroid pairs

    Science.gov (United States)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  20. In the footsteps of Columbus European missions to the International Space Station

    CERN Document Server

    O'Sullivan, John

    2016-01-01

    The European Space Agency has a long history of cooperating with NASA in human spaceflight, having developed the Spacelab module for carrying in the payload bay of the Space Shuttle. This book tells of the development of ESA’s Columbus microgravity science laboratory of the International Space Station and the European astronauts who work in it. From the beginning, ESA has been in close collaboration on the ISS, making a significant contribution to the station hardware. Special focus is given to Columbus and Copula as well as station resupply using the ATV. Each mission is also examined individually, creating a comprehensive picture of ESA's crucial involvement over the years. Extensive use of color photographs from NASA and ESA to depict the experiments carried out, the phases of the ISS construction, and the personal stories of the astronauts in space highlights the crucial European work on human spaceflight.

  1. Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission

    Science.gov (United States)

    Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.

    2013-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.

  2. Communication of 15 May 1995 received from the Permanent Mission of Peru to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received the attached note verbale of 15 May 1995 from the Permanent Mission of Peru transmitting comments on statements made by the Director of the Atomic Energy Commission of the Republic of Ecuador, concerning possible diversion of Peruvian nuclear technology for non-peaceful purposes. As requested by the Permanent Mission of Peru, the text of the note verbale is circulated to the Member States

  3. The US planetary exploration program opportunities for international cooperation

    Science.gov (United States)

    Briggs, G. A.

    1984-01-01

    Opportunities for international participation in US-sponsored interplanetary missions are discussed on the basis of the recommendations of the Committee on Planetary and Lunar Exploration of the National Academy of Sciences Space Science Board. The initial core missions suggested are a Venus radar mapper, a Mars geoscience/climatology orbiter, a comet-rendezvous/asteroid-flyby mission, and a Titan probe/radar mapper. Subsequent core missions are listed, and the need for cooperation in planning and development stages to facilitate international participation is indicated.

  4. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Bolivia. Draft

    International Nuclear Information System (INIS)

    Leroy, Jacques; Mueller-Kahle, Eberhard

    1982-08-01

    The uranium exploration done so far in Bolivia has been carried out by COBOEN, partly with IAEA support, and AGIP S.p.A. of Italy, which between 1974 and 1978 explored four areas in various parts of Bolivia under a production sharing contract with COBOEN. The basic objective of the International Uranium Resources Evaluation Project (IUREP) is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploitation efforts which might be carried out in promising areas in collaboration with the country concerned'. Following the initial bibliographic study which formed Phase I of IUREP, it was envisaged that a further assessment in cooperation with, and within, the country concerned would provide a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country concerned and that these field missions and the resulting report would be known as the Orientation Phase of IUREP. The purpose of the Orientation Phase mission to Bolivia was a) to develop a better understanding of the uranium potential of the country, b) to make an estimate of the Speculative Resources of the country, c) to delineate areas favourable for the discovery of these uranium resources, d) to make recommendations as appropriate on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, e) to develop the logistical data required to carry out any possible further work, and f) to compile a report which would be immediately available to the Bolivian authorities. The mission reports contains information about a general introduction, non-uranium exploration and mining in Bolivia, manpower in exploration, geological review of Bolivia, past uranium

  6. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  7. Asteroid taxonomic classifications

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    This paper reports on three taxonomic classification schemes developed and applied to the body of available color and albedo data. Asteroid taxonomic classifications according to two of these schemes are reproduced

  8. Distant asteroids and Chiron

    International Nuclear Information System (INIS)

    French, L.M.; Vilas, F.; Hartmann, W.K.; Tholen, D.J.

    1989-01-01

    Knowledge of the physical properties of distant asteroids (a>3.3 AU) has grown dramatically over the past five years, due to systematic compositional and lightcurve studies. Most of these objects have red, dark surfaces, and their spectra show a reddening in spectral slope with heliocentric distance implying a change in surface composition. Trojans for which near-opposition phase curve information is available appear to show little or no opposition effect, unlike any dark solar system objects. The lightcurve amplitudes of Trojan and Hilda asteroids imply significantly more elongated shapes for these groups than for main-belt asteroids of comparable size. These recent observations are reviewed in the context of their implications for the formation and subsequent evolution of the distant asteroids, and their interrelations with the main belt, Chiron and comets

  9. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  10. 24-COLOR ASTEROID SURVEY

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is comprised of asteroid flux data measured in 26 filters using the McCord dual beam photometer, and covering the range 0.32 - 1.08 microns for 285...

  11. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  12. 52-COLOR ASTEROID SURVEY

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 52-color IR data of asteroids, taken using a double circularly variable filter. The short wavelength portion of the CVF covered the octave...

  13. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Republic of Burundi. Draft

    International Nuclear Information System (INIS)

    Gehrisch, W.; Chaigne, M.

    1983-06-01

    The basic objective of the International Uranium Resources Evaluation project lUREP is to 'Review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional uranium resources and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned'. Therefore, the scope of the IUREP orientation phase Mission to Burundi was to review all data on past exploration in Burundi, to develop a better understanding of the uranium potential of the country, to make an estimate of the speculative resources of the country, to make recommendation as appropriate on the best methods or techniques for evaluating the resources in the favourable areas and for estimating possible costs as well, to compile a report which could be immediately available to the Burundian authorities. This mission gives a general introduction, a geological review of Burundi, information on non-uranium mining in Burundi, the history of uranium exploration, occurrences of uranium IUREP mission field reconnaissance, favourable areas for speculative potential, the uranium resources position and recommendations for future exploration. Conclusions are the following. The IUREP Orientation -phase mission to Burundi believes that the Speculative Resources of that country fall b etween 300 and 4100 tons uranium oxide but a less speculative appraisal is more likely between 0 and 1000 tons. There has been no uranium production and no official estimates of Uranium Resources in Burundi. Past exploration mainly dating from 1969 onwards and led the UNDP Mineral project has indicated a limited number of uranium occurrences and anomalies. The speculative uranium resources are thought to be possibly associated with potential unconformity related vein-like deposits of the Lower Burundian. Other speculative uranium resources could be associated with granitic or peribatholitic

  15. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  16. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  17. Study of the Asteroid 2009 DL46

    Science.gov (United States)

    Vodniza, Alberto Quijano

    2017-06-01

    2009 DL46 was discovered by the Catalina Sky Survey on 2009-February 28. This asteroid has a diameter of about 194 meters (119 to 268 meters) [1], and Brian Warner has obtained a rotation period of at least 10 hours [2]. The asteroid 2009 DL46 flew past Earth on May 24/2016 at a distance of about 6.2 lunar distances (0.0158293668567628 A.U) [3]. The NEOWISE mission had a great likelihood to observing this asteroid in early May. Radiotelescopes of Goldstone and Arecibo had planned to make observations of 2009 DL46. “Using the Goldstone facility, we had planned to make radar observations of 2009 DL46” said Landis, Rob R. (HQ-DG000). This asteroid is on list for possible human mission targets. From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several hours during three days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS [4]. The pictures and data of the asteroid were captured with the following equipment: CGE PRO 1400 CELESTRON (f/11 Schmidt-Cassegrain Telescope) and STL-1001 SBIG camera.. Astrometry was carried out, and we calculated the orbital elements. Summary and conclusions: We obtained the following orbital parameters: eccentricity = 0.30731 +/- 0.00025, semi-major axis = 1.460279 +/- 0.000532 A.U, orbital inclination = 7.9503 +/- 0.0048 deg, longitude of the ascending node = 63.45053 +/- 0.00034 deg, argument of perihelion = 159.8804 +/- 0.0024 deg, mean motion = 0.558535 +/- 0.000305 deg/d, perihelion distance = 1.01151363 +/- 3.39e-6 A.U, aphelion distance = 1.90904 +/- 0.00106 A.U, absolute magnitude = 22.5. The parameters were calculated based on 83 observations. Dates: 2016 May: 18 to 21 with mean residual = 0.29 arcseconds. The asteroid has an orbital period of 1.76 years (644.53 days).[1] http://newton.dm.unipi.it/neodys/index.php?pc=1.1.9&n=2009DL46.[2] http://echo.jpl.nasa.gov/asteroids/2009DL46/2009DL46_planning.html[3] http

  18. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    numerically calculated trajectories, 23 asteroids are recommended for future consideration for capture missions, provided necessary technological developments are made.

  19. Psychological characteristics of Swedish mandatory enlisted soldiers volunteering and not volunteering for international missions: an exploratory study.

    Science.gov (United States)

    Rydstedt, Leif W; Osterberg, Johan

    2013-04-01

    The purpose of this study was to assess personality traits, psychological fitness, and hardiness among conscript soldiers volunteering for international missions (n = 146), by comparing them with conscripts from the same year class and unit who did not apply for international missions (n = 275). The sample consisted of all mandatory enlisted soldiers assigned to a supply and maintenance regiment. There were no demographic differences between the groups. The volunteers reported greater stress tolerance, concern for others, extraversion, and self-confidence than the non-volunteers. There were no differences between the groups in orderliness, temper instability, or independence. Volunteers repeatedly reported greater psychological fitness for military missions and greater hardiness over the period of military service compared to the non-volunteers.

  20. Trajectory and physical properties of near-Earth asteroid 2009 BD

    NARCIS (Netherlands)

    Farnocchia, D.; Mommert, M.; Hora, J. L.; Chesley, S. R.; Vokrouhlický, D.; Trilling, D. E.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.; Knežević, Zoran; Lemaitre, Anne

    2014-01-01

    We analyze the trajectory of near-Earth asteroid 2009~BD, which is a candidate target of the NASA Asteroid Redirect Mission. The small size of 2009 BD and its Earth-like orbit pose challenges to understanding the dynamical properties of 2009 BD. In particular, nongravitational perturbations, such as

  1. Introduction to the Asteroids II data base

    International Nuclear Information System (INIS)

    Tedesco, E.F.

    1989-01-01

    The Asteroids II data base presented is a compilation of asteroid data. Included are asteroid names and discovery circumstances, proper elements and family identifications, asteroid lightcurve parameters, asteroid pole determinations, taxonomic classes, absolute magnitudes and slope parameters, UBV color indices, and albedos and diameters from the IRAS Asteroid and Comet Survey

  2. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Lowell Observatorys 4.3-m Discovery Channel Telescope. The data indicate that the asteroids period is at least 3 hours in length,and most likely more than 5 hours. Assuming the light curves variation is caused by the tumbling asteroids changing cross-section, Oumuamuamust be a minimum of3 times as long as it is wide. Knight and collaborators seeno signs in their images of a coma or tail emitted from Oumuamua, suggesting there isno volatile material sublimating from its surface under the heat of the Sun.No coma is visible around Oumuamua. [Knight et al. 2017]A study of the asteroids photometry, led by Michele Bannister (Queens University Belfast, UK), usedthe Gemini-North telescope in Hawaii and the William Herschel Telescope in Spainto explore the asteroids shape and color. Bannister and collaborators refined the estimate of the asteroids shape to be at least 5.3 times as long as it is wide, which requiresthis body to have significant internal cohesion to hold together as it tumbles. Their measured color for Oumuamua is largely neutral.What Does This Visitor Imply?Masses and semimajor axes of known exoplanets. Colors correspond to the ratio of escape velocity to circular velocity. The presence of Oumuamua implies a vast and cool, stillundetected population of planets. [Laughlin Batygin, 2017]Gregory Laughlinof Yale University and Konstantin Batyginof Caltech(andPlanet Nine fame) explore some of the consequences of Oumuamuas parameters. They arguethat its current passage, if its not a fluke, suggests the presence ofan enormous number (1027) ofsuch objects in our galaxy alone enough to account for two Earth-masses of material for every star in the galaxy. Flinging asteroids like Oumuamuaout into interstellar space isnteasy, though; the necessary multi-body interaction requires the system to containa giant and long-period planet like our Neptune or Jupiter. Taken together, this information suggests that every star in the galaxy may host a Neptune-like planet at a Neptune

  3. Communication received on 10 May 1999 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of a communication received on 10 May 1999 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, with regard to the resolution adopted by the 42nd Agency General Conference, entitled 'The safety of radiation sources and the security of radioactive materials' (GC(42)/RES/12), in connection with the war in Yugoslavia

  4. Communication of 24 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Communication of 24 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, including a statement by the Ministry of Foreign Affairs of the Russian Federation in connection with the ratification by the State Duma of the Federal Assembly of the Russian Federation of the Comprehensive Nuclear Test Ban Treaty

  5. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  6. Calculating the momentum enhancement factor for asteroid deflection studies

    International Nuclear Information System (INIS)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert

    2017-01-01

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.

  7. Asteroids - NeoWs API

    Data.gov (United States)

    National Aeronautics and Space Administration — NeoWs (Near Earth Object Web Service) is a RESTful web service for near earth Asteroid information. With NeoWs a user can: search for Asteroids based on their...

  8. International short-term medical missions: a systematic review of recommended practices.

    Science.gov (United States)

    Roche, Stephanie D; Ketheeswaran, Pavinarmatha; Wirtz, Veronika J

    2017-01-01

    To identify practices for conducting international short-term medical missions (STMMs) recommended in the literature and examine how these link STMMs to recipient countries' existing health systems. Systematic review of PubMed-indexed articles on STMMs and their bibliographies using preferred reporting items for systematic reviews and meta-analyses guidelines. Recommendations were organized using the World Health Organization Health Systems Framework. In 92 publications, 67 % offered at least one recommendation that would link STMMs to the recipient country's health system. Among these recommendations, most focused on service delivery and few on health financing and governance. There is a lack of consensus around a proper standard of care, patient selection, and trip duration. Comprehensive global standards are needed for STMM work to ensure that services are beneficial both to patients and to the broader healthcare systems of recipient countries. By providing an overview of the current recommendations and important gaps where practice recommendations are needed, this study can provide relevant input into the development of global standards for STMMs.

  9. The U.S. Rosetta Project at Its First Science Target: Asteroid (2867) Steins, 2008

    Science.gov (United States)

    Alexander, C.; Sweetnam, D.; Gulkis, S.; Weissman, P.; Holmes, D.; Parker, J.; Burch, J.; Goldstein, R.; Mokashi, P.; Fuselier, S.; hide

    2010-01-01

    On September 5, 2008, the International Rosetta Mission encountered its first formal science target of the mission, asteroid (2867) Steins. We report preliminary results from the U.S. experiments. NASA's contribution to the Rosetta mission consists of an ultraviolet (UV) spectrometer, a microwave spectrometer, a plasma instrument, and a portion of the electronics package for a mass spectrometer. The UV spectrometer (Alice) was used to obtain the first far-ultraviolet (FUV) spectrum of an asteroid. A ten-minute integration, surrounding the time of closest approach, averaging over a variety of geometries, showed very good signal from 850 Angstroms to 2000 Angstroms in the FUV. The microwave instrument (MIRO) obtained a high signal to noise measurement at both observing frequencies, enabling key thermal parameters to be derived. The plasma instrument (IES) obtained a brief measurement of the solar wind, and the Double Focusing Mass Spectrometer (DFMS) of the ROSINA instrument obtained a signal just at closest approach. Laboratory work with analogue materials was begun.

  10. The stability of some asteroids

    International Nuclear Information System (INIS)

    Vicente, R.O.

    1983-01-01

    The utilization of two different stability criteria, namely, Hill's modified stability criterium and the method of surface of section, has been employed for asteroid orbits. The idea is to compute different criteria of stability for the same asteroids in order to compare the results and see the practical interest of the computations for researches about evolutionary trends of individual asteroids, groups and families of asteroids. (Auth.)

  11. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  12. International, private-public, multi-mission, next-generation lunar laser retroreflectors

    Science.gov (United States)

    Dell'Agnello, Simone

    2017-04-01

    for CNSA's Chang'E-4 mission). INRRI has been embarked on ESA's ExoMars lander "Schiaparelli" and it has been requested by NASA to ASI for the Mars 2020 Rover mission. LLR data are analized/simulated with the Planetary Ephemeris Program developed by CfA. INFN, UMD and MEI signed a private-public partnership, multi-mission agreement to deploy the big and the microreflectors on the Moon. Through existing MoUs between INFN and the Russian Academy of Sciences, international negotiations are also underway to propose the new lunar reflectors and the SCF_Lab services for the next robotic missions of the Russian space program. References: [1] Probing gravity with next-generation lunar la-ser ranging, M. Martini and S. Dell'Agnello, in R. Peron et al. (eds.), Gravity: Where Do We Stand?, DOI 10.1007/978-3-319-20224-2_5, Springer Inter-national Publishing, Switzerland (2016). [2] Formation flying, cosmology and general rel-ativity: a tribute to far-reaching dreams of Mino Freund, Currie, D.; Williams, J.; Dell'Agnello, S.; Monache, G.D.; Behr, B. and K. Zacny, in Springer Proceedings in Physics, vol. 150, ISBN-13: 978-3319022062, ISBN-10: 3319022067 (2014). [3] Williams, J. G., Turyshev, S. G., Boggs, D. H., Ratcliff, J. T., Lunar laser ranging science: Grav-itational physics and lunar interior and geodesy, Adv. Space Res. 37(1), 67-71 (2006). [4] Constraining spacetime torsion with Moon and Mercury, R. March, G. Bellettini, R. Taursaso, S. Dell'Agnello, Phys. Rev D 83, 104008 (2011). [5] Constraining nonminimally coupled gravity with laser ranging to the moon, N. Castel-Branco, J. Paramos, R. March and S. Dell'Agnello, in 3rd Euro-pean Lunar Symposium, Frascati, Italy (2014). [6] Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, S. Dell'Agnello et al, Adv. Space Res. 47, 822-842 (2011). [7] Advanced Laser Retroreflectors for Astro-physics and Space Science, Dell'Agnello, S., et al, Journal of Applied Mathematics and Physics, 3

  13. NASA's Discovery Mission to (16) Psyche: Visiting a Metal World

    Science.gov (United States)

    Elkins-Tanton, L. T.; Bell, J. F., III

    2017-09-01

    The Psyche mission is one of NASA's most recent Discovery mission selections. It is designed to explore the large metallic Main Belt asteroid (16) Psyche and test the hypothesis that it is the exposed core of an ancient differentiated planetesimal.

  14. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids (NEA)

    Science.gov (United States)

    Steinberg, Susan L.; Kundrot, Craig; Charles, John B.

    2011-01-01

    This poster paper reviews the Astronaut health and performance issues for a Near Earth Asteroid (NEA) mission. Risks and other considerations are grouped into four categories and they are characterized for criticality.

  15. VLWIR Sensors for Detecting and Tracking Near-Earth Asteroids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An important NASA mission is to detect, count and track near-earth asteroids for a variety of reasons including the hazards of collisions with our planet. Such...

  16. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  17. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  18. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Science.gov (United States)

    2013-10-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-124] NASA Asteroid Initiative Idea.... SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA... INFORMATION CONTACT: Michele Gates, Senior Technical Advisor, NASA Human Exploration and Operations Mission...

  19. Communication of 17 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Communication of 17 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, including a statement by the Acting President of the Russian Federation in connection with the ratification by the State Duma of the Federal Assembly of the Russian Federation of START-II Treaty and the package agreements on antimissile defence of 1997

  20. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  1. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.; Matson, Robert D.

    2011-01-01

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  2. Distant retrograde orbits and the asteroid hazard

    Science.gov (United States)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  4. Radar observations of asteroids

    International Nuclear Information System (INIS)

    Ostro, S.J.

    1989-01-01

    This paper describes echoes from 33 main-belt asteroids (MBAs) and 19 near-Earth asteroids (NEAs) have provided a wealth of new information about these objects such as sizes, shapes, spin vectors, and such surface characteristics as decimeter-scale morphology, topographic relief, regolith porosity and metal concentrations. On average, small NEAs are much rougher at decimeter scales than MBAs, comets or terrestrial planets. Some of the largest MBAs (e.g., 1 Ceres and 2 Pallas ) are smoother than the moon at decimeter scales but much rougher than the Moon at some much larger scale. There is at least a five-fold variation in the radar albedos of MBAs, implying substantial variations in the surface porosities or metal concentrations of these objects. The highest MBA albedo estimate, for 16 Psyche, is consistent with a metal concentration near unity and lunar porosities

  5. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  6. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    Science.gov (United States)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  7. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  8. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  9. Speckle interferometry of asteroids

    International Nuclear Information System (INIS)

    Drummond, J.

    1988-01-01

    By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated

  10. An overview of the asteroids

    International Nuclear Information System (INIS)

    Binzel, R.P.

    1989-01-01

    An introduction and overview of the field of asteroid science is presented, highlighting the accomplishments of the 1980s. The development and application of many observational techniques and data from the Infrared Astronomical Satellite have greatly increased our knowledge of asteroid physical properties. New scenarios for understanding the chemical diversity and dynamical structure of asteroids have emerged. New insights have been gained toward understanding their origin and interrelations with meteorites and comets. Suggestions and speculations are offered on future research directions

  11. BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures

    International Nuclear Information System (INIS)

    Xing, Liudong; Levitin, Gregory

    2013-01-01

    Phased-mission systems (PMS) are systems in which multiple non-overlapping phases of operations (or tasks) are accomplished in sequence for a successful mission. Examples of PMS abound in applications such as aerospace, nuclear power, and airborne weapon systems. Reliability analysis of a PMS must consider statistical dependence across different phases as well as dynamics in system configuration, failure criteria, and component behavior. This paper proposes a binary decision diagrams (BDD) based method for the reliability evaluation of non-repairable binary-state PMS with common-cause failures (CCF). CCF are simultaneous failure of multiple system elements, which can be caused by some external factors (e.g., lightning strikes, sudden changes in environment) or by propagated failures originating from some elements within the system. Both the external and internal CCF is considered in this paper. The proposed method is combinatorial, exact, and is applicable to PMS with arbitrary system structures and component failure distributions. An example with different CCF scenarios is analyzed to illustrate the application and advantages of the proposed method. -- Highlights: ► Non-repairable phased-mission systems with common-cause failures are analyzed. ► Common-cause failures caused by internal or external factors are considered. ► A combinatorial algorithm based on binary decision diagrams is suggested

  12. The first retrograde Trojan asteroid

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2018-04-01

    There are about six thousand asteroids which share Jupiter's orbit around the Sun. Called the 'Trojan asteroids', they co-exist easily with this giant planet because they travel in the same direction as it ('direct' or 'prograde' motion), and remain roughly 60 degrees ahead of or behind it in its orbit. Newly discovered asteroid 2015 BZ509 is on a retrograde orbit, but is nonetheless in a state dynamically analogous to that of the prograde Trojans. The discovery circumstances and the nature of the motion of this curious asteroid -the first of its kind- will be outlined.

  13. Asteroid results from the IRAS survey

    International Nuclear Information System (INIS)

    Veeder, G.J.; Tedesco, E.F.; Matson, D.L.

    1989-01-01

    This paper reports that the IRAS Asteroid and Comet Survey yield a data base of infrared flux densities for 1811 individual asteroids. Albedos and diameters for these have been derived via a standard thermal model. IRAS sampled a large number of small asteroids and detected many dark asteroids in the outer belt. High-albedo asteroids remain rare. Observations of the brighter asteroids at multiple wavelengths shows the expected range of color temperatures through the main belt

  14. Real-Time Risk and Fault Management in the Mission Evaluation Room for the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Novack, S.D.

    2003-05-30

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probabilistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed tool set will be a ''Mission Success Framework'' designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  15. Real-Time Risk and Fault Management in the Mission Evaluation Room of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    William R. Nelson; Steven D. Novack

    2003-05-01

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probablistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed toolset will be a "Mission Success Framework" designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Thailand

    International Nuclear Information System (INIS)

    1985-01-01

    The IURBP Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1 500 to 38 500 tonnes U. Geological environments which are considered by the Mission to be favourable for uranium occurrences include the following: sandstones of Jurassic to Triassic age; Tertiary sedimentary basins (northern Thailand); Tertiary sedimentary basins (southern Thailand); associated with fluorite deposits; granitic rocks; black shales and graphitic slates of the Palaeozoic; associated with sedimentary phosphate deposits; and associated with monazite sands. Physical conditions in Thailand, including a wet tropical climate, dense forest growth and rugged terrain in some areas and relative inaccessibility, make exploration difficult and costly. There is currently no ready accessibility to detailed topographic and geological maps and other basic data. This lack of availability is a severe constraint to systematic exploration. The lack of skilled personnel experienced in uranium studies and the low level of technical support is a serious hindrance to exploration in Thailand. (author)

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Ghana. Draft

    International Nuclear Information System (INIS)

    Guelpa, Jean-Paul; Vogel, Wolfram

    1982-12-01

    The Republic of Ghana has no claimed uranium resources in the categories Reasonably Assured and Estimated Additional. The only occurrences known are within pegmatites and are of no economic importance. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of the country fall between 15,000 and 40,000 tonnes uranium. The IUREP Orientation Phase Mission to Ghana believes that the Panafrican Mobile Belt has the highest uranium potential of all geological units of the country. The Obosum beds are the priority number two target. A three years exploration programme is recommended for a total cost of US $ 5,000,000. The Ghana Atomic Energy Commission and the Ghana Geological Survey provide a basic infrastructure for uranium exploration. Any future uranium development in Ghana should be embedded in a well defined national uranium policy. It is recommended that such a policy be draw, up by the Ghanaian authorities

  18. Note to the Secretariat from the Permanent Mission of the Czech and Slovak Federal Republic to the International Organizations in Vienna

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the Note received by the Director General from the Permanent Mission of the Czech and Slovak Federal Republic to the International Organizations in Vienna in connection with the dissolution of the CSFR on 31 December 1992

  19. Asteroid body-fixed hovering using nonideal solar sails

    International Nuclear Information System (INIS)

    Zeng, Xiang-Yuan; Jiang, Fang-Hua; Li, Jun-Feng

    2015-01-01

    The problem of body-fixed hovering over an asteroid using a compact form of nonideal solar sails with a controllable area is investigated. Nonlinear dynamic equations describing the hovering problem are constructed for a spherically symmetric asteroid. Numerical solutions of the feasible region for body-fixed hovering are obtained. Different sail models, including the cases of ideal, optical, parametric and solar photon thrust, on the feasible region is studied through numerical simulations. The influence of the asteroid spinning rate and the sail area-to-mass ratio on the feasible region is discussed. The required orientations for the sail and their corresponding variable lightness numbers are given for different hovering radii to identify the feasible region of the body-fixed hovering. An attractive scenario for a mission is introduced to take advantage of solar sail hovering. (paper)

  20. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    Science.gov (United States)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  1. Strategic Implications of Human Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Drake, Bret G.

    2011-01-01

    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Turkey. September to November 1980

    International Nuclear Information System (INIS)

    Ziehr, H.; Komura, A.

    1985-02-01

    The IUREP Orientation Phase Mission to Turkey estimates the Speculative Resources of the country to lie between 21 000 and 55 000 tonnes uranium. Past exploration in Turkey, dating from 1953, has indicated a very high number of uranium occurrences and radioactive anomalies, but ore deposits of significant size and grade have not been found. Present reserves amount to 4 600 tonnes uranium which can be allocated to approximately 15 sandstone type deposits in Neogene continental sediments. Several hundreds of other occurrences and radioactive anomalies exist where ore reserves have not been delineated. The uranium occurrences and radioactive anomalies can be divided according to host rock into (a) crystalline massif and (b) Tertiary continental sediment. The greatest geological potential for further resources is estimated to exist in the above mentioned two geological terrains. The most favourable geological potential exists in Neogene continental sedimentary basins near the crystalline massifs. Because surface exploration in the known favourable areas such as the Koepruebasi Basin has been so systematic, extensive, and successful, it is improbable that additional surface work will have much effect in increasing the number of new radioactive anomalies or uranium occurrences detected at the surface in these areas. Surface survey work in these areas should be mainly designed to assist the understanding of structures at depth. Surface reconnaissance survey work is, however, required in other parts of the above mentioned two geological terrains in this country. Before starting such a reconnaissance survey in new areas, the Mission suggests that a careful and extensive library study be conducted in close co-operation with sedimentologists, petrologists, and remote sensing specialists. The Mission suggests that in the medium term, 8 to 10 years, some 85 - 110 million U.S. Dollars be spent on airborne and ground surveys, including geological, radiometric, geochemical, and

  3. Origin of the asteroid belt

    International Nuclear Information System (INIS)

    Wetherill, G.W.

    1989-01-01

    Earlier work and concepts relevant to the origin of the asteroid belt are reviewed and considered in the context of the more general question of solar system origin. Several aspects of asteroidal origin by accumulation of smaller bodies have been addressed by new dynamic studies. Numerical and analytical solutions of the dynamical theory of planetesimal accumulation are characterized by a bifurcation into runaway and nonrunaway solutions. The differences in time scales resulting from runaway and nonrunaway growth can be more important than conventional time scale differences determined by heliocentric distances. This introduces new possibilities, e.g., planetary accumulation may be more rapid at the distance of Jupiter than in the asteroid belt, thus permitting Jupiter to control asteroidal growth. Although alternatives must be seriously considered, the most promising approach to asteroidal origin is one in which the initial surface density of the solar nebula varied smoothly between the terrestrial and giant-planet region. In the absence of external perturbations, it is found that runaway growth of excessively large asteroids would then occur on <1 Myr, but fairly modest external perturbations by Jupiter, Saturn or other perturbers, resulting in eccentricities ∼0.01 may quench runaways, truncate asteroidal growth at their present size, and then initiate the necessary loss of asteroidal material by mutual fragmentation

  4. The Main Asteroid Belt: The Crossroads of the Solar System

    Science.gov (United States)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Cameroon. Draft

    International Nuclear Information System (INIS)

    Trey, Michel de; Leney, George W.

    1983-05-01

    The purpose of the International Uranium Resource Evaluation Project (IUREP) missions to host nations is to: R eview the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional resources, and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned. Guidance in the achievement of these goals is provided through a check list of desired relevant information on: general background, the potential role of nuclear energy, and organizations involved, information on the mining industry, technical manpower employed or available, available maps, aerial photographs, and publications, national geological survey and organizations involved in uranium, private organizations involved in uranium exploration and mining, results of previous exploration, known uranium occurrences, plans for further work, legal and administrative requirements for exploration and logistical information on facilities available. The economy of CAMEROON is sound and continues to expand with an annual growth rates of 5-6%. Emphasis is placed on private investment with government participation in major development projects. The overall investment climate is good. Minerals exploration is carried out under nonexclusive Prospecting License and exclusive Exploration License that may later be converted to a Mining Lease or Mining Concession. Many of the conditions must be negotiated. Uranium is classified as a strategic mineral, and may be subject to special review. There is no defined policy on uranium development. Two government organizations are concerned with geology and mining. The INSTITUT DE RECHERCHES GEOLOGIQUES ET MINIERES (IRGM) conducts programs of geologic mapping and research, mineralogy, hydrology, and alternate energy sources. The DEPARTMENT OF MINES AND GEOLOGY (DMG) is responsible for all minerals exploration and mining. It includes a

  6. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Madagascar. September-October 1981

    International Nuclear Information System (INIS)

    Meyer, John H.; Brinck, Johan W.

    1981-01-01

    This study, resulting from the IUREP Orientation Mission to Madagascar, includes the reported information on infrastructure, mining regulations and conditions made available to the Mission. Within the structure of the centrally planned economic system, uranium exploration and mining is considered the exclusive activity of OMNIS, an organization founded by the State for that purpose (Office Militaire National pour les Industries Strategiques). Madagascar has a long history of prospection and small-scale exploitation of uranium (thorium and radium). Some of this activity dates back to 1909, culminating in significant production of both uranium and thorium (in excess of 5900 tonnes of uranothorianite) by the CEA and private contractors in the Fort Dauphin area from 1955 to 1968. Past exploration and development work in a number of areas, notably by the CEA, OMNIS and the IAEA/UNDP, is reviewed and the uranium resources and mineral indications reported. The areas rated at present as the more important and which continue to be investigated (by OMNIS, in conjunction with IAEA/UNDP projects) in the order of priority are: the Fort Dauphin area, the Karroo formation and the Neogene lacustrine basin at Antsirabe. The Mission estimates that Madagascar has a moderate potential for undiscovered resources; it is estimated that such speculative resources could lie within the range of 4000 - 38000 tonnes U. In addition there are areas with as yet untested environments and with no known occurrences which may be favourable but which will require prospection. Modifications to existing programmes and new programmes are suggested. Policy alternatives are reviewed

  8. Three dimensional modelling for the target asteroid of HAYABUSA

    Science.gov (United States)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  9. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  10. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Sudan. February-March 1981

    International Nuclear Information System (INIS)

    Kneupper, G.; Scivetti, N.

    1981-01-01

    The IUREP Orientation Phase Mission to the Democratic Republic of the Sudan believes that the Speculative Resources of the country might fall between 20,000 and 40,000 tonnes uranium and more. This indicates that the Speculative Resources of the Sudan could be significantly higher than previously estimated (7,500 tonnes uranium) by the NEA/IAEA Steering Group on the Uranium Resources - IUREP Phase I. The Government is willing to consider valid exploration programmes presented by prospective partners as long as they serve the interests of both parties. Within the general six-year (1977/78-1982/83) plan for development of the country's mineral resources, the Ministry of Energy and Mining has set up certain priorities which it would like to see expeditiously implemented: uranium exploration and production stands high on the list of priorities. On the basis of very limited information on regional geology and on previous exploration which was available to the Mission, it is estimated that the greatest potential for the Speculative Resources of possible economic significance will prove to occur in the following geological environments of the Sudan (Red Sea Hills area is not included): precambrian basement complex, palaeozoic-mesozoic-tertiary sedimentary basins and the tertiary to recent calcretes. The IUREP Orientation Phase Mission believes that some 20 Million US$ (very rough estimate) will be needed to (1) check the validity of the basic geological concepts formulated on the uranium potential of the selected areas, (2) accumulate diagnostic geological, geophysical, geochemical data indicative of a true uranium potential there, (3) study the basement complex rocks and the sedimentary formations at least on a broad structural-stratigraphic reconnaissance basis (a tremendous amount of valuable water drilling data has accumulated over the last years for some of the selected sedimentary basins) and (4) determine the most appropriate investigation techniques to be utilized

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Colombia. February - March 1980

    International Nuclear Information System (INIS)

    Cameron, J.; Meunier, A.R.; Tauchid, M.

    1980-01-01

    The basic objective of IUREP is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploration efforts which might be carried out in promising new areas in collaboration with the countries concerned'. Following the initial bibliographic study, which formed Phase I of IUREP, it was envisaged that a further assessment in co-operation with the country in question would lead to a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country and that these field missions and the resulting report would constitute the IUREP Orientation Phase. The purpose of the Orientation Mission to Colombia was (i) to develop a better understanding of the uranium potential of the country, (ii) to delineate areas favourable for the discovery of speculative uranium resources, (iii) to make recommendations, as appropriate, on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, (iv) to develop the logistical data required to carry out any possible further work, and (v) to compile a report that would be immediately available to the Colombian authorities. Uranium exploration in Colombia is of very recent date, with the majority of activities getting under way only after 1970. In spite of the limited work that has been done, however, over 1300 radioactive anomalies have been recorded. The total number of uranium mineral occurrences resulting from follow-up work is still very small, and some are unusual in world terms. Topographic and geographic conditions in Colombia make geological and exploration work very difficult and costly, especially in the Cordilleras and the Interior Zone (Llanos Orientales). There are, at

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Venezuela. Draft

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Obellianne, Jean-marie

    1981-04-01

    The IUREP Orientation Phase Mission to Venezuela believes that the Speculative Uranium Resources of that country fall between 2,000 and 42,000 tonnes. This assumes that a part of the Speculative Resources would be extracted as by-product uranium from wet-process phosphoric acid production. Past exploration in Venezuela has resulted in the discovery of very few uranium occurrences and radioactive anomalies except for the many airborne anomalies recorded on the Guayana Shield. To date no economic deposits or significant uranium occurrences have been found in Venezuela except for the uraniferous phosphorites in the Cretaceous Navey Formation which are very low grade. The uranium occurrences and radioactive anomalies can be divided according to host rock into: (1) Precambrian crystalline and sedimentary rocks, (2) Cretaceous phosphorite beds, (3) continental sandstone, and (4) granitic rocks. The greatest geological potential for further uranium resources is believed to exist in the crystalline and sedimentary Precambrian rocks of the Guayana Shield, but favorable geological potential also exist in younger continental sandstones. Since the Guayana Shield is the most promising for the discovery of economic uranium deposits most of the proposed exploration effort is directed toward that area. Considerable time, effort and capital will be required however, because of the severe logistical problems of exploration in this vast, rugged and inaccessable area, Meager exploration work done to date has been relatively negative suggesting the area is more of a thorium rather than a uranium province. However because of the possibility of several types of uranium deposits and because so little exploration work has been done, the Mission assigned a relatively small speculative potential to the area, i.e. 0 to 25,000 tonnes uranium. A small speculative potential (0 to 2,000 tonnes) was assigned to the El Baul area in Cojedes State, in the Llanos Province. This potential is postulated

  13. DARe: Dark Asteroid Rendezvous

    Science.gov (United States)

    Noll, K. S.; McFadden, L. A.; Rhoden, A. R.; Lim, L. F.; Boynton, W. V.; Carter, L. M.; Collins, G.; Englander, J. A.; Goossens, S. A.; Grundy, W. M.; hide

    2015-01-01

    Small bodies record the chemical, physical, and dynamical processes that gave birth to and shaped the solar system. The great variety of small bodies reflects the diversity of both their genesis and their histories. The DARe mission conducts a critical test of how small body populations reflect a history of planetary migration and planetesimal scattering. This understanding is crucial for planning future NASA missions and placing current and past missions into context.

  14. AsteroidFinder - the space-borne telescope to search for NEO Asteroids

    Science.gov (United States)

    Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.

    2017-11-01

    This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.

  15. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Thailand. February-March 1981

    International Nuclear Information System (INIS)

    Inazumi, Satoru; Meyer, John H.

    1981-01-01

    The I.U.R.E.P. Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1,500 to 38,500 tonnes U. This range is higher than the previous assessment in Phase I because the Mission recognizes additional favourable geological environments. At the same time, the untested and therefore the unknown degree of mineralization in some of these environments is acknowledged. Past exploration, dating from 1977, has been mainly confined to ground surveys of a small mineralized area and to airborne gamma-ray surveys of two small test areas. Ground reconnaissance work and prospecting has recognized some mineralization in several different host rocks and environments. Geological environments considered by the Mission to be favourable for uranium occurrences include sandstone of Jurassic to Triassic age, tertiary sedimentary basins (northern Thailand), tertiary sedimentary basins (southern Thailand), associated with fluorite deposits, granitic rocks, black shales and graphitic slates of the Paleozoic, associated with sedimentary phosphate deposits and associated with monazite sands. It is recommended that exploration for uranium resources in Thailand should continue. Planners of future exploration programmes should take the following activities into consideration. Rapid extension of carborne surveys to cover, without excessive overburdening, all areas having sufficient road density. Airborne gamma-ray surveys should be carried out in certain selected areas. In the selection of such areas, the considerable higher cost factor attendant on this method of surveying dictates that airborne surveys should only be carried out where carborne surveys prove ineffective (lack of adequate road network.) and where the topography is sufficiently even to assure a low but safe clearance and meaningful results. In certain areas, including the Khorat Plateau and the Tertiary Basins in northern and southern Thailand, there is a need for widely spaced

  16. Naming asteroids for the popularisation of astronomy

    Science.gov (United States)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  17. Network of Nano-Landers for In-Situ Characterization of Asteroid Impact Studies

    OpenAIRE

    Kalita, Himangshu; Asphaug, Erik; Schwartz, Stephen; Thangavelautham, Jekanthan

    2017-01-01

    Exploration of asteroids and comets can give insight into the origins of the solar system and can be instrumental in planetary defence and in-situ resource utilization (ISRU). Asteroids, due to their low gravity are a challenging target for surface exploration. Current missions envision performing touch-and-go operations over an asteroid surface. In this work, we analyse the feasibility of sending scores of nano-landers, each 1 kg in mass and volume of 1U, or 1000 cm3. These landers would hop...

  18. The Nature of C Asteroid Regolith Revealed from the Jbilet Winselwan CM Chondrite

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.

    2016-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites.

  19. Management experience of an international venture in space The Ulysses mission

    Science.gov (United States)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  20. Compositional studies of primitive asteroids

    International Nuclear Information System (INIS)

    Vilas, F.

    1988-01-01

    The composition of primitive asteroids and their relationship to satellites in the solar system will be studied by analyzing existing narrowband charge coupled device (CCD) reflectance spectra, acquiring additional spectra of asteroids and small satellites in the 0.5 to 1.0 micrometer spectral range, and exploring possibilities for obtaining compositional information in the blue-UV spectral region. Comparison with laboratory spectra of terrestrial chlorites and serpentines (phyllosilicates) and the clay minerals found in carbonaceous chondrite meteorites will continue. During 1987, narrowband CCD reflectance spectra of 17 additional asteroids were acquired. These spectra and spectra of 34 other asteroids have been used primarily for two studies: weak absorption features similar to those due to Fe2(+) and Fe2(+) - Fe3(+) transitions in iron oxides f ound in terrestrial chlorites and serpentines and carbonaceous chondrites have been identified in some primitive asteroid spectra. There is a first indication that asteroids grouped by heliocentric distance show similar weak absorption features. Nonparametric statistics are being applied to test the hypothesis of discrete remnants of a gradation in composition of outer-belt asteroids

  1. Mine Planning for Asteroid Orebodies

    Science.gov (United States)

    Gertsch, L. S.; Gertsch, R. E.

    2000-01-01

    Given that an asteroid (or comet) has been determined to contain sufficient material of value to be potentially economic to exploit, a mining method must be selected and implemented. This paper discusses the engineering necessary to bring a mine online, and the opportunities and challenges inherent in asteroid mineral prospects. The very important step of orebody characterization is discussed elsewhere. The mining methods discussed here are based on enclosing the asteroid within a bag in some fashion, whether completely or partially. In general, asteroid mining methods based on bags will consist of the following steps. Not all will be required in every case, nor necessarily in this particular sequence. Some steps will be performed simultaneously. Their purpose is to extract the valuable material from the body of the asteroid in the most efficient, cost-effective manner possible. In approximate order of initiation, if not of conclusion, the steps are: 1. Tether anchoring to the asteroid. 2. Asteroid motion control. 3. Body/fragment restraint system placement. 4. Operations platform construction. 5. Bag construction. 6. Auxiliary and support equipment placement. 7. Mining operations. 8. Processing operations. 9. Product transport to markets.

  2. An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

    Data.gov (United States)

    National Aeronautics and Space Administration — A Hypervelocity Asteroid Intercept Vehicle (HAIV) mission architecture, which blends a hypervelocity kinetic impactor with a subsurface nuclear explosion for optimal...

  3. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    Science.gov (United States)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  4. The Philanthropic Mission of Comparative and International Education Bequeathed by Jullien: Continuing Capstone of the Field

    Science.gov (United States)

    Wolhuter, C. C.

    2017-01-01

    The aim of this lead article of this special issue of "Compare" is to assess the value of Jullien's vision for the field of comparative and international education today. The life, writings and ideas of Jullien are sketched, followed by a survey of the path of development of the field since the time of Jullien. In view of the exigencies…

  5. Innovation, corporate strategy and cultural context : what is the mission for international business communication?

    NARCIS (Netherlands)

    Ulijn, J.M.; O'Hair, D.; Weggeman, M.C.D.P.; Ledlow, G.; Hall, H.T.

    2000-01-01

    A global economy requires business organizations to cultivate their international holdings by respecting the national differences of their host countries and coordinating efforts for rapid innovation. In this essay we first review relevant literature in the areas of communication and innovation and

  6. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.

  7. Geographos asteroid flyby and autonomous navigation study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C.; Pines, D.J. [Lawrence Livermore National Lab., CA (United States); Patz, B.J.; Perron, D.C. [Coleman Research Corp., Orlando, FL (United States)

    1993-02-22

    Deep Space Program Science Experiment (DSPSE), also known as Clementine, is a collection of science experiments conducted in near-earth with the goal of demonstrating Strategic Defense Initiative Office (SDIO) developed technologies. The 785 lb (fully fueled) spacecraft will be launched into low Earth orbit in February 1994 together with a Star 37 solid kick motor and interstage. After orbit circulation using Clementine`s 110 lb Delta-V thruster, the Star 37 will execute a trans-lunar injection burn that will send the spacecraft toward lunar obit. The 110-lb will then be used in a sequence of burns to insert Clementine into a trimmed, polar orbit around the moon. After a two month moon mapping mission, Clementine will execute burns to leave lunar orbit, sling-shot around Earth, and flyby the moon on a 9.4 million km journey toward the asteroid Geographos. After about three months in transit, Clementine will attempt a flyby with a closest point of approach of 100 km from the asteroid on August 31, 1994. During its approach to Geographos, Clementine will be tracked by the Deep Space Network (DSN) and receive guidance updates. The last update and correction burn will occur about one day out of the flyby. Multiple experiments will be performed at key events during the mission that utilize Clementine`s SDIO-derived resources, including its Star Trackers, UV/Vis camera, infrared sensors (NWIR and LWIR), and high resolution laser radar (HIRes/LIDAR). In addition to the evaluation of SDIO algorithms and sensors, high resolution imagery will be obtained while the spacecraft is in Earth orbit, lunar obit and during the Geographos flyby. This paper describes the results of a study on the precision guidance, navigation, and intercept strategy for the flyby mission.

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Morocco. Draft

    International Nuclear Information System (INIS)

    Aniel, Mlle B.; Hetland, Donald L.; Glassom, Pierre J.

    1983-07-01

    The results of the study carried out during the IUREP Orientation Phase in Morocco permit to think that the possible reserves of uranium in this country range between 33,500 t and 89,500 t U 3 O 8 for what concerns the known traces and the already prospected zones in the Northern provinces. If we consider the favourability criteria of certain geological contexts that have not been researched yet in the same provinces and the speculative potential of the Southern provinces that have not been prospected at all, we can reasonably estimate reserves to double. In this case, the potential in uranium for the whole Morocco could range between 70,000 and 180,000 tons. The uranium phosphate constitutes by far the most important reserves of Morocco and the Moroccan government has decided to recuperate this uranium as sub-product from phosphoric acid. The consultants of the IUREP mission have estimated that the 'geological reserves' were ranging at about 12,3 million tons of U 3 O 8 and that the recoverable reserves could be between 7 and 10 million tons of U 3 O 8

  9. Rehabilitation of Danish veterans with spinal cord injuries during international missions

    DEFF Research Database (Denmark)

    Holm, Nicolaj Jersild; Noe, Bodil Bjørnshave; Hoffmann, Dorte Dahl

    2015-01-01

    . Questionnaires based on international experience related to SCI were used. RESULTS: The six male veterans were generally satisfied with their rehabilitation and found that they had influenced its course. All veterans had consultation with psychologists during hospitalisation, and two were advised to attend...... satisfied with their initial rehabilitation. They regained independence, and all returned to work. FUNDING: government funding via the Veteran's policy programme. TRIAL REGISTRATION: GLO-2012-10....

  10. International Law, the Civilizing Mission and the Ambivalence of Development in Africa: Conceptual Underpinnings

    OpenAIRE

    Forji, Amin George

    2013-01-01

    International law, past and present has had to constantly wrestle with striking a balancing act between legality and imperialism. Following the Agrarian and Industrial revolutions, European1 economies increasingly witnessed profound boosts in productivity and net output beginning from the 17th century. By the start of the 19th century when explorations and discoveries were the currency of the day, European powers increasingly saw the acquisition of Africa as crucial to satisfy its economic im...

  11. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  12. NASA Double Asteroid Redirection Test (DART) Trajectory Validation and Robutness

    Science.gov (United States)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, fly by (138971) 2001 CB21 for impact rehearsal, and impact Didymos-B, the secondary body of the binary (65803) Didymos system. This work focuses on the heliocentric transfer design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  13. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Peru. August - October 1981

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Michie, Uisdean McL.

    1981-01-01

    The IUREP Orientation Phase Mission to Peru believes that the Speculative Resources of that country fall between 6,000 and 11,000 tonnes uranium. There has been no uranium production in Peru and there are no official estimates of uranium resources. Past exploration in Peru (dating from about 1952) has indicated a paucity of valid uranium occurrences and radioactive anomalies. Only recently (1980) have anomalous areas been identified, (Macusani-Picotani). The identified Speculative Resources are mainly in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Geologically, there are direct parallels between these resources and deposits of the Los Frailes areas of neighbouring Bolivia. Other minor Speculative Resources may be present in calcretes developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert of southern Peru but no positive indications have been recognised. Hercynian sub-volcanic granites in the eastern cordillera of southern Peru may have some associated Speculative Resources both intra and extra granitic. No Speculative Potential could be identified in Permo-Triassic or Tertiary post tectonic continental sediments anywhere in Peru. Such potential may exist but further reconnaissance of the continental late Tertiary basins, with positive indications would be required before inclusion of potential in this category. Recent discoveries in the volcanogenic environment of southern Peru have been by carborne, helicopter borne and on on-foot reconnaissance of isolated areas. It is recommended that there be a more systematic, integrated study of the entire volcanic district assisted by volcanic petrographic examination. Assessment of the known occurrences requires immediate subsurface study by drilling and exploration audits to assess their continuity, grade variation and thickness. This phase will be significantly more expensive than previous exploration. Non-core drilling should supplement

  14. Local health policies under the microscope: consultants, experts, international missions and poliomyelitis in Spain, 1950-1975.

    Science.gov (United States)

    Ballester, Rosa; Porras, María Isabel; Báguena, María José

    2015-01-01

    One of the main focuses of analysis of this paper concerns the missions of international health agency experts to Spain to report on the situation, the activities in the fight against physical disabilities in children and on the actions taken to cope with the problem. The Spain-23 Plan was the instrument used by WHO and other agencies to start the process of change in a country undergoing a period of transformation under the enduring Franco dictatorship. As key sources, the paper uses unpublished reports of WHO experts on the subject, which resulted from visits to the country between 1950 and 1975. The methodological approach consists of an analysis of discourses from primary sources within the historiographical framework.

  15. Mission Analysis for the Don Quijote Phase-A Study

    Science.gov (United States)

    Cano, Juan L.; Sanchez, Mariano; Cornara, Stefania; Carnelli, Ian

    2007-01-01

    The Don Quijote Phase-A study is a definition study funded by ESA and devoted to the analysis of the possibilities to deflect a Near Earth Object (NEO) in the range of 300-800 m diameter. DEIMOS Space S.L. and EADS Astrium have teamed up within this study to form one of the three consortia that have analyzed these aspects for ESA. Target asteroids for the mission are 1989 ML, 2002 AT4 and Apophis. This paper presents the mission analysis activities within the consortium providing: low-thrust interplanetary rendezvous Orbiter trajectories to the target asteroids, ballistic interplanetary trajectories for the Impactor, Orbiter arrival description at the asteroids, Orbiter stable orbits characterization at the asteroid, deflection determination by means of a Radio Science Experiment (RSE) as well as the mission timelines and overall mission scenarios.

  16. Special issue on asteroids - Introduction

    Science.gov (United States)

    Novaković, Bojan; Hsieh, Henry H.; Gronchi, Giovanni F.

    2018-04-01

    The articles in this special issue are devoted to asteroids, small solar system bodies that primarily populate a region between the orbits of Mars and Jupiter, known as the asteroid belt, but can also be found throughout the Solar System. Asteroids are considered to be a key to understanding the formation and evolution of our planetary system. Their properties allow us to test current theoretical models and develop new theoretical concepts pertaining to evolutionary processes in the Solar System. There have been major advances in asteroid science in the last decade, and that trend continues. Eighteen papers accepted for this special issue cover a wide range of asteroid-related subjects, pushing the boundaries of our understanding of these intriguing objects even further. Here we provide the reader with a brief overview of these thrilling papers, with an invitation for interested scientists to read each work in detail for a better understanding of these recent cutting edge results. As many topics in asteroid science remain open challenges, we hope that this special issue will be an important reference point for future research on this compelling topic.

  17. Spectral properties of eight near-Earth asteroids

    Science.gov (United States)

    Popescu, M.; Birlan, M.; Binzel, R.; Vernazza, P.; Barucci, A.; Nedelcu, D. A.; DeMeo, F.; Fulchignoni, M.

    2011-11-01

    Context. Near-Earth objects are among the most accessible bodies in the solar system in terms of the spacecraft propulsion requirements to reach them. The choice of targets and the planning of space missions are based on high quality ground-based science. Aims: The knowledge of the ensemble of physical parameters for these objects, including their composition, is a critical point in defining any mission scientific objectives. Determining the physical properties of near-Earth asteroids (NEAs) is also possible from the ground by analyzing spectroscopy at both visible and infrared wavelengths. Methods: We present spectra of eight NEAs (1917, 8567, 16960, 164400, 188452, 2001 SG286, and 2010 TD54) obtained using the NASA telescope IRTF equipped with the spectro-imager SpeX. The observations were performed in the 0.8-2.5 μm spectral region using the low resolution mode of the spectrograph. We completed the taxonomic classification using the Bus-DeMeo taxonomy. We analyzed the spectra by comparing them to meteorite spectra from the Relab database using a χ2 approach. For the S-type asteroids of our sample, the band centers and BAR were calculated. We also attempted to interpret our data using a space-weathering model. Results: The taxonomic classification of five objects was reviewed and we assigned a corresponding type to the other three asteroids that were not classified before. We found that (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004 HE62, and 2010 TD54 are in the S-complex. We achieved a good matching of our S-type asteroids with the spectra of ordinary chondrites meteorites. The asteroid (5620) Jasonwheeler was found to have a NIR spectrum similar to carbonaceous chondrite meteorites. Thus, our results confirm its primitive properties obtained in several other spectral intervals. Appendices A and B are available in electronic form at http://www.aanda.org

  18. Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia

    Science.gov (United States)

    Araujo, R. A. N.; Moraes, R. V.; Prado, A. F. B. A.; Winter, O. C.

    2017-12-01

    It is widely accepted that knowing the composition and the orbital evolution of asteroids might help us to understand the process of formation of the Solar system. It is also known that asteroids can represent a threat to our planet. Such an important role has made space missions to asteroids a very popular topic in current astrodynamics and astronomy studies. Taking into account the increasing interest in space missions to asteroids, especially to multiple systems, we present a study that aims to characterize the stable and unstable regions around the triple system of asteroids (45) Eugenia. The goal is to characterize the unstable and stable regions of this system and to make a comparison with the system 2001 SN263, which is the target of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) mission. A new concept was used for mapping orbits, by considering the disturbance received by the spacecraft from all perturbing forces individually. This method has also been applied to (45) Eugenia. We present the stable and unstable regions for particles with relative inclination between 0° and 180°. We found that (45) Eugenia presents larger stable regions for both prograde and retrograde cases. This is mainly because the satellites of this system are small when compared to the primary body, and because they are not close to each other. We also present a comparison between these two triple systems, and we discuss how these results can guide us in the planning of future missions.

  19. Deriving proper measurement uncertainty from Internal Quality Control data: An impossible mission?

    Science.gov (United States)

    Ceriotti, Ferruccio

    2018-03-30

    Measurement uncertainty (MU) is a "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used". In the clinical laboratory the most convenient way to calculate MU is the "top down" approach based on the use of Internal Quality Control data. As indicated in the definition, MU depends on the information used for its calculation and so different estimates of MU can be obtained. The most problematic aspect is how to deal with bias. In fact bias is difficult to detect and quantify and it should be corrected including only the uncertainty derived from this correction. Several approaches to calculate MU starting from Internal Quality Control data are presented. The minimum requirement is to use only the intermediate precision data, provided to include 6 months of results obtained with a commutable quality control material at a concentration close to the clinical decision limit. This approach is the minimal requirement and it is convenient for all those measurands that are especially used for monitoring or where a reference measurement system does not exist and so a reference for calculating the bias is lacking. Other formulas including the uncertainty of the value of the calibrator, including the bias from a commutable certified reference material or from a material specifically prepared for trueness verification, including the bias derived from External Quality Assessment schemes or from historical mean of the laboratory are presented and commented. MU is an important parameter, but a single, agreed upon way to calculate it in a clinical laboratory is not yet available. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    would be reduced because of intermediate tankings plus opening up the possibility of making the craft reusable for several back and forth trips. The manned spacecraft can be tanked first time at Earth C3, second time in Mars orbit for the return trip, and again in Earth C3 for the next trip if the spacecraft is reusable. When propellant is cheap in Mars orbit, it may also make sense to perform an all-propulsive landing which would make thermal shielding unnecessary. In this case the manned spacecraft would be tanked in Mars orbit two times plus once on the surface per each bidirectional mission. We estimate that the dry mass of cryogenic propellant factories and their associated temporary storage tanks that can process 50 tonnes of water per year is 20 tonnes. By developing the E-sail as enabling technology and by employing asteroid water mining, we think that sustained bidirectional Earth-Mars manned transportation could be created which would asymptotically require no more resources than what running the International Space Station requires today. References [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Janhunen, P., A. Quarta and G. Mengali G., Electric solar wind sail mass budget model, Geosci. Instrum. Method. Data Syst., 2, 85-95, 2013.

  1. The role of cross-cultural factors in long-duration international space missions: lessons from the SFINCSS-99 study.

    Science.gov (United States)

    Tomi, Leena M; Rossokha, Katherine; Hosein, Janette

    2002-01-01

    The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations. c2002 Lister Science.

  2. Discovery of a Satellite around a Near-Earth Asteroid

    Science.gov (United States)

    1997-07-01

    secure lightcurve coverage over a longer period of time than was possible from La Silla alone. As a result, a series of lightcurve measurements were performed from June 3 to 9 in close cooperation with Petr Pravec and Lenka Sarounova working at the Ondrejov Observatory, near Prague in the Czech Republic. Luckily, the weather conditions were favourable at both sites and the dips in the lightcurve were indeed observed at the predicted times. Based on the four well observed events, it was then possible to determine a period of 1.155 days for their occurence. Thus, the hypothesis of a satellite orbiting around Dionysus was confirmed. As a result, the International Astronomical Union's Minor Planet Center located in Cambridge (MA, USA) promptly gave a provisional designation to the new satellite - S/1997 (3671) 1 . How big is Dionysus? Meanwhile, in Hawaii, the world's largest infrared telescope was being trained on Dionysus to obtain information about its size and composition. Alan Harris , also a scientist from the DLR in Berlin, and John Davies from the Joint Astronomy Centre in Hilo, Hawaii, observed the thermal infrared radiation emitted by Dionysus with the 3.8-m United Kingdom Infrared Telescope (UKIRT) situated on Mauna Kea. Similar observations over a broader spectral range were also made by the European Space Agency's orbiting Infrared Space Observatory. The thermal or "heat" radiation emitted by an asteroid depends on its size and the amount of sunlight it absorbs (darker bodies being warmer). In the case of Dionysus the measured radiation was much weaker than expected, indicating that the asteroid has an intrinsically bright (reflective) surface and is only about 1 km in diameter. This is much smaller than (253) Ida, the only other asteroid known to have a moon, which is about 60 km across. Further observations Eventually it should be possible to determine the orbital radius of the satellite, its size and the inclination of its orbital plane. In order to obtain

  3. FIRST VLTI-MIDI DIRECT DETERMINATIONS OF ASTEROID SIZES

    International Nuclear Information System (INIS)

    Delbo, M.; Ligori, S.; Cellino, A.; Matter, A.; Berthier, J.

    2009-01-01

    We have obtained the first successful interferometric measurements of asteroid sizes and shapes by means of the Very Large Telescope Interferometer-Mid-Infrared Interferometric Instrument (VLTI-MIDI). The VLTI can spatially resolve asteroids in a range of sizes and heliocentric distances that are not accessible to other techniques such as adaptive optics and radar. We have observed, as a typical bench mark, the asteroid (951) Gaspra, visited in the past by the Galileo space probe, and we derive a size in good agreement with the ground truth coming from the in situ measurements by the Galileo mission. Moreover, we have also observed the asteroid (234) Barbara, known to exhibit unusual polarimetric properties, and we found evidence of a potential binary nature. In particular, our data are best fit by a system of two bodies of 37 and 21 km in diameter, separated by a center-to-center distance of ∼24 km (projected along the direction of the baseline at the epoch of our observations).

  4. An initial perspective of S-asteroid subtypes within asteroid families

    Science.gov (United States)

    Kelley, M. S.; Gaffey, M. J.

    1993-01-01

    Many main belt asteroids cluster around certain values of semi-major axis (a), inclination (i), and eccentricity (e). Hirayama was the first to notice these concentrations which he interpreted as evidence of disruptions of larger parent bodies. He called these clusters 'asteroid families'. The term 'families' is increasingly reserved for genetic associations to distinguish them from clusters of unknown or purely dynamical origin (e.g. the Phocaea cluster). Members of a genetic asteroid family represent fragments derived from various depths within the original parent planetesimal. Thus, family members offer the potential for direct examination of the interiors of parent bodies which have undergone metamorphism and differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The condition that genetic family members represent the fragments of a parent object provides a critical test of whether an association (cluster in proper element space) is a genetic family. Compositions (types and relative abundances of materials) of family members must permit the reconstruction of a compositionally plausible parent body. The compositions of proposed family members can be utilized to test the genetic reality of the family and to determine the type and degree of internal differentiation within the parent planetesimal. The interpretation of the S-class mineralogy provides a preliminary evaluation of family memberships. Detailed mineralogical and petrological analysis was done based on the reflectance spectra of 39 S-type asteroids. The result is a division of the S-asteroid class into seven subtypes based on compositional differences. These subtypes, designated S(I) to S(VII), correspond to surface silicate assemblages ranging from monomineralic olivine (dunites) through olivine-pyroxene mixtures to pure pyroxene or pyroxene-feldspar mixtures

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Uganda. Draft. November 1982 - January 1983

    International Nuclear Information System (INIS)

    Trey, Michel de; Levich, Robert A.

    1983-02-01

    At present, there are no reasonably assured resources of uranium in Uganda in any price category. Speculative resources are restricted to 2,400 metric tons of uranium in an apatite deposit, which in the past has been actively mined for phosphate. The possible recovery of this uranium is dependent upon a number of economic and technological conditions which have never been thoroughly studied. Although the geology of Uganda holds some interesting possibilities for hosting uranium deposits, the studies conducted between 1949 and 1979 were limited to known radioactive occurrences and anomalies in limited areas which had little economic significance. Vast areas, less known and less accessible were completely ignored. Uranium exploration must therefore be started again in a systematic manner using modern methods. The current economic situation in Uganda is so critical that International technical and financial assistance is vitally needed to help rehabilitate the Geological Survey and Mines Department. Uganda currently can offer only very restricted services. The transportation system is quite deficient: the railway does not presently cross the frontier with Kenya, and all equipment and goods must be transported from Mombasa by road. Housing is in very short supply, and many basic commodities are often unobtainable. Any organization or private company which begins an exploration program in Uganda must plan to import essentially all the equipment and supplies it shall require. It shall also have to construct offices and staff housing, and import and stockpile fuel and staple goods, so as not to be at the mercy of the (at times) inadequate local supplies. It shall most probably also have to provide basic local and imported food to its Ugandan staff and should plan to pay much higher local salaries than is customary. Lastly, it will have to provide its own fleet of trucks and organize its own transport system. (author)

  6. Linear Covariance Analysis For Proximity Operations Around Asteroid 2008 EV5

    Science.gov (United States)

    Wright, Cinnamon A.; Bhatt, Sagar; Woffinden, David; Strube, Matthew; D'Souza, Christopher; DeWeese, Keith

    2015-01-01

    The NASA initiative to collect an asteroid the Asteroid Robotic Redirect Mission (ARRM) is currently investigating the option of retrieving a boulder off an asteroid, demonstrating planetary defense with an enhanced gravity tractor technique and returning it to a lunar orbit. Techniques for accomplishing this are being investigated by the Satellite Servicing Capabilities Office (SSOO) and NASA GSFC in colloboration with JPL, NASA, JSC, LaRC, and Draper Laboratories Inc. Two critical phases of the mission are the descent to the boulder and the Enhanced Gravity Tractor-enhanced gravity tractor demonstration. A linear covariance analysis was done for these phases to assess the feasibility of these concepts with the proposed design of the sensor and actuaor suite of the Asteroid Redirect Vehicle (ARV). The sensor suite for this analysis will include a wide field of view camera, Lidar, and a MMU. The proposed asteroid of interest is currently the C-type asteroid 2008 EV5, a carbonaceous chondrite that is of high interest to the scientific community. This paper will present an overview of the analysis discuss sensor and actuator models and address the feasibility of descending to the boulder within the requirements as the feasibility of maintaining the halo orbit in order to demonstrate the Enhanced Gravity Tractor-enhanced gravity tractory technique.

  7. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  8. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  9. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  10. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  11. ASTEROID PHOTOMETRIC CATALOG V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Photometric Catalog (3rd update), Lagerkvist, et.al., 1993 [LAGERKVISTETAL1993], is a compilation of all asteroid lightcurve photometry published up to...

  12. Using Information from Rendezvous Missions for Best-Case Appraisals of Impact Damage to Planet Earth Caused by Natural Objects

    Science.gov (United States)

    Arnold, James O.; Chodas, Paul W.; Ulamec, Stephan; Mathias, Donovan L.; Burkhard, Craig D.

    2017-01-01

    The Asteroid Threat Assessment Project (ATAP), a part of NASAs Planetary Defense Coordination Office (PDCO) has the responsibility to appraise the range of surface damage by potential asteroid impacts on land or water. If a threat is realized, the project will provide appraisals to officials empowered to make decisions about potential mitigation actions. This paper describes a scenario for assessment of surface damage when characterization of an asteroid had been accomplished by a rendezvous mission that would be conducted by the international planetary defense community. It is shown that the combination of data from ground and in-situ measurements on an asteroid provides knowledge that can be used to pin-point its impact location and predict the level of devastation it would cause. The hypothetical asteroid 2017 PDC with a size range of 160 to 290 m in diameter to be discussed at the PDC 2017 is used as an example. In order of importance for appraising potential damage, information required is: (1) where will the surface impact occur? (2) what is the mass, shape and size of the asteroid and what is its entry state (speed and entry angle) at the 100 km atmospheric pierce point? And (3) is the asteroid a monolith or a rubble pile? If it is a rubble pile, what is its structure and heterogeneity from the surface and throughout its interior? Item (1) is of first order importance to determine levels of devastation (loss of life and infrastructure damage) because it varies strongly on the impact location. Items (2) and (3) are used as inputs for ATAPs simulations to define the level of surface hazards: winds, overpressure, thermal exposure; all created by the deposition of energy during the objects atmospheric flight, andor cratering. Topics presented in this paper include: (i) the devastation predicted by 2017 PDCs impact on land based on initial observations using ATAPs risk assessment capability, (ii) how information corresponding to items (1) to (3) could be obtained

  13. Communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency including two statements of the President and the Secretary of State of the United States of America regarding the Nuclear Non-proliferation Treaty

  14. Communication of 4 October 1995 received from the Permanent Mission of the Republic of Korea to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General of the International Atomic Energy Agency has received a letter of 4 October 1995 from the Permanent Mission of the Republic of Korea providing information on the nuclear export policies and practices of the Government of the Republic of Korea. In the light of the request expressed in the letter, the text of the letter and its enclosure are attached hereto

  15. Communication of 27 March 1995 received from the Permanent Mission of the Republic of Cuba to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-05

    The Director General of the International Atomic Energy Agency has received a letter of 27 March 1995 from the Permanent Mission of the Republic of Cuba informing the Agency that the Government of the Republic of Cuba signed the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty) on 25 March 1995.

  16. Communication of 27 March 1995 received from the Permanent Mission of the Republic of Cuba to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General of the International Atomic Energy Agency has received a letter of 27 March 1995 from the Permanent Mission of the Republic of Cuba informing the Agency that the Government of the Republic of Cuba signed the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty) on 25 March 1995

  17. Communication of 4 October 1995 received from the Permanent Mission of the Republic of Korea to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    The Director General of the International Atomic Energy Agency has received a letter of 4 October 1995 from the Permanent Mission of the Republic of Korea providing information on the nuclear export policies and practices of the Government of the Republic of Korea. In the light of the request expressed in the letter, the text of the letter and its enclosure are attached hereto.

  18. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  19. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  20. Study of the Asteroid Florence

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2018-06-01

    Asteroid Florence was discovered at Siding Spring Observatory in Australia (March 1981). Paul Chodas, manager of CNEOS-JPL said: “Florence is the largest asteroid to pass by our planet this close since the NASA program to detect and track near-Earth asteroids began” [1]. The asteroid passed 7.1 million kilometers away from the earth [2]. The GDSCC-NASA discovered that the asteroid has two small moons. The diameter of Florence is 4.5 kilometers, and the sizes of the two moons are probably between 100 – 300 meters across. The inner moon has a rotation period around Florence of about 8 hours, and the outer moon has a period of about 25 hours [3]. From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several hours during three days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS [4]. The pictures were captured with the following equipment: CGE PRO 1400 CELESTRON and STL-1001 SBIG camera. Astrometry and photometry was carried out, and we calculated the orbital elements and the rotation period. Summary and conclusions: We obtained the following orbital parameters: eccentricity = 0.422548 +/- 0.000994, semi-major axis = 1.76675 +/- 0.00313 A.U, orbital inclination = 22.128 +/- 0.029 deg, longitude of the ascending node = 336.0960 +/- 0.0013 deg, argument of perihelion = 27.861 +/- 0.016, mean motion = 0.41970 +/- 0.00112 deg/d, perihelion distance = 1.0202151 +/- 5.27e-5 A.U, aphelion distance = 2.51329 +/- 0.00625 A.U, absolute magnitude = 14.4. The parameters were calculated based on 281 observations. Dates: 2017 September 01 to 05 with mean residual = 0.19 arcseconds. The asteroid has an orbital period of 2.35 years (857.74 days). The rotation period of the asteroid is 2.3 hours. Note: Spaceweather published our video on September 1-2017 [5].[1] https://www.nasa.gov/feature/jpl/large-asteroid-to-safely-pass-earth-on-sept-1[2] http

  1. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface

  2. Hayabusa2 NIRS3’s Investigation to Characterize and Select Sampling and Landing Sites on Asteroid (25143) Ryugu

    Science.gov (United States)

    Takir, Driss; Hibbitts, Charles A.; Le Corre, Lucille; Emery, Joshua P.; Kitazato, Kohei; Sugita, Seiji; Nakauchi, Yusuke

    2017-10-01

    Following the visit of the spacecraft Hayabusa to (25143) Itokawa in 2005, the Japanese Space Agency (JAXA) launched a second spacecraft, Hayabusa2, in 2014 to the near-Earth Apollo asteroid (162173) Ryugu, a C-complex asteroid. Hayabusa2 will arrive at Ryugu in 2018. Near-Earth asteroids (NEAs) are important objects to study because of their possible role in the delivery of water and complex organic molecules to early Earth, and their threats to impact the Earth at irregular and unpredictable periods in the future. Hayabusa2 mission will provide exceptional science with a primary objective to illuminate the origin, evolution, and distribution of volatiles and organics on the surface of Ryugu and in the Solar System. Here we present our Near Infrared Spectrometer(NIRS3)-related strategy and plan to help the science team to characterize and select sampling and landing sites to collect carbonaceous samples from Ryugu and bring them back to Earth in 2020. Our plan includes, (1) measuring spectra of various carbonaceous chondrites and end-member hydrated silicates under asteroid-like conditions (vacuum and elevated temperatures) to develop spectral parameters of minerals and chemical compounds that we expect to detect on Ryugu, particularly around 2.8 to 3.2 µm, and (2) thermally and photometrically correcting Ryugu’s spectra to create site-specific and global maps of the mineralogical and chemical relative abundances across Ryugu’s surface, in addition to creating various albedo maps, including the geometric and bolometric Bond albedo. Previous 3-µm spectroscopic studies were conducted in ambient terrestrial environments, and hence were contaminated by atmospheric water. In our work, however, chondrite reflectance and hydrated mineral spectra are measured under asteroid-like conditions to remove adsorbed water and accurately compute the spectral parameters that will be used for Ryugu’s mineralogical and chemical mapping.AcknowledgementsWe wish to thank the

  3. [Medicine on mission: The international health reform of Seventh-Day Adventists and their health care facilities in Sweden].

    Science.gov (United States)

    Eklöf, Motzi

    2008-01-01

    The international non-conformist denomination, Seventh-day Adventists, have since their foundation in 1863, had a distinctive health care model for their members. The life-style has included vegetarian diet, abstinence from alcohol, tobacco and other drugs and the observance of a day of rest once a week. The health policy has striven to care for God's creation in the hope of resurrection at the Day of Judgment and to reform the conventional medical practice. The Adventists have pursued an extensive international health care system--from the start based on dietary and physical treatment methods, such as hydrotherapy, massage and physiotherapy--in line with the Christian mission. Health care establishments have been inaugurated around the world as a vehicle for enabling the Christian health care message to reach the upper classes. With Adventist and Doctor, John Harvey Kellogg's Battle Creek Sanatorium in Michigan as both inspirational source and educational institution, the health care mission--including a vegetarian health food industry, following in the footsteps of cornflakes--spread to the Nordic countries by the turn of the century, 1900. Skodsborgs Badesanatorium near Copenhagen became the model institution for several health care establishments in Sweden during the 1900's, such as Hultafors Sanatorium. The American-Nordic link has manifested itself through co-publication of papers, exchange of health care personnel and reporting to the central Adventist church. The American non-conformist domain as well as a private sphere of activity, aiming mainly from the outset at society's upper classes, has encountered certain difficulties in maintaining this distinction in Sweden's officially increasing secularised society, and in relation to a state health insurance and a publicly financed health care system. With the passing of time, the socioeconomic composition of patients at Hultafors became more heterogeneous, and conventional medical procedures were increasingly

  4. Discovery and dynamical characterization of the Amor-class asteroid 2012 XH16

    Science.gov (United States)

    Wlodarczyk, I.; Cernis, K.; Boyle, R. P.; Laugalys, V.

    2014-03-01

    The near-Earth asteroid belt is continuously replenished with material originally moving in Amor-class orbits. Here, the orbit of the dynamically interesting Amor-class asteroid 2012 XH16 is analysed. This asteroid was discovered with the Vatican Advanced Technology Telescope (VATT) at the Mt Graham International Observatory as part of an ongoing asteroid survey focused on astrometry and photometry. The orbit of the asteroid was computed using 66 observations (57 obtained with VATT and 9 from the Lunar and Planetary Laboratory-Spacewatch II project) to give a = 1.63 au, e = 0.36, i = 3.76°. The absolute magnitude of the asteroid is 22.3 which translates into a diameter in the range 104-231 m, assuming the average albedos of S-type and C-type asteroids, respectively. We have used the current orbit to study the future dynamical evolution of the asteroid under the perturbations of the planets and the Moon, relativistic effects, and the Yarkovsky force. Asteroid 2012 XH16 is locked close to the strong 1:2 mean motion resonance with the Earth. The object shows stable evolution and could survive in near-resonance for a relatively long period of time despite experiencing frequent close encounters with Mars. Moreover, results of our computations show that the asteroid 2012 XH16 can survive in the Amor region at most for about 200-400 Myr. The evolution is highly chaotic with a characteristic Lyapunov time of 245 yr. Jupiter is the main perturber but the effects of Saturn, Mars and the Earth-Moon system are also important. In particular, secular resonances with Saturn are significant.

  5. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, Chao; Ma, Yue-hua; Zhao, Hai-bin; Lu, Xiao-ping

    2017-10-01

    With the increasing spectral and photometric data of asteroids, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations in the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. In combination with the present taxonomies of Tholen, Bus, Lazzaro, and DeMeo, and the principal component analysis, we have classified 48642 asteroids according to their SDSS magnitudes at the g, r, i, and z wavebands. In this way, these asteroids are divided into 8 (C, X, S, B, D, K, L, and V) classes.

  6. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  7. Deep Interior: The first comprehensive geophysical investigation of an asteroid

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Klaasen, K.; McFadden, L.; Ostro, S.; Safaeinili, A.; Scheeres, D.; Sunshine, J.; Yeomans, D.

    Near-Earth Objects (NEOs) come closer to Earth than any other celestial body, and their compositions are represented on Earth by thousands of well-studied meteorites. Yet we understand neither their origin, evolution, nor their geophysical behavior. These secrets are locked up in their unexplored interiors. Goal 1 of the NASA Strategic Plan emphasizes the requirement to catalogue and understand NEOs down to 1 km diameter. Goal 4 urges us to understand natural processes at work in the low gravity environment. Goal 5 expresses the need to explore the solar system and to learn how planets originated and evolved. In response to the NASA Strategic Plan we are proposing a NASA Discovery mission whose primary science objective is to greatly advance the realization of these Goals by conducting the first investigation of the global geophysics of an asteroid. Radio reflection data from 5 km orbit about a 1 km NEO will provide a tomographic 3D image of electromagnetic properties. Mechanical properties will be examined in the simplest possible way, using explosions to initiate seismic cratering events and to expose diverse interior units for spectroscopic analysis. Deep Interior is the lowest-risk, lowest cost path towards attaining the required characterization of NEOs. It breaks new ground for future missions to asteroids and comets and facilitates the design of reliable NEO technologies. Our science goals are as follows, and the techniques (radio science, imaging, IR spectroscopy, active surface science) will be described at this meeting: Asteroid Interiors. Radio, gravity, and seismology experiments give a complete first picture of an asteroid's deep interior, resolving inclusions, voids and unit boundaries at ˜ 30 m scales, and determining global and regional mechanical properties. Surface Geophysics. Blast experiments explore the structure and mechanics of the upper meters, demonstrate microgravity cratering, trigger natural geomorphic events, and expose subsurface

  8. Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET) and the Astromaterial Curation Facility at JAXA/ISAS

    Science.gov (United States)

    Yano, H.; Fujiwara, A.

    After the successful launch in May 2003, the Hayabusa (MUSES-C) mission of JAXA/ISAS will collect surface materials (e.g., regolith) of several hundred mg to several g in total from the S-type near Earth asteroid (25143) Itokawa in late 2005 and bring them back to ground laboratories in the summer of 2007. The retrieved samples will be given initial analysis at the JAXA/ISAS astromaterial curation facility, which is currently in the preparation for its construction, by the Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). HASPET is consisted of the ISAS Hayabusa team, the international partners from NASA and Australia and all-Japan meteoritic scientists to be selected as outsourcing parts of the initial analyses. The initial analysis to characterize general aspects of returned samples can consume only 15 % of its total mass and must complete the whole analyses including the database building before international AO for detailed analyses within the maximum of 1 year. Confident exercise of non-destructive, micro-analyses whenever possible are thus vital for the HASPET analysis. In the purpose to survey what kinds and levels of micro-analysis techniques in respective fields, from major elements and mineralogy to trace and isotopic elements and organics, are available in Japan at present, ISAS has conducted the HASPET open competitions in 2000-01 and 2004. The initial evaluation was made by multiple domestic peer reviews. Applicants were then provided two kinds of unknown asteroid sample analogs in order to conduct proposed analysis with self-claimed amount of samples in self-claimed duration. After the completion of multiple, international peer reviews, the Selection Committee compiled evaluations and recommended the finalists of each round. The final members of the HASPET will be appointed about 2 years prior to the Earth return. Then they will conduct a test-run of the whole initial analysis procedures at the ISAS astromaterial curation facility and

  9. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Baer, James [Private address, 3210 Apache Road, Pittsburgh, PA 15241 (United States); Chesley, Steven R., E-mail: jimbaer1@earthlink.net [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  10. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Science.gov (United States)

    Baer, James; Chesley, Steven R.

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.

  11. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.

    2017-01-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  12. Automated Design of Propellant-Optimal, End-to-End, Low-Thrust Trajectories for Trojan Asteroid Tours

    Science.gov (United States)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2013-01-01

    The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential resources offering water and other mineral resources for longterm human exploration of the solar system. Previous investigations under this project have addressed the automated design of tours within the asteroid swarm. This investigation expands the current automation scheme by incorporating options for a complete trajectory design approach to the Trojan asteroids. Computational aspects of the design procedure are automated such that end-to-end trajectories are generated with a minimum of human interaction after key elements and constraints associated with a proposed mission concept are specified.

  13. The Steward Observatory asteroid relational database

    Science.gov (United States)

    Sykes, Mark V.; Alvarezdelcastillo, Elizabeth M.

    1991-01-01

    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date, SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. The program has online help as well as user and programmer documentation manuals. The SOARD already has provided data to fulfill requests by members of the astronomical community. The SOARD continues to grow as data is added to the database and new features are added to the program.

  14. Shape and spin of asteroid 967 Helionape

    Science.gov (United States)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  15. Communication of 31 October 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 2 November 1995, the Director General received a communication dated 31 October 1995 from the Permanent Mission of Australia transmitting a Statement of 28 October 1995 by the Prime Minister of Australia on ''The Third French Nuclear Test''. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency

  16. Human health and performance considerations for near earth asteroids (NEA)

    Science.gov (United States)

    Steinberg, Susan; Kundrot, Craig; Charles, John

    2013-11-01

    Humans are considered as a system in the design of any deep space exploration mission. The addition of many potential near asteroid (NEA) destinations to the existing multiple mission architecture for Lunar and Mars missions increases the complexity of human health and performance issues that are anticipated for exploration of space. We suggest that risks to human health and performance be analyzed in terms of the 4 major parameters related to multiple mission architecture: destination, duration, distance and vehicle design. Geological properties of the NEA will influence design of exploration tasks related to sample handling and containment, and extravehicular activity (EVA) capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in mission architecture and exploration task design. Key mission parameters are strongly impacted by duration and distance. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) limits mission duration to 3-10 months depending on age, gender and stage of the solar cycle. Duration also impacts mission architectures including countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; and behavioral and psychological issues resulting from isolation and confinement. Distance affects communications and limits abort and return options for a NEA mission. These factors are anticipated to have important effects on crew function and autonomous operations, as well as influence medical capability, supplies and training requirements of the crew. The design of a habitat volume that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from earth will require an

  17. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  18. Human Health and Performance Considerations for Exploration of Near Earth Asteroids (NEA)

    Science.gov (United States)

    Kundrot, Craig E.; Charles, John B.; Steinberg, Susan L.

    2011-01-01

    This slide presentation reviews some of the health and performance issues for an manned exploration mission to some of the Near Earth Asteroids (NEA). The issues that NASA is reviewing are: 1. Radiation exposure 2. Inadequate food and nutrition 3. Challenges to behavioral health 4. Muscle, cardiovascular, bone atrophy 5. Dust and volatiles 6. Remote medical care 7. Decompression sickness.

  19. MAIN-BELT ASTEROIDS IN THE K2 ENGINEERING FIELD OF VIEW

    International Nuclear Information System (INIS)

    Szabó, R.; Sárneczky, K.; Szabó, Gy. M.; Pál, A.; Kiss, Cs. P.; Kiss, L. L.; Csák, B.; Illés, L.; Rácz, G.

    2015-01-01

    Unlike NASA’s original Kepler Discovery Mission, the renewed K2 Mission will target the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effects of apparent minor planet encounters. Here, we investigate the effects of asteroid encounters on photometric precision using a subsample of the K2 engineering data taken in 2014 February. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO

  20. MAIN-BELT ASTEROIDS IN THE K2 ENGINEERING FIELD OF VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, R.; Sárneczky, K.; Szabó, Gy. M.; Pál, A.; Kiss, Cs. P.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17 (Hungary); Csák, B. [Gothard-Lendület Research Team, H-9704 Szombathely, Szent Imre herceg út 112 (Hungary); Illés, L.; Rácz, G., E-mail: rszabo@konkoly.hu [Eötvös Loránd Tudományegyetem, H-1117 Pázmány Péter sétány 1/A, Budapest (Hungary)

    2015-03-15

    Unlike NASA’s original Kepler Discovery Mission, the renewed K2 Mission will target the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effects of apparent minor planet encounters. Here, we investigate the effects of asteroid encounters on photometric precision using a subsample of the K2 engineering data taken in 2014 February. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.

  1. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  2. Photometry of faint asteroids and satellites

    International Nuclear Information System (INIS)

    Degewij, J.

    1978-01-01

    The smaller asteroids, having diameters of about 1 km, appear to rotate faster than do the larger asteroids (approximately 200 km diameter). Most of the bodies may be nearly spherical, probably due to a collisional erosion process in the Main Belt of asteroids. The distributions of diameter versus number were studied for low albedo (C, for carbonaceous) and high albedo (S, for silicaceous) type asteroids in the main belt, down to diameters of 25 km. Among the smaller bodies the S type asteroids are relatively more abundant, probably due to greater crushing strength for S type asteroids. This indicates that both optical types have also different properties in the interior of the body. Areas with slightly different reflectivity over the surface of an asteroid were detected; the rotational light variation of asteroid 4 (Vesta) was found to be caused by spots on its surface. Colorimetry and infrared radiometry of some Hilda asteroids, Trojans and the fainter satellites of Jupiter and Saturn, all having diameters between 100 and 200 km, show that a mixture of types exist. If some asteroids are nearly expended nuclei of comets that lost most of their volatile gaseous material, then their cometary activity is expected to be extinct or at least weak. (Auth.)

  3. Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory

    Science.gov (United States)

    Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan

    2017-04-01

    Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.

  4. Communication of 4 January 1996 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1996-01-01

    On 5 January 1996, the Director General received a communication dated 4 January 1996 from the Permanent Mission of Australia transmitting a Statement of 28 December 1995 by the Acting Prime Minister of Australia on ''The Fifth French Nuclear Test''

  5. Communication of 3 December 1996 received from the Permanent Mission of Belarus to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1996-01-01

    The document reproduces the text of a press release received by the Secretariat on 4 December 1996 from the Permanent Mission of Belarus about the withdrawal of the last inter-continental ballistic missile from Belarus

  6. Communication of 3 October 1995 received from the permanent mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 5 October 1995, the Director General received a communication dated 3 October 1995 from the Permanent Mission of Australia transmitting a Statement of 2 October 1995 by the Prime Minister of Australia on ''The Second French Nuclear Test''

  7. Psyche Mission: Scientific Models and Instrument Selection

    Science.gov (United States)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  8. Habitability Assessment of International Space Station

    Science.gov (United States)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  9. Communication of 20 October received from the Permanent Mission of France to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 23 October 1995, the Director General received a letter dated 20 October 1995 from the Permanent Mission of France transmitting a joint Statement of 20 October 1995 by France, the United Kingdom of Great Britain and Northern Ireland and the United States of America about their intention to sign the Protocols to the Treaty of Rarotonga. As requested by the Permanent Mission of France, the text of the Statement is being circulated for the information of Member States

  10. Communication of 30 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-11

    On 1 September 1995, the Director General received a communication dated 30 August 1995 from the Permanent Mission of Australia transmitting a Declaration of 17 August 1995 by South Pacific Environment Ministers concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the text of the Declaration is being circulated for the information of Member States of the Agency.

  11. Communication of 30 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 1 September 1995, the Director General received a communication dated 30 August 1995 from the Permanent Mission of Australia transmitting a Declaration of 17 August 1995 by South Pacific Environment Ministers concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the text of the Declaration is being circulated for the information of Member States of the Agency

  12. Communication of 7 September 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-15

    On 8 September 1995, the Director General received a communication dated 7 September 1995 from the Permanent Mission of Australia transmitting two Statements by the Prime Minister of Australia, one issued in his capacity as Chairman of the South Pacific Forum, concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency.

  13. Communication of 7 September 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 8 September 1995, the Director General received a communication dated 7 September 1995 from the Permanent Mission of Australia transmitting two Statements by the Prime Minister of Australia, one issued in his capacity as Chairman of the South Pacific Forum, concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency

  14. Communication of 13 June 1995 received from the Permanent Mission of France to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 16 June, the Director General received a letter dated 13 June 1995 from the Permanent Mission of France transmitting the text of a Statement of the European Union on the occasion of Chile's becoming a party to the Treaty on the Non-Proliferation of Nuclear Weapons. As requested by the Permanent Mission of France, the text of the Statement is being circulated for the information of Member States of the Agency

  15. Communication of 26 June 1995 received from the Permanent Mission of Ecuador to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 27 June 1995, the Director General received a communication dated 26 June 1995 from the Permanent Mission of Ecuador transmitting a Statement of 22 June 1995 issued by the Rio Group concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Ecuador, the text of the Statement is being circulated for the information of Member States of the Agency

  16. Communication of 24 November 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 27 November 1995, the Director General received a communication dated 24 November 1995 from the Permanent Mission of Australia transmitting Statements of 22 November 1995 by the Prime Minister of Australia, by the Minister for Foreign Affairs of Australia and by the Secretary-General of the South Pacific Forum on ''The Fourth French Nuclear Test''. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency

  17. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  18. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    Science.gov (United States)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  19. Communication from the Permanent Mission of Cyprus to the International Atomic Energy Agency regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    2001-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of Cyprus providing information on the export policies and practices of the Government of Cyprus with respect to the export of nuclear material, equipment and technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/254/Rev. 4/Part 1

  20. Text of communication of 14 November 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning nuclear disarmament

    International Nuclear Information System (INIS)

    2000-01-01

    The Director General has received a communication dated 14 November 2000 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning nuclear disarmament, attaching a statement by the President of the Russian Federation. The text of the communication and, as requested therein, the text of the President of the Russian Federation, are attached hereto for the information of Member States

  1. Communication of 22 February 1999 received from the Permanent Mission of the Republic of Belarus to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The Director General of the International Atomic Energy Agency has received a communication from the Permanent Mission of the Republic of Belarus concerning a Note of 28 January 1999 from the Ministry of Foreign Affairs of the Republic of Belarus which provides information about the nuclear export policies and practices of Belarus. In light of the wish expressed in the Note, its text is attached hereto

  2. Communications dated 2 and 6 June 1994 received from the Permanent Mission of the Democratic People's Republic of Korea to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1994-01-01

    The texts of two telex communications, dated 2 and 6 June 1994, which the International Atomic Energy Agency received from the General Department of Atomic Energy of the Democratic People's Republic of Korea are being circulated to all Member States of the Agency at the request of the Permanent Mission of the Democratic People's Republic of Korea. These texts were received by the Secretariat before the withdrawal of the Democratic People's Republic of Korea from the Agency

  3. Main-belt Asteroids in the K2 Uranus Field

    Science.gov (United States)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  4. Colorimetry and magnitudes of asteroids

    Science.gov (United States)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  5. The asteroid 2014 JO25

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2017-10-01

    The asteroid 2014 JO25 was discovered by A. D. Grauer at the Mt. Lemmon Survey on May 2014, and Joe Masiero used observations from the NEOWISE in 2014 to estimate a diameter of 650 meters [1]. However, using the radio telescope at Arecibo-Puerto Rico, astronomers obtained radar images on April 17-2017 and Edgar Rivera Valentín (scientist at Arecibo) said: “We found 2014 JO25 is a contact binary asteroid, two space rocks that were originally separate bodies, and each segment is about 640 meters and 670 meters, for a total of about 1.3 km long. Its rotation is of 3.5 hours” [2]. This asteroid flew past Earth on April 19 at a distance of about 4.6 lunar distances from the Earth. This was the closest approach by an asteroid since 4179 Toutatis. Toutatis flew past Earth on September 2004 at a distance of about 4 lunar distances from the Earth [3]. In April 12-2020 the asteroid will be at a minimum possible distance of 0.1617280 A.U from Earth [4]. From our observatory, located in Pasto-Colombia, we obtained a lot of pictures. Our data was published by the Minor Planet Center [5] and also appears at the web page of NEODyS [6]. Astrometry and photometry were carried out, and we calculated the orbital elements. We obtained the following orbital parameters: eccentricity=0.88454+/-0.00152, semi-major axis= 2.0573+/- 0.0216 A.U, orbital inclination=25.22+/-0.10 deg, longitude of the ascending node =30.6530+/-0.0032 deg, argument of perihelion=49.586+/-0.012 deg, mean motion = 0.33402+/-0.00527 deg/d, perihelion distance=0.237524+/-0.000644 A.U, aphelion distance=3.8770+/-0.0449 A.U, absolute magnitude =18.1. The parameters were calculated based on 164 observations. Dates: 2017 April: 22 to 24 with mean residual=0.22 arcseconds.The asteroid has an orbital period of 2.95 years.[1] https://echo.jpl.nasa.gov/asteroids/2014JO25/2014JO25_planning.html[2] http://earthsky.org/astronomy-essentials/large-asteroid-2014-jo25-close-april-19-2017-how-to-see[3] https

  6. Asteroid spin-rate studies using large sky-field surveys

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  7. Physical studies of asteroids. XXXII. Rotation periods and UBVRI-colours for selected asteroids

    Science.gov (United States)

    Piironen, J.; Lagerkvist, C.-I.; Erikson, A.; Oja, T.; Magnusson, P.; Festin, L.; Nathues, A.; Gaul, M.; Velichko, F.

    1998-03-01

    We present lightcurves of selected asteroids. Most of the asteroids were included to obtain refined spin periods. Enhanced periods were determined for 11 Parthenope, 306 Unitas and 372 Palma. We confirmed the spin periods of 8 Flora, 13 Egeria, 71 Niobe, 233 Asterope, 291 Alice, 409 Aspasia, 435 Ella and 512 Taurinensis. We determined also BV-colours for most of the included asteroids and UBVRI-colours for a total of 22 asteroids.

  8. Asteroid families, dynamics and astrometry

    International Nuclear Information System (INIS)

    Williams, J.G.; Gibson, J.

    1987-01-01

    The proper elements and family assignments for the 1227 Palomar-Leiden Survey asteroids of high quality were tabulated. In addition to the large table, there are also auxiliary tables of Mars crossers and commensurate objects, histograms of the proper element distributions, and a discussion. Probably the most important part of the discussion describes the Mars crossing boundary, how the closest distances of approach to Mars and Jupiter are calculated, and why the observed population of Mars crossers should bombard that planet episodically rather than uniformly. Analytical work was done to derive velocity distributions of family forming events from proper element distributions subject to assumptions which may be appropriate for cratering events. Software was developed for a microcomputer to permit plotting of the proper elements. Three orthogonal views are generated and stereo pairs can be printed when desired. This program was created for the study of asteroid families. The astrometry task is directed toward measuring and reducing positions on faint comets and the minor planets with less common orbits. The observational material is CCD frames taken with the Palomar 1.5 m telescope. Positions of 10 comets and 16 different asteroids were published on the Minor Planet Circulars

  9. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    Science.gov (United States)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes landing missions to small bodies such as asteroids or Martian moons.

  10. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    Science.gov (United States)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  11. Reachable Sets for Multiple Asteroid Sample Return Missions

    Science.gov (United States)

    2005-12-01

    Vtdot Massdot Sc al ed U ni ts Minimum Derivative Values Maximum Derivative Values Figure 15 Actual Range of State Derivates When these plots are...0.0563 -0.0016 Vtdot -0.0065 -0.0579 0.0119 0.0070 Massdot -0.0148 -0.0148 -0.0075 -0.0075 Control low bound low guess upper guess upper

  12. Looking into the evolution of granular asteroids in the Solar System

    Science.gov (United States)

    Sánchez, Paul; Scheeres, Daniel; Hirabayashi, Masatoshi; Tardivel, Simon

    2017-06-01

    By now it has been accepted that most of the small asteroids in the Solar System are granular aggregates kept together by gravitational and possibly, cohesive forces. These aggregates can form, deform and disrupt over millennia subjected to different internal and external factors that would ultimately determine how they evolve over time. Parameters such as porosity, cohesive and tensile strength, angles of friction, particle size distributions, stress states, heterogeneity and yield criteria among others, determine how these granular systems will react when subjected to different, changing, external factors. These external factors include solar photon momentum, gravitational tides, micro- and macro-impacts and are believed to have produced and shaped the current asteroid population. In our research we use a combination of Soil Mechanics theory, Soft-Sphere Discrete Element Method (SSDEM) Simulations and Orbital Mechanics in order to understand how simulated, homogeneous and heterogeneous, ellipsoidal and spherical gravitational aggregates, a crude but useful representation of an asteroid, evolve when rotated to the point of disruption. Then, we compare our results to the shapes of observed asteroids as well as to the disruption patterns of a few active asteroids. Our results lead us to believe that the different shapes of observed asteroids as well as their unique disruption patterns could give us clues about their internal structure, strength and geophysical properties in general.

  13. Geotechnical Tests on Asteroid Simulant Orgueil

    Science.gov (United States)

    Garcia, Alexander D'marco

    2017-01-01

    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  14. Communication of 23 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-11

    On 25 August 1995, the Director General received a communication dated 23 August 1995 from the Permanent Mission of Australia transmitting a Statement of 22 August 1995 by the Prime Minister of Australia made as Chairman of the South Pacific Forum concerning the second test of a nuclear weapon by China since the 1995 NPT Review and Extension Conference. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency.

  15. Communication of 23 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 25 August 1995, the Director General received a communication dated 23 August 1995 from the Permanent Mission of Australia transmitting a Statement of 22 August 1995 by the Prime Minister of Australia made as Chairman of the South Pacific Forum concerning the second test of a nuclear weapon by China since the 1995 NPT Review and Extension Conference. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency

  16. GRASPING THE NATURE OF POTENTIALLY HAZARDOUS ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Perna, D.; Barucci, M. A.; Fornasier, S.; Deshapriya, J. D. P. [LESIA—Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Dotto, E.; Ieva, S.; Epifani, E. Mazzotta [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (Roma) (Italy); Bernardi, F. [SpaceDyS, via Mario Giuntini 63, I-56023 Cascina (Pisa) (Italy); Luise, F. De [INAF—Osservatorio Astronomico di Teramo, via Mentore Maggini snd, I-64100 Teramo (Italy); Perozzi, E. [Deimos Space, Strada Buchesti 75-77, Bucharest (Romania); Rossi, A. [IFAC—CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Firenze) (Italy); Micheli, M., E-mail: davide.perna@obspm.fr [ESA—NEOCC, ESRIN, via Galileo Galilei 64, I-00044 Frascati (Rome) (Italy)

    2016-01-15

    Through their delivery of water and organics, near-Earth objects (NEOs) played an important role in the emergence of life on our planet.  However, they also pose a hazard to the Earth, as asteroid impacts could significantly affect our civilization. Potentially hazardous asteroids (PHAs) are those that, in principle, could possibly impact the Earth within the next century, producing major damage. About 1600 PHAs are currently known, from an estimated population of 4700 ± 1450. However, a comprehensive characterization of the PHA physical properties is still missing. Here we present spectroscopic observations of 14 PHAs, which we have used to derive their taxonomy, meteorite analogs, and mineralogy. Combining our results with the literature, we investigated how PHAs are distributed as a function of their dynamical and physical properties. In general, the “carbonaceous” PHAs seem to be particularly threatening, because of their high porosity (limiting the effectiveness of the main deflection techniques that could be used in space) and low inclination and minimum orbit intersection distance (MOID) with the Earth (favoring more frequent close approaches). V-type PHAs also present low MOID values, which can produce frequent close approaches (as confirmed by the recent discovery of a limited space weathering on their surfaces). We also identified those specific objects that deserve particular attention because of their extreme rotational properties, internal strength, or possible cometary nature. For PHAs and NEOs in general, we identified a possible anti-correlation between the elongation and the rotational period, in the range of P{sub rot} ≈ 5–80 hr. This would be compatible with the behavior of gravity-dominated aggregates in rotational equilibrium. For periods ≳80–90 hr, such a trend stops, possibly under the influence of the YORP effect and collisions. However, the statistics is very low, and further observational and theoretical work is required

  17. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  18. Communication of 16 June 1998 received from the Permanent Mission of New Zealand to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the communication dated 16 June 1998 received at the IAEA from the Permanent Mission of New Zealand, forwarding a Joint Ministerial Declaration released by the Ministers of Foreign Affairs of Brazil, Egypt, Ireland, Mexico, New Zealand, Slovenia, South Africa and Sweden in connection with the nuclear disarmament

  19. Communication of 29 September 1998 received from the Permanent Mission of Qatar to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a Communication received at IAEA on 29 September 1998 from the Permanent Mission of Qatar to the IAEA in connection with the vote of the delegation of Qatar to the forty-second session of the Agency's General Conference regarding the agenda item 19 on the 'Implementation of United Nations Security Council resolution relating to Iraq'

  20. Communication of 2 June 1998 received from the Permanent Mission of the Philippines to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 2 June 1998 received at the IAEA from the Permanent Mission of the Philippines to the IAEA, including a statement by the President of the Philippines regarding the nuclear tests conducted by Pakistan

  1. Communication of 16 June 1997 received from the permanent mission of Cuba to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1997-01-01

    The document reproduces the text of the communication and the attached circular letter dated 16 June 1997 received by the Director General of IAEA from the Permanent Mission of Cuba in connection with the most recent actions being set in motion in the Congress of the United States of America regarding the Cuban nuclear programme

  2. Communication of 9 October 1995 received from the Permanent Mission of New Zealand to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 11 October 1995, the Director General received a communication dated 9 October 1995 from the Permanent Mission of New Zealand transmitting a Statement of 2 October 1995 by the Prime Minister of New Zealand concerning the second nuclear test conducted by France

  3. Communication of 29 May 1998 received from the Permanent Mission of Japan to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 29 May 1998 received at the IAEA from the Permanent Mission of Japan to the IAEA, including the statements by the Chief Cabinet Secretary of the Government of Japan regarding the tests of nuclear weapons conducted by Pakistan on 28 May 1998

  4. Communication of 12 May 1998 received from the Permanent Mission of Japan to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 12 May 1998 received at the IAEA from the Permanent Mission of Japan to the IAEA including the comment of the Chief Cabinet Secretary of Japan regarding the test of a nuclear weapon conducted by India on 11 May 1998

  5. Communication of 2 June 1998 received from the Permanent Mission of Japan to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 2 June 1998 received at the IAEA from the Permanent Mission of Japan to the IAEA, including the statements by the Chief Cabinet Secretary of the Government of Japan regarding the underground nuclear tests conducted by Pakistan on 30 May 1998

  6. Communication of 2 June 1998 received from the Permanent Mission of Croatia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 2 June 1998 received at the IAEA from the Permanent Mission of Croatia to the IAEA, including a statement from the Ministry of Foreign Affairs of Croatia, regarding the tests of nuclear weapons conducted by Pakistan

  7. Communication of 22 May 1998 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 22 May 1998 received at the IAEA from the Permanent Mission of the Russian Federation to the IAEA, including a statement from the Ministry of Foreign Affairs of Russia and a communication for publication, regarding the tests of nuclear weapons conducted by India on 11 May 1998

  8. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    Science.gov (United States)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  9. Communication of 30 June 1995 received from the permanent mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 3 July 1995, the Director General received a communication dated 30 June 1995 transmitting a Statement of 23 June 1995 by the Prime Minister of Australia concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency

  10. Communication of 7 December 1999 received from the Permanent Mission of Iraq to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of the communication of 7 December 1999 received by the IAEA from the Permanent Mission of Iraq to the IAEA, including an attachment referring to the Non-implementation of the IAEA Technical Assistance Programs to Iraq for the years 1999/2000

  11. Communication of 22 May 1998 received from the Permanent Mission of the Philippines to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 22 May 1998 received at the IAEA from the Permanent Mission of the Philippines to the IAEA, including a statement by the Government of the Philippines regarding the nuclear tests conducted by India

  12. Communication of 26 June 1998 received from the Permanent Mission of the United Kingdom to the International Atomic Energy agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the statement adopted by the Zangger Committee on the recent nuclear tests conducted by India and Pakistan, which was received on 26 June 1998 by the Director General of the IAEA from the Permanent Mission of the United Kingdom to the IAEA

  13. Communication of 1 October 1998 received from the Permanent Mission of Turkey to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of a Note Verbale dated 1 October 1998 received by the Director General of the IAEA from the Permanent Mission of Turkey providing information about the nuclear export policies and practices of the Government of Turkey

  14. Communication of 13 March 1996 received from the Permanent Mission of Ukraine to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1996-01-01

    The document reproduces the text of a note verbale received by the Director general of the IAEA on 13 March 1996 from the Permanent Mission of Ukraine providing information on the nuclear export policies and practices of the Government of Ukraine

  15. Communication dated 5 July 1994 received from the permanent mission of New Zealand to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1994-11-01

    The Director General has received a note verbale dated 5 July 1994 from the Permanent Mission of New Zealand, providing information on the nuclear export policies and practices of the Government of New Zealand. In the light of the request expressed in the note verbale, the text of the note verbale is attached hereto

  16. Communication of 29 May 1998 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 29 May 1998 received at the IAEA from the Permanent Mission of the Russian Federation to the IAEA, including a statement from the Ministry of Foreign Affairs of Russia regarding the tests of nuclear devices conducted by Pakistan on 28 May 1998

  17. Communication of 3 June 1998 received from the Permanent Mission of New Zealand to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 3 June 1998 received at the IAEA from the Permanent Mission of New Zealand to the IAEA, including statements by the Prime Minister of New Zealand on the nuclear tests conducted by India and Pakistan

  18. Communication of 3 June 1998 received from the Permanent Mission of Belarus to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 3 June 1998 received at the IAEA from the Permanent Mission of Belarus to the IAEA, including a statement by the Ministry of Foreign Affairs of Belarus on the nuclear tests conducted by India and Pakistan nuclear tests conducted by India and Pakistan

  19. Communication of 13 May 1998 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 13 May 1998 received at the IAEA from the Permanent Mission of Australia to the IAEA, including the statement of 12 May by the Australian Prime Minister in connection with the test of a nuclear weapon conducted by India on 11 May 1998

  20. Communication of 16 June 1998 received from the Permanent Mission of New Zealand to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-22

    The document reproduces the text of the communication dated 16 June 1998 received at the IAEA from the Permanent Mission of New Zealand, forwarding a Joint Ministerial Declaration released by the Ministers of Foreign Affairs of Brazil, Egypt, Ireland, Mexico, New Zealand, Slovenia, South Africa and Sweden in connection with the nuclear disarmament

  1. Communication of 15 May 1998 received from the Permanent Mission of Japan to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 15 May 1998 received at the IAEA from the Permanent Mission of Japan to the IAEA, including the statements by the Chief Cabinet Secretary of the Government of Japan regarding the tests of nuclear weapons conducted by India on 13 May 1998

  2. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-Site the Fukushima Daiichi Nuclear Power Plant, Tokyo and Fukushima Prefecture, Japan, 14-21 October 2013. Final Report

    International Nuclear Information System (INIS)

    2014-01-01

    In October 2011, the IAEA conducted an International Mission to Japan to support the remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). In response to the request made by the Government of Japan, in October 2013, the IAEA organized a follow-up International Mission on remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi NPP (hereinafter referred to as the 'Follow-up Mission' or the 'Mission') with the main purpose of evaluating the progress of the on-going remediation works achieved since the previous mission in October 2011. The Follow-up Mission Team involved 13 international experts. Additionally, 3 experts of the Working Group 5 (Subgroup 5.2, Remediation) in charge of preparing the IAEA Report on TEPCO Fukushima Daiichi Accident accompanied the Mission as observers to obtain first-hand information for the report. The Follow-up Mission had the following three objectives: 1. To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; 2. To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and 3. To share its findings with the international community as lessons learned. The Mission was conducted through the assessment of information provided to the Team and by means of professional and open discussions with the relevant institutions in Japan, including national, prefectural and local institutions. The Japanese authorities provided comprehensive information on their remediation programme. The Mission Team visited the affected areas, including several sites where activities on remediation were conducted. The Team also visited some temporary storage sites for radioactive waste and soil generated in the remediation activities, as well as a

  3. Asteroid size distributions for the main belt and for asteroid families

    Science.gov (United States)

    Kazantzev, A.; Kazantzeva, L.

    2017-12-01

    The asteroid-size distribution for he Eos family was constructed. The WISE database containing the albedo p and the size D of over 80,000 asteroids was used. The b parameter of the power-law dependence has a minimum at some average values of the asteroid size of the family. A similar dependence b(D) exists for the whole asteroid belt. An assumption on the possible similarity of the formation mechanisms of the asteroid belt as a whole and separate families is made.

  4. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  5. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    Science.gov (United States)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  6. Incoming asteroid! what could we do about it?

    CERN Document Server

    Lunan, Duncan

    2014-01-01

    Lately there have been more and more news stories on objects from space – such as asteroids, comets, and meteors – whizzing past Earth. One even exploded in the atmosphere over a Russian city in 2012, causing real damage and injuries. Impacts are not uncommon in our Solar System, even on Earth, and people are beginning to realize that we must prepare for such an event here on Earth.   What if we knew there was going to be an impact in 10 years’ time? What could we do? It’s not so far in the future that we can ignore the threat, and not so soon that nothing could be done. The author and his colleagues set out to explore how they could turn aside a rock asteroid, one kilometer in diameter, within this 10-year timescale.   Having set themselves this challenge, they identified the steps that might be taken, using technologies that are currently under development or proposed. They considered an unmanned mission, a follow-up manned mission, and a range of final options, along with ways to reduce the worst...

  7. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model

    Science.gov (United States)

    dos Santos, Leonardo Barbosa Torres; de Almeida Prado, Antonio F. Bertachini; Sanchez, Diogo Merguizo

    2017-11-01

    Space missions allow us to expand our knowledge about the origin of the solar system. It is believed that asteroids and comets preserve the physical characteristics from the time that the solar system was created. For this reason, there was an increase of missions to asteroids in the past few years. To send spacecraft to asteroids or comets is challenging, since these objects have their own characteristics in several aspects, such as size, shape, physical properties, etc., which are often only discovered after the approach and even after the landing of the spacecraft. These missions must be developed with sufficient flexibility to adjust to these parameters, which are better determined only when the spacecraft reaches the system. Therefore, conducting a dynamic investigation of a spacecraft around a multiple asteroid system offers an extremely rich environment. Extracting accurate information through analytical approaches is quite challenging and requires a significant number of restrictive assumptions. For this reason, a numerical approach to the dynamics of a spacecraft in the vicinity of a binary asteroid system is offered in this paper. In the present work, the equations of the Restricted Synchronous Four-Body Problem (RSFBP) are used to model a binary asteroid system. The main objective of this work is to construct grids of initial conditions, which relates semi-major axis and eccentricity, in order to quantify the lifetime of a spacecraft when released close to the less massive body of the binary system (modeled as a rotating mass dipole). We performed an analysis of the lifetime of the spacecraft considering several mass ratios of a binary system of asteroids and investigating the behavior of a spacecraft in the vicinity of this system. We analyze direct and retrograde orbits. This study investigated orbits that survive for at least 500 orbital periods of the system (which is approximately one year), then not colliding or escaping from the system during this

  8. Binary asteroid population. 1. Angular momentum content

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.

    2007-01-01

    Roč. 190, č. 1 (2007), s. 250-259 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * satellites of asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.869, year: 2007

  9. Spectroscopy of near-Earth asteroids

    DEFF Research Database (Denmark)

    Michelsen, René; Nathues, Andreas; Lagerkvist, Claes-Ingvar

    2006-01-01

    We present spectra and taxonomic classifications of 12 Near-Earth Asteroids (NEAs) and 2 inner Main Belt asteroids. The observations were carried out with the ESO 3.5 m NTT and the Danish 1.54 m telescope at La Silla, Chile. Eleven of the investigated NEAs belong to the S class while only one C-t...

  10. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  11. Lightcurve Photometry of Six Asteroids

    Science.gov (United States)

    Ferrero, Andrea

    2012-07-01

    Observations from 2012 January to March lead to the determination of the rotation periods for six main-belt asteroids: 33 Polyhymnia, P = 18.604 ± 0.004 h; 467 Laura, P = 37.4 ± 0.1 h; 825 Tanina, P = 6.940 ± 0.001 h; 1421 Esperanto, P = 21.982 ± 0.005 h; 3481 Xianglupeak, P = 5.137 ± 0.003 h; and 4350 Shibecha, which had two possible solutions, P = 2.890 ± 0.001 h and P = 5.778 ± 0.002 h.

  12. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  13. Communication of 18 September 1995 received from the Permanent Mission of New Zealand to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 18 September 1995, the Director General received a communication dated 18 September 1995 from the Permanent Mission of New Zealand transmitting: The text of a statement made by the Prime Minister of New Zealand on 17 August 1995 concerning by the nuclear test carried out by China; The text of a statement made by the Prime Minister of New Zealand on 6 September 1995 concerning the nuclear test carried out by France; the text of a resolution unanimously adopted by the New Zealand Parliament on 20 July 1995 concerning nuclear testing. As requested by the Permanent Mission of New Zealand, the texts of the statements and of the resolution are being circulated for the information of Member States of the Agency

  14. ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

  15. Communication of 25 June 1998 received from the Permanent Mission of India to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of a communication dated 25 June 1998 received by the Director General of the IAEA from the Permanent Mission of India to the IAEA regarding the Joint Ministerial Declaration released by the Ministers of Foreign Affairs of Brazil, Egypt, Ireland, Mexico, New Zealand, Slovenia, South Africa and Sweden (INFCIRC/565). The Press Statement issued by the Government of India on 23 June 1998 is attached

  16. Communication of 25 June 1998 received from the Permanent Mission of India to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-30

    The document reproduces the text of a communication dated 25 June 1998 received by the Director General of the IAEA from the Permanent Mission of India to the IAEA regarding the Joint Ministerial Declaration released by the Ministers of Foreign Affairs of Brazil, Egypt, Ireland, Mexico, New Zealand, Slovenia, South Africa and Sweden (INFCIRC/565). The Press Statement issued by the Government of India on 23 June 1998 is attached

  17. Communication from the Permanent Mission of Australia to the International Atomic Energy Agency regarding Guidelines for the Export of Nuclear Material, Equipment and Technology

    International Nuclear Information System (INIS)

    2002-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of Australia, dated 31 August 2001, providing information on the export policies and practices of the Government of Australia with respect to the export of nuclear material, equipment and technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment referenced in the Note Verbale was issued previously as INFCIRC/254/Rev. 5/Part 1

  18. Comets, Asteroids and Rubble Piles: not just debris

    Science.gov (United States)

    Harold, J. B.; Dusenbery, P.

    2010-12-01

    The National Center for Interactive Learning at the Space Science Institute (NCIL @ SSI) is developing a variety of asteroids related education activities as part of several E/PO projects, including Finding NEO (funded through NSF and NASA SMD); Great Balls of Fire! (funded through NSF); and a partnership with the WISE (Wide-field Infrared Survey Explorer) mission. These activities range from a web site to traveling exhibits in three different sizes. The Killer Asteroids web site (www.killerasteroids.org) includes background information on comets and asteroids as well as a number of interactive activities and games. These include a game that compares the risk of death from an asteroid impact to other hazards; a game and video vignettes on the role of backyard astronomers in light curve research; a physics-based asteroid deflection game; and a Google Earth -based "drop a rock on your house" activity. In addition, the project is developing a small, portable exhibit suitable for use in libraries or visitors centers. Great Balls of Fire! includes two separate traveling exhibitions: a 3000 square foot exhibition for science centers, and a 500 square foot version for smaller venues. Both will begin national tours in the summer of 2011. The Great Balls of Fire! exhibit program includes a free Education Program for docents and educators, and an Outreach Program to amateur astronomers around the country through the Astronomical Society of the Pacific’s (ASP) Astronomy from the Ground Up program. The project will facilitate partnerships between host venues and local astronomy clubs that can interact with the public using a toolkit of activities developed by ASP. Great Balls of Fire! Represents a collaboration between scientists, educators, exhibit designers, graphic artists, evaluators, education researchers, and three teams of middle school students who acted as advisors. The project’s exhibit design firm is Jeff Kennedy Associates Inc. We will present a summary of the

  19. Asteroid family dynamics in the inner main belt

    Science.gov (United States)

    Dykhuis, Melissa Joy

    The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity

  20. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  1. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  2. Synthesis of the report from the IRRS evaluation mission performed at the ASN in April 2009 by 12 international experts under the IAEA coordination

    International Nuclear Information System (INIS)

    2009-01-01

    At the request of the Government authorities of France, an international team of 24 experts visited the Autorite de Surete Nucleaire (ASN), the French regulatory authority for nuclear and radiation safety, in November 2006 to conduct the first full scope Integrated Regulatory Review Service (IRRS) mission. The purpose of the mission was to undertake a peer review of the regulatory body of France against the IAEA Safety Standards and to exchange information and experience on safety regulation. In March 2008 the Government authorities of France requested a follow-up mission to review the measures undertaken following the recommendations and suggestions presented in the report of the November 2006 IRRS mission. The scope of the IRRS follow-up mission covered the regulatory aspects of the facilities and practices regulated by ASN, nuclear power plants, research reactors, fuel cycle facilities, medical practices with further review of radiotherapy, industrial and research activities, waste facilities, decommissioning, remediation, public information and communication and, in addition, it was also extended to cover the application of the Code of Conduct of Safety and Security of Radioactive Sources. The review was conducted from March 29 to April 3 2009 by an IRRS team consisting of 12 senior regulatory experts from 11 Member States, two staff members from the IAEA, one IAEA observer and an IAEA administrative assistant. During the review the team recognized that ASN has taken a number of initiatives to improve its effectiveness and efficiency and that ASN faces new challenges. ASN supplied a package of documentation and a well prepared self-assessment, in advance of the mission, including a status report and an action plan to improve its regulatory effectiveness. Both regulatory technical and policy issues were addressed. The policy issues discussed were: regulatory independence, the relationship between ASN and IRSN and medical issues. The IRRS follow-up mission

  3. Detailed Pictures of Multiple Asteroid Systems in the Main-Belt

    Science.gov (United States)

    Marchis, F.; Emery, J. P.; Enriquez, J. E.; Descamps, P.; Berthier, J.; Vachier, F.; Durech, J.

    2011-12-01

    Since their discovery less than 10 years ago, ~200 known multiple asteroid systems have been studied with a combination of observing techniques, including adaptive optics, lightcurve photometry, and mid-infrared spectrophotometry. Those observations show that ~15 large (D>100km) asteroids that are known to possess km-sized satellite(s) (22 Kalliope, 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, ...) share common orbital characteristics, implying a common formation scenario: e.g. catastrophic disruption or ejection after an oblique impact. More than 70 smaller (10-15km) binary asteroid systems have been detected through anomalies in their lightcurves and are believed to have formed by fission due to the YORP effect. By comparison with meteorite analog densities, mid-IR data reveal that these systems have a significant porosity (larger than 30%) implying a rubble-pile interior. We will review these key results and discuss their implications for the interior of asteroids in the light of recent space mission results. Future explorations using new ground-based facilities and space mission concepts will be also discussed. This work is supported by the NSF grant AAG-0807468 and NASA grant NNX11AD62G

  4. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  5. Collisional fragmentation of asteroids and its implication on the physical properties of Near-Earth Objects

    Science.gov (United States)

    Michel, P.

    Collisions are at the origin of catastrophic disruptions in the asteroid Main Belt. This is witnessed by the observation of asteroid families, each composed of asteroids which originated from a single parent body, broken-up by a collision with another asteroid. Understanding the collisional process and its outcome properties is not only necessary in order to study the collisional evolution of small body population or the planetary formation, it is also strongly required in the context of mitigation strategies aimed at deviating a threatening asteroid. In the last three years, for the first time we have successfully performed numerical simulations of high speed collisions between small bodies which account for the production of gravitationally reaccumulated bodies. More precisely, we have developped a procedure which divides the process into two phases. Using a 3D SPH hydrocode, the fragmentation of the solid target through crack propagation is first computed. Then the simulation of the gravitational evolution and possible piecewise reaccumulation of the parent body is performed using the parallel N-body code pkdgrav. Our first simulations using monolithic parent bodies have succeeded in reproducing fundamental properties of some well-identified asteroid families, showing that gravitational re-accumulations following disruptive collisions are the key process accounting for the existence of asteroid families. Then, we have investigated the effect of the internal structure of the parent body on the outcome properties. We have thus shown that family parent bodies are likely to have already been pre-shattered by small impacts before being disrupted by a major event. We then suggested that the most likely internal structure of large asteroids in the main belt is not monolithic but rather composed of macroscopic fractures and voids. We will make a review of these simulations in three different impact regimes, from highly catastrophic to barely disruptive. In particular we

  6. Applications of granular-dynamics numerical simulations to asteroid surfaces

    Science.gov (United States)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  7. Asteroid Shapes Are Always Close To Fluid Equilibrium

    Science.gov (United States)

    Tanga, Paolo; Comito, C.; Hestroffer, D.; Richardson, D. C.

    2010-10-01

    The simple evidence that asteroid are composed by solid rocks suggests that their shape can be rather far from the theoretical equilibrium for rotating fluid bodies. The possible fragmented ("rubble-pile") nature of most of them has suggested interpretations based on elasto-plastic models (such as the Mohr-Coulomb theory) that take into account the static behavior of a granular structure. However, these approaches did not incorporate explicitly the possible evolution of shapes in time due to external factors such as crater forming impacts or tidal deformations. We revisited the theory of equilibrium shapes for fluids, quantitatively evaluating - by appropriate metrics - the distance of the observed shapes from fluid equilibrium. This distance turns out to be much smaller than previously expected. On the basis of this evidence, we simulated numerically the evolution of gravitational aggregates having a small degree of internal friction, consistent with the theoretical findings. Our results offer a global scenario for the evolution of asteroid shapes under the action of gradual stresses due to minor impacts, tidal forces and seismic shaking. We show that actual asteroid shapes are consistent with the evolution of aggregates tending towards minimum free energy states. We are able to explain the samples of observed shapes obtained by different techniques. Our findings strongly support a highly porous and fragmented nature for most asteroids, at least in an external layer. Reference: Tanga et al. 2009: ApJ Letters, 706, 1, L197-L202 Acknowledgments: PT and CC have been supported by the "Programme Nationale de Planetologie" of France; DCR acknowledges support by the NASA (grant no. NNX08AM39G issued through the Office of Space Science) and by the NSF (grant no. AST0708110).

  8. First Results of the VLBI Experiment on Radar Location of the Asteroid 2012 DA14

    Directory of Open Access Journals (Sweden)

    Nechaeva M.

    2013-12-01

    Full Text Available An international VLBI experiment on radio location of the asteroid 2012 DA14 was organized on 2013 February 15–16, during its flyby close to Earth. The purpose of observations was to investigate and specify orbital parameters of the asteroid, as well as to evaluate its rotation period and other characteristics. The irradiation of the asteroid was performed by the RT-70 transmitter at Evpatoria (Crimea, Ukraine, while the reflected signals were successfully accepted by the two 32 m radio telescopes at Medicina (Bologna, Italy and Irbene (Ventspils, Latvia. Processing and interpretation of the data were performed both in the Radiophysical Research Institute at Nizhny Novgorod and in the Ventspils International Radio Astronomy Center. The first results of this experiment are presented and discussed.

  9. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  10. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    Science.gov (United States)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  11. Asteroid Spectroscopy: A Declaration of Independence

    Science.gov (United States)

    Bell, J. F.

    1995-09-01

    One of the shibboleths of asteroid spectroscopy for the past 25 years has been that a detailed knowledge of meteoritics is essential for proper interpretation of asteroid spectra. In fact, several recent spectroscopic discoveries have overturned long-standing models based on popular interpretations of meteorite data. A case can be made that spectroscopists could have made much faster progress if they had worked in total isolation from meteoritics. Consider the first three spectral classes identified in the 1970s: Vesta: The very first asteroid spectrum was unambigously basaltic, yet some meteoriticists have persistently resisted the obvious conclusion that the HED clan comes from Vesta, because A) Vesta is "impossibly" far from the known dynamical escape hatches; and B) the HED O-isotope data "establishes" a lirlk with pallasites and IIIAB irons, suggesting that their parent was some other completely disrupted asteroid. The discovery of a "dynamically impossible" extended family of basaltic fragments extending from Vesta to the 3:1 resonance [1] makes it clear that HEDs must originate on Vesta, and that dynamical, physical and isotopic arguments all led in the wrong direction. Stony: In the early 1970s meteorite fall statistics led to an expectation that many of the larger asteroids would be ordinary chondrites. When the most common class of asteroids proved to have silicate absorption bands, many concluded that these objects were the expected ordinary chondrite parent asteroids. The later discovery that S-type spectra do not actually resemble OCs was rationalized with imaginary "space weathering" processes (which have never been observed or simulated despite 20 years of wasted effort). Now that the real weathering trends in S asteroids have been resolved [2] and asteroids which actually do look like OCs discovered [3], it is clear that the eDhre controversy over S asteroid composition was a blind alley that could have been avoided by taking the spectra at face

  12. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    Science.gov (United States)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system

  13. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  14. Effect of the Adapted NASA Mission X International Child Fitness Program on Young Children and their Parents in South Korea

    Science.gov (United States)

    Min, Jungwon; Kim, Gilsook; Lim, Hyunjung; Carvajal, Nubia A.; Lloyd, Charles W.; Wang, Youfa; Reeves, Katherine

    2015-01-01

    Obesity has become a global epidemic. Childhood obesity is global public health concern including in South Korea where 16.2% of boys and 9.9% of girls are overweight or obese in 2011. Effective and sustainable intervention programs are needed for prevention of childhood obesity. Obesity prevention programs for young children may have a greater intervention effect than in older children. The NASA Mission X: Train Like an Astronaut (MX) program was developed to promote children's exercise and healthy eating by tapping into their excitement for training like an astronaut. This study aimed to examine the feasibility and effectiveness of the adapted NASA MX intervention in promoting PA in young children and in improving parents' related perspectives.

  15. IAEA International Peer Review Mission on Mid-and-Long-Term Roadmap Towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4, Tokyo and Fukushima Prefecture, Japan, 15-22 April 2013. Mission Report

    International Nuclear Information System (INIS)

    2013-01-01

    Following the accident at TEPCO's Fukushima Daiichi Nuclear Power Station (NPS) on 11 March 2011, the ''Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4'' was adopted by the Government of Japan and TEPCO Council on Mid-to-Long-Term Response for Decommissioning in December 2011 and revised in July 2012. The Roadmap, which is scheduled for an additional update in June 2013, describes the main steps and activities to be implemented for the decommissioning of the Fukushima Daiichi NPS through the combined efforts of the Government of Japan and TEPCO. Within the framework of the IAEA Action Plan on Nuclear Safety, the Government of Japan invited the IAEA to conduct an independent peer review of the Roadmap with two main objectives: - To improve the decommissioning planning and the implementation of pre-decommissioning activities at TEPCO's Fukushima Daiichi NPS; and - To share with the international community the good practices and lessons learned by the review. The review has been organized in two steps, and the IAEA conducted the first part in Japan from 15 to 22 April 2013. The objective of the first mission was to undertake an initial review of the Roadmap, including assessments of decommissioning strategy, planning and timing of decommissioning phases and a review of several specific short-term issues and recent challenges. Specifically, it covered the assessment of current reactor conditions, assessment of management of radioactive releases and associated doses, control of radioactive exposure of employees and decontamination within the site for improvement of working environment, structural integrity of reactor buildings and other constructions. The incidents recently experienced at the site, related with failures of the power supply and leakages of water from the underground reservoirs, were also included in the review of the specific short-term issues. The Government of Japan and TEPCO have

  16. The Origin of Asteroid 101955 (1999 RQ36)

    Science.gov (United States)

    Campins, Humberto; Morbidelli, A.; de León, J.; Tsiganis, K.; Licandro, J.

    2010-10-01

    Near-Earth asteroid 101955 (1999 RQ36; henceforth RQ36) is particularly interesting. It's especially accessible to spacecraft and is the primary target of NASA's OSIRIS-REx sample return mission; it's also a potentially hazardous asteroid (Milani et al. 2009). We combine dynamical and spectral information to identify the most likely main-belt origin of RQ36 and conclude that it is the Polana family, located at a semi-major axis of about 2.42 AU (our approach is similar to that used by de León et al. (2010) to link 3200 Phaethon, parent body of the Geminids, to 2 Pallas). Our conclusion is based on the following results. a) Dynamical evidence favors strongly an inner-belt, low-inclination (2.15 AU families (families are favored over single objects because small fragments have already been produced). c) The Polana family is characterized by low albedos and B-class spectra or colors (Bus and Binzel 2002), which is the same spectral class, and albedo, as RQ36. d) The SDSS colors show that the Polana family is the branch of the Nysa-Polana complex that extends toward the ν6 resonance; furthermore, Polana has delivered objects the size of RQ36 and larger into the ν6 resonance. e) RQ36 is retrograde, consistent with the Yarkovsky effect having moved it inward from Polana into the ν6. f) A quantitative comparison of visible and near-infrared spectra does not yield a unique match for RQ36; however, it is consistent with a compositional link between RQ36 and the Polana family. Finally, the Polana Family is likely the most important inner-belt source of low albedo Near-Earth asteroids. This work was supported by NASA and NSF.

  17. Rotational Characterization of Hayabusa II Target Asteroid (162173) 1999 JU3

    OpenAIRE

    Moskovitz, Nicholas; Abe, Shinsuke; Pan, Kang-Shian; Osip, David; Pefkou, Dimitra; Melita, Mario; Elias, Mauro; Kitazato, Kohei; Bus, Schelte; DeMeo, Francesca; Binzel, Richard; Abell, Paul

    2013-01-01

    The Japanese Space Agency's Hayabusa II mission is scheduled to rendezvous with and return a sample from the near-Earth asteroid (162173) 1999 JU3. Previous visible-wavelength spectra of this object show significant variability across multiple epochs which could be the result of a compositionally heterogeneous surface. We present new visible and near-infrared spectra to demonstrate that thermally altered carbonaceous chondrites are plausible compositional analogs, however this is a tentative ...

  18. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    Science.gov (United States)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  19. Report of the IPERS (International Peer Review Service) pre-review mission for the Cernavoda nuclear power plant probabilistic safety evaluation (CPSE - PHASE B) in Romania 31 October to 3 November 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report presents the results of the IAEA international peer review services pre-review mission which reviewed the status of the present version of the Cernavoda probabilistic safety evaluation, a Level 1 internal events Probabilistic Safety Assessment for the Cernavoda, Unit 1, nuclear power plant. 2 refs

  20. PROPERTIES OF NEAR-SUN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  1. Chelyabinsk: Portrait of an asteroid airburst

    Energy Technology Data Exchange (ETDEWEB)

    Kring, David A.; Boslough, Mark

    2014-09-01

    Video and audio from hundreds of smartphones and dashboard cameras combined with seismic, acoustic, and satellite measurements provide the first precise documentation of a 10 000-ton asteroid explosion.

  2. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  3. Chelyabinsk: Portrait of an asteroid airburst

    International Nuclear Information System (INIS)

    Kring, David A.; Boslough, Mark

    2014-01-01

    Video and audio from hundreds of smartphones and dashboard cameras combined with seismic, acoustic, and satellite measurements provide the first precise documentation of a 10 000-ton asteroid explosion

  4. SAWYER ASTEROID SPECTRA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Partial spectral data for the plots presented in S. Sawyer's PhD Thesis, 'A High Resolution Spectroscopic Survey of Low Albedo Main Belt Asteroids', 1991.

  5. Asteroid rotation excitation by subcatastrophic impacts

    Czech Academy of Sciences Publication Activity Database

    Henych, T.; Pravec, Petr

    2013-01-01

    Roč. 432, č. 2 (2013), s. 1623-1631 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : numerical methods * minor planets * general asteroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  6. Families Among High-Inclination Asteroids

    Science.gov (United States)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  7. ASTEROID SPIN VECTORS V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a tabulation of determinations of asteroid pole orientations gathered from the literature from 1932 through 1995. It is an updated (Dec. 1995) version of the...

  8. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  9. Asteroids Lightcurves Analysis: 2016 November - 2017 June

    Science.gov (United States)

    Carbognani, Albino; Bacci, Paolo; Buzzi, Luca

    2018-01-01

    Twelve near-Earth asteroids were observed from 2016 November through 2017 June to find the synodic rotation period and lightcurve amplitudes for each asteroid. Results are reported for 2329 Orthos, (138846) 2000 VJ61, (326683) 2002 WP, (489337) 2006 UM, (494706) 2005 GL9, 2005 TF, 2017 BJ30, 2017 BQ6, 2017 CS, 2017 DC36, 2017 GK4, and 2017 JA2.

  10. Dynamical properties of the Watsonia asteroid family

    Science.gov (United States)

    Tsirvoulis, G.; Novakovic, B.; Knezevic, Z.; Cellino, A.

    2014-07-01

    Introduction: In recent years, a rare class of asteroids has been discovered [1], with its distinguishing characteristic being the anomalous polarimetric properties of its members. Named Barbarians, after (234) Barbara, the prototype of the class, these asteroids show negative polarization at unusually high phase-angles compared to normal asteroids. Motivated by the fact that some of the few discovered Barbarians seemed to be related to the Watsonia asteroid family, Cellino et al. [2] performed a search for more Barbarians among its members. A positive result of this search led to the conclusion that Watsonia is indeed an important repository of Barbarian asteroids. Based on these findings, we decided to analyze this family in detail. Basic information: According to available data, Watsonia is an L-type asteroid family, located in the middle of the main asteroid belt (2.68 < a_{p} < 2.82 au), with low to moderate orbital eccentricities (0.1 < e_{p} < 0.15) and relatively high inclinations (16.5^{o} < i_{p} < 18^{o}). Methodology: The first step in our study is to derive a reliable list of Watsonia family members. To that purpose, we first calculate the synthetic proper elements [3] of an extended catalogue including numbered, as well as multi and single opposition asteroids, in a wide region around the family. To this catalogue we apply the Hierarchical Clustering Method (HCM)[4] to determine the membership of the family, coinciding with the requirement that all confirmed neighboring Barbarians are included (see figure). To detect potential interlopers and refine the membership list, additional data such as the SDSS colors and WISE albedos are used. Moreover, we identify all relevant resonances and analyze the dynamical characteristics of the region occupied by the family. Then we estimate the age of the family, and finally, we perform numerical integrations of test particles to investigate possible dynamical links to other known Barbarians and to the near

  11. Spectral investigation of two asteroidal fireballs

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří

    2006-01-01

    Roč. 97, 3-4 (2006), s. 279-293 ISSN 0167-9295. [Asteroids, Comets, Meteors 2005. Búzios, 07.08.2005-12.08.2005] R&D Projects: GA ČR GA205/05/0543; GA ČR GA205/03/1404 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * meteors * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.252, year: 2006

  12. Comparison of three filters in asteroid-based autonomous navigation

    International Nuclear Information System (INIS)

    Cui Wen; Zhu Kai-Jian

    2014-01-01

    At present, optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase. One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support. In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars

  13. THE ORIGIN OF ASTEROID 101955 (1999 RQ36)

    International Nuclear Information System (INIS)

    Campins, Humberto; Morbidelli, Alessandro; Tsiganis, Kleomenis; De Leon, Julia; Licandro, Javier; Lauretta, Dante

    2010-01-01

    Near-Earth asteroid (NEA) 101955 (1999 RQ 36 ; henceforth RQ36) is especially accessible to spacecraft and is the primary target of NASA's OSIRIS-REx sample return mission; it is also a potentially hazardous asteroid. We combine dynamical and spectral information to identify the most likely main-belt origin of RQ36 and we conclude that it is the Polana family, located at a semimajor axis of about 2.42 AU. We also conclude that the Polana family may be the most important inner-belt source of low-albedo NEAs. These conclusions are based on the following results. (1) Dynamical evidence strongly favors an inner-belt, low-inclination (2.15 AU 0 ) origin, suggesting the ν 6 resonance as the preferred (95% probability) delivery route. (2) This region is dominated by the Nysa and Polana families. (3) The Polana family is characterized by low albedos and B-class spectra or colors, the same albedo and spectral class as RQ36. (4) The Sloan Digital Sky Survey colors show that the Polana family is the branch of the Nysa-Polana complex that extends toward the ν 6 resonance; furthermore, the Polana family has delivered objects of the size of RQ36 and larger into the ν 6 resonance. (5) A quantitative comparison of visible and near-infrared spectra does not yield a unique match for RQ36; however, it is consistent with a compositional link between RQ36 and the Polana family.

  14. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  15. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  16. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina; Lloro, Ivan [Institute of Space Sciences (IEEC-CSIC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra, c/Can Magrans s/n, 08193 Cerdanyola del Vallès (Barcelona) (Spain); Pellicer, Eva [Departament de Física, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Williams, Iwan P. [School of Physics and Astronomy, Queen Mary, University of London, 317 Mile End Road, E1 4NS London (United Kingdom); Blum, Jürgen [Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Michel, Patrick [Lagrange Laboratory, University of Nice, CNRS, Côte d’Azur Observatory (France); Küppers, Michael [European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada E-28691 (Spain); Sort, Jordi, E-mail: moyano@ice.csic.es, E-mail: trigo@ice.csic.es [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain)

    2017-02-01

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce the efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.

  17. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    International Nuclear Information System (INIS)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina; Lloro, Ivan; Pellicer, Eva; Williams, Iwan P.; Blum, Jürgen; Michel, Patrick; Küppers, Michael; Sort, Jordi

    2017-01-01

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce the efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.

  18. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: Identifying Regional Elemental Enrichment on Asteroids

    OpenAIRE

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-01-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT an...

  19. Near-Earth Asteroids: Destinations for Human Exploration

    Science.gov (United States)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  20. Dawn of small worlds dwarf planets, asteroids, comets

    CERN Document Server

    Moltenbrey, Michael

    2016-01-01

    This book gives a detailed introduction to the thousands and thousands of smaller bodies in the solar system. Written for interested laymen, amateur astronomers and students it describes the nature and origin of asteroids, dwarf planets and comets, and gives detailed information about their role in the solar system. The author nicely reviews the history of small-world-exploration and describes past, current and future space craft missions studying small worlds, and presents their results. Readers will learn that small solar system worlds have a dramatically different nature and appearance than the planets. Even though research activity on small worlds has increased in the recent past many of their properties are still in the dark and need further research.

  1. Characterization of the Surface Properties of MUSES-C/Hayabusa Spacecraft Target Asteroid 25143 Itokawa (1998 SF36)

    Science.gov (United States)

    Lederer, S. M.; Domingue, D. L.; Vilas, F.; Abe, M.; Farnham, T. L.; Jarvis, K. S.; Lowry, S. C.; Ohba, Y.; Weissman, P. R.; French, L. M.

    2004-01-01

    Several spacecraft missions have recently targeted asteroids to study their morphologies and physical properties (e.g. Galileo, NEAR Shoemaker), and more are planned. MUSES-C is a Japanese mission designed to rendezvous with a near-Earth asteroid (NEA). The MUSES-C spacecraft, Hayabusa, was launched successfully in May 2003. It will rendezvous with its target asteroid in 2005, and return samples to the Earth in 2007. Its target, 25143 Itokawa (1998 SF36), made a close approach to the Earth in 2001. We collected an extensive ground-based database of broadband photometry obtained during this time, which maximized the phase angle coverage, to characterize this target in preparation for the mission. Our project was designed to capitalize on the broadband UBVRI photometric observations taken with a series of telescopes, instrumentation, and observers. Photometry and spectrophotometry of Itokawa were acquired at Lowell, McDonald, Steward, Palomar, Table Mountain and Kiso Observatories. The photometric data sets were combined to calculate Hapke model parameters of the surface material of Itokawa, and examine the solar-corrected broadband color characteristics of the asteroid. Broadband photometry of an object can be used to: (1) determine its colors and thereby contribute to the understanding of its surface composition and taxonomic class, and (2) infer global physical surface properties of the target body. We present both colors from UBVRI observations of the MUSES-C target Itokawa, and physical properties derived by applying a Hapke model to the broadband BVRI photometry.

  2. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  3. Robotic planetary mission benefits from nuclear electric propulsion

    International Nuclear Information System (INIS)

    Kelley, J.H.; Yen, C.L.

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto.) Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, a Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis

  4. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  5. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  6. Asteroid Impacts and Modern Civilization: Can We Prevent a Catastrophe?

    Science.gov (United States)

    Harris, A. W.; Boslough, M.; Chapman, C. R.; Drube, L.; Michel, P.; Harris, A. W.

    We are now approaching the level of technical expertise necessary to deflect a near-Earth asteroid (NEA) capable of destroying a large urban area, if not a small country. The current level of activity in the field, including search programs, physical characterization, and international initiatives to assess mitigation strategies, is unprecedented. However, we have only just started to explore the relevant properties of the small end of the NEA population (diameter threat to life and property. Political awareness and international response efforts are still at a very primitive stage. For a global guarantee of protection, advances in scientific and technical competence must be matched by improvements in international coordination, as well as preparedness at the political level.

  7. CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates

    Science.gov (United States)

    Schrader, Devin L.; Davidson, Jemma

    2017-10-01

    By investigating the petrology and chemical composition of type II (FeO-rich) chondrules in the Mighei-like carbonaceous (CM) chondrites we constrain their thermal histories and relationship to the Ornans-like carbonaceous (CO) chondrites. We identified FeO-rich relict grains in type II chondrules by their Fe/Mn ratios; their presence indicates chondrule recycling among type II chondrules. The majority of relict grains in type II chondrules are FeO-poor olivine grains. Consistent with previous studies, chemical similarities between CM and CO chondrite chondrules indicate that they had similar formation conditions and that their parent bodies probably formed in a common region within the protoplanetary disk. However, important differences such as mean chondrule size and the lower abundance of FeO-poor relicts in CM chondrite type II chondrules than in CO chondrites suggest CM and CO chondrules did not form together and they likely originate from distinct parent asteroids. Despite being aqueously altered, many CM chondrites contain pre-accretionary anhydrous minerals (i.e., olivine) that are among the least thermally metamorphosed materials in chondrites according to the Cr2O3 content of their ferroan olivine. The presence of these minimally altered pre-accretionary chondrule silicates suggests that samples to be returned from aqueously altered asteroids by the Hayabusa2 and OSIRIS-REx asteroid sample return missions, even highly hydrated, may contain silicates that can provide information about the pre-accretionary histories and conditions of asteroids Ryugu and Bennu, respectively.

  8. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage

    Science.gov (United States)

    Abell, P. A.; Gaffey, M. J.; Landis, R. R.; Jarvis, K. S.

    2005-01-01

    It is now thought that approximately 16% of all asteroids among the near-Earth population may be binary objects. Several independent lines of evidence, such as the presence of doublet craters on the Earth and Moon [1, 2], complex lightcurves of near-Earth objects exhibiting mutual events [3], and radar images of near-Earth asteroids revealing distinct primary and secondary objects, have supported this conclusion [4]. To date at least 23 near-Earth objects have been discovered as binary systems with expectations that many more have yet to be identified or recognized. Little is known about the physical characteristics of binary objects except that they seem to have fairly rapid rotation rates, generally have primaries in the approx. 1 km diameter range with smaller secondaries on the order of a few hundred meters, and apart from a few exceptions, are in synchronous orbits [4, 5]. Previously only two of these binary near-Earth asteroids (1998 ST27 and 2003 YT1) have been characterized in terms of detailed mineralogical investigations [6, 7]. Such investigations are required to fully understand the formation mechanisms of these binary objects and their possible source regions. In addition, detailed knowledge of these objects may play an important role for planning future spacecraft missions and for the development of impact mitigation strategies. The work presented here represents a continued effort to characterize this particular sub-group of the near- Earth asteroid population.

  9. Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hasegawa, Sunao; Abe, Masanao; Yoshikawa, Makoto [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Kim, Myung-Jin [Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Choi, Young-Jun [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Moskovitz, Nicholas [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Abe, Shinsuke [Department of Aerospace Engineering, Nihon University, 7-24-1 Narashinodai Funabashi, Chiba 274-8501 (Japan); Pan, Kang-Sian [Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 32001, Taiwan (China); Takahashi, Jun; Takagi, Yuhei; Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Tokimasa, Noritaka [Sayo Town Office, 2611-1 Sayo, Sayo-cho, Sayo, Hyogo 679-5380 (Japan); Hsieh, Henry H. [Academia Sinica Institute of Astronomy and Astrophysics, Roosevelt Road, Taipei 10617, Taiwan (China); Thomas-Osip, Joanna E.; Osip, David J. [The Observatories of the Carnegie Institute of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601, La Serena (Chile); Urakawa, Seitaro [Bisei Spaceguard Center, Japan Spaceguard Association, 1716-3 Okura, Bisei-cho, Ibara, Okayama 714-1411 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); and others

    2014-09-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the International Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions: the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (α = 5°-75°) and shows weak nonlinear opposition brightening at α < 5°, providing a more reliable absolute magnitude of H {sub V} = 19.25 ± 0.03. The phase slope (0.039 ± 0.001 mag deg{sup –1}) and opposition effect amplitude (parameterized by the ratio of intensity at α = 0.°3 to that at α = 5°, I(0.°3)/I(5°) = 1.31 ± 0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w = 0.041, g = –0.38, B {sub 0} = 1.43, and h = 0.050, assuming a surface roughness parameter θ-bar = 20°. By combining our photometric study with a thermal model of the asteroid, we obtained a geometric albedo of p {sub v} = 0.047 ± 0.003, phase integral q = 0.32 ± 0.03, and Bond albedo A {sub B} = 0.014 ± 0.002, which are commensurate with the values for common C-type asteroids.

  10. Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kuroda, Daisuke; Hasegawa, Sunao; Abe, Masanao; Yoshikawa, Makoto; Kim, Myung-Jin; Choi, Young-Jun; Moskovitz, Nicholas; Abe, Shinsuke; Pan, Kang-Sian; Takahashi, Jun; Takagi, Yuhei; Arai, Akira; Tokimasa, Noritaka; Hsieh, Henry H.; Thomas-Osip, Joanna E.; Osip, David J.; Urakawa, Seitaro; Hanayama, Hidekazu; Sekiguchi, Tomohiko

    2014-01-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the International Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions: the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (α = 5°-75°) and shows weak nonlinear opposition brightening at α < 5°, providing a more reliable absolute magnitude of H V = 19.25 ± 0.03. The phase slope (0.039 ± 0.001 mag deg –1 ) and opposition effect amplitude (parameterized by the ratio of intensity at α = 0.°3 to that at α = 5°, I(0.°3)/I(5°) = 1.31 ± 0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w = 0.041, g = –0.38, B 0 = 1.43, and h = 0.050, assuming a surface roughness parameter θ-bar = 20°. By combining our photometric study with a thermal model of the asteroid, we obtained a geometric albedo of p v = 0.047 ± 0.003, phase integral q = 0.32 ± 0.03, and Bond albedo A B = 0.014 ± 0.002, which are commensurate with the values for common C-type asteroids.

  11. Rationale for a GRAVSAT-MAGSAT mission: A perspective on the problem of external/internal transient field effects

    Science.gov (United States)

    Hermance, J. F.

    1985-01-01

    The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.

  12. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1998-01-01

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team's Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team

  13. Asteroid mass estimation using Markov-chain Monte Carlo

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2017-11-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to an inverse problem in at least 13 dimensions where the aim is to derive the mass of the perturbing asteroid(s) and six orbital elements for both the perturbing asteroid(s) and the test asteroid(s) based on astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations: the very rough 'marching' approximation, in which the asteroids' orbital elements are not fitted, thereby reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-chain Monte Carlo (MCMC) approach. We describe each of these algorithms with particular focus on the MCMC algorithm, and present example results using both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans.

  14. Photometry of the bright and dark terrains of Vesta and Lutetia with comparison to other asteroids

    Science.gov (United States)

    Longobardo, A.; Palomba, E.; Capaccioni, F.; De Sanctis, M.; Tosi, F.; Schroder, S.; Li, J.; Capria, M.; Ammannito, E.; Raymond, C.; Russell, C.

    2014-07-01

    The reflectance of a planetary surface as measured at different phase angles can provide useful information about several properties, both optical (importance of multiple and single scattering, regolith shadowing) and physical (roughness and regolith grain size). In particular, disk-resolved observations allow one to monitor photometric properties variations across a planetary surface. In this work, we retrieved disk-resolved phase functions of asteroids Vesta and Lutetia, by means of hyperspectral images returned by the Visible and InfraRed (VIR) mapping spectrometer onboard NASA's Dawn spacecraft, and the Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS), onboard ESA's Rosetta spacecraft, respectively. Then we compared their photometric properties with those obtained of other asteroids closely explored by space missions (Gaspra, Ida, Eros, Annefrank, Steins, Mathilde). The trend of reflectance as a function of phase angle has been obtained by undertaking a statistical analysis, based on the empirical definition of reflectance families. For each family, the relation between reflectance and phase has been then calculated. On Vesta, we find steeper phase functions in dark material units, which become flatter with increasing albedo. This has been ascribed to a relevant role of multiple scattering in bright regions. As opposed to Vesta, Lutetia is a more homogeneous body. Hence we can consider a unique phase function for the whole asteroid surface. We chose two parameters useful to describe the photometric behavior of these asteroids: the reflectance which would be observed at a 30° phase, tagged R30, and the ''phase slope'' or the reflectance percent decrease between 20° and 60° phase, tagged PS. These two parameters have been calculated also on disk-resolved phase functions of other asteroids available in literature. We find that all S-type asteroids place in the same region of the R30-PS scatterplot, due to their similar photometric properties. C

  15. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  16. Scientific Packages on Small Bodies, a Deployment Strategy for New Missions

    Science.gov (United States)

    Tardivel, Simon; Scheeres, D. J.; Michel, P.

    2013-10-01

    The exploration of asteroids is currently a topic of high priority for the space agencies. JAXA will launch its second asteroid explorer, aimed at 1999 JU3, in the second half of 2014. NASA has selected OSIRIS-REx to go to asteroid Bennu, and it will launch in 2016. ESA is currently performing the assessment study of the MarcoPolo-R space mission, in the framework of the M3 (medium) competition of its Cosmic Vision Program, whose objective is now 2008 EV5. In the continuity of these missions, landing for an extended period of time on the ground to perform measurements seems a logical next step to asteroid exploration. Yet, the surface behavior of an asteroid is not well known and landing the whole spacecraft on it could be hazardous, and pose other mission operations problems such as ensuring communication with Earth. Hence, we propose a new approach to asteroid surface exploration. Using a mothership spacecraft, we will present how multiple landers could be deployed to the surface of an asteroid using ballistic trajectories. Combining a detailed simulation of the bouncing and contact dynamics on the surface with numerical and mathematical analysis of the flight dynamics near an asteroid, we show how landing pods could be distributed at the surface of a body. The strategy has the advantages that the mothership always maintains a safe distance from the surface and the landers do not need any GNC (guidance, navigation and control system) or landing apparatus. Thus, it allows for simple operations and for the design of lightweight landers with minimum platform overhead and maximum payload. These pods could then be used as a single measurement apparatus (e.g. seismometers) or as independent and different instruments, using their widespread distribution to gain both global and local knowledge on the asteroid.

  17. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  18. Matched Filter Processing for Asteroid Detection

    Science.gov (United States)

    Gural, Peter S.; Larsen, Jeffrey A.; Gleason, Arianna E.

    2005-10-01

    Matched filter (MF) processing has been shown to provide significant performance gains when processing stellar imagery used for asteroid detection, recovery, and tracking. This includes extending detection ranges to fainter magnitudes at the noise limit of the imagery and operating in dense cluttered star fields as encountered at low Galactic latitudes. The MF software has been shown to detect 40% more asteroids in high-quality Spacewatch imagery relative to the currently implemented approaches, which are based on moving target indicator (MTI) algorithms. In addition, MF detections were made in dense star fields and in situations in which the asteroid was collocated with a star in an image frame, cases in which the MTI algorithms failed. Thus, using legacy sensors and optics, improved detection sensitivity is achievable by simply upgrading the image-processing stream. This in turn permits surveys of the near-Earth asteroid (NEA) population farther from opposition, for smaller sizes, and in directions previously inaccessible to current NEA search programs. A software package has been developed and made available on the NASA data services Web site that can be used for asteroid detection and recovery operations utilizing the enhanced performance capabilities of MF processing.

  19. Spectroscopy and Photometry of CAI-rich asteroids

    Science.gov (United States)

    Tanga, P.; Devogele, M.; Bendjoya, Ph.; Cellino, A.; Surdej, J.

    2017-09-01

    Asteroids with an anomalous amount of primitive elements, formed in ancient times in the solar nebula, exist. Our study confirms their nature and provides hints to the interpretation of the ancient evolution of asteroids.

  20. SMALL MAIN-BELT ASTEROID SPECTROSCOPIC SURVEY, PHASE II

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains visible-wavelength (0.435-0.925 micron) spectra for 1341 main-belt asteroids observed during the second phase of the Small Main-belt Asteroid...

  1. Stability Analysis of Spacecraft Motion in the Vicinity of Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of my proposal is to determine the stability of a spacecraft when in the vicinity of an asteroid. Orbiting an asteroid is a difficult task. The unique...

  2. The thermal evolution of large water-rich asteroids

    Science.gov (United States)

    Schmidt, B. E.; Castillo, J. C.

    2009-12-01

    Water and heat played a significant role in the formation and evolution of large main belt asteroids, including 1 Ceres, 2 Pallas, and 24 Themis, for which there is now evidence of surficial water ice (Rivkin & Emery, ACM 2008). Shape measurements indicate some differentiation of Ceres’ interior, which, in combination with geophysical modeling, may indicate compositional layering in a core made up of anhydrous and hydrated silicate and a water ice mantle (Castillo-Rogez & McCord, in press, Icarus). We extend these interior models now to other large, possibly water-rich main belt asteroids, namely Pallas, at mean radius 272 km, and the Themis family parent body, at mean radius 150 km. The purpose of this study is to compare geophysical models against available constraints on the physical properties of these objects and to offer constraints on the origin of these objects. Pallas is the largest B-type asteroid. Its surface of hydrated minerals and recent constraint on its density, 2.4-2.8 g/cm3, seems to imply that water strongly affected its evolution (Schmidt et al., in press, Science). 24 Themis is the largest member of the Themis family that now counts about 580 members, including some of the main belt comets. The large member 90 Antiope has a density of about 1.2 g/cm3, while 24 Themis has a density of about 2.7 +/-1.3 g/cm3. The apparent contrast in the densities and spectral properties of the Themis family members may reflect a compositional layering in the original parent body. In the absence of tidal heating and with little accretional heat, the evolution of these small water-rich objects is a function of their initial composition and temperature. The latter depends on the location of formation (in the inner or outer solar system) and most importantly on the time and duration of accretion, which determines the amount of short-lived radioisotopes available for early internal activity. New accretional models suggest that planetesimals grew rapidly throughout

  3. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    Science.gov (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  4. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  5. [Myanmar mission].

    Science.gov (United States)

    Alfandari, B; Persichetti, P; Pelissier, P; Martin, D; Baudet, J

    2004-06-01

    The authors report the accomplishment of humanitarian missions in plastic surgery performed by a small team in town practice in Yangon, about their 3 years experience in Myanmar with 300 consultations and 120 surgery cases. They underline the interest of this type of mission and provide us their reflexion about team training, the type of relation with the country where the mission is conducted and the type of right team.

  6. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  7. Rock legends the asteroids and their discoverers

    CERN Document Server

    Murdin, Paul

    2016-01-01

    This book relates the history of asteroid discoveries and christenings, from those of the early pioneering giants of Hersehel and Piazzi to modern-day amateurs. Moving from history and anecdotal information to science, the book's structure is provided by the names of the asteroids, including one named after the author. Free from a need to conform to scientific naming conventions, the names evidence hero-worship, sycophancy, avarice, vanity, whimsy, erudition and wit, revealing the human side of astronomers, especially where controversy has followed the christening. Murdin draws from extensive historical records to explore the debate over these names. Each age reveals its own biases and preferences in the naming process. < Originally regarded as “vermin of the skies,” asteroids are minor planets, rocky scraps left over from the formation of the larger planets, or broken fragments of worlds that have collided. Their scientific classification as “minor” planets makes them seem unimportant, but over th...

  8. Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.

    2018-01-01

    The asteroid 16 Psyche is a primitive metal-rich asteroid that has not yet been visited by spacecraft. Based on remote observations, Psyche is most likely composed of iron and nickel metal; however, the history of its formation and solidification is still unknown. If Psyche is a remnant core of a differentiated planetesimal exposed by collisions, it opens a unique window toward understanding the cores of the terrestrial bodies, including the Earth and Mercury. If not, it is perhaps a reaccreted rubble pile that has never melted. In the former case, Psyche may have a remanent, dipolar magnetic field; in the latter case, Psyche may have no intrinsic field, but nevertheless would be a conductive object in the solar wind. We use Advanced Modeling Infrastructure in Space Simulation (AMITIS), a three-dimensional GPU-based hybrid model of plasma that self-consistently couples the interior electromagnetic response of Psyche (i.e., magnetic diffusion) to its ambient plasma environment in order to quantify the different interactions under these two cases. The model results provide estimates for the electromagnetic environment of Psyche, showing that the magnetized case and the conductive case present very different signatures in the solar wind. These results have implications for an accurate interpretation of magnetic field observations by NASA's Discovery mission (Psyche mission) to the asteroid 16 Psyche.

  9. SAFARI: Searching Asteroids For Activity Revealing Indicators

    Science.gov (United States)

    Curtis, Anthony; Chandler, Colin Orion; Mommert, Michael; Sheppard, Scott; Trujillo, Chadwick A.

    2018-06-01

    We present results on one of the deepest and widest systematic searches for active asteroids, objects in the main-belt which behave dynamically like asteroids but display comet-like comae. This activity comes from a variety of sources, such as the sublimation of ices or rotational breakup, the former of which offers an opportunity to study a family of protoplanetary ices different than those seen in comets and Kuiper Belt objects. Indications of activity may be detected through visual or spectroscopic evidence of gas or dust emissions. However, these objects are still poorly understood, with only about 25 identified to date. We looked for activity indicators with a pipeline that examined ~35,000 deep images taken with the Dark Energy Camera (DECam) mounted on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. Our pipeline was configured to perform astrometry on DECam images and produce thumbnail images of known asteroids in the field to be examined by eye for signs of activity. We detected three previously identified active asteroids, one of which has shown repeated signs of activity in these data. Our proof of concept demonstrates 1) our novel informatics approach can locate active asteroids 2) DECam data are well suited to search for active asteroids. We will discuss the design structure of our pipeline, adjustments that had to be made for the specific dataset to improve performance, and the the significance of detecting activity in the main-belt. The authors acknowledge funding for this project through NSF grant number AST-1461200.

  10. SEARCHING FOR TROJAN ASTEROIDS IN THE HD 209458 SYSTEM: SPACE-BASED MOST PHOTOMETRY AND DYNAMICAL MODELING

    International Nuclear Information System (INIS)

    Moldovan, Reka; Matthews, Jaymie M.; Gladman, Brett; Bottke, William F.; Vokrouhlicky, David

    2010-01-01

    We have searched Microvariability and Oscillations of Stars (MOST) satellite photometry obtained in 2004, 2005, and 2007 of the solar-type star HD 209458 for Trojan asteroid swarms dynamically coupled with the system's transiting 'hot Jupiter' HD 209458b. Observations of the presence and nature of asteroids around other stars would provide unique constraints on migration models of exoplanetary systems. Our results set an upper limit on the optical depth of Trojans in the HD 209458 system that can be used to guide current and future searches of similar systems by upcoming missions. Using cross-correlation methods with artificial signals implanted in the data, we find that our detection limit corresponds to a relative Trojan transit depth of 1 x10 -4 , equivalent to ∼1 lunar mass of asteroids, assuming power-law Trojan size distributions similar to Jupiter's Trojans in our solar system. We confirm with dynamical interpretations that some asteroids could have migrated inward with the planet to its current orbit at 0.045 AU, and that the Yarkovsky effect is ineffective at eliminating objects of >1 m in size. However, using numerical models of collisional evolution we find that, due to high relative speeds in this confined Trojan environment, collisions destroy the vast majority of the asteroids in -7 .

  11. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  12. Asteroid families - Physical properties and evolution

    International Nuclear Information System (INIS)

    Chapman, C.R.; Paolicchi, P.; Zappala, V.; Binzel, R.P.; Bell, J.F.

    1989-01-01

    Asteroid families are considered to be fragments from collisional destruction of precursor bodies. However, results available on the inferred mineralogy, size distributions, and spins of family members do not confirm the expectations of the traditional model. Only a handful of nearly 100 proposed families, most of them populous, have distributions of inferred mineralogies consistent with simple cosmochemical models for parent bodies. It is suggested that most catastrophic collisions may not result in observable families, but rather in a spray of smaller particles, thus accounting for the small number of confirmed and consistent families, despite evidence for extensive collisional evolution of asteroids. 52 refs

  13. Veritas Asteroid Family Still Holds Secrets?

    Science.gov (United States)

    Novakovic, B.

    2012-12-01

    Veritas asteroid family has been studied for about two decades. These studies have revealed many secrets, and a respectable knowledge about this family had been collected. Here I will present many of these results and review the current knowledge about the family. However, despite being extensively studied, Veritas family is still a mystery. This will be illustrated through the presentation of the most interesting open problems. Was there a secondary collision within this family? Does asteroid (490) Veritas belong to the family named after it? How large was the parent body of the family? Finally, some possible directions for future studies that aims to address these questions are discussed as well.

  14. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  15. Toward an International Lunar Polar Volatiles Strategy

    Science.gov (United States)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.

  16. Encounter of a different kind: Rosetta observes asteroid at close quarters

    Science.gov (United States)

    2008-09-01

    ESA's comet chaser, Rosetta, last night flew by a small body in the main asteroid belt, asteroid Steins, collecting a wealth of information about this rare type of minor Solar System body. At 20:58 CEST (18:58 UT) last night, ESA's Rosetta probe approached asteroid 2867 Steins, coming to within a distance of only 800 km from it. Steins is Rosetta's first nominal scientific target in its 11½ year mission to ultimately explore the nucleus of Comet 67P/Churyumov-Gerasimenko. The success of this 'close' encounter was confirmed at 22:14 CEST, when ESA's ground control team at the European Space Operations Centre (ESOC) in Darmstadt, Germany, received initial telemetry from the spacecraft. During the flyby operations, Rosetta was out of reach as regards communication links because its antenna had to be turned away from Earth. At a distance of about 2.41 AU (360 million kilometres) from our planet, the radio signal from the probe took 20 minutes to reach the ground. Steins is a small asteroid of irregular shape with a diameter of only 4.6 km. It belongs to the rare class of E-type asteroids, which had not been directly observed by an interplanetary spacecraft before. Such asteroids are quite small in size and orbit and are mostly found in the inner part of the main asteroid belt located between Mars and Jupiter. They probably originate from the mantle of larger asteroids destroyed in the early history of the Solar System, and are thought to be composed mainly of silicate minerals with little or no iron content. The data collected by Rosetta last night and which will be analysed over the coming days and weeks will finally unveil the true nature of Steins. Through the study of minor bodies such as asteroids, Rosetta is opening up a new window onto the early history of our Solar System. It will give us a better understanding of the origins and evolution of the planets, and also a key to better interpreting asteroid data collected from the ground. Under Rosetta's scope This

  17. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    Science.gov (United States)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  18. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-04

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology.

  19. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology

  20. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding the export of nuclear material and of certain categories of equipment and other material

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of a letter received by the Director general of the IAEA from Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning the export of nuclear material and of certain categories of equipment and other material