WorldWideScience

Sample records for internal standing waves

  1. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  2. On functional equations leading to exact solutions for standing internal waves

    NARCIS (Netherlands)

    Beckebanze, F.; Keady, G.

    The Dirichlet problem for the wave equation is a classical example of a problem which is ill-posed. Nevertheless, it has been used to model internal waves oscillating harmonically in time, in various situations, standing internal waves amongst them. We consider internal waves in two-dimensional

  3. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  4. Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons

    Science.gov (United States)

    Johansson; Aubry

    2000-05-01

    We investigate the long-time evolution of weakly perturbed single-site breathers (localized stationary states) in the discrete nonlinear Schrodinger equation. The perturbations we consider correspond to time-periodic solutions of the linearized equations around the breather, and can be either (i) spatially localized or (ii) spatially extended. For case (i), which corresponds to the excitation of an internal mode of the breather, we find that the nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather amplitude and frequency. In case (ii), corresponding to interaction between the breather and a standing-wave phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition yields a limit value for the breather frequency above which no further growth is possible. We also discuss another mechanism for breather growth and destruction which becomes important when the amplitude of the perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-wave phonons.

  5. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.

    Science.gov (United States)

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T C

    2007-09-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.

  6. Students dance longitudinal standing waves

    Science.gov (United States)

    Ruiz, Michael J.

    2017-05-01

    A demonstration is presented that involves students dancing longitudinal standing waves. The resulting kinaesthetic experience and visualization both contribute towards an understanding of the natural modes of vibrations in open and closed pipes. A video of this fun classroom activity is provided (http://mjtruiz.com/ped/dance/).

  7. Gravity Capillary Standing Water Waves

    Science.gov (United States)

    Alazard, Thomas; Baldi, Pietro

    2015-09-01

    The paper deals with the 2D gravity-capillary water waves equations in their Hamiltonian formulation, addressing the question of the nonlinear interaction of a plane wave with its reflection off a vertical wall. The main result is the construction of small amplitude, standing (namely periodic in time and space, and not travelling) solutions of Sobolev regularity, for almost all values of the surface tension coefficient, and for a large set of time-frequencies. This is an existence result for a quasi-linear, Hamiltonian, reversible system of two autonomous pseudo-PDEs with small divisors. The proof is a combination of different techniques, such as a Nash-Moser scheme, microlocal analysis and bifurcation analysis.

  8. A Mathematical Prediction of Standing Waves

    Science.gov (United States)

    Higgins, Jon

    1970-01-01

    Presents a problem in standing waves that provides an example of the mathematics used by theoretical physicists to generate predictions of new phenomena from fundamental background knowledge. Mathematical analysis required to solve problem is accomplished by simple graphical processes. (BR)

  9. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements...... were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height H= 5.9-12.0 cm, wave period T= 1.09s, and water depth h=30 cm. The experiments show that the seabed liquefaction under standing waves, although...... with a diffusion coefficient equal to the coefficient of consolidation. The experiments further show that the number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same wave height. © 2013 American Society of Civil Engineers....

  10. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    OpenAIRE

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The

  11. Standing waves in fiber-optic interferometers.

    Science.gov (United States)

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  12. Future directions in standing-wave photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander X., E-mail: axgray@temple.edu

    2014-08-15

    Highlights: • Probing magnetic properties at the buried interface with SW-MCD. • Probing electronic structure at the buried interface with resonant SW-XPS and SW-HAXPES. • Probing momentum-resolved electronic structure at a buried interface with SWARPES. • Adding depth resolution to photoemission microscopy with standing-wave excitation. • Standing-wave localization, total reflection and waveguide effects. - Abstract: Over the past decade, standing-wave photoemission (SW-XPS) has evolved into a powerful and versatile non-destructive technique for probing element-specific electronic, magnetic, and structural properties of buried layers and interfaces with sub-nanometer depth resolution. In this article, I will discuss several promising future directions in this emergent field stemming from experimental and theoretical studies wherein SW-XPS is combined with other X-ray techniques, such as magnetic circular dichroism (MCD), hard X-ray photoemission spectroscopy (HAXPES), angle-resolved photoemission (ARPES), and photoemission microscopy (PEEM), adding extra dimensions to the measurement and thus widening the scope of scientific and technological questions accessible via the use of standing waves. I will further discuss examples of recently developed methods for X-ray standing-wave data analysis, which yield layer-resolved matrix-element-weighted densities of states at interfaces as well as Ångstrom-level changes in periodicity of synthetic superlattices. Finally, I will explore the possibility of localizing the standing waves near the surface and within a buried layer by the use of aperiodic superlattices, total reflection, and X-ray waveguide effects.

  13. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  14. Standing waves for discrete nonlinear Schrodinger equations

    OpenAIRE

    Ming Jia

    2016-01-01

    The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  15. Guitar Strings as Standing Waves: A Demonstration

    Science.gov (United States)

    Davis, Michael

    2007-01-01

    The study demonstrates the induction of one-dimensional standing waves, called "natural-harmonics" on a guitar to provide a unique tone. The analysis shows that a normally complex vibration is composed of a number of simple and discrete vibrations.

  16. Saturation process of nonlinear standing waves

    Institute of Scientific and Technical Information of China (English)

    马大猷; 刘克

    1996-01-01

    The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.

  17. Standing waves for discrete nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Ming Jia

    2016-07-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  18. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  19. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  20. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  1. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  2. Radiation from cosmic string standing waves

    Science.gov (United States)

    Olum; Blanco-Pillado

    2000-05-01

    We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.

  3. Stationary solid particle attractors in standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lappa, Marcello, E-mail: marlappa@unina.it, E-mail: marcello.lappa@telespazio.com [Telespazio, Via Gianturco 31, Napoli 80046 (Italy)

    2014-01-15

    The present analysis extends earlier theories on patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow by considering the case in which the particle carrier flow has the typical features of a “standing wave.” For the first time an explanation for this phenomenon is elaborated through arguments based on the interplay between vorticity and wave-interference dynamics (following a deductive approach after the so-called phase-locking or “resonance” model originally introduced by Pushkin et al. [Phys. Rev. Lett. 106, 234501 (2011)] and later variants developed by Lappa [Phys. Fluids 25(1), 012101 (2013) and Lappa, Chaos 23(1), 013105 (2013)]). The results of dedicated numerical simulations are used in synergy with available experimental work. An interesting analogy is proposed with the famous Chladni's series of experiments on patterns formed by sand on vibrating plates.

  4. Stationary solid particle attractors in standing waves

    Science.gov (United States)

    Lappa, Marcello

    2014-01-01

    The present analysis extends earlier theories on patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow by considering the case in which the particle carrier flow has the typical features of a "standing wave." For the first time an explanation for this phenomenon is elaborated through arguments based on the interplay between vorticity and wave-interference dynamics (following a deductive approach after the so-called phase-locking or "resonance" model originally introduced by Pushkin et al. [Phys. Rev. Lett. 106, 234501 (2011)] and later variants developed by Lappa [Phys. Fluids 25(1), 012101 (2013) and Lappa, Chaos 23(1), 013105 (2013)]). The results of dedicated numerical simulations are used in synergy with available experimental work. An interesting analogy is proposed with the famous Chladni's series of experiments on patterns formed by sand on vibrating plates.

  5. Onset behavior of standing wave thermoacoustic pressure wave generator

    Science.gov (United States)

    Mehta, Shreya; Desai, Keyur; Naik, Hemant Bhimbhai; Atrey, Milind

    2012-06-01

    A standing wave type thermoacoustic pressure wave generator for 300 Hz operating frequency is designed and developed for helium as a working fluid. The device is designed as a half wave length resonator. A parallel plate type SS 304 stack is designed and fabricated. An electric heater is used for heat supply to the hot end heat exchanger while a water cooled heat exchanger is used to maintain the other end of the stack near ambient temperature. An acoustic amplifier is used to amplify the pressure ratio generated. Experiments are conducted to study the onset behavior of pressure wave generator in terms of temperature range. Observations are recorded using piezoelectric pressure transducer. The results are obtained with different charging pressure and heat inputs. A pressure ratio of around 1.1 to 1.15 has been obtained using Nitrogen as a working fluid. The onset of thermoacoustic oscillations are studied for different filling pressure and for a range of hot end temperature.

  6. A 6D standing wave Braneworld

    CERN Document Server

    Sousa, L J S; Almeida, C A S

    2012-01-01

    We constructed a six-dimensional version of the standing wave model with an anisotropic 4-brane generated by a phantom-like scalar field. The model represents a braneworld where the compact (on-brane) dimension is assumed to be sufficiently small in order to describe our universe (hybrid compactification). The proposed geometry of the brane and its transverse manifold is non-static, unlike the majority of braneworld models presented in the literature. Furthermore, we have shown that the zero-mode scalar field is localized around the brane. While in the string-like defect the scalar field is localized on a brane with decreasing warp factor, here it was possible to perform the localization with an increasing warp factor.

  7. Theoretical Study on Standing Wave Thermoacoustic Engine

    Science.gov (United States)

    Kalra, S.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    Applications of thermoacoustic engines are not limited to driving pulse tube cryocoolers. The performance of a thermoacoustic engine is governed by various design parameters like type of resonator, stack geometry, frequency, type of working gas etc. and various operating parameters like heat input, charging pressure etc. It is very important to arrive at an optimum configuration of the engine for which a theoretical model is required. In the present work, a theoretical analysis, based on linear acoustic theory of a standing wave type half wavelength thermoacoustic engine is carried out using DeltaEC software. The system dimensions like length of resonator, stack, hot and cold heat exchangers are fixed with a helium-argon mixture as the working gas and a parallel plate type stack. Later on, two plate spacings, corresponding to helium-argon mixture and nitrogen gas, are used for carrying out analysis with helium, argon, nitrogen, carbon dioxide and helium-argon mixture as working gases of the system. The effect of charging pressure on the performance of the system is studied in terms of resonating frequency, onset temperature, pressure amplitude, acoustic power and efficiency. The conclusions derived from the analysis are reported in the paper.

  8. Standing Wave Solutions in Nonhomogeneous Delayed Synaptically Coupled Neuronal Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linghai; STONER Melissa Anne

    2012-01-01

    The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed system of integral differential equations and a nonlinear scalar integral differential equation.It will be shown that there exist six standing wave solutions ((u(x,t),w(x,t)) =(U(x),W(x)) to the nonlinear singularly perturbed system of integral differential equations.Similarly,there exist six standing wave solutions u(x,t) =U(x) to the nonlinear scalar integral differential equation.The main idea to establish the stability is to construct Evans functions corresponding to several associated eigenvalue problems.

  9. Transient Response Model of Standing Wave Piezoelectric Linear Ultrasonic Motor

    Institute of Scientific and Technical Information of China (English)

    SHI Yunlai; CHEN Chao; ZHAO Chunsheng

    2012-01-01

    A transient response model for describing the starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor was presented.Based on the contact dynamic model,the kinetic equation of the motor was derived.The starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor according to different loads,contact stiffness and inertia mass were described and analyzed,respectively.To validate the transient response model,a standing wave piezoelectric linear ultrasonic motor based on in-plane modes was used to carry out the simulation and experimental study.The corresponding results showed that the simulation of the motor performances based on the proposed model agreed well with the experimental results.This model will helpful to improve the stepping characteristics and the control flexibility of the standing wave piezoelectric linear ultrasonic motor.

  10. Experimental study on the standing-wave tube with tapered section and its extremely nonlinear standing-wave field

    Institute of Scientific and Technical Information of China (English)

    MIN Qi; YIN Yao; LI Xiaodong; LIU Ke

    2011-01-01

    A standing-wave tube with tapered section (STTS) was evolved from a standingwave tube with abrupt section (STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.

  11. Standing magnetic wave on Ising ferromagnet: Nonequilibrium phase transition

    Science.gov (United States)

    Halder, Ajay; Acharyya, Muktish

    2016-12-01

    The dynamical response of an Ising ferromagnet to a plane polarised standing magnetic field wave is modelled and studied here by Monte Carlo simulation in two dimensions. The amplitude of standing magnetic wave is modulated along the direction x. We have detected two main dynamical phases namely, pinned and oscillating spin clusters. Depending on the value of field amplitude the system is found to undergo a phase transition from oscillating spin cluster to pinned as the system is cooled down. The time averaged magnetisation over a full cycle of magnetic field oscillations is defined as the dynamic order parameter. The transition is detected by studying the temperature dependences of the variance of the dynamic order parameter, the derivative of the dynamic order parameter and the dynamic specific heat. The dependence of the transition temperature on the magnetic field amplitude and on the wavelength of the magnetic field wave is studied at a single frequency. A comprehensive phase boundary is drawn in the plane described by the temperature and field amplitude for two different wavelengths of the magnetic wave. The variation of instantaneous line magnetisation during a period of magnetic field oscillation for standing wave mode is compared to those for the propagating wave mode. Also the probability that a spin at any site, flips, is calculated. The above mentioned variations and the probability of spin flip clearly distinguish between the dynamical phases formed by propagating magnetic wave and by standing magnetic wave in an Ising ferromagnet.

  12. Excitation of Standing Waves by an Electric Toothbrush

    Science.gov (United States)

    Cros, Ana; Ferrer-Roca, Chantal

    2006-01-01

    There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…

  13. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  14. The nonlinear standing wave inside the space of liquid

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.

  15. A Standing-Wave Experiment with a Guitar

    Science.gov (United States)

    Inman, Fred W.

    2006-10-01

    When teaching standing waves, one often uses as examples musical instruments with strings, e.g., pianos, violins, and guitars. In today's popular music culture, young people may be more familiar with guitars than any other string instrument. I was helping my 15-year-old granddaughter make some repairs and adjustments to her electric guitar, and the subject of the spacing between the frets on the fingerboard was raised. I told her that the physics of standing waves and the equal tempered musical scale dictate the location of the frets. The purpose of this paper is to suggest that students might be introduced to the physics of standing waves using a guitar and to the formula for the fret locations. By measuring the positions of the frets, this formula can be tested.

  16. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  17. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  18. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  19. Cooldown Measurements in a Standing Wave Thermoacoustic Refrigerator

    CERN Document Server

    Dhuley, R C

    2016-01-01

    Thermoacoustic Refrigerators (TARs) use acoustic power to generate cold temperatures. Apart from the operating frequency and the mean temperature of the working medium, the charging pressure and the dynamic pressure in the TAR govern its attainable cold temperature. The effect of charging pressure on the dynamic pressure in a loudspeaker driven gas filled standing wave column has been well understood. The present work aims to investigate the effect of charging pressure on the cold end temperature of a standing wave TAR. The cold end temperature lift and the cooldown for several changing pressures are reported. The effect of vacuum around the cold end on the TAR performance is also presented.

  20. Magnetization dynamics and spin pumping induced by standing elastic waves

    Science.gov (United States)

    Azovtsev, A. V.; Pertsev, N. A.

    2016-11-01

    The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation comprising the damping term and the effective magnetic field with all relevant contributions. The simulations have been performed for 2-nm-thick F e81G a19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency νres of coherent magnetization precession in unstrained F e81G a19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves with frequencies well below νres, where the magnetization precesses with variable frequency strongly exceeding the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.

  1. Inherently Unstable Internal Gravity Waves

    CERN Document Server

    Liang, Y

    2016-01-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.

  2. International Society of Sports Nutrition position stand: energy drinks

    National Research Council Canada - National Science Library

    Campbell, Bill; Wilborn, Colin; La Bounty, Paul; Taylor, Lem; Nelson, Mike T; Greenwood, Mike; Ziegenfuss, Tim N; Lopez, Hector L; Hoffman, Jay R; Stout, Jeffrey R; Schmitz, Stephen; Collins, Rick; Kalman, Doug S; Antonio, Jose; Kreider, Richard B

    2013-01-01

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES...

  3. In Pursuit of Internal Waves

    Science.gov (United States)

    Peacock, Thomas

    2014-11-01

    Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.

  4. The treatment of radioactive wastewater by ultrasonic standing wave method

    Energy Technology Data Exchange (ETDEWEB)

    Su-xia, Hou, E-mail: hsxljj@sina.com; Ji-jun, Luo; Bin, He; Ru-song, Li; Tao, Shen

    2014-06-01

    Highlights: • USWM can be considered as the green cleaning separation techniques. • A physical model of suspended radioactive particle is established. • A computer program is developed to achieve numerical calculation and analysis. • The experimental device for low-level radioactive wastes treatment is designed. • Lots of experimental data are used to analysis the influence of the parameters. - Abstract: The radiation hazards of radionuclide arising from the storage of nuclear weapons cannot be ignored to the operators. Ultrasonic standing wave methods can be considered as the green cleaning separation techniques with high efficiency. The application of ultrasonic standing wave methods for liquid radioactive wastes treatment requires solving many problems connected with the proper selection of the frequency and power of ultrasonic transducers, and the processing time, etc. Based on the model of one single suspended radioactive particle subjected to in the field of ultrasonic standing wave, the principle of the treatment of low-level radioactive wastewater by ultrasound was analyzed. The theoretical and simulation results show that under the action of ultrasonic standing wave, the particle will move toward the wave node plane, and the time of particle reaching the plane become shorter when the radius of particle and the frequency and power of ultrasound was enlarged. The experimental results show that the radioactive concentration of wastewater could be reduced from 400 Bq L{sup −1} to 9.3 Bq L{sup −1} and the decontamination efficiency was 97.68%. The decontamination efficiency could not be obviously improved by further increasing the treating time.

  5. The periodic standing-wave approximation: post-Minkowski computation

    CERN Document Server

    Beetle, Christopher; Hernández, Napoleón; Price, Richard H

    2007-01-01

    The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results w...

  6. Precision measurements in ion traps using slowly moving standing waves

    CERN Document Server

    Walther, A; Singer, K; Schmidt-Kaler, F

    2011-01-01

    The present paper describes the experimental implementation of a measuring technique employing a slowly moving, near resonant, optical standing wave in the context of trapped ions. It is used to measure several figures of merit that are important for quantum computation in ion traps and which are otherwise not easily obtainable. Our technique is shown to offer high precision, and also in many cases using a much simpler setup than what is normally used. We demonstrate here measurements of i) the distance between two crystalline ions, ii) the Lamb-Dicke parameter, iii) temperature of the ion crystal, and iv) the interferometric stability of a Raman setup. The exact distance between two ions, in units of standing wave periods, is very important for motional entangling gates, and our method offers a practical way of calibrating this distance in the typical lab situation.

  7. Traveling and Standing Waves in Coupled Pendula and Newton's Cradle

    Science.gov (United States)

    García-Azpeitia, Carlos

    2016-12-01

    The existence of traveling and standing waves is investigated for chains of coupled pendula with periodic boundary conditions. The results are proven by applying topological methods to subspaces of symmetric solutions. The main advantage of this approach comes from the fact that only properties of the linearized forces are required. This allows to cover a wide range of models such as Newton's cradle, the Fermi-Pasta-Ulam lattice, and the Toda lattice.

  8. Attractors and chaos of electron dynamics in electromagnetic standing wave

    CERN Document Server

    Esirkepov, Timur Zh; Koga, James K; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N; Korn, Georg; Bulanov, Sergei V

    2014-01-01

    The radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses.

  9. Interaction of aerosol particles with a standing wave optical field

    Science.gov (United States)

    Curry, John J.

    2016-09-01

    Trajectories of spherical dielectric particles carried across an optical standing wave by a flowing medium are investigated. Trajectories are determined by a three-dimensional Monte Carlo calculation that includes drag forces, Brownian motion, and optical gradient forces. We analyze the case of polystyrene particles with radii of order 100 nm carried across a Gaussian-mode standing wave by slowly flowing air. Particles are injected into the flowing air from a small source area such as the end of a capillary tube. Different sizes are dispersed continuously in space on the opposite side of the standing wave, demonstrating a practical way to sort particles. Certain discrete values of particle size show no interaction with the optical field, independent of intensity. These particles can be sorted with exceptionally high resolution. For example, particles with radii of 275 nm can be sorted with 1 nm resolution. This sorting scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. The Monte Carlo results are in agreement with those obtained by a much simpler, and faster, fluid calculation based on effective velocities and effective diffusion coefficients, both obtained by averaging trajectories over multiple fringes of the optical field.

  10. Inherently Unstable Internal Gravity Waves

    Science.gov (United States)

    Alam, Reza

    2016-11-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance discussed here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing. Yong Liang (yong.liang@berkeley.edu).

  11. Stress wave propagation on standing trees. Part 2, Formation of 3D stress wave contour maps.

    Science.gov (United States)

    Juan Su; Houjiang Zhang; Xiping Wang

    2009-01-01

    Nondestructive evaluation (NDE) of wood quality in standing trees is an important procedure in the forest operational value chain worldwide. The goal of this paper is to investigate how a stress wave travel in a tree stem as it is introduced into the tree through a mechanical impact. Experimental stress wave data was obtained on freshly cut red pine logs in the...

  12. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  13. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  14. Adsorption-Mediated Mass Streaming in a Standing Acoustic Wave

    Science.gov (United States)

    Weltsch, Oren; Offner, Avshalom; Liberzon, Dan; Ramon, Guy Z.

    2017-06-01

    Oscillating flows can generate nonzero, time-averaged fluxes despite the velocity averaging zero over an oscillation cycle. Here, we report such a flux, a nonlinear resultant of the interaction between oscillating velocity and concentration fields. Specifically, we study a gas mixture sustaining a standing acoustic wave, where an adsorbent coats the solid boundary in contact with the gas mixture. It is found that the sound wave produces a significant, time-averaged preferential flux of a "reactive" component that undergoes a reversible sorption process. This effect is measured experimentally for an air-water vapor mixture. An approximate model is shown to be in good agreement with the experimental observations, and further reveals the interplay between the sound-wave characteristics and the properties of the gas-solid sorbate-sorbent pair. The preferential flux generated by this mechanism may have potential in separation processes.

  15. CFD simulation of a 300 Hz thermoacoustic standing wave engine

    Science.gov (United States)

    Yu, Guoyao; Dai, W.; Luo, Ercang

    2010-09-01

    High frequency operation of standing wave thermoacoustic heat engines is attractive for space applications due to compact size and high reliability. To expedite practical use, further improvement and optimization should be based on deep understanding and quantitative analysis. This article focuses on using computational fluid dynamics (CFD) to investigate nonlinear phenomena and processes of a 300 Hz standing wave thermoacoustic engine (SWTE). The calculated model was tested in detail, which indicated that the co-axially stacked tube model was suitable for the simulation of SWTEs. Two methods of imposing temperature gradient across the stack were studied, and the processes of mean pressure increasing, pressure wave amplification and saturation were obtained under the thermal boundary condition of applying heating power. The acoustic fields were given, and the flow vortices and their evolution in both ends of the stack and resonator were observed. Moreover, a comparison between the simulation and experiments was made, which demonstrated the validity and power of the CFD simulation for characterizing complicated nonlinear phenomenon involved in the self-excited SWTEs.

  16. Island-trapped Waves, Internal Waves, and Island Circulation

    Science.gov (United States)

    2015-09-30

    Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...topography. As strong flows encounter small islands, points, and submarine ridges, it is expected that wakes, eddies, and arrested internal lee waves ...form drag, lee waves , eddy generation) over small-scale topographic features and (ii) fundamentally nonlinear processes (turbulent island wakes

  17. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  18. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    2002-01-01

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  19. Attractors and chaos of electron dynamics in electromagnetic standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Esirkepov, Timur Zh. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Stepan S. [University of California, Berkeley, CA 94720 (United States); Koga, James K.; Kando, Masaki; Kondo, Kiminori [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Rosanov, Nikolay N. [Vavilov State Optical Institute, Saint-Petersburg 199034 (Russian Federation); Korn, Georg [ELI Beamline Facility, Institute of Physics, Czech Academy of Sciences, Prague 18221 (Czech Republic); Bulanov, Sergei V., E-mail: bulanov.sergei@jaea.go.jp [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan)

    2015-09-25

    In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  20. Two Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  1. A standing wave braneworld and associated Sturm-Liouville problem

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto

    2010-01-01

    We present a consistent derivation of the recently proposed 5D standing wave braneworld generated by gravity coupled to a phantom-like scalar field by introducing an energy-momentum tensor on the brane with different tensions along different space-time directions and explicitly solve the corresponding junction conditions. We also analyze the Sturm-Liouville problem associated to the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model.

  2. Motion of a charge in a superstrong electromagnetic standing wave

    Science.gov (United States)

    Esirkepov, Timur Z.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.

    2015-05-01

    Radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense colliding laser pulses. Depending on the laser intensity and wavelength, the quantum corrections to the electron motion and the radiation reaction force can be independently small or large, thus dividing the parameter space into 4 regions. When radiation reaction dominates, the electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  3. Attractors and chaos of electron dynamics in electromagnetic standing waves

    Science.gov (United States)

    Esirkepov, Timur Zh.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.

    2015-09-01

    In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  4. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  5. Contact Analysis and Modeling of Standing Wave Linear Ultrasonic Motor

    Institute of Scientific and Technical Information of China (English)

    SHI Yunlai; ZHAO Chunsheng; ZHANG Jianhui

    2011-01-01

    A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented.The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process.A modified friction models was used to analyze the contact problems.Firstly,the dynamic normal contact force,interface friction force,and steady-state characteristics were analyzed.Secondly,the influences of the contact layer material,the dynamic characteristics of the stator,and the pre-load on motor performance were simulated.Finally,to validate the contact model,a linear ultrasonic motor based on in-plane modes was used as an example.The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results.This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these tvpes of motor.

  6. A standing wave-type noncontact linear ultrasonic motor.

    Science.gov (United States)

    Hu, J; Li, G; Chan, H L; Choy, C L

    2001-05-01

    In this study, a novel standing wave-type noncontact linear ultrasonic motor is proposed and analyzed. This linear ultrasonic motor uses a properly controlled ultrasonic standing wave to levitate and drive a slider. A prototype of the motor was constructed by using a wedge-shaped aluminum stator, which was placed horizontally and driven by a multilayer PZT vibrator. The levitation and motion of the slider were observed. Assuming that the driving force was generated by the turbulent acoustic streaming in the boundary air layer next to the bottom surface of the slider, a theoretical model was developed. The calculated characteristics of this motor were found to agree quite well with the experimental results. Based on the experimental and theoretical results, guidelines for increasing the displacement and speed of the slider were obtained. It was found that increasing the stator vibration displacement, or decreasing the gradient of the stator vibration velocity and the weight per unit area of the slider, led to an increase of the slider displacement. It was also found that increasing the amplitude and gradient of the stator vibration velocity, or decreasing the weight per unit area of the slider and the driving frequency, gave rise to an increase of the slider speed. There exists an optimum roughness of the bottom surface of the slider at which the slider speed has a maximum.

  7. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other

  8. Influence of mass imperfections on the evolution of standing waves in slowly rotating spherical bodies

    CSIR Research Space (South Africa)

    Shatalov, MY

    2011-01-01

    Full Text Available Standing waves can exist as stable vibrating patterns in perfect structures such as spherical bodies, and inertial rotation of the body causes precession (Bryan’seffect). However, an imperfection such as light mass anisotropy destroys the standing...

  9. Photo-Ionization of Hydrogen Atom in a Circularly Polarized Standing Electromagnetic Wave

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-Tao; ZHANG Qi-Ren; WANG Wan-Zhang

    2004-01-01

    Applying time-independent non-perturbative formalism to the photo-ionization of hydrogen atom immersed in a strong circularly polarized standing electromagnetic wave, we calculate the shift of energy levels and the distortion of wave functions for the hydrogen atom, the ionization cross section induced by the standing wave, and the angular distribution of photoelectrons and obtain some interesting results.

  10. Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization

    CERN Document Server

    Herrmann, Michael

    2010-01-01

    We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

  11. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  12. Internal energy relaxation in shock wave structure

    Science.gov (United States)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, "Solution of the Boltzmann kinetic equation for high-speed flows," Comput. Math. Math. Phys. 46, 315-329 (2006); F. Cheremisin, "Solution of the Wang Chang-Uhlenbeck equation," Dokl. Phys. 47, 487-490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  13. ORBITAL INSTABILITY OF STANDING WAVES FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Gan Zaihui; Guo Boling; Zhang Jian

    2008-01-01

    This paper deals with a type of standing waves for the coupled nonlin-ear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the standing waves with ground state by using variational argument. Then we prove the orbital instability of the standing waves by defining invariant sets and applying some priori estimates.

  14. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  15. Unified relativistic physics from a standing wave particle model

    CERN Document Server

    Vera, R A

    1995-01-01

    An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...

  16. Design and simulation of a standing wave oscillator based PLL

    Institute of Scientific and Technical Information of China (English)

    Wei ZHANG; You-de HU; Li-rong ZHENG

    2016-01-01

    A standing wave oscillator (SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor (IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop (PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P9M complementary metal-oxide-semiconductor (CMOS) technology, and can be used directly in a high performance multi-core microprocessor.

  17. Suspension of atoms and gravimetry using a pulsed standing wave

    CERN Document Server

    Hughes, K J; Sackett, C A

    2009-01-01

    Atoms from an otherwise unconfined 87Rb condensate are shown to be suspended against gravity using repeated reflections from a pulsed optical standing wave. Reflection efficiency was optimized using a triple-pulse sequence that, theoretically, provides accuracies better than 99.9%. Experimentally, up to 100 reflections are observed, leading to dynamical suspension for over 100 ms. The velocity sensitivity of the reflections can be used to determine the local gravitational acceleration. Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms, with packet coherence maintained for a similar time. These techniques could be useful for the precise measurement of gravity when it is impractical to allow atoms to fall freely over a large distance.

  18. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten

    2006-01-01

    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  19. Dispersive internal long wave models

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R.; Choi, W.; Holm, D.D. [Los Alamos National Lab., NM (United States); Levermore, C.D.; Lvov, Y. [Univ. of Arizona, Tucson, AZ (United States)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.

  20. Trial Operation of a Stand-alone Wave Power System Successful

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ A group of scientists from the CAS Guangzhou Institute of Energy Conversion succeeded on January 9 in their first sea trial of a stand-alone wave power system, marking significant progress in generating stable electricity with wave energy.

  1. Coherent control of light-matter interactions in polarization standing waves

    Science.gov (United States)

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-08-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  2. What are the frequencies of standing magnetopause surface waves?

    CERN Document Server

    Archer, Martin

    2014-01-01

    We estimate, for the first time, the distribution of standing magnetopause surface wave (also called Kruskal-Schwartzschild mode) frequencies using realistic models of the magnetosphere and magnetosheath utilising an entire solar cycle's worth of solar wind data. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be 0.64$\\pm$0.06 mHz, consistent with that previously inferred from observed oscillation periods of the boundary. However, the distributions exhibit significant spread (of order $\\pm$0.3 mHz), much larger than suggested by proponents of discrete, stable "magic" frequencies of magnetospheric oscillation. The frequency is found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the occurrence of Kruskal-Schwartzschild ...

  3. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.

    Science.gov (United States)

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J Phillip; Levine, Stewart J; Wang, Lin; Huang, Tony Jun

    2014-03-07

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.

  4. On the atmospheric internal ship waves

    Institute of Scientific and Technical Information of China (English)

    桑建国

    1997-01-01

    The analytical solutions of the atmospheric internal ship waves induced by three-dimensional terrain are obtained by solving the atmospheric wave equation. The solutions show that the waves consist of the untrapped and trapped parts. The patterns of the diverging wave and transverse wave in the untrapped parts are mainly determined by the shape and orientation of the terrain. This kind of wave may transport the wave energy to the upper atmosphere. The patterns of trapped lee waves are decided by the atmospheric conditions such as stratification, mean wind speeds and wind shear.

  5. SQUEEZING PROPERTIES OF A TRAPPED ION IN THE STANDING-WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    FANG MAO-FA; LIU XIANG

    2001-01-01

    We investigate the squeezing properties of a trapped ion in a standing-wave laser. Our results show that the squeezing of a trapped ion in the standing-wave laser is dependent on its position in the latter, the detuning parameter and the initial average phonon number.

  6. International Society of Sports Nutrition position stand: energy drinks

    OpenAIRE

    Campbell Bill; Wilborn Colin; La Bounty Paul; Taylor Lem; Nelson Mike T; Greenwood Mike; Ziegenfuss Tim N; Lopez Hector L; Hoffman Jay R; Stout Jeffrey R; Schmitz Stephen; Collins Rick; Kalman Doug S; Antonio Jose; Kreider Richard B

    2013-01-01

    Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The er...

  7. Open Ocean Internal Waves, South China Sea

    Science.gov (United States)

    1989-01-01

    These open ocean internal waves were seen in the south China Sea (19.5N, 114.5E). These sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond this photo for over 75 miles. At lower right, the surface waves are moving at a 30% angle to the internal waves, with parallel low level clouds.

  8. Noise-induced standing waves in oscillatory systems with time-delayed feedback

    CERN Document Server

    Stich, Michael

    2016-01-01

    In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.

  9. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  10. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  11. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise).

  12. Extracting Information from the Atom-Laser Wave Function UsingInterferometric Measurement with a Laser Standing-Wave Grating

    Institute of Scientific and Technical Information of China (English)

    刘正东; 武强; 曾亮; 林宇; 朱诗尧

    2001-01-01

    The reconstruction of the atom-laser wave function is performed using an interferometric measurement with a standing-wave grating, and the results of this scheme are studied. The relations between the measurement data and the atomic wave function are also presented. This scheme is quite applicable and effectively avoids the initial random phase problem of the method that employs the laser running wave. The information which is encoded in the atom-laser wave is extracted.

  13. Non-linear fate of internal wave attractors

    CERN Document Server

    Scolan, Hélène; Dauxois, Thierry

    2013-01-01

    We present a laboratory study on the instability of internal wave attractors in a trapezoidal fluid domain filled with uniformly stratified fluid. Energy is injected into the system via standing-wave-type motion of a vertical wall. Attractors are found to be destroyed by parametric subharmonic instability (PSI) via a triadic resonance which is shown to provide a very efficient energy pathway from long to short length scales. This study provides an explanation why attractors may be difficult or impossible to observe in natural systems subject to large amplitude forcing.

  14. Energy cascade in internal wave attractors

    CERN Document Server

    Brouzet, Christophe; Joubaud, Sylvain; Sibgatullin, Ilias; Dauxois, Thierry

    2016-01-01

    One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal wave attractors in the large amplitude regime as a unique self-consistent experimental and numerical setup that models a cascade of triadic interactions transferring energy from large-scale monochro-matic input to multi-scale internal wave motion. We also provide signatures of a discrete wave turbulence framework for internal waves. Finally, we show how beyond this regime, we have a clear transition to a regime of small-scale high-vorticity events which induce mixing. Introduction.

  15. Internal wave coupling processes in Earth's atmosphere

    CERN Document Server

    Yiğit, Erdal

    2014-01-01

    This paper presents a contemporary review of vertical coupling in the atmosphere and ionosphere system induced by internal waves of lower atmospheric origin. Atmospheric waves are primarily generated by meteorological processes, possess a broad range of spatial and temporal scales, and can propagate to the upper atmosphere. A brief summary of internal wave theory is given, focusing on gravity waves, solar tides, planetary Rossby and Kelvin waves. Observations of wave signatures in the upper atmosphere, their relationship with the direct propagation of waves into the upper atmosphere, dynamical and thermal impacts as well as concepts, approaches, and numerical modeling techniques are outlined. Recent progress in studies of sudden stratospheric warming and upper atmospheric variability are discussed in the context of wave-induced vertical coupling between the lower and upper atmosphere.

  16. Supersaturation of vertically propagating internal gravity waves

    Science.gov (United States)

    Lindzen, Richard S.

    1988-01-01

    The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.

  17. Scaling-up ultrasound standing wave enhanced sedimentation filters.

    Science.gov (United States)

    Prest, Jeff E; Treves Brown, Bernard J; Fielden, Peter R; Wilkinson, Stephen J; Hawkes, Jeremy J

    2015-02-01

    Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonances were able to drive particles (yeast cells) in the water to nodes throughout the chamber. Ultrasound enhanced sedimentation was used to demonstrate the efficiency of the system (>99% particle clearance). Sub-wavelength pin protrusions were used for the contacts between the resonant chamber and other elements. The pins provided support and transferred power, replacing glue which is inefficient for power transfer. Filtration energies of ∼4 J/ml of suspension were measured. A calculation of thermal convection indicates that the circulation could disrupt cell alignment in ducts >35 mm high when a 1K temperature gradient is present; we predict higher efficiencies when this maximum height is observed. For the acoustic design, although modelling was minimal before construction, the very simple construction allowed us to form 3D models of the nodal patterns in the fluid and the duct structure. The models were compared with visual observations of particle movement, Chladni figures and scanning laser vibrometer mapping. This demonstrates that nodal planes in the fluid can be controlled by the position of clamping points and that the contacts could be positioned to increase the efficiency and reliability of particle manipulations in standing waves.

  18. Particle dynamics and pair production in tightly focused standing wave

    Science.gov (United States)

    Jirka, M.; Klimo, O.; Vranić, M.; Weber, S.; Korn, G.

    2017-05-01

    With the advent of 10 PW laser facilities, new regimes of laser-matter interaction are opening since effects of quantum electrodynamics, such as electron-positron pair production and cascade development, start to be important. The dynamics of light charged particles, such as electrons and positrons, is affected by the radiation reaction force. This effect can strongly influence the interaction of intense laser pulses with matter since it lowers the energy of emitting particles and transforms their energy to the gamma radiation. Consequently, electron-positron pairs can be generated via Breit-Wheeler process. To study this new regime of interaction, numerical simulations are required. With their help it is possible to predict and study quantum effects which may occur in future experiments at modern laser facilities. In this work we present results of electron interaction with an intense standing wave formed by two colliding laser pulses. Due to the necessity to achieve ultra intense laser field, the laser beam has to be focused to a μm-diameter spot. Since the paraxial approximation is not valid for tight focusing, the appropriate model describing the tightly focused laser beam has to be employed. In tightly focused laser beam the longitudinal component of the electromagnetic field becomes significant and together with the ponderomotive force they affect the dynamics of interacting electrons and also newly generated Breit-Wheeler electron-positron pairs. Using the Particle-In-Cell code we study electron dynamics, gamma radiation and pair production in such a configuration for linear polarization and different types of targets.

  19. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    Science.gov (United States)

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  20. Standing Waves of the Inhomogeneous Klein-Gordon Equations with Critical Exponent

    Institute of Scientific and Technical Information of China (English)

    Zai Hui GAN; Jian ZHANG

    2006-01-01

    This paper is concerned with the standing wave in the inhomogeneous nonlinear Klein-Gordon equations with critical exponent. Firstly, we obtain the existence of standing waves associated with the ground states by using variational calculus as well as a compactness lemma. Next, we establish some sharp conditions for global existence in terms of the characteristics of the ground state. Then,we show that how small the initial data are for the global solutions to exist. Finally, we prove the instability of the standing wave by combining the former results.

  1. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  2. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  3. Internal waves and vortices in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Some recent papers proposed the use of the satellite images of Google Earth in teaching physics, in particular to see some behaviours of waves. Reflection, refraction, diffraction and interference are easy to be found in these satellite maps. Besides Google Earth, other sites exist, such as Earth Observatory or Earth Snapshot, suitable for illustrating the large-scale phenomena in atmosphere and oceans In this paper, we will see some examples for teaching surface and internal sea waves, and internal waves and the K\\'arm\\'an vortices in the atmosphere. Aim of this proposal is attracting the interest of students of engineering schools to the physics of waves.

  4. Internal waves interacting with particles in suspension

    Science.gov (United States)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  5. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  6. Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    NARCIS (Netherlands)

    Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP

    2005-01-01

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca

  7. Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors

    Science.gov (United States)

    Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter

    2008-02-01

    A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 µs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.

  8. The Shadow Knows: Inferring the Density Distribution of a Nonuniform Medium from Its Standing Wave Pattern

    Science.gov (United States)

    Binder, Philippe; Cunnyngham, Ian

    2012-01-01

    In a recent note in this journal, Gluck presents a beautiful demonstration of the standing wave generated by a strip of material with linearly varying width (a trapezoid). As expected, the resulting wave envelope (and its shadow) showed a varying wavelength--smaller as the strip width gets larger.

  9. 28th International Symposium on Shock Waves

    CERN Document Server

    2012-01-01

    The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

  10. Standing Excitation Waves in the Heart Induced by Strong Alternating Electric Fields

    Science.gov (United States)

    Gray, Richard A.; Mornev, Oleg A.; Jalife, José; Aslanidi, Oleg V.; Pertsov, Arkady M.

    2001-10-01

    We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.

  11. Communication: Development of standing evanescent-wave fluorescence correlation spectroscopy and its application to the lateral diffusion of lipids in a supported lipid bilayer

    Science.gov (United States)

    Otosu, Takuhiro; Yamaguchi, Shoichi

    2017-07-01

    We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.

  12. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Directory of Open Access Journals (Sweden)

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  13. Overdetermined Shooting Methods for Computing Standing Water Waves with Spectral Accuracy

    CERN Document Server

    Wilkening, Jon

    2012-01-01

    A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In t...

  14. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  15. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  16. Influence of standing surface waves on thermocapillary convection stability and crystal growth in weightlessness

    Science.gov (United States)

    Feonychev, A. I.

    Numerical investigation of thermocapillary flows and crystal growth by the floating zone method had been carried out in the case what free fluid surface oscillates in the form of standing wave by vibration. Two sorts of standing waves were considered. First, it is inertia-capillary standing waves due to vibration motion of fluid column as unit. These waves had been discovered under numerical investigation of problem /1/. Analytical model and the characteristic properties of these waves are described in /2/. Secondly, usual capillary waves generated by vibration of growing crystal were also considered. The effects of these surface waves on fluid flow and heat and mass transfer in process of crystal growth had been investigated over the wide ranges of dimensionless parameters for the Prandtl number is less than 1. The Marangoni number was varied from 140 to 2500, the range of cyclic frequency was between 200 and 76000. Transition from laminar thermocapillary convection to regime of flow with high oscillations (turbulent convection) happens very sharply when dimensionless amplitude (scale for linear dimensions is radius of fluid column) of standing wave reached 0.01112/n, where n is number of standing wave periods are along the length of fluid zone. If configuration of standing wave correlates with thermocapillary flow pattern two specific regimes of flow had been discovered. Flow with small oscillations is located in the range of standing wave amplitude between 0.0028 and 0.00418. In this area, radial macrosegregation of dopant is lowered by the factor of 3-6 depending on the Marangoni number. Next is an area with practically stable flow, in particular is identical to laminar flow without vibration. This area ends very sharply in the boundary of turbulent flow. All the mentioned boundaries are independent of the Marangoni number and frequency of oscillation of standing wave. For oscillatory thermocapillary convection (the Marangoni number is more than 2000

  17. Adiabatic asymmetric scattering of atoms in the field of a standing wave

    CERN Document Server

    Hakobyan, M V; Ishkhanyan, A M

    2015-01-01

    A model of the asymmetric coherent scattering process (caused by initial atomic wave-packet splitting in the momentum space) taking place at the large detuning and adiabatic course of interaction for an effective two-state system interacting with a standing wave of laser radiation is discussed. We show that the same form of initial wave-packet splitting may lead to different, in general, diffraction patterns for opposite, adiabatic and resonant, regimes of the standing-wave scattering. We show that the scattering of the Gaussian wave packet in the adiabatic case presents refraction (a limiting form of the asymmetric scattering) in contrast to the bi-refringence (the limiting case of the high-order narrowed scattering) occurring in the resonant scattering.

  18. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  19. Acoustic clouds: standing sound waves around a black hole analogue

    CERN Document Server

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  20. Long solitary internal waves in stable stratifications

    Directory of Open Access Journals (Sweden)

    W. B. Zimmerman

    2004-01-01

    Full Text Available Observations of internal solitary waves over an antarctic ice shelf (Rees and Rottman, 1994 demonstrate that even large amplitude disturbances have wavelengths that are bounded by simple heuristic arguments following from the Scorer parameter based on linear theory for wave trapping. Classical weak nonlinear theories that have been applied to stable stratifications all begin with perturbations of simple long waves, with corrections for weak nonlinearity and dispersion resulting in nonlinear wave equations (Korteweg-deVries (KdV or Benjamin-Davis-Ono that admit localized propagating solutions. It is shown that these theories are apparently inappropriate when the Scorer parameter, which gives the lowest wavenumber that does not radiate vertically, is positive. In this paper, a new nonlinear evolution equation is derived for an arbitrary wave packet thus including one bounded below by the Scorer parameter. The new theory shows that solitary internal waves excited in high Richardson number waveguides are predicted to have a halfwidth inversely proportional to the Scorer parameter, in agreement with atmospheric observations. A localized analytic solution for the new wave equation is demonstrated, and its soliton-like properties are demonstrated by numerical simulation.

  1. Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Hyeok; Jeon, Jun Young; Kim, Du Hwan; Park, Gyuhae [Chonnam Nat’l Univ., Gwangju (Korea, Republic of); Kang, To; Han, Soon Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

  2. Controlled high-energy ion acceleration with intense chirped standing waves

    Science.gov (United States)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2016-10-01

    We present the latest results of the recently proposed ion acceleration mechanism ``chirped standing wave acceleration''. This mechanism is based on locking the electrons of a thin plasma layer to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the thin layer. The resulting longitudinal charge separation field between the displaced electrons and the residual ions then accelerates the latter. Since the plasma layer is stabilized by the standing wave, the formation of plasma instabilities is suppressed. Furthermore, the experimentally accessible laser chirp provides a versatile tool for manipulating the resulting ion beam in terms of maximum particle energy, particle number and spectral distribution. Through this scheme, proton beams, with energy spectra peaked around 100 MeV, were shown to be feasible for pulse energies at the level of 10 J. Wallenberg Foundation within the Grant ''Plasma based compact ion sources'' (PLIONA).

  3. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave

    Institute of Scientific and Technical Information of China (English)

    FANG Mao-Fa; ZHOU Peng; S. Swain

    2000-01-01

    By performing a unitary transformation, we transform the Hamiltonian of the trapped ion in any position of standing wave to that of the normal Jaynes-Cummings model in ionic bare basis and we obtain a general evolution operator of the trapped ion system. We study the quantum entropic dynamics of the phonons and trapped ion.Our results show that, when the trapped ion is located at the node of standing wave, the quantum entropic dynamics of phonons and trapped ion are the same as the one of the field in the Jaynes-Cummings model.When the trapped ion deviatesfrom the node of standing wave, the entropies of the phonons and ion keep their maximum value except at the initial stage, and the phonons and trapped ion become extremely entangled.

  4. Conversion of Internal Gravity Waves into Magnetic Waves

    CERN Document Server

    Lecoanet, Daniel; Fuller, Jim; Cantiello, Matteo; Burns, Keaton J

    2016-01-01

    Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggests this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs canno...

  5. International Society of Sports Nutrition position stand: energy drinks

    Directory of Open Access Journals (Sweden)

    Campbell Bill

    2013-01-01

    Full Text Available Abstract Position Statement: The International Society of Sports Nutrition (ISSN bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED or energy shots (ES. The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and

  6. International Society of Sports Nutrition position stand: energy drinks

    Science.gov (United States)

    2013-01-01

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9

  7. International Society of Sports Nutrition position stand: energy drinks.

    Science.gov (United States)

    Campbell, Bill; Wilborn, Colin; La Bounty, Paul; Taylor, Lem; Nelson, Mike T; Greenwood, Mike; Ziegenfuss, Tim N; Lopez, Hector L; Hoffman, Jay R; Stout, Jeffrey R; Schmitz, Stephen; Collins, Rick; Kalman, Doug S; Antonio, Jose; Kreider, Richard B

    2013-01-03

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9

  8. Sand Bed Morphodynamics under Standing Waves and Vegetated Conditions

    Science.gov (United States)

    Landry, B. J.; Garcia, M. H.

    2010-12-01

    Littoral processes such as sediment transport, wave attenuation, and boundary layer development are governed by the presence of bathymetric features, which include large-scale sand bars upon which smaller-scale sand ripples are superimposed, as well as the presence of submarine vegetation. Numerous studies on sand ripples and bars have aided to elucidate the dynamics in oscillatory flows; however, the effect of vegetation on the system is less understood. Recent laboratory studies have focused on quantifying wave attenuation by emergent vegetation as a natural method to mitigate storm surges. The emergent vegetation, while promising for coastal protection, alters sediment transport rates directly by the physical presence of the plants near the bed and indirectly from reduction in near-bed shear stresses due to attenuated wave energy. The experimental work herein focuses on the area near the deeply submerged vegetated canopy limit (current work has a ratio of mean still water depth to plant height, H/h, = 7.9) to minimize the effect on the surface waves and discern the direct impact vegetation has on sand bed morphodynamics. Experiments were conducted in the large wave tank (49-m long by 1.83-m wide by 1.22-m deep) in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois in which a high reflection wave forcing was used over a uniform sand bed with a 0.25-mm median sediment diameter in which staggered and uniform arrangements of idealized vegetation (i.e., 6.35-mm diameter rigid wooden cylinders) were positioned along the bed (e.g., at predetermined sand bar troughs and over an entire sand bar). The resulting bathymetric evolution from the vegetated case experiments were compared to the base case of no vegetation using two optical methods: a high-resolution laser displacement sensor for three-dimensional surveys and digitized profiles via high-definition panoramic images of the entire test section. The experimental findings illustrate the profound

  9. A sound nebula: the origin of the Solar System in the field of a standing sound wave

    CERN Document Server

    Beck, Svetlana

    2016-01-01

    According to the planetary origin conceptual model proposed in this paper, the protosun centre of the pre-solar nebula exploded, resulting in a shock wave that passed through it and then returned to the centre, generating a new explosion and shock wave. Recurrent explosions in the nebula resulted in a spherical standing sound wave, whose antinodes concentrated dust into rotating rings that transformed into planets. The extremely small angular momentum of the Sun and the tilt of its equatorial plane were caused by the asymmetry of the first, most powerful explosion. Differences between inner and outer planets are explained by the migration of solid matter, while the Oort cloud is explained by the division of the pre-solar nebula into a spherical internal nebula and an expanding spherical shell of gas. The proposed conceptual model can also explain the origin and evolution of exoplanetary systems and may be of use in searching for new planets.

  10. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  11. Analysis of Nanometer Structure for Chromium Atoms in Gauss Standing Laser Wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua; XIONG Xian-Ming

    2010-01-01

    @@ The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions.The results show that the focusing position of atoms will be affected by the transverse velocity of atoms.Based on the four-order Runge-Kutta method,the locus of chromium atoms in Gauss standing laser wave is simulated.The three-dimensional characteristics of nanometer structures are stimulated under perfect and emanative conditions.

  12. Position-dependent dynamics of a trapped ion in a standing wave laser

    Institute of Scientific and Technical Information of China (English)

    方卯发

    2002-01-01

    We have investigated the position-dependent dynamics of a trapped ion in a standing wave laser by transforming it to the Jaynes-Cummings-type system under the Lamb-Dicke limit. A variety of novel phenomena are exhibited,e.g. periodic collapse and revival features and long-time scaled revivals of the ionic inversion, depending on its position in the standing wave. Our result provides a way of producing a system equivalent to the two-photon Jaynes-Cummings model in the trapped ion system, with its exact periodicities.

  13. A Scanned Perturbation Technique For Imaging Electromagnetic Standing Wave Patterns of Microwave Cavities

    CERN Document Server

    Gokirmak, A; Bridgewater, A; Anlage, S M; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1998-01-01

    We have developed a method to measure the electric field standing wave distributions in a microwave resonator using a scanned perturbation technique. Fast and reliable solutions to the Helmholtz equation (and to the Schrodinger equation for two dimensional systems) with arbitrarily-shaped boundaries are obtained. We use a pin perturbation to image primarily the microwave electric field amplitude, and we demonstrate the ability to image broken time-reversal symmetry standing wave patterns produced with a magnetized ferrite in the cavity. The whole cavity, including areas very close to the walls, can be imaged using this technique with high spatial resolution over a broad range of frequencies.

  14. Standing torsional waves in a fully saturated, porous, circular cylinder

    CERN Document Server

    Solorza, S; 10.1111/j.1365-246X.2004.02198.x

    2004-01-01

    For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.

  15. On standing sausage waves in photospheric magnetic waveguides

    CERN Document Server

    Dorotovic, I; Freij, N; Karlovsky, V; Marquez, I

    2012-01-01

    By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast an...

  16. Conversion of internal gravity waves into magnetic waves

    Science.gov (United States)

    Lecoanet, D.; Vasil, G. M.; Fuller, J.; Cantiello, M.; Burns, K. J.

    2017-04-01

    Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggest this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs cannot reflect into upward propagating IGWs because their vertical wavenumber never approaches zero. Instead, they are converted into upward propagating slow (Alfvénic) waves, and we show they will likely dissipate as they propagate back into weakly magnetized regions. Therefore, strong internal magnetic fields can produce dipole mode suppression in red giants, and gravity modes will likely be totally absent from the pulsation spectra of sufficiently magnetized stars.

  17. Viscous Boussinesq equations for internal waves

    Science.gov (United States)

    Liu, Chi-Min

    2016-04-01

    In this poster, Boussinesq wave equations for internal wave propagation in a two-fluid system bounded by two impermeable plates are derived and analyzed. Using the perturbation method as well as the Padé approximation, a set of three equations accurate up to the fourth order are derived and displayed by three unknowns: the interfacial elevation, upper and lower velocity potentials at arbitrary vertical positions. No limitation on nonlinearity is made while weakly dispersive effects are originally considered in the derivation. The derived equations are examined by comparing its dispersion relation with those of existing models to verify the accuracy. The results show that present model equations provide an excellent base for simulating internal waves not only in shallower configuration but also medium configuration.

  18. Internal Wave Generation by Turbulent Convection

    Science.gov (United States)

    Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.

    2015-12-01

    Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.

  19. Homoclinic standing waves in focussing DNLS equations --Variational approach via constrained energy maximization

    CERN Document Server

    Herrmann, Michael

    2010-01-01

    We study focussing discrete nonlinear Schr\\"{o}dinger equations and present a new variational existence proof for homoclinic standing waves (bright solitons). Our approach relies on the constrained maximization of an energy functional and provides the existence of two one-parameter families of waves with unimodal and even profile function for a wide class of nonlinearities. Finally, we illustrate our results by numerical simulations.

  20. Standing Sound Waves in a tube: Approach analysis \\& sugestions

    CERN Document Server

    Vieira, L P; Lara, V O M

    2013-01-01

    In this paper we attempt to present some questions with respect to the approach used in some brazilian mid-level textbooks on the topic of stationary sound waves in tubes. In addition to ranking the textbooks within a set of criteria, we also present some suggestions for further discussions of this topic. We suggest the use of gifs and animations and the use of two experiments that allow you to view the profiles of variation of pressure and air displacement for the harmonic modes of vibration.

  1. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)

    National Research Council Canada - National Science Library

    Wilson, Jacob M; Fitschen, Peter J; Campbell, Bill; Wilson, Gabriel J; Zanchi, Nelo; Taylor, Lem; Wilborn, Colin; Kalman, Douglas S; Stout, Jeffrey R; Hoffman, Jay R; Ziegenfuss, Tim N; Lopez, Hector L; Kreider, Richard B; Smith-Ryan, Abbie E; Antonio, Jose

    2013-01-01

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB...

  2. Model independent X-ray standing wave analysis of periodic multilayer structures

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, I.A.; Chuev, M.A.; Pashaev, E.M.; Zoethout, E.; Louis, E.; Kruijs, van de R.W.E.; Seregin, S.Y.; Subbotin, I.A.; Novikov, D.; Bijkerk, F.; Kovalchuk, M.V.

    2014-01-01

    We present a model independent approach for the reconstruction of the atomic concentration profile in a nanoscale layered structure, as measured using the X-ray fluorescence yield modulated by an X-ray standing wave (XSW). The approach is based on the direct regularized solution of the system of lin

  3. Model independent X-ray standing wave analysis of periodic multilayer structures

    NARCIS (Netherlands)

    Yakunin, S. N.; Makhotkin, I. A.; van de Kruijs, R. W. E.; Chuev, M. A.; Pashaev, E.M.; Zoethout, E.; E. Louis,; Seregin, Yu; Subbotin, I.A.; Novikov, D. V.; F. Bijkerk,; Kovalchuk, M. V.

    2014-01-01

    We present a model independent approach for the analysis of X-ray fluorescence yield modulated by an X-ray standing wave (XSW), that allow a fast reconstruction of the atomic distribution function inside a sample without fitting procedure. The approach is based on the direct regularized solution of

  4. Particle motion of accelerated electrons in standing-wave RF structures

    Science.gov (United States)

    Hammen, A. F. J.; Corstens, J. M.; Botman, J. I. M.; Hagedoorn, H. L.; Theuws, W. H. C.

    1999-05-01

    A Hamiltonian theory has been formulated, which is used to calculate accelerated particle motion in standing-wave RF structures. In particular, these calculations have been applied to the Eindhoven racetrack microtron accelerating cavity. The calculations are in excellent agreement with simulations performed by particle-tracking codes.

  5. Dynamics of spontaneous radiation of atoms scattered by a resonance standing light wave

    NARCIS (Netherlands)

    Fedorov, MV; Efremov, MA; Yakovlev, VP; Schleich, WP

    2003-01-01

    The scattering of atoms by a resonance standing light wave is considered under conditions when the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous radiative transitions to the nonresonance levels of an atom. The diffraction scattering regim

  6. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    Science.gov (United States)

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  7. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    Science.gov (United States)

    Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano

    2017-04-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.

  8. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.

    Science.gov (United States)

    Mitri, F G

    2009-12-01

    Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604-1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase phi. The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840-2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100-1103] to derive the general expression for the radiation force function YJm,st(ka,beta,m)Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,beta,m)Bessel beam standing wave (m=0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.

  9. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  10. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  11. Velocity selective trapping of atoms in a frequency-modulated standing laser wave

    CERN Document Server

    Argonov, V Yu

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We propose that in a real experiment with cold atomic gas this effect may decrease the velocity distribution of atoms (the field traps the atoms with such specific velocities while all other atoms leave the field)

  12. Studies of dissipative standing shock waves around black holes

    CERN Document Server

    Das, Santabrata; Mondal, Soumen

    2009-01-01

    We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\\dot {\\cal M}$) and angular momentum ($\\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\\dot {\\cal M} - \\lambda$) which allows accretion flows to have some energy dissipation at the shock $(\\Delta {\\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The d...

  13. Standing waves in a partitioned tube with passive membrane

    Science.gov (United States)

    Amundsen, David E.; Cox, Edward A.; Mortell, Michael P.

    2008-11-01

    The propagation of waves within a tube containing disparate gases separated by a passive membrane is modeled and analyzed in the limit of weak dissipation and applied forcing. This provides a simple setting in which to study the nonlinear interactions within and between each gas and provides a paradigm for other similar physical systems such as laminated elastic materials. The associated resonant frequencies are found in terms of a linear functional equation involving a non-trivial combination of the separate natural frequencies. As expected, in the limit that the gases have the same material properties, the modes become commensurate and the model reduces to that of the classical shock tube. However sufficiently away from this limit it is seen that this structure is lost and smooth single mode resonant solutions arise. Using a perturbative approach these solutions are approximated and compared to numerical solutions of the full system. The transition between smooth and discontinuous solutions is also studied both numerically and analytically, based on a dimensionless parameter associated with the relative material difference.

  14. Structural analysis of bismuth nanowire by X-ray standing wave method

    CERN Document Server

    Saito, A; Kurata, T; Maruyama, J; Kuwahara, Y; Aono, M; Miki, K

    2003-01-01

    Bismuth forms perfect wires without any defects on a clean Si(001) surface. Despite the importance of this self-organized nanowire from the viewpoints of both surface science and device application, an analysis of the internal structure of the wire is quite difficult under the condition of a buried interface. In order to clarify the atomic structure of the wire capped by amorphous Si layers, the three-dimensional bismuth atomic site was measured with respect to the substrate Si lattice by the X-ray standing wave method. The results indicate that the absolute height of Bi atoms is 0.26 A upper from the bulklike Si(004) plane of the Si-dimer layer. For the structure inside the (004) plane, Bi atoms are in the range of +-0.5 A in the [110] direction from an intact Si-dimmer position. This result disagrees with recent reports that were derived from other analytical methods used solely for a clean surface. A new model was proposed and it suggests an influence of a burying effect for the wire structure. (author)

  15. The operation of stochastic heating mechanisms in an electromagnetic standing wave configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1991-10-01

    The possibility of the operation of stochastic heating mechanisms of charged particles in a configuration consisting of a left-handed circularly polarized standing electromagnetic wave and a uniform magnetic field, has been studied numerically and theoretically. It is found that such a configuration induces stochasticity, the threshold of which is dependent on two independent parameters, determined by the frequency and the amplitude of the wave and the strength of the magnetic field. From the theoretical analysis, it emerges that the origin of onset of large scale stochasticity is the destabilization of fixed points associated with an equation describing the motion of the particles in an electrostatic-type potential having standing wave characteristics. The comparison of the theoretical predictions with the numerical results is found to be quite satisfactory. Possible applications to realistic plasmas have been discussed.

  16. 驻波演示实验研究%The Demonstrating Experiment of Standing Waves

    Institute of Scientific and Technical Information of China (English)

    柳建国; 陈钺

    2015-01-01

    详析驻波演示实验,分析驻波稳定出现时,因音叉臂的振幅(即入射波源的振幅)恒为A0,故弦线长必为:L=nλ±λ(n=1,2,3,…),以校正一些资料中取L=nλ(n=1,2,3,…)之误.2122%This paper presents a detailed analysis of the standing waves demonstrating experiment. Through investigating that when the standing waves stability appears, the amplitude of the tuning fork arm (i.e., the amplitude of Incident wave source) identically equals toA0, so the length of the string must be L=nλ±λ (n=1, 2, 3,…), this paper corrects the error that some 2 12 documents make taking L=nλ (n=1, 2, 3,…).

  17. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    Energy Technology Data Exchange (ETDEWEB)

    Yamanoi, K.; Yokotani, Y. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Cui, X. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Yakata, S. [Department of Information Electronics, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Kimura, T., E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.

  18. A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.

  19. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  20. Nonlinear dynamics of hydrostatic internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)

    2008-11-15

    Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are

  1. Currents induced by vertical varied radiation stress in standing waves and evolution of the bed composed of fine sediments

    Institute of Scientific and Technical Information of China (English)

    Jing-Xin ZHANG; Hua LIU

    2009-01-01

    This paper extends the conventional concept of radiation stress (Longuet-Higgins and Stewart, 1964)in progressive water waves to standing waves, so that its vertical profile could be defined and calculated in a new technical way. The hydrodynamic numerical model being coupled with the vertically varying radiation stress in standing waves is used to simulate the currents being induced by standing waves in the vertical section. Numerical modeling of suspended sediment transport is then carried out to simulate the evolution of the bed composed of fine sediments by the currents. The scour and deposition patterns simulated are in qualitative agreement with prior laboratory and field observations.

  2. Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study

    NARCIS (Netherlands)

    Grisouard, N.; Staquet, C.; Gerkema, T.

    2011-01-01

    Oceanic observations from western Europe and the south-western Indian ocean have provided evidence of the generation of internal solitary waves due to an internal tidal beam impinging on the pycnocline from below - a process referred to as 'local generation' (as opposed to the more direct generation

  3. Coherent cooling of atoms in a frequency-modulated standing laser wave: wave function and stochastic trajectory approaches

    CERN Document Server

    Argonov, Victor

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. Also we demonstrate that modulated field can not only trap, but also cool the atoms. We perform a numerical experiment with a large atomic ensebmble having wide initial velocity and energy distribution. During the experiment, most of atoms leave the wave while trapped atoms have narrow energy distribution

  4. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  5. International Society of Sports Nutrition position stand: protein and exercise

    Directory of Open Access Journals (Sweden)

    Landis Jamie

    2007-09-01

    Full Text Available Abstract Position Statement The following seven points related to the intake of protein for healthy, exercising individuals constitute the position stand of the Society. They have been approved by the Research Committee of the Society. 1 Vast research supports the contention that individuals engaged in regular exercise training require more dietary protein than sedentary individuals. 2 Protein intakes of 1.4 – 2.0 g/kg/day for physically active individuals is not only safe, but may improve the training adaptations to exercise training. 3 When part of a balanced, nutrient-dense diet, protein intakes at this level are not detrimental to kidney function or bone metabolism in healthy, active persons. 4 While it is possible for physically active individuals to obtain their daily protein requirements through a varied, regular diet, supplemental protein in various forms are a practical way of ensuring adequate and quality protein intake for athletes. 5 Different types and quality of protein can affect amino acid bioavailability following protein supplementation. The superiority of one protein type over another in terms of optimizing recovery and/or training adaptations remains to be convincingly demonstrated. 6 Appropriately timed protein intake is an important component of an overall exercise training program, essential for proper recovery, immune function, and the growth and maintenance of lean body mass. 7 Under certain circumstances, specific amino acid supplements, such as branched-chain amino acids (BCAA's, may improve exercise performance and recovery from exercise.

  6. Theoretical comparison of optical traps created by standing wave and single beam

    Science.gov (United States)

    Zemánek, Pavel; Jonáš, Alexandr; Jákl, Petr; Ježek, Jan; Šerý, Mojmír.; Liška, Miroslav

    2003-05-01

    We used generalised Lorenz-Mie scattering theory (GLMT) to compare submicron-sized particle optical trapping in a single focused beam and a standing wave. We focus especially on the study of maximal axial trapping force, minimal laser power necessary for confinement, axial trap position, and axial trap stiffness in dependency on trapped sphere radius, refractive index, and Gaussian beam waist size. In the single beam trap (SBT), the range of refractive indices which enable stable trapping depends strongly on the beam waist size (it grows with decreasing waist). On the contrary to the SBT, there are certain sphere sizes (non-trapping radii) that disable sphere confinement in standing wave trap (SWT) for arbitrary value of refractive index. For other sphere radii we show that the SWT enables confinement of high refractive index particle in wider laser beams and provides axial trap stiffness and maximal axial trapping force at least by two orders and one order bigger than in SBT, respectively.

  7. The periodic standing-wave approximation: computations in full general relativity

    CERN Document Server

    Hernandez, Napoleon

    2008-01-01

    The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of binary black holes and binary neutron stars. Previous work on this project has developed a method using a few multipoles of specially adapted coordinates well suited both to the radiation and the source regions. This method had previously been applied to linear and nonlinear scalar field models, to linearized gravity, and to a post-Minkowski approximation. Here we present the culmination of this approach: the application of the method in full general relativity. The fundamental equations had previously been developed and the challenge presented by this step is primarily a computational one which was approached with an innovative technique. The numerical results of these computations are compared with the corresponding results from linearized and post-Minkowksi computat...

  8. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.

    Science.gov (United States)

    Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua

    2017-01-01

    The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time.

  9. Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology

    CERN Document Server

    Wang, Tongjiang

    2010-01-01

    Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems ...

  10. RESONANT INTERACTION BETWEEN A PAUL-TRAPPED ION AND A STANDING WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    FENG MANG; HAI WEN-HUA; ZHU XI-WEN; GAO KE-LIN; SHI LEI

    2000-01-01

    An ultracold two-level ion experiencing the standing wave of a resonant laser in a Paul trap is investigated in the Lamb-Dicke limit and weak excitation regime, with full consideration of the time-dependence of the trapping potential.The analytical forms of the wave functions of the system can be described with our approach, and the time evolution of the pseudo-energy of the system as well as the squeezing property of the quadrature components is studied in comparison with the treatment of harmonic oscillator model.

  11. Dynamics of Two-Level Trapped Ion in a Standing Wave Laser in Noncommutative Space

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xue; WU Ying

    2007-01-01

    We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity,which sheds light on proposing new schemes based on the dynamics of trappedion to test the noncommutativity.

  12. Localization of Matter Fields in the 5D Standing Wave Braneworld

    CERN Document Server

    Gogberashvili, Merab

    2012-01-01

    We investigate the localization problem of matter fields within the 5D standing wave braneworld. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We show that in the case of increasing warp factor there exist the pure gravitational localization of all kinds of quantum and classical particles on the brane. For classical particles the anisotropy of the background metric is hidden, brane fields exhibit standard Lorentz symmetry in spite of anisotropic nature of the primordial 5D metric.

  13. Thin films and buried interfaces characterization with X-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S. [CNR, Rome (Italy). Istituto Elettronica Stato Solido

    1996-09-01

    The X-ray standing wave techniques is a powerful, non destructive method to study interfaces at the atomic level. Its basic features are described here together with the peculiarities of its applications to epitaxial films and buried interfaces. As examples of applications, experiments carried out on Si/silicide interfaces, on GaAs/InAs/GaAs buried interfaces and on Si/Ge superlattices are shown.

  14. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  15. Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation

    KAUST Repository

    Hadj Selem, Fouad

    2014-08-26

    This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations. © 2014 Springer Basel.

  16. Influence of standing wave phase error on super-resolution optical inspection for periodic microstructures

    Science.gov (United States)

    Kudo, R.; Usuki, S.; Takahashi, S.; Takamasu, K.

    2012-05-01

    The miniaturization of microfabricated structures such as patterned semiconductor wafers continues to advance, thereby increasing the demand for a high-speed, nondestructive and high-resolution measurement technique. We propose a novel optical inspecting method for a microfabricated structure using the standing wave illumination (SWI) shift as such a measurement technique. This method is based on a super-resolution algorithm in which the inspection system's resolution exceeds the diffraction limit by shifting the SWI. Resolution beyond the diffraction limit has previously been studied theoretically and realized experimentally. The influence of various experimental error factors needs to be investigated and calibration needs to be performed accordingly when actual applications that utilize the proposed method are constructed. These error factors include errors related to the phase, pitch and shift step size of the standing wave. Identifying the phase accurately is extremely difficult and greatly influences the resolution result. Hence, the SWI phase was focused upon as an experimental error factor. The effect of the phase difference between the actual experimental standing wave and the computationally set standing wave was investigated using a computer simulation. The periodic structure characteristic of a microfabricated structure was analyzed. The following findings were obtained as a result. The influence of an error is divided into three modes depending on the pitch of the periodic structure: (1) if the pitch is comparatively small, the influence of the error is cancelled, allowing the structure of a sample to be resolved correctly; (2) if the pitch of the structure is from 150 to 350 nm, the reconstructed solution shifts in a transverse direction corresponding to a phase gap of SWI; and (3) if it is a comparatively large pitch, then it is difficult to reconstruct the right pitch. Verification was experimentally attempted for mode (2), and the same result as

  17. Pulsed 5 MeV standing wave electron linac for radiation processing

    Science.gov (United States)

    Auditore, L.; Barnà, R. C.; de Pasquale, D.; Italiano, A.; Trifirò, A.; Trimarchi, M.

    2004-03-01

    Several modern applications of radiation processing require compact and self-contained electron accelerators. To match these requirements, a 5MeV, 1kW electron linac has been developed at the Dipartimento di Fisica (Università di Messina) and will be described in this paper. This standing wave accelerator, driven by a 3GHz, 2.5MW magnetron generator, has an autofocusing structure and will be used to study several applications of radiation processing.

  18. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    Energy Technology Data Exchange (ETDEWEB)

    Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  19. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave

    Science.gov (United States)

    Zemánek, Pavel; Jonáš, Alexandr; Liška, Miroslav

    2002-05-01

    We study the axial force acting on dielectric spherical particles smaller than the trapping wavelength that are placed in the Gaussian standing wave. We derive analytical formulas for immersed particles with relative refractive indices close to unity and compare them with the numerical results obtained by generalized Lorenz-Mie theory (GLMT). We show that the axial optical force depends periodically on the particle size and that the equilibrium position of the particle alternates between the standing-wave antinodes and nodes. For certain particle sizes, gradient forces from the neighboring antinodes cancel each other and disable particle confinement. Using the GLMT we compare maximum axial trapping forces provided by the Gaussian standing-wave trap (SWT) and single-beam trap (SBT) as a function of particle size, refractive index, and beam waist size. We show that the SWT produces axial forces at least ten times stronger and permits particle confinement in a wider range of refractive indices and beam waists compared with those of the SBT.

  20. Standing wave plasmon modes interact in an antenna-coupled nanowire

    Science.gov (United States)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  1. Generation and Evolution of Internal Waves in Luzon Strait

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and

  2. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  3. Identification and modeling of internal waves

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.

    ,salanity,density,Bruntvaisala frequencyandsoundvelocityunderdifferentseasons 2.2 Currents 2.3 IdentificationofInternalWaves 2.4 CharactersticsofInternalwavesfromCTDandSpectrumanalysis 2.5 Internalwavefieldgeneration 2.6 ModellingofInternalwaves 2.7 Internalwavesimulation 3. Conclusion Contributors to the project 1.... Dr.T.V.Ramana Murty Co-investigator 2. Dr.Y.Sadhuram Member 3. Dr.M.M.Malleswara Rao Member 4. Mr.S.Sujith Kumar Member 5. Mr.S.Surya Prakash Member 6. Mr...

  4. Canadian health expenditures: Where do we really stand internationally?

    Science.gov (United States)

    Deber, R; Swan, B

    1999-01-01

    There are different ways to measure how much Canada spends on health care and the quality of these measurements may vary. This paper examines Organization for Economic Cooperation and Development data for 3 common standards of measure: health expenditures as a proportion of gross domestic product (GDP), nominal spending per capita (US dollars) and spending per capita in purchasing power parities (PPP) equivalents. In 1994, the most recent year for which there were firm data. Canada spent 9.9% of its GDP on health care (rank 3 of 29), and $1999 PPPs per capita (rank 3). However, actual spending was only US$1824 per capita (rank 14). In the same year Japan spent 7% of GDP on health care (rank 22), $1478 in PPPs per capita (rank 16), but actually spent US$2614 per capita (rank 3). Although each measure is suitable for some policy purposes, Canadian spending remains modest by international standards. PMID:10410638

  5. [Operation Pangea - standing together in combat against international pharmaceutical crime].

    Science.gov (United States)

    Smolka, Kirstin; Gronwald, Klaus

    2017-09-19

    Crime on the internet has grown accordingly to the increased use of the internet in everyday life. This includes illegal trading of pharmaceuticals via the internet. Trading in pharmaceuticals as "special commodities" underlies certain legal regulations in Germany, as in most other countries worldwide.Mail order trade (colloquially also known as internet trade) in pharmaceuticals requires approval of the competent regulatory authority. However, numerous illegal internet vendors of medicines present their websites to customers, purporting to be legal pharmacies and trading good and genuine medicines.It is not always easy for customers or patients to distinguish between legal websites, i. e. pharmacies operating with the approval of the authorities, and illegal, criminal websites. Patients accept dangerous risks when they order medicines on such illegal websites. Consumption of falsified or unlicensed pharmaceuticals of unknown origin often exposes patients' health to serious risks and dangers.Operation PANGEA is now in its tenth year of fighting illegal internet trade in pharmaceuticals at an internationally coordinated level. The results of Operation PANGEA are published in national and international media. Thus the public should be alert to the risks of buying medicines from one of the numerous illegal vendors on the internet.The competence for combatting illegal sales of medicines lies with customs and police agencies amongst others. These enforcement agencies regularly participate in the annual PANGEA Operations. The following article describes the origin and background of this operation, and outlines both the work of customs and police in this context, as well as the results of the latest PANGEA Operation.

  6. Three Waves of International Student Mobility (1999-2020)

    Science.gov (United States)

    Choudaha, Rahul

    2017-01-01

    This article analyses the changes in international student mobility from the lens of three overlapping waves spread over seven years between 1999 and 2020. Here a wave is defined by the key events and trends impacting international student mobility within temporal periods. Wave I was shaped by the terrorist attacks of 2001 and enrolment of…

  7. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953....... The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...

  8. Probing the polarity of ferroelectric thin films with x-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Bedzyk, M. J. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kazimirov, A. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Marasco, D. L. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Lee, T.-L. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Foster, C. M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Advanced Micro Devices, 5204 East Ben White Boulevard, Austin, Texas 78741 (United States); Bai, G.-R. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lyman, P. F. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Keane, D. T. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2000-03-15

    An x-ray-diffraction method that directly senses the phase of the structure factor is demonstrated and used for determining the local polarity of thin ferroelectric films. This method is based on the excitation of an x-ray standing-wave field inside the film as a result of the interference between the strong incident x-ray wave and the weak kinematically Bragg-diffracted x-ray wave from the film. The method is used to sense the displacements of the Pb and Ti sublattices in single-crystal c-domain PbTiO{sub 3} thin films grown by metal-organic chemical-vapor deposition on SrTiO{sub 3}(001) substrates. (c) 2000 The American Physical Society.

  9. Dynamics of surfactants in the field of edge and internal waves in coastal areas

    Science.gov (United States)

    Averbukh, L.; Kurkina, O.; Kurkin, A.

    2012-04-01

    Edge waves are topographically trapped waves, which can be considered as an important factor impacting upon coastline and nearshore bottom relief, beaches and coastal constructions. Large amplitude nonlinear edge waves are possible due to the action of different mechanisms. Their dynamics can be described by nonlinear Shrodinger equation, and the signs of its coefficients correspond to modulation instability of wave packets. The mechanisms of possible anomalous edge wave appearance are dispersion enhancement and self-modulation; they can lead to forming of abnormal edge wave. In the present paper we consider processes of edge wave propagation and amplification along a cylindrical shelf taking into account horizontal alongshore flow and Earth rotation. Internal waves exist in stratified coastal areas, and for them extreme regimes are also well-known, including propagation of such energetic events as solitary waves and breathers. The existence of waves of both type lead to formation of wave-induced currents, which can be quite strong and can significantly affect the surrounding environment. In particular, these currents can influence upon pollutants, admixtures and films on the surface of the sea causing their redistribution according to zones of convergence and divergence of the velocity fields. These specific pictures on the surface can be used in the interpretation of remote sensing data and diagnostics and identification of underlying wave processes. In the present study we demonstrate dynamics of surfactants in the field of edge and internal waves in coastal areas. Numerical modeling is based on the balance equation of the surface concentration. Film dynamics was considered in the advection - diffusion - relaxation model. We show a number of unsteady effects in the edge and internal waves and their manifestation in the surfactants. For edge waves we considered the passage of linear traveling and standing waves, the wave amplitude changes due to slow longshore

  10. Propagation of internal waves up continental slope and shelf

    Institute of Scientific and Technical Information of China (English)

    DAI Dejun; WANG Wei; QIAO Fangli; YUAN Yeli; XIANG Wenxi

    2008-01-01

    In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcriticai hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a fiat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.

  11. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  12. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua

    2009-01-01

    One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing-laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.Snm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.

  13. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  14. Internal Gravity Wave Excitation by Turbulent Convection

    CERN Document Server

    Lecoanet, Daniel

    2012-01-01

    We calculate the flux of internal gravity waves (IGWs) generated by turbulent convection in stars. We solve for the IGW eigenfunctions analytically near the radiative-convective interface in a local, Boussinesq, and cartesian domain. We consider both discontinuous and smooth transitions between the radiative and convective regions and derive Green's functions to solve for the IGWs in the radiative region. We find that if the radiative-convective transition is smooth, the IGW flux ~ F_conv (d/H), where F_conv is the flux carried by the convective motions, d is the width of the transition region, and H is the pressure scale height. This can be much larger than the standard result in the literature for a discontinuous radiative-convective transition, which gives a wave flux ~ F_conv M, where M is the convective Mach number. However, in the smooth transition case, the most efficiently excited perturbations will break immediately when they enter the radiative region. The flux of IGWs which do not break and are abl...

  15. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles

    Science.gov (United States)

    Shields, C. Wyatt; Cruz, Daniela F.; Ohiri, Korine A.; Yellen, Benjamin B.; Lopez, Gabriel P.

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly. PMID:27022681

  16. Cooling and trapping of three-level atoms in a bichromatic standing wave

    Science.gov (United States)

    Pu, H.; Cai, T.; Bigelow, N. P.; Grove, T. T.; Gould, P. L.

    1995-02-01

    We show that a three-level atom in the cascade configuration can be stably trapped and cooled in one dimension by an intense bichromatic standing wave. At the two-photon resonance, rectified dipole forces result in a deep potential well which can be used to localize the atoms in space. In the vicinity of the rectified potential minimum, the spatial dependence of the dressed state energies can lead to a velocity dependence of the force which produces damping of the atomic motion. Consideration of the heating effects of momentum diffusion indicates that cooling and stable trapping at low temperatures is possible in such a bichromatic field.

  17. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  18. Normal incidence X-ray standing wave analysis of thin gold films

    Science.gov (United States)

    Satterley, Christopher J.; Lovelock, Kevin R. J.; Thom, Ian; Dhanak, Vinod R.; Buck, Manfred; Jones, Robert G.

    2006-11-01

    Normal incidence X-ray standing wave (NIXSW) analysis has been successfully performed on epitaxial gold films on mica substrates using reflection from the (1 1 1) planes parallel to the surface. We show that NIXSW can be used to monitor the decrease in order within the gold film caused by annealing, and the position of sulfur within a monolayer of methyl thiolate (CH 3S-) on the surface. The Au-S layer spacing was found to be 2.54 ± 0.05 Å, in close agreement with previous work on a single crystal system.

  19. Beam dynamics studies and parametric characterization of a standing wave electron linac

    Science.gov (United States)

    Dash, R.; Mondal, J.; Sharma, A.; Mittal, K. C.

    2013-07-01

    This paper presents the results of electron beam tracking simulations for a 30 MeV standing wave electron linac at Electron Beam Centre Kharghar, Navi Mumbai, India. For the pulsed mode operation of the present linac preferential operation parameters have been determined from the results of beam dynamics studies. This electron accelerator is a general purpose facility for generation of Bremsstrahlung X-rays and neutron scattering experiments. This electron accelerator-based experimental neutron facility will be used for measurement of neutron cross-section (n,γ), (n, xn) and (n, f) reactions at different energies for various materials and material irradiation studies.

  20. Influence of Atomic Motion on a Microlaser in an Optical Standing-Wave Cavity

    Institute of Scientific and Technical Information of China (English)

    张敬涛; 冯勋立; 张文琦; 徐至展

    2002-01-01

    We study the microlaser in an optical standing-wave cavity injected with two-level atoms. The results have shown the obvious infIuence of atomic centre-of-mass motion on the microlaser, such as the photon distribution, the linewidth and the frequency shift. It was found that when the momentum of atoms is comparable to that of photons, the influence of atomic motion is dominated and the number of photons in the microlaser can be greatly enhanced, owing to part of the atomic kinetic energy being transferred to the resonator. This work provides a comparison of the related studies on the atomic motion under special assumptions.

  1. Anisotropic Inflation in a 5D Standing Wave Braneworld and Dimensional Reduction

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel

    2012-01-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to i) inflation along certain spatial dimensions, and ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher dimensional theories in the attempt of getting a 4D isotropic expanding space-time.

  2. Ocean internal waves interpreted as oscillation travelling waves in consideration of ocean dissipation

    Science.gov (United States)

    Jiang, Zhu-Hui; Huang, Si-Xun; You, Xiao-Bao; Xiao, Yi-Guo

    2014-05-01

    Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg—de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.

  3. Review of research in internal-wave and internal-tide deposits of China

    Directory of Open Access Journals (Sweden)

    Gao Zhenzhong

    2013-01-01

    Full Text Available Study of internal-wave and internal-tide deposits is a very young research field in deep-water sedimentology. It has been just twenty years since the first example of internal-wave and internal-tide deposits was identified in the stratigraphic record. Since that time, Chinese scholars have made unremitting efforts and gained some significant research achievements in this field. This paper briefly outlines the history and main achievements of research of internal-wave and internal-tide deposits in China, describes depositional characteristics, sedimentary successions, types of lithofacies, and depositional models of internal-wave and internal-tide deposits identified mainly from ancient strata, and summarizes the existing problems in this research field. New advances in marine physics should be applied to research of the subject of internal-wave and internal-tide deposition, whereas the sedimentary characteristics of internal-wave and internal-tide deposits may be used to deduce the physical processes of their creation. Flume experiments on internal-wave and internal-tide deposition should also be put in practice as often as possible, so that the mechanisms of internal-wave and internal-tide deposition can be explored.

  4. Surface characters of internal waves generated by Rankine ovoid

    Institute of Scientific and Technical Information of China (English)

    Zhaoting Xu; Xu Chen; Izolda V. Sturova

    2006-01-01

    A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.

  5. Localized auroral disturbance in the morning sector of topside ionosphere as a standing electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, E.M.; Israelevich, P.L.; Nikolaeva, N.S.; Podgornyi, I.M.; Kutiev, I.

    1985-06-01

    The fine structure and plasma properties of an auroral disturbance observed with the Intercosmos-Bulgaria-1300 satellite are analyzed. The disturbance was detected in the morning sector of the sky at an altitude of about 850 km in December of 1981. Strong jumps (about 80 mV/m) in the electric and magnetic fields and fluctuations of ion density were detected within the disturbance. The electric and magnetic fields were characterized by a distinct spatial-temporal relationship typical for a standing quasi-monochromatic wave with a frequency of 1 Hz. The ratio of the amplitudes of electric and magnetic fluctuations was equal to the velocity of Alfven waves. The strong parallel component of the electric field (about 30 mV/m) and the large ion density of the fluctuations indicate changes in the plasma properties of the disturbance. The possibility of anomalous resistivity effects in the disturbance is also briefly considered. 23 references.

  6. Standing and travelling waves in a spherical brain model: The Nunez model revisited

    Science.gov (United States)

    Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.

    2017-06-01

    The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

  7. Thick brane isotropization in the 5D anisotropic standing wave braneworld model

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel; Nucamendi, Ulises

    2014-01-01

    We study a smooth cosmological solution of the 5D anisotropic standing wave braneworld model generated by gravity coupled to a phantom-like scalar field. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We found a natural mechanism which isotropizes the braneworld, rendering a 3-brane with de Sitter symmetry embedded in a 5D de Sitter space-time for a wide class of initial conditions. The resulting thick geometrical braneworld (a de Sitter 3-brane) possesses a series of remarkable features. By explicitly solving the bulk field equations we are able to give a physical interpretation of the anisotropic dissipation: as the anisotropic energy on the 3-brane rapidly leaks into the bulk, through the nontrivial Weyl tensor components, the bulk becomes less isotropic.

  8. Experimental study of parametric subharmonic instability for internal waves

    CERN Document Server

    Bourget, Baptiste; Joubaud, Sylvain; Odier, Philippe

    2013-01-01

    Internal waves are believed to be of primary importance as they affect ocean mixing and energy transport. Several processes can lead to the breaking of internal waves and they usually involve non linear interactions between waves. In this work, we study experimentally the parametric subharmonic instability (PSI), which provides an efficient mechanism to transfer energy from large to smaller scales. It corresponds to the destabilization of a primary plane wave and the spontaneous emission of two secondary waves, of lower frequencies and different wave vectors. Using a time-frequency analysis, we observe the time evolution of the secondary waves, thus measuring the growth rate of the instability. In addition, a Hilbert transform method allows the measurement of the different wave vectors. We compare these measurements with theoretical predictions, and study the dependence of the instability with primary wave frequency and amplitude, revealing a possible effect of the confinement due to the finite size of the be...

  9. Nonlinear series resonance and standing waves in dual-frequency capacitive discharges

    Science.gov (United States)

    Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian

    2017-01-01

    It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.

  10. Evolution of Nonlinear Internal Waves in China Seas

    Science.gov (United States)

    Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.

    1997-01-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.

  11. Separation of bacterial spores from flowing water in macro-scale cavities by ultrasonic standing waves

    CERN Document Server

    Lipkens, B; Costolo, M; Stevens, A; Rietman, Edward

    2010-01-01

    The separation of micron-sized bacterial spores (Bacillus cereus) from a steady flow of water through the use of ultrasonic standing waves is demonstrated. An ultrasonic resonator with cross-section of 0.0254 m x 0.0254 m has been designed with a flow inlet and outlet for a water stream that ensures laminar flow conditions into and out of the resonator section of the flow tube. A 0.01905-m diameter PZT-4, nominal 2-MHz transducer is used to generate ultrasonic standing waves in the resonator. The acoustic resonator is 0.0356 m from transducer face to the opposite reflector wall with the acoustic field in a direction orthogonal to the water flow direction. At fixed frequency excitation, spores are concentrated at the stable locations of the acoustic radiation force and trapped in the resonator region. The effect of the transducer voltage and frequency on the efficiency of spore capture in the resonator has been investigated. Successful separation of B. cereus spores from water with typical volume flow rates of...

  12. First-principle simulation of the acoustic radiation force on microparticles in ultrasonic standing waves

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Bruus, Henrik

    2013-01-01

    The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ......The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions...... of this specific problem can be found in the literature [Settnes ans Bruus, Phys. Rev. E 85, 016327 (2012), and references therein], but none have included the complete contribution from thermoviscous effects. Here, we solve this problem numerically by applying a finite-element method to solve directly the mass...... (continuity), momentum (Navier-Stokes), and energy conservation equations using perturbation theory to second order in the imposed time-harmonic ultrasound field. In a two-stage calculation, we first solve the first-order equations resolving the thermoviscous boundary layer surrounding the microparticle...

  13. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  14. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-Ying; Ling, Dong-Xiong; Ling, Lin; Li, William; Li, Yong-Qing

    2017-02-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  15. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  16. Potential health effects of standing waves generated by low frequency noise.

    Science.gov (United States)

    Ziaran, Stanislav

    2013-01-01

    The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN) from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car) and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise) and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  17. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  18. Two-dimensional manipulation of microparticles using phase-controllable ultrasonic standing waves

    Science.gov (United States)

    Courtney, C. R. P.; Ong, C.-K.; Drinkwater, B. W.; Wilcox, P. D.; Grinenko, A.

    2012-05-01

    The ability to trap, and then manipulate, micro-particles in a fluid, is of interest as a research tool in the biosciences. Applications include tissue engineering, particle sorting and improving alignment with bio-sensors. This paper relates to the use of phase-controllable counter-propagating ultrasonic waves to generate a standing wave with pressure nodes whose positions are determined by the relative phases of the component counter-propagating travelling waves. As dense (relative to the fluid) particles are forced to nodes in the pressure field this allows particles to be trapped at particular points and moved to arbitrary positions. Counter-propagating waves are generated using pairs of opposing transducers, matched and backed to minimise reflection. Using one pair of transducers allows particles to be trapped and manipulated in one dimension. Using two pairs of transducers, positioned orthogonally, and adjusting the relative phases appropriately, allows trapping and manipulation in two dimensions. The device is shown experimentally to be capable of trapping and manipulating 10-micron-diameter polystyrene beads in two dimensions.

  19. The Fate and Impact of Internal Waves in Nearshore Ecosystems.

    Science.gov (United States)

    Woodson, C B

    2017-08-10

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate. Expected final online publication date for the Annual Review of Marine Science Volume 10 is January 3, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Exact Nonlinear Internal Equatorial Waves in the f-plane

    Science.gov (United States)

    Hsu, Hung-Chu

    2016-07-01

    We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.

  1. INTERNAL TIDES, SOLITARY WAVES AND BORES IN SHALLOW SEAS

    Institute of Scientific and Technical Information of China (English)

    王涛; 高天赋

    2001-01-01

    Remote sensing and in situ observations of internal tides, solitary waves and bores in shallow water are briefly reviewed in this paper. The emphasis is laid on interpreting SAR images based on oceanographic measurements, and analyzing characteristics of internal waves in the China Seas. Direc-tions for future research are discussed.

  2. INTERNAL TIDES, SOLITARY WAVES AND BORES IN SHALLOW SEAS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Remote sensing and in situ observations of internal tides, solitary waves and bores in shallow water are briefly reviewed in this paper. The emphasis is laid on interpreting SAR images based on oceanographic measurements, and analyzing characteristics of internal waves in the China Seas. Directions for future research are discussed.

  3. Nonlinear internal wave penetration via parametric subharmonic instability

    CERN Document Server

    Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T

    2016-01-01

    We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.

  4. SOLUTION OF A KIND OF LINEAR INTERNAL WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; HOU Yi-jun; ZHENG Quan-an

    2005-01-01

    Considering the effect of horizontal Coriolis parameter and the density compactness of seawater, which were often neglected in internal waves discussion, the governing equation of linear internal waves presented by vertical velocity only will be proposed. Under the assumption that the Brunt-Visl frequency is exponential, an accurate analytic solution of it is obtained. Finally, the expressions of wave functions are also given.

  5. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain [Physics Division, Institute of Nuclear Energy Research (INER), Longtan, Taoyuan County 32546, Taiwan (China); Leou, Keh-Chyang [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-09-14

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  6. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Directory of Open Access Journals (Sweden)

    Liang Zeng

    2014-07-01

    Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  7. Nonlinear reflection of internal gravity wave onto a slope

    Science.gov (United States)

    Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis

    2016-04-01

    The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of

  8. Shoaling Large Amplitude Internal Solitary Waves in a Laboratory Tank

    Science.gov (United States)

    Allshouse, Michael; Larue, Conner; Swinney, Harry

    2014-11-01

    The shoaling of internal solitary waves onto the continental shelf can change both the wave dynamics and the state of the environment. Previous observations have demonstrated that these waves can trap fluid and transport it over long distances. Through the use of a camshaft-based wavemaker, we produce large amplitude shoaling waves in a stratified fluid in a laboratory tank. Simulations of solitary waves are used to guide the tuning of the wave generator to approximate solitary waves; thus nonlinear waves can be produced within the 4m long tank. PIV and synthetic schlieren measurements are made to study the transport of fluid by the wave as it moves up a sloping boundary. The results are then compared to numerical simulations and analyzed using finite time Lyapunov exponent calculations. This Lagrangian analysis provides an objective measure of barriers surrounding trapped regions in the flow. Supported by ONR MURI Grant N000141110701 (WHOI).

  9. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    Science.gov (United States)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  10. Self-organization of clusters by a standing surface acoustic wave

    Science.gov (United States)

    Taillan, Christophe; Combe, Nicolas; Morillo, Joseph

    2017-07-01

    The diffusion of clusters on a crystalline substrate submitted to a standing surface acoustic wave (StSAW) is studied using molecular dynamics simulations. The distributions of positions of clusters with two, three, and four atoms are calculated and evidence that the wave encourages the presence of the clusters in the vicinity of the maximum transverse displacement field of the substrate. The physical mechanism leading to this self-organization is expected to be equivalent to the one operating for a single adatom, i.e., the displacement of the clusters induced by the longitudinal displacement field of the wave. The detailed shapes of the distributions of positions of clusters are related to the different clusters' orientation and configurations. Finally, the possibility to use a StSAW to self-organize nanostructures during growth is addressed by simulating a deposition process on the substrate. We evidence that the use of a StSAW allows to especially control the spatial repartition of grown nanostructures.

  11. In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome.

    Science.gov (United States)

    Secomski, Wojciech; Bilmin, Krzysztof; Kujawska, Tamara; Nowicki, Andrzej; Grieb, Paweł; Lewin, Peter A

    2017-05-01

    The purpose of this work was to determine the influence of standing waves and possible multiple reflections under the conditions often encountered in examining the effects of ultrasound exposure on the cell cultures in vitro. More specifically, the goal was to quantitatively ascertain the influence of ultrasound exposure under free field (FF) and standing waves (SW) and multiple reflections (MR) conditions (SWMR) on the biological endpoint (50% cell necrosis). Such information would help in designing the experiments, in which the geometry of the container with biological tissue may prevent FF conditions to be established and in which the ultrasound generated temperature elevation is undesirable. This goal was accomplished by performing systematic, side-by-side experiments in vitro with C6 rat glioma cancer cells using 12 well and 96 well plates. It was determined that to obtain 50% of cell viability using the 12 well plates, the spatial average, temporal average (ISATA) intensities of 0.32W/cm(2) and 5.89W/cm(2) were needed under SWMR and FF conditions, respectively. For 96 well plates the results were 0.80W/cm(2) and 2.86W/cm(2) respectively. The corresponding, hydrophone measured pRMS maximum pressure amplitude values, were 0.71MPa, 0.75MPa, 0.75MPa and 0.73MPa, respectively. These results suggest that pRMS pressure amplitude was independent of the measurement set-up geometry and hence could be used to predict the cells' mortality threshold under any in vitro experimental conditions or even as a starting point for (pre-clinical) in vivo tests. The described procedure of the hydrophone measurements of the pRMS maximum pressure amplitude at the λ/2 distance (here 0.75mm) from the cell's level at the bottom of the dish or plate provides the guideline allowing the difference between the FF and SWMR conditions to be determined in any experimental setup. The outcome of the measurements also indicates that SWMR exposure might be useful at any ultrasound assisted

  12. Analysis of nonlinear internal waves in the New York Bight

    Science.gov (United States)

    Liu, Antony K.

    1988-01-01

    An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.

  13. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells

    CERN Document Server

    Amor, Rumelo; Amos, William Bradshaw; McConnell, Gail

    2014-01-01

    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report that the relative intensities in each plane of excitation depend on the Stokes shift of the fluorochrome. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.

  14. The lifecycle of axisymmetric internal solitary waves

    Directory of Open Access Journals (Sweden)

    J. M. McMillan

    2010-09-01

    Full Text Available The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as r-p with p=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as r-1.

  15. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves

    CERN Document Server

    Mitri, F G

    2016-01-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure st...

  16. X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    Directory of Open Access Journals (Sweden)

    Giuseppe eMercurio

    2014-01-01

    Full Text Available We present an analysis method of normal incidence x-ray standing wave (NIXSW data that allows detailed adsorption geometries of complex molecules to be retrieved. This method (Fourier vector analysis is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB adsorbed on the Ag(111 surface as a model system. The application of the Fourier vector analysis to AB/Ag(111 provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.

  17. One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

    Institute of Scientific and Technical Information of China (English)

    杨文星; 陈爱喜

    2011-01-01

    An alternative scheme is proposed for one-step generation of multiparticle cluster state with trapped ions in thermal motion. In this scheme, the ions are simultaneously illuminated by a standing-wave laser tuned to the carrier. During the operations, the vibrational mode is virtually excited, thus the quantum operations are insensitive to the heating. It is shown that the high fidelity multiparticle entanglement could be generated in just one step even including the small fluctuations of parameters. In addition, the ion does not need to be exactly positioned at the node of the standing wave, which is also important from the viewpoint of experiment.

  18. Microchannel-free collection and single-cell isolation of yeast cells in a suspension using liquid standing wave

    Science.gov (United States)

    Matsutani, Akihiro; Takada, Ayako

    2016-11-01

    We demonstrate a microchannel-free collection method at nodes of liquid standing waves by the vertical vibration of a suspension including yeast cells. The pattern formation of the collection of cells using standing waves in a suspension was investigated by varying the frequency and waveform of vibrations. The single-cell isolation of yeast cells was achieved using a microenclosure array set at the nodes. In addition, we succeeded in the microchannel-free collection of yeast cells in a suspension, where patterns were formed by tapping vibration. The proposed technique is very simple and we believe that it will be useful for single-cell analysis and investigation.

  19. High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine

    CERN Document Server

    Lin, Jeffrey; Hesselink, Lambertus

    2015-01-01

    We have carried out wall-resolved fully unstructured Navier--Stokes simulations of a complete standing-wave thermoacoustic piezoelectric (TAP) engine model inspired by the experimental work of Smoker et al. (2012). The computational model is axisymmetric and comprises a 51 cm long cylindrical resonator divided into two sections: one of 19.5 mm in diameter, enclosing a thermoacoustic stack where a linear temperature distribution is imposed via isothermal boundary conditions; the other of 71 mm in diameter, capped by a piezoelectric diaphragm modelled via multi-oscillator broadband time-domain impedance boundary conditions (TDIBCs) matching the measured electromechanical impedance of a PZT-5A diaphragm tuned to the thermoacoustically amplified mode (388 Hz) for maximization of acoustic energy extraction. Simulations were first carried out without energy extraction from quiescent conditions to a limit cycle, for hot-to-cold temperature differences in the range $\\Delta T = 340 - 490\\textrm{ K}$, achieving acousti...

  20. Physical design and cooling test of C-band standing wave accelerating tube

    Institute of Scientific and Technical Information of China (English)

    Bai Wei; Xu Zhou; Jin Xiao; Li Ming

    2006-01-01

    The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm , excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.

  1. Theoretical research and experimental study for a new measurement method of standing wave levitation force

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)

    2015-05-15

    Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.

  2. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    Science.gov (United States)

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  3. Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.

    Science.gov (United States)

    Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo

    2015-03-23

    Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

  4. Model independent X-ray standing wave analysis of periodic multilayer structures

    CERN Document Server

    Yakunin, S N; Chuev, M A; Pashaev, E M; Zoethout, E; Louis, E; van de Kruijs, R W E; Seregin, S Yu; Subbotin, I A; Novikov, D V; Bijkerk, F; Kovalchuk, M V

    2013-01-01

    We present a model independent approach for the reconstruction of the atomic concentration profile in a nanoscale layered structure, as measured using the X-ray fluorescence yield modulated by an X-ray standing wave (XSW). The approach is based on the direct regularized solution of the system of linear equations that characterizes the fluorescence yield. The suggested technique was optimized for, but not limited to, the analysis of periodic layered structures where the XSW is formed under Bragg conditions. The developed approach was applied to the reconstruction of the atomic concentration profiles for LaN/BN multilayers with 50 periods of 35 A thick layers. The object is especially difficult to analyse with traditional methods, as the estimated thickness of the interface region between the constituent materials is comparable to the individual layer thicknesses. However, using the suggested technique it was possible to reconstruct the La atomic profile, showing that the La atoms stay localized within the LaN ...

  5. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin

    2008-01-01

    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  6. An Internal Wave as a Frequency Filter for Surface Gravity Waves on Water

    CERN Document Server

    Lossow, K

    2010-01-01

    We consider one-dimensional model of the interaction between surface and the internal gravity water waves. The internal wave is modeled by its basic form: a non-dispersive field with a horizontal current that is uniform over all depth, insignificantly affected by the surface waves, while ignoring surface tension and wind growth/decay effects. The depth is infinite. Approximation for the height of the surface wave on the flow by the "elementary quasi stationary" solutions was found. It was shown that the flow acts as a frequency filter for gravitational waves on water.

  7. Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations

    Institute of Scientific and Technical Information of China (English)

    罗志强; 陈志敏

    2013-01-01

    A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.

  8. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    CERN Document Server

    Lessmann, A; Munkholm, A; Schuster, M; Riechert, H; Materlik, G

    1999-01-01

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs) sub 3 (GaAs) sub 7 short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0...

  9. Evidence of standing waves during a Pi2 pulsation event observed on Cluster

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2006-10-01

    Full Text Available Observations of Pi2 pulsations at middle and low latitudes have been explained in terms of cavity mode resonances, whereas transients associated with field-aligned currents appear to be responsible for the high latitude Pi2 signature.

    Data from Cluster are used to study a Pi2 event observed at 18:09 UTC on 21 January 2003, when three of the satellites were within the plasmasphere (L=4.7, 4.5 and 4.6 while the fourth was on the plasmapause or in the plasmatrough (L=6.6. Simultaneous pulsations at ground observatories and the injection of particles at geosynchronous orbit corroborate the occurrence of a substorm.

    Evidence of a cavity mode resonance is established by considering the phase relationship between the orthogonal electric and magnetic field components associated with radial and field-aligned standing waves. The relative phase between satellites located on either side of the geomagnetic equator indicates that the field-aligned oscillation is an odd harmonic. Finite azimuthal Poynting flux suggests that the cavity is effectively open ended and the azimuthal wave number is estimated as m~13.5.

  10. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.

    Science.gov (United States)

    Ai, Ye; Sanders, Claire K; Marrone, Babetta L

    2013-10-01

    A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SSAW-based particle manipulation. It was found that the pressure nodes across the channel were individual planes perpendicular to the solid substrate. In the separation experiments, two side sheath flows hydrodynamically focused the injected particle or cell mixtures into a very narrow stream along the centerline. Particles flowing through the SSAW field experienced an acoustic radiation force that highly depends on the particle properties. As a result, dissimilar particles or cells were laterally attracted toward the pressure nodes at different magnitudes, and were eventually switched to different outlets. Two types of fluorescent microspheres with different sizes were successfully separated using the developed device. In addition, Escherichia coli bacteria premixed in peripheral blood mononuclear cells (PBMCs) were also efficiently isolated using the SSAW-base separation technique. Flow cytometric analysis on the collected samples found that the purity of separated E. coli bacteria was 95.65%.

  11. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, A.; Brennan, S.; Munkholm, A. [Stanford Synchrotron Radiation Laboratory SSRL/SLAC, Menlo Park, CA (United States); Schuster, M.; Riechert, H. [Siemens AG, Corporate Technology, Munich (Germany); Materlik, G. [Hamburger Synchrotronstrahlungslabor HASYLAB/DESY, Hamburg (Germany)

    1999-05-21

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs){sub 3}(GaAs){sub 7} short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0.008 nm and one As atom plane by 0.023 nm. The displacements within the GaAs layers exhibit a mirror symmetry with respect to the centre of each layer. (author)

  12. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    Science.gov (United States)

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.

  13. Shallow water modal evolution due to nonlinear internal waves

    Science.gov (United States)

    Badiey, Mohsen; Wan, Lin; Luo, Jing

    2017-09-01

    Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.

  14. Stellwagen Bank National Marine Sanctuary - Internal Wave Analysis Spatial Extent

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains the spatial extent of the internal wave analysis. This area of interest was defined in interests of time. A cusory review of the 66 SAR...

  15. Standing and Travelling Wave Contributions to the Persistent Ridge-Trough Over North America During Winter 2013/14

    Science.gov (United States)

    Watt-Meyer, O.; Kushner, P. J.

    2015-12-01

    The winter season over North America during 2013/14 was dominated by a persistent ridge-trough that brought warm and dry conditions to the southwestern U.S., and markedly cold temperatures to central and eastern North America [Wang et al., 2014; Hartmann, 2015]. In addition, several cold air outbreaks occurred during the winter season, the strongest of which was around 7 January 2014 and led to minimum daily temperature records being set at many weather stations including Atlanta, Austin, Chicago and New York [Screen et al., in press]. This study uses a novel decomposition of wave variability into standing and travelling components [Watt-Meyer and Kushner, 2015] to diagnose the anomalous circulation of the 2013/14 winter season. This spectral decomposition is an improvement on previous methods because it explicitly accounts for the covariance between standing and travelling waves, and because the real-space components of the signal can be easily reconstructed. An index representing the ridge-trough dipole is computed using mid-tropospheric heights and shown to be well correlated with surface temperatures over central and eastern North America. The contributions to this dipole index from standing waves, westward travelling waves, and eastward travelling waves are calculated. The analysis demonstrates that the cold air outbreak of 7 January 2014 was driven by a synoptic wave of record breaking amplitude intensifying a persistent background amplification of the typical ridge-trough structure seen during North American winter.

  16. Development of a Nonlinear Internal Wave Tactical Decision Aid

    Science.gov (United States)

    2016-06-07

    of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...www.internalwaveatlas.com LONG-TERM GOALS The long term goal of the project is to develop a prediction methodology for the occurrence of nonlinear

  17. Toward an Internal Gravity Wave Spectrum in Global Ocean Models

    Science.gov (United States)

    2015-05-14

    Davis Highway, Suite 1204, Arlington VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law , no person shall be...14 MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Toward an Internal Gravity Wave Spectrum in Global...resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as

  18. Laboratory Modeling of Internal Wave Generation in Straits

    Science.gov (United States)

    2014-06-13

    Peacock 2010). 3. The suitability of the double ridge configuration of the Luzon Strait to give rise to resonant forcing of the semi-diurnal...Figure 6. 6 Figure 6: PIV visualization of the magnitude of the in-plane velocity of the 3D conical internal wave field generated by a...Visualization of the conical 3D internal wave field generated by an oscillating sphere using stereo-PIV, Experiments in Fluids, 54, 1454. Mathur

  19. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Science.gov (United States)

    Chen, Hsin-Liang; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain; Leou, Keh-Chyang

    2014-09-01

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  20. Investigation of sound field for a standing wave tube system with flow and with lateral Helmholtz resonator Ⅰ. Theoretical analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; LI Song; GUO Qing; HUANG Dongtao

    2005-01-01

    A lateral Helmholtz resonator added to a standing wave tube without flow has been validated as a method of noise reduction for combustion noise radiated from combustion channel of rockets or turbines. But in fact there is a flow with low velocity in the combustion channel. Therefore the theoretical analysis carried out is aimed at sound field of standing wave tube with flow and with lateral Helmholtz resonator. Certainly a relevant math-physical model should first be formulated. Here three key problems need to be solved: (1) To formulate the discontinuity condition at the joint between the standing wave tube and Helmholtz resonator in the case of flow. (2) To determine the acoustic impedance of Helnholtz resonator, considering the effects of flow, viscous and multihole. (3) To formulate the reflection condition at the end of the standing wave tube. Some formulas for analysis of the sound field in the tube with flow and with lateral Helmholtz resonator are deduced. These theoretical works have been validated by experiments.

  1. Energetics of internal solitary waves in a background sheared current

    Directory of Open Access Journals (Sweden)

    K. G. Lamb

    2010-10-01

    Full Text Available The energetics of internal waves in the presence of a background sheared current is explored via numerical simulations for four different situations based on oceanographic conditions: the nonlinear interaction of two internal solitary waves; an internal solitary wave shoaling through a turning point; internal solitary wave reflection from a sloping boundary and a deep-water internal seiche trapped in a deep basin. In the simulations with variable water depth using the Boussinesq approximation the combination of a background sheared current, bathymetry and a rigid lid results in a change in the total energy of the system due to the work done by a pressure change that is established across the domain. A final simulation of the deep-water internal seiche in which the Boussinesq approximation is not invoked and a diffuse air-water interface is added to the system results in the energy remaining constant because the generation of surface waves prevents the establishment of a net pressure increase across the domain. The difference in the perturbation energy in the Boussinesq and non-Boussinesq simulations is accounted for by the surface waves.

  2. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  3. Parameter identification of internal wave and mesoscale eddy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field that comprise the total field of a wave in the ocean, considering that the total field and the incident field satisfy the Helmholtz equations and the scattered field conforms to the Sommerfield radiation condition. Two examples for the calculation of refractive index and inverse refractive index respectively of the mesoscale eddy and the internal wave demonstrate the applicability of the algorithm.

  4. Towards an analytical understanding of internal wave attractors

    Directory of Open Access Journals (Sweden)

    U. Harlander

    2008-03-01

    Full Text Available Time harmonic inviscid internal wave motions constrained to fully closed domains generically lead to singular velocity fields. In spite of this difficulty, several techniques exist to solve such internal wave boundary value problems. Recently it has been shown that for a domain with the shape of a trapezium, solutions can be written in terms of a double sine Fourier series. However, the solutions were found by a numerical technique and thus not all coefficients of the series are available. Unfortunately, for questions related e.g. to regularization of the inviscid {em singular} solutions, the knowledge of the asymptotic behavior of the spectrum for large wave numbers is essential. Here we discuss solutions of internal wave boundary value problems for which the spectra are known, at least asymptotically. We further describe shortcomings of the found solutions that need to be overcome in the future. Finally, we sketch applications of the solutions in the context of viscous energy dissipation.

  5. Angular Momentum Transport via Internal Gravity Waves in Evolving Stars

    CERN Document Server

    Fuller, Jim; Cantiello, Matteo; Brown, Ben

    2014-01-01

    Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many sub-giant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of internal gravity waves in angular momentum transport in evolving low mass stars. In agreement with previous results, we find that convectively excited gravity waves can prevent the development of strong differential rotation in the radiative cores of Sun-like stars. As stars evolve into sub-giants, however, low frequency gravity waves become strongly attenuated and cannot propagate below the hydrogen burning shell, allowing the spin of the core to decouple from the convective envelope. This decoupling occurs at the base of the sub-giant branch when stars have surface temperatures of roughly 5500 K. However, gravity waves can s...

  6. Boundary conditions on internal three-body wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Kevin A.; Littlejohn, Robert G.

    1999-10-01

    For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.

  7. Extraction of olive oil assisted by high-frequency ultrasound standing waves.

    Science.gov (United States)

    Juliano, Pablo; Bainczyk, Fabian; Swiergon, Piotr; Supriyatna, Made Ian Maheswara; Guillaume, Claudia; Ravetti, Leandro; Canamasas, Pablo; Cravotto, Giancarlo; Xu, Xin-Qing

    2017-09-01

    High-frequency ultrasound standing waves (megasonics) have been demonstrated to enhance oil separation in the palm oil process at an industrial level. This work investigated the application of megasonics in the olive oil process on laboratory and pilot scale levels. Sound pressure level and cavitational yield distribution were characterised with hydrophones and luminol to determine associated physical and sonochemical effects inside the reactor. The effect of water addition (0%, 15%, and 30%), megasonic power levels (0%, 50%, and 100%), and malaxation time (10min, 30min, and 50min) was evaluated using response surface methodology (RSM) in a 700g batch extraction process. The RSM showed that the effect of the megasonic treatment (585kHz) in the presence of a reflector is more prominent at longer malaxation time (50min) and at higher water addition (30%) levels post-malaxation. Longer megasonic treatment of the malaxed paste (up to 15min; 220kJ/kg) increased oil extractability by up to 3.2%. When treating the malaxed paste with the same specific energy, higher oil extractability was obtained with longer treatments and low megasonic power levels in comparison to higher power levels and shorter times. Megasonic treatment of the paste before malaxation (585kHz, 10min, 146kJ/kg) and no water addition provided an increase in oil extractability of up to 3.8% with respect to the non-sonicated control. A double sonication intervention, before and after malaxation, using low (40kHz) and high (585kHz) frequency, respectively, provided up to 2.4% increase in oil extractability. A megasonic intervention post-malaxation (400 and 600kHz, 57-67min, 18-21kJ/kg) on a pilot scale using early-harvest olive fruits resulted in up to 1.7% extra oil extractability. Oil extracted under a high sonication frequency (free radical production regime) did not impact on olive oil quality parameters at reactor characterisation levels. Megasonic standing wave forces can enhance olive oil separation

  8. GENERATION OF NONLINEAR INTERNAL WAVES ON CONTINENTAL SHELF

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 2-D KdV equation is derived under condition of arbitrary continuous density profiles. A non-fission version of initial internal solitary waves propagating onto the continental shelf is studied by means of the 2-D KdV equation. Under non-Bohr and Sommerfeld’s condition, numerical calculations are carried out based on the KdV equation. The results shows that the initial internal solitary waves in deep ocean break down into internal undular bores on the continental shelf. And the bores have a like-soliton leading fronts and undular trails.

  9. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  10. Instability analysis of resonant standing waves in a parametrically excited boxed basin

    Energy Technology Data Exchange (ETDEWEB)

    Sirwah, Magdy A [Department of Mathematics, Faculty of Science, Tanta University, Tanta (Egypt)], E-mail: magdysirwah@yahoo.com

    2009-06-15

    Two-mode parametric excited interfacial waves of incompressible immiscible liquids in an infinite boxed basin subjected to a vertical excitation are studied. The method of multiple time scales is used to obtain uniform solutions of the second-order system as well as the third-order one, which in turn leads to the solvability conditions of the two orders including the cubic interaction terms. The different cases of resonance that arise among the natural frequencies together with the frequency of the vertical vibration of the box are demonstrated theoretically and numerical computations of one of these cases (the two-to-one internal resonance and the principal parametric resonance) have been performed in detail in order to investigate the behavior of the resonant waves, especially the qualitative one. The autonomous system of four first-order differential equations for the modulation of the amplitudes and phases of the resonant waves is derived. Some numerical applications are achieved to show the stability criteria of the excited liquids inside the considered basin.

  11. Attentional Focus Effects in Standing Long Jump Performance: Influence of a Broad and Narrow Internal Focus.

    Science.gov (United States)

    Becker, Kevin A; Smith, Peter J K

    2015-07-01

    The content of instructions that strength coaches give can have a significant impact on how an athlete or client performs. Research on motor learning has shown an advantage of instructions focusing on the effects of movements (external focus) over those focusing on the movements themselves (internal focus) in the performance of motor skills. Internally focused cues are abundant in coaching, therefore the purpose of this study was to test whether some internally focused cues might be more helpful than others. Participants (68) were randomly assigned to either an external focus (EX), broad internal focus (B-IN), narrow internal focus (N-IN), or a control group (CON), and performed 5 standing long jumps. All groups were instructed that the goal was to jump as far as possible. In addition, the EX group was told to "jump as far past the start line as possible." The B-IN group was told to "use your legs." The N-IN group was told to "extend your knees as rapidly as possible," and the CON group received no additional instruction. An analysis of covariance showed that the EX group (198.09 ± 31.89 cm) jumped significantly farther than both the B-IN group (173.74 ± 35.36 cm), p = 0.010 and the N-IN group (178.53 ± 31.17 cm), p = 0.049, with no group different from the CON group. The results suggest that a broad internal focus is no more effective than a narrow internal focus, and that an external focus leads to the greatest jump distance. Strength and conditioning professionals should carefully word their instructions to induce an external focus of attention whenever possible.

  12. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  13. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.

  14. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).

    Science.gov (United States)

    Sriphutkiat, Yannapol; Zhou, Yufeng

    2017-01-07

    Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing and causes damage to the nozzle. Particle accumulation in a 100 μm microchannel was investigated by light microscopy, and its area growth in an exponential format was used to quantify this phenomenon. The effects of the constriction angle and alginate concentration on particle accumulation were also studied. In order to reduce the clogging problem, an acoustic method was proposed and evaluated here. Numerical simulation was first conducted to predict the acoustic radiation force on the particles in the fluid with different viscosities. Interdigital transducers (IDTs) were fabricated on the LiNbO₃ wafer to produce standing surface acoustic waves (SSAW) in the microchannel. It was found that the actuation of SSAW can reduce the accumulation area in the microchannel by 2 to 3.7-fold. In summary, the particle accumulation becomes significant with the increase of the constriction angle and fluid viscosity. The SSAW can effectively reduce the particle accumulation and postpone clogging.

  15. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  16. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  17. The International Standing Conference for the History of Education and "Paedagogica Historica": A Historical View on Institutional Strategies and Practices

    Science.gov (United States)

    Fuchs, Eckhardt

    2014-01-01

    This article seeks to contribute to the institutional history of the discipline of history of education by examining the publication strategies and the associated institutional practices of the International Standing Conference for the History of Education, the international organisation representing those working in the field, and…

  18. Microwave Radiometric Detection of Atmospheric Internal Waves

    Science.gov (United States)

    1976-05-01

    radar holes which adversely affect the performance of Navy radars and communications . A ground-based passive method of detecting internal wavea...this way, the continuity of the parcels along the horizontal direc- tion could be determined as well as their speed. S. EXPERIENTAL RESULTTS This

  19. Forced Internal Waves in the Arctic Ocean.

    Science.gov (United States)

    1980-05-01

    lead axis with a superimposed pattern of localized lead driven circulation perpendicular to the lead axis. Such a pattern has been predicted by Estoque ...Conseil Perm. Intern. p. l’Expl. de la Mer, Pub. de Circonstance, No. 43, 47 pp. Estoque , M. A. and C. M. Bhumralker, 1969. Flow over a localized heat

  20. Reflexion and Diffraction of Internal Waves analyzed with the Hilbert Transform

    CERN Document Server

    Mercier, Matthieu; Dauxois, Thierry

    2008-01-01

    We apply the Hilbert transform to the physics of internal waves in two-dimensional fluids. Using this demodulation technique, we can discriminate internal waves propagating in different directions: this is very helpful in answering several fundamental questions in the context of internal waves. We focus more precisely in this paper on phenomena associated with dissipation, diffraction and reflection of internal waves.

  1. THE SIMULATION OF THE SAR IMAGE OF INTERNAL SOLITARY WAVES IN ALBORAN SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    SAR imaging mechanism of internal wave is studied. The numerical modelling of internal waves is obtained by the two-level scheme. The simulaed SAR images that have better expressed the features of internal waves are given by the internal waves SAR imaging theory and numerical modelling result.

  2. Generation of internal gravity waves by penetrative convection

    CERN Document Server

    Pinçon, C; Goupil, M J

    2015-01-01

    The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a c...

  3. Numerical calculation of dispersion relation for linear internal waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the horizontal Coriolis terms included in motion equations and the influence of compressibility of seawater on Brunt-V(a)is(a)l(a) frequency considered, a numerical method of calculating the dispersion relation for linear internal waves, which is an improvement of Cai and Gan (1995), and hence Fliegel and Hunkins (1975), had been set up. For different models (Pacific model, Atlantic model and Arctic model), simulations using the three different methods were compared and the following conclusions were reached: (1) the influence of horizontal Coriolis terms on dispersion relation cannot be neglected and is connected with the direction of the wave celerity, the latitude, and the modes of the wave;(2) the effect of compressibility of seawater in stratification is not an important factor for the dispersion relation of linear internal wave, at least for those three models. With the improved method, the wavefunction curves for the Pacific model had also been built.

  4. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-11-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  5. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-01-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  6. Fitness to stand trial under international criminal law: the historical context.

    Science.gov (United States)

    Freckelton, Ian; Karagiannakis, Magda

    2014-06-01

    Decision-making about fitness to stand trial and the consequences of a finding of unfitness are fundamental to the integrity of any criminal justice system. They create thresholds for when mentally and physically unwell people are mandated to participate in criminal proceedings and they address the outcomes of such decisions for unwell accused persons. The jurisprudence relating to fitness to stand trial under international criminal law has particular challenges and complexities. The origins of contemporary controversies and the bases for modern decisions lie in rulings by the Nuremberg and Tokyo tribunals in the immediate aftermath of the Second World War. The decisions relating to Gustav Krupp, Rudolf Hess, Julius Streicher and Shumei Okawa wrestled with issues that have since recurred in respect of how trial systems should respond to unwellness going to the heart of whether persons can participate meaningfully in their own trials but dealing too with the temptation for persons accused of matters as serious as crimes against humanity and genocide to malinger, exaggerate symptomatology and to generate delays for strategic objectives.

  7. Internal gravity waves: Analysis using the periodic, inverse scattering transform

    Directory of Open Access Journals (Sweden)

    W. B. Zimmerman

    1999-01-01

    Full Text Available The discrete periodic inverse scattering transform (DPIST has been shown to provide the salient features of nonlinear Fourier analysis for surface shallow water waves whose dynamics are governed by the Korteweg-de Vries (KdV equation - (1 linear superposition of components with power spectra that are invariants of the motion of nonlinear dispersive waves and (2 nonlinear filtering. As it is well known that internal gravity waves also approximately satisfy the KdV equation in shallow stratified layers, this paper investigates the degree to which DPIST provides a useful nonlinear spectral analysis of internal waves by application to simulations and wave tank experiments of internal wave propagation from localized dense disturbances. It is found that DPIST analysis is sensitive to the quantity λ = (r/6s * (ε/μ2, where the first factor depends parametrically on the Richardson number and the background shear and density profiles and the second factor is the Ursell number-the ratio of the dimensionless wave amplitude to the dimensionless squared wavenumber. Each separate wave component of the decomposition of the initial disturbance can have a different value, and thus there is usually just one component which is an invariant of the motion found by DPIST analysis. However, as the physical applications, e.g. accidental toxic gas releases, are usually concerned with the propagation of the longest wavenumber disturbance, this is still useful information. In cases where only long, monochromatic solitary waves are triggered or selected by the waveguide, the entire DPIST spectral analysis is useful.

  8. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    Science.gov (United States)

    Compelli, Alan; Ivanov, Rossen I.

    2016-08-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  9. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan

    2016-01-01

    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  10. Modeling the dynamics of intense internal waves on the shelf

    Science.gov (United States)

    Talipova, T. G.; Pelinovsky, E. N.; Kurkin, A. A.; Kurkina, O. E.

    2014-11-01

    The transformation of the internal wave packet during its propagation over the shelf of Portugal was studied in the international experiment EU MAST II MORENA in 1994. This paper presents the results of modeling of the dynamics of this packet under hydrological conditions along the pathway of its propagation. The modeling was performed on the basis of the generalized Gardner-Ostrovskii equation, including inhomogeneous hydrological conditions, rotation of the Earth, and dissipation in the bottom boundary layer. We also discuss the results of the comparison of the observed and simulated forms and phases of individual waves in a packet at reference points.

  11. Self-organized Criticality Model for Ocean Internal Waves

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; LIN Min; QIAO Fang-Li; HOU Yi-Jun

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of-2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.

  12. MICRO-MOTION EFFECT OF A TRAPPED ULTRA-COLD ION IN A STANDING-WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    JIANG YU-RONG; FENG MANG; GAO KE-LIN; ZHU XI-WEN

    2001-01-01

    In the absence of the requirements of the Lamb-Dicke limit and rotating wave approximation, we semi-classically investigate the dynamics of a trapped ultra-cold ion in the standing-wave laser, with the consideration of the time- dependent potential and pseudo-potential of the Paul trap. The specific calculations show that the larger the Lamb-Dicke parameter η and the Rabi frequency Ω, the greater the difference between the dynamics in the time-dependent potential and the pseudo-potential.

  13. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  14. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves)

    Science.gov (United States)

    Nam, Jeonghun; Kim, Jae Young; Lim, Chae Seung

    2017-01-01

    We present continuous, sheathless microparticle patterning using conductive liquid (CL)-based standing surface acoustic waves (SSAWs). Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  15. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  16. Speedy standing wave design, optimization, and scaling rules of simulated moving bed systems with linear isotherms.

    Science.gov (United States)

    Weeden, George S; Wang, Nien-Hwa Linda

    2017-04-14

    Simulated Moving Bed (SMB) systems with linear adsorption isotherms have been used for many different separations, including large-scale sugar separations. While SMBs are much more efficient than batch operations, they are not widely used for large-scale production because there are two key barriers. The methods for design, optimization, and scale-up are complex for non-ideal systems. The Speedy Standing Wave Design (SSWD) is developed here to reduce these barriers. The productivity (PR) and the solvent efficiency (F/D) are explicitly related to seven material properties and 13 design parameters. For diffusion-controlled systems, the maximum PR or F/D is controlled by two key dimensionless material properties, the selectivity (α) and the effective diffusivity ratio (η), and two key dimensionless design parameters, the ratios of step time/diffusion time and pressure-limited convection time/diffusion time. The optimum column configuration for maximum PR or F/D is controlled by the weighted diffusivity ratio (η/α(2)). In general, high α and low η/α(2) favor high PR and F/D. The productivity is proportional to the ratio of the feed concentration to the diffusion time. Small particles and high diffusivities favor high productivity, but do not affect solvent efficiency. Simple scaling rules are derived from the two key dimensionless design parameters. The separation of acetic acid from glucose in biomass hydrolysate is used as an example to show how the productivity and the solvent efficiency are affected by the key dimensionless material and design parameters. Ten design parameters are optimized for maximum PR or minimum cost in one minute on a laptop computer. If the material properties are the same for different particle sizes and the dimensionless groups are kept constant, then lab-scale testing consumes less materials and can be done four times faster using particles with half the particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Deep-water bedforms induced by refracting Internal Solitary Waves

    Science.gov (United States)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  18. Weakly nonlinear models for internal waves: inverse scattering transform and solitary wave contents

    CERN Document Server

    Chen, Shengqian

    2016-01-01

    The time evolution emanating from ``internal dam-break'' initial conditions is studied for a class of models of stratified Euler fluids in configurations close to two-homogeneous layers separated by a thin diffused interface. Direct numerical simulations and experiments in wave tanks show that such initial conditions eventually give rise to coherent structures that are close to solitary-wave solutions moving ahead of a region of dispersive wave motion and turbulent mixing close to the location of the initial dam step. A priori theoretical predictions of the main features of these solitary waves, such as their amplitudes and speeds, appear to be unavailable, even for simplified models of wave evolution in stratified fluids. With the aim of providing estimates of the existence, amplitude and speed of such solitary waves, an approach based on Inverse Scattering Transform (IST) for completely integrable models is developed here and tested against direct numerical simulations of Euler fluids and some of their mode...

  19. Nonlinear Aspects of Internal Waves in the Atmosphere

    Science.gov (United States)

    2009-08-20

    ORGANIZATION REPORT NUMBER University of New Hampshire Kingsbury Hall Durham, NH 03824 9. SPONSORING...of internal waves in the atmosphere John P. McHugh Department of Mechanical Engineering University of New Hampshire Durham, NH 03824 (603) 862-1899...Sciences, 44, pp. 1404- 1410 , 1987. [27] Solomonoff, A. and Turkel, E.: Global collocation methods for approx- imation and the solution of partial

  20. Identification of internal waves off Visakhapatnam from Thermister chain

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; SujitKumar, S.; SaiSandhya, K.; Maneesha, K.; Murthy, K.S.R.

    degrees 26.46'N and 83 degrees 31.20'E, and sonic depth 100 m) during 18-20 October 2006 using indigenously developed thermister chain to study the Internal Wave (IW) characteristics. Sound velocity realizations (in space and time) in the observed high...

  1. Numerical Computation of Large Amplitude Internal Solitary Waves,

    Science.gov (United States)

    1981-03-20

    provide adequate resolution. All computations were performed on a CDC Cyber 176 computer, and it takes slightly less than one CPU second to obtain a...H. Segur , Lgn Internal Waves in Fluids of Great Depth, Studies in Applied Math., 62 (1980), pp. 249-262. [3] E. Allgower and K. Georg, Simlicial -and

  2. Internal solitary waves in the Red Sea: An unfolding mystery

    NARCIS (Netherlands)

    da Silva, J.C.B.; Magalhães, J.M.; Gerkema, T.; Maas, L.R.M.

    2012-01-01

    The off-shelf region between 16.0 degrees and 16.5 degrees N in the southern Red Sea is identified as a new hotspot for the occurrence of oceanic internal solitary waves. Satellite observations reveal trains of solitons that, surprisingly, appear to propagate from the center of the Red Sea, where it

  3. On the detectability of internal waves by an imaging lidar

    NARCIS (Netherlands)

    Magalhaes, J.M.; da Silva, J.C.B.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A.L.; Jeans, D.R.G.

    2013-01-01

    The first results of a multisensor airborne survey conducted off the western Iberian Coast are presented (including visible, lidar, and infrared imagery) and reveal the presence of internal solitary waves (ISWs) propagating into the nearshore region. For the first time, two-dimensional lidar imagery

  4. Internal solitary waves in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    LI Xiaofeng; ZHAO Zhongxiang; HAN Zhen; XU Liuxiong

    2008-01-01

    A European Space Agency's ENVISAT advanced synthetic aperture radar (ASAR) image covering Zhejiang coastal water in the East China Sea (ECS) was acquired on 1 August 2007. This image shows that there are about 20 coherent internal solitary wave (ISW) packets propagating southwestward toward Zhejiang coast. These ISW packets are separated by about 10 kin, suggesting that these ISWs are tide-generated waves. Each ISW packet contains 5--15 wave crests. The wavelengths of the wave crests with-in the ISW packets are about 300 m. The lengths of the leading wave crests are about 50 km. The ISW amplitude is estimated from solving KdV equation in an ideal two-layer ocean model. It is found that the ISW amplitudes is about 8 m. Further analysis of the ASAR image and ocean stratification profiles show that the observed ISWs are depression waves. Analyzing the tidal current finds that these waves are locally generated. The wavelength and amplitude of the ECS ISW are much smaller than their counter-parts in the South China Sea (SCS). The propagation speed of the ECS ISW is also an order of magnitude smaller than that of the SCS ISW. The observed ISWs in the ECS happened during a spring tide period.

  5. Wave resource variability: Impacts on wave power supply over regional to international scales

    Science.gov (United States)

    Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian

    2017-04-01

    The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the

  6. Studies of Mixing and Internal Waves in the Upper Ocean

    Science.gov (United States)

    Wijesekera, Hemantha W.

    Microstructure measurements in the equatorial Pacific at 140^circW in late 1984 show a pronounced diurnal variation in both high-frequency internal wave energy and kinetic energy dissipation rate. Observations indicated that after sunset, internal waves propagate downward and increase turbulence levels in the pycnocline. A wave dissipation model based on the observed turbulent kinetic energy dissipation rate predicts that most of the downward wave momentum flux penetrates through the undercurrent core. It is hypothesized that when the wind stress is strong, the equatorial Pacific ocean responds by generating a westward-travelling internal wave field which transports much of the surface wind stress below the actively mixing surface layer. Several models now exist for predicting the dissipation rate of turbulent kinetic energy, varepsilon , in the oceanic thermocline as a function of the large-scale properties of the internal gravity wave field. These models are based on the transfer of energy towards smaller vertical scales by wave-wave interactions, and their predictions are typically evaluated for a canonical internal wave field as described by Garrett and Munk. Here we use simultaneous measurements of the internal wave field and varepsilon from a drifting ice camp in the eastern Arctic Ocean to evaluate the efficacy of existing models in a region with an anomalous wave field and energetic mixing. We find that, by explicitly retaining the vertical wavenumber bandwidth parameter, beta_*, models can still provide reasonable estimates of the dissipation rate. Statistics of turbulent patches are used to describe the nature of mixing in the pycnocline near abrupt bottom topography. It is found that the turbulent kinetic energy dissipation rate, varepsilon_{r }, averaged over a region of height r has a lognormal distribution consistent with Kolmogorov's third hypothesis: sigma_sp{ln(varepsilon _{r})}{2} = A + mu ln(L_{p}/r) where sigma_sp{ln(varepsilon _{r})}{2} is the

  7. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    Science.gov (United States)

    Rodrigues Ventura, Daniel; Simeão de Carvalho, Paulo; Adriano Dias, Marco

    2017-01-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be…

  8. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    Science.gov (United States)

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  9. Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche

    Science.gov (United States)

    Henderson, Stephen M.

    2016-04-01

    Internal seiches, which supply the energy responsible for mixing many lakes, are often modeled as vertically standing waves. However, recent observations of vertical seiche propagation in a small lake are inconsistent with the standard, vertically standing model. To examine the processes responsible for such propagation, drag and turbulent production in the bottom boundary layer of a small lake are related to the energy supplied by a propagating seiche (period 10-24 h). Despite complex and fluctuating stratification, which often inhibited mixing within 0.4 m of the bed, bottom stress was well represented by a simple drag coefficient model (drag coefficient 1.5 × 10-3). The net supply of seiche energy to the boundary layer was estimated by fitting a model for internal wave vertical propagation to velocity profiles measured above the boundary layer (1-4.5 m above lakebed). Fitted reflection coefficients ranged from 0.3 at 1 cycle/d frequency to 0.7 at 2.4 cycles/d (cf. near-unity coefficients of classical seiche theories). The net supply of seiche energy approximately balanced boundary layer turbulent production. Three of four peaks in production and energy flux occurred 0.8-2.2 days after strong oscillating winds, a delay comparable to the time required for seiche energy to propagate to the lakebed. A model based on the estimated drag coefficient predicted the observed frequency dependence of the seiche reflection coefficient. For flat-bed regions in narrow lakes, the model predicts that reflection is controlled by the ratio of water velocity to vertical wave propagation speed, with sufficiently large ratios leading to weak reflection, and clear vertical seiche propagation.

  10. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control

    Science.gov (United States)

    Xie, Kai; Yang, Min; Bai, Bowen; Li, Xiaoping; Zhou, Hui; Guo, Lixin

    2016-01-01

    Radio blackout during the re-entry has puzzled the aerospace industry for decades and has not yet been completely resolved. To achieve a continuous data link in the spacecraft's re-entry period, a simple and practicable communication method is proposed on the basis that (1) the electromagnetic-wave backscatter of the plasma sheath affects the voltage standing wave ratio (VSWR) of the antenna, and the backscatter is negatively correlated to transmission components, and (2) the transmission attenuation caused by the plasma sheath reduces the channel capacity. We detect the voltage standing wave ratio changes of the antenna and then adjust the information rate to accommodate the varying channel capacity, thus guaranteeing continuous transmission (for fewer critical data). The experiment was carried out in a plasma generator with an 18-cm-thick and 30-cm-diameter hollow propagation path, and the adaptive communication was implemented using spread spectrum frequency, shift key modulation with a variable spreading factor. The experimental results indicate that, when the over-threshold of VSWR was detected, the bit rate reduced to 250 bps from 4 Mbps automatically and the tolerated plasma density increased by an order of magnitude, which validates the proposed scheme. The proposed method has little additional cost, and the adaptive control does not require a feedback channel. The method is therefore applicable to data transmission in a single direction, such as that of a one-way telemetry system.

  11. Internal solitary waves propagating through variable background hydrology and currents

    Science.gov (United States)

    Liu, Z.; Grimshaw, R.; Johnson, E.

    2017-08-01

    Large-amplitude, horizontally-propagating internal wave trains are commonly observed in the coastal ocean, fjords and straits. They are long nonlinear waves and hence can be modelled by equations of the Korteweg-de Vries type. However, typically they propagate through regions of variable background hydrology and currents, and over variable bottom topography. Hence a variable-coefficient Korteweg-de Vries equation is needed to model these waves. Although this equation is now well-known and heavily used, a term representing non-conservative effects, arising from dissipative or forcing terms in the underlying basic state, has usually been omitted. In particular this term arises when the hydrology varies in the horizontal direction. Our purpose in this paper is to examine the possible significance of this term. This is achieved through analysis and numerical simulations, using both a two-layer fluid model and a re-examination of previous studies of some specific ocean cases.

  12. Probing the Internal Composition of Neutron Stars with Gravitational Waves

    CERN Document Server

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2015-01-01

    Gravitational waves from neutron star binary inspirals contain information about the equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure in a neutron star as function of its density have been proposed. These models differ not only in the approximations and techniques they use to solve the many-body Schr\\"odinger equation, but also in the neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both norm...

  13. WAVES GENERATED BY A SUBMERGED BODY MOVING IN STRATIFIED FLUIDS AND VERTICAL STRUCTURES OF INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    WEI Gang

    2004-01-01

    This dissertation deals with the internal waves generated by a submerged moving body in stratified fluids by combining theoretical and experimental methods. Our purpose is to provide some scientific evidences for non-acoustic detection of underwater moving bodies based on the principles of dynamics of the internal waves. An approach to velocity potentials obtained by superposing Green's functions of sources and sinks was proposed for Kelvin waves at the free surface or interface in a two-layer fluid. The effects of interacting surface- and internal-wave modes induced by a dipole on the surface divergence field were investigated. A new theoretical model formulating the interaction of a two-dimensional submerged moving body with the conjugate flow in a three-layer fluid was established. An exact solution satisfying the two-dimensional Benjamin-Ono equation was obtained and the vertically propagating properties of the weakly nonlinear long waves were studied by means of the ray theory and WKB method. The above theoretical results are qualitatively consistent with those obtained in the experiments conducted by the author.

  14. The density stratification and amplitude dispersion of internal waves

    Science.gov (United States)

    Makarenko, N.; Ulanova, E.

    2012-04-01

    We consider the theoretical model of large amplitude internal solitary waves propagating in a weakly stratified fluid under gravity. It is well known that steady 2D Euler equations of non-homogeneous fluid reduce in this case to the second-order quasi-linear equation for a stream function (the Dubreil-Jacotin-Long equation). Subsequently, the shape of traveling solitary wave can be determined in the long-wave scaling limit by solving the dispersive KdV-type model equation. The non-linear terms of this equation depend considerably on the instantaneous fine-scale density profile formed over background linear- or exponential stratification (Benney&Ko, 1978; Borisov&Derzho 1990; Derzho&Grimshaw 1997; Makarenko, 1999; Makarenko, Maltseva and Kazakov, 2009). Now we derive and analyze Fredholm-type integral equations coupling immediately the fluid density coefficient with the dispersion function for internal solitary waves. The inverse problem which means to find the fine-scale density by known curve of the amplitude dispersion is discussed in more details.

  15. A method to overcome the diffraction limit in infrared microscopy using standing waves in an attenuated total reflection configuration

    Science.gov (United States)

    Hendaoui, Nordine; Mani, Aladin; Liu, Ning; Tofail, Syed M.; Silien, Christophe; Peremans, André

    2017-01-01

    A method is proposed to overcome the diffraction limit of spatial resolution in infrared microscopy. To achieve this, standing waves in an attenuated total reflection configuration were generated to spatially modulate the absorbance of adsorbate vibrational transitions. A numerical simulation was undertaken. It showed that chemical imaging with a spatial resolution of approximately 100 nm is achievable in the case of self-assembled patterns (ofoctdecyltrichlorosilane [CH3-(CH2)17-SiCl3]), when probing the methyl modes located near 3.5 micrometres.

  16. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...

  17. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Tidal Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with tidal zones for Massachusetts Bay. The internal wave packets were...

  18. Rotation-induced nonlinear wavepackets in internal waves

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  19. Rotation-induced nonlinear wavepackets in internal waves

    Science.gov (United States)

    Whitfield, A. J.; Johnson, E. R.

    2014-05-01

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  20. A stand-alone power system to integrate wind, wave and solar energy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 12 October, 2007, an agreement on the construction of a stand-alone renewable energy (RE) system at the Dangan Island was inked between the CAS Guangzhou Institute of Energy Conversion (GIEC) and the Wanshan Exemplary Marine Development Zone in Zhuhai, a coastal city in south China's Guangdong Province.

  1. An Experimental Study of Nonlinear Standing Waves in Resonators with Numerical Comparison

    Science.gov (United States)

    Finkbeiner, Joshua R.; Raman, Ganesh; Li, Xiaofan; Steinetz, Bruce M.; Daniels, Christopher; Huff, Dennis (Technical Monitor)

    2002-01-01

    Lawrenson et. al. [Journal of the Acoustic Society of America, Nov. 1998] described the generation of shock-free high-amplitude pressure waves in closed cavities using large equipment and resonators to produce the reported effects. An attempt is made to generate shock-free high-amplitude pressure waves using relatively small resonators. Ambient air is used as the working fluid. A small cylindrical resonator is tested resulting in the lack of a shocked waveform while a larger model of the same shape produces shock waves. A small conical resonator produces shock-free pressure waves at resonance, but the amplitude of these waves is small. A larger cone resonator model produces shock-free pressure waves of higher amplitude. A large horn-cone resonator also produces shock-free high amplitude pressure waves, A numerical model is used to compare the experimental results to theoretical results. The effects of structural resonances on the production of shock-free high-amplitude pressure waves are discussed, especially concerning difficulties encountered when these resonances were in the frequency ranges of interest. Identifying features of a structural resonance are presented.

  2. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)

    Science.gov (United States)

    2013-01-01

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations. PMID:23374455

  3. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB

    Directory of Open Access Journals (Sweden)

    Wilson Jacob M

    2013-02-01

    Full Text Available Abstract Position Statement: The International Society of Sports Nutrition (ISSN bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca and a free acid form of HMB (HMB-FA. HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM. 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations.

  4. Numerical simulations of shoaling internal solitary waves of elevation

    Science.gov (United States)

    Xu, Chengzhu; Subich, Christopher; Stastna, Marek

    2016-07-01

    We present high-resolution, two- and three-dimensional direct numerical simulations of large amplitude internal solitary waves of elevation on the laboratory scale, shoaling onto and over a small-amplitude shelf. The three-dimensional, mapped coordinate, spectral collocation method used for the simulations allows for accurate modelling of both the shoaling waves and the bottom boundary layer. The shoaling of the waves is characterized by the formation of a quasi-trapped core which undergoes a spatially growing stratified shear instability at its edge and a lobe-cleft instability in its nose. Both of these instabilities develop and three-dimensionalize concurrently, leading to strong bottom shear stress. We explore significant regions of Schmidt and Reynolds number space and demonstrate that the formation of shear instabilities during shoaling is robust and should be readily observable in a number of standard laboratory setups. In the experiments with a corrugated bottom boundary, boundary layer separation is found inside each of the corrugations during shoaling. This more complex boundary layer phenomenology precludes the formation of the lobe-cleft instability almost completely and hence provides a different mechanism for fluid and material exchange across the bottom boundary layer. Our analyses suggest that all of these wave-induced instabilities can lead to enhanced turbulence in the water column and increased shear stress on the bottom boundary. Through the generation and evolution of these instabilities, the shoaling of internal solitary waves of elevation is likely to provide systematic mechanisms for material mixing, cross-boundary layer transport, and sediment resuspension.

  5. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  6. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    Science.gov (United States)

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  7. Infragravity waves with internal wave characteristics in the south of the Bohai Sea of China

    Institute of Scientific and Technical Information of China (English)

    Fan Zhisong; Gao Guoping; Yin Xunqiang; Fan Yu; Wu Wei

    2003-01-01

    The measurements by using ADCP (500 KH) and CTD were made during August 2000 in the south (37°55'N, 120°25'E) of the Bohai Sea, where the water depth was about 16.5 m. The data of horizontal velocity with sampling interval of 2 min in 7 layers were obtained. The power spectrum analysis of these data indicates that there are very energetic infragravity waves with a period of about 6 min. The coherence spectrum analysis and the analysis of temporal variation of shear show that these infragravity waves are mainly the free wave model (properties of edge waves), in the meantime they possess some characteristics of internal waves, which are likely due to the distinctive marine environment in this area. It is speculated on that the instability processes (chiefly shear instability) of sheared stratified tidal flow owing to the effect of sea-floor slope in the coastal area might be the main mechanism generating these infragravity waves.

  8. Oblique chain resonance of internal waves by three-dimensional seabed corrugations

    CERN Document Server

    Couston, L -A; Alam, M -R

    2016-01-01

    Here we show that the interaction of a low-mode internal wave with small oblique seabed corrugations can lead to a chain resonance of many other freely propagating internal waves with a broad range of wavenumbers and directions of propagation. The chain resonance results in a complex internal wave dynamics over the corrugated seabed that can lead to a significant redistribution of energy across the internal wave spectrum. In order to obtain a quantitative understanding of the energy transfer rates between the incident and resonated waves over the seabed topography, here we derive an equation for the evolution of the wave envelopes using multiple-scale analysis in the limit of small-amplitude corrugations. Strong energy transfers from the incident internal wave toward shorter internal waves are demonstrated for a broad range of incidence angles, and the theoretical predictions are compared favorably with direct simulations of the full Euler's equation. The key results show that: (i) a large number of distinct ...

  9. On linear internal waves on the sea, strongly vertically trapped

    Directory of Open Access Journals (Sweden)

    E. SALUSTI

    1975-05-01

    Full Text Available We study some explicit cases of marine thermocline. We focus our attention on the strongly vertically trapped internal waves, which in our cases allow an explicit dispersion relation and a simple behaviour in terms of elementary functions. The explicit form of the Vaisala-Brunt frequency N2{z is proportional to 1 / z—20| in one case and to A2—B2(z—zD2 in the other. A comparison with some experimental data concerning the Ligurian Sea is actually in course.

  10. 方形薄板二维驻波的研究%Research of 2-dimensional standing waves in square plate

    Institute of Scientific and Technical Information of China (English)

    方奕忠; 王钢; 沈韩; 崔新图; 廖德驹; 冯饶慧

    2014-01-01

    通过对多种振源情形下的方形薄板二维驻波图形(克拉尼图形)的观测与研究,得到不同频率下驻波图形的波节数 n+1,m+1及波矢 k ,从而导出波速(相速)u 。实验结果与理论解析解(严格解)相比较符合得很好。%2-dimensional standing waves in square plates (Chladni figures) in several cases was studied both experimentally and theoretically .Wave nodes and wave vector of the standing wave fig-ures were gotten at different frequency ,and the wave velocity was deduced .The results of the experi-ment agreed well to the analytic solutions of theory .

  11. Flow under standing waves Part 2. Scour and deposition in front of breakwaters

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    A 3-D general purpose Navier-Stokes solver was used to calculate the 2-D flow in front of the breakwater. The k-omega, SST (shear-stress transport) model was selected as the turbulence model. The morphologic model of the present code couples the flow solution with a sediment transport description...... and routines for, updating the computational mesh based on the mass balance of sediment. Laboratory experiments of scour also were conducted in a wave flume to obtain data for model verification. Both in the numerical simulations and in the laboratory experiment, two kinds of breakwaters were used: A vertical......-wall breakwater; and a sloping-wall breakwater (Slope: 1:1.5). Numerically obtained scour-deposition profiles were compared with the experiments. The numerical results show that the equilibrium scour depth normalized by the wave height decreases with increasing water-depth-to-wave-length ratio. Although...

  12. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    CERN Document Server

    Iwakami, Wakana; Yamada, Shoichi

    2013-01-01

    The systematic research of flow patterns behind the accretion shock wave is conducted using three-dimensional hydrodynamics simulations for core-collapse supernovae in this study. Changing the accretion rate and neutrino luminosity, the steady solutions of the one-dimensional irrotational accretion flow passing through the spherical shock wave are evolved by imposing a random perturbation with 1% amplitude at the onset of the simulations. Depending on the accretion rate and neutrino luminosity, various flow patterns appear behind the shock wave. We classified them into the three fundamental flow patterns: (1) sloshing motion, (2) spiral motion, (3) multiple high-entropy bubbles, and the two anomalous flow patterns: (4) spiral motion with buoyant bubbles, and (5) spiral motion with pulsating rotational velocity. The sloshing and spiral motions tend to be dominant in the higher accretion rate and lower neutrino luminosity, and the generations of multiple buoyant bubbles tend to prevail in the lower accretion ra...

  13. Nonlinear standing wave and acoustic streaming in an exponential-shape resonator by gas-kinetic scheme simulation

    Science.gov (United States)

    Zhang, Xiaoqing; Feng, Heying; Qu, Chengwu

    2016-10-01

    Nonlinear standing waves and acoustic streaming in an axial-symmetrical resonator with exponentially varying cross-sectional area were studied. A two-dimensional gas-kinetic Bhatnagar-Gross-Krook scheme based on the non-structure triangular grid was established to simulate nonlinear acoustic oscillations in the resonator. Details of the transient and steady flow fields and streaming were developed. The effects of winding index of the exponential-shape resonator, the displacement amplitude of the acoustic piston on the streaming, and the vortex pattern were analyzed. The results demonstrate that the acoustic streaming pattern in such resonators is different from the typical Rayleigh flow in a constant cross-sectional area resonator. No obvious shock wave appeared inside the exponential-shape resonator. The comparison reveals that with increasing the displacement amplitude of the acoustic piston energy dissipation is accompanied by vortex break-up from a first-level to a second-level transition, and even into turbulent flow. This research demonstrates that the exponential-shape resonator, especially that with a winding index of 2.2 exhibits better acoustic features and suppression effects on shock-wave, acoustic streaming, and the vortex.

  14. Forced wave motion with internal and boundary damping.

    Science.gov (United States)

    Louw, Tobias; Whitney, Scott; Subramanian, Anu; Viljoen, Hendrik

    2012-01-01

    A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.

  15. Influence of standing-wave electric field pattern on the laser damage resistance of HfO sub 2 thin films

    CERN Document Server

    Protopapa, M L; De Tomasi, F; Di Giulio, M; Perrone, M R; Scaglione, S

    2002-01-01

    The standing-wave electric field pattern that forms inside an optical coating as a consequence of laser irradiation is one of the factors influencing the coating laser-induced damage threshold. The influence of the standing-wave electric field profile on the damage resistance to ultraviolet radiation of hafnium dioxide (HfO sub 2) thin films was investigated in this work. To this end, HfO sub 2 thin films of different thicknesses deposited by the electron beam evaporation technique at the same deposition conditions were analyzed. Laser damage thresholds of the samples were measured at 308 nm (XeCl laser) by the photoacoustic beam deflection technique and microscopic inspections. The dependence of the laser damage threshold on the standing-wave electric field pattern was analyzed.

  16. Experimental Analysis on Subharmonic Standing Wave Vibrations in Lengthways Driven Strings%纵向驱动弦的次频振动实验分析

    Institute of Scientific and Technical Information of China (English)

    方天申

    2015-01-01

    讨论纵向驱动弦时的次频驻波振动现象,与弦运动轨迹的观察方法。根据弦运动轨迹,用仿真分析谐波振动可获得弦振动的有关物理信息。实验观察到,可出现非共振驻波(次频振动)振幅可比共振驻波振幅大的多现象。%It presents an experimental technique to observe the vibration tracks of string standing waves,and a subharmonic vibration of strings. The amplitude of a non-resonance subharmonic standing wave may be greater than that of a resonance standing wave in a longitudinally driven string.

  17. Investigation of sound field for a standing wave tube system with flow and with lateral Helmholtz resonator Ⅱ. Experiments and discussion

    Institute of Scientific and Technical Information of China (English)

    LI Song; LIU Ke; GUO Qing; HUANG Dongtao

    2005-01-01

    Based on the theoretical analysis of a standing wave tube with flow and lateral Helmholtz resonator, a relevant experimental apparatus were set up, and were successfully used to validate the the analysis above. Meanwhile an end correction and an equivalent radius coefficient covered in the theoretical analysis were also determined by experiments. Furthermore several results obtained from the theoretical analysis and experiments were used to discuss the effects of flow on the performance of Helmholtz resonator and the sound field in the standing wave tube. It is shown that using Helmholtz resonator for the standing wave tube with flow is still a good measure for noise reduction, even though the effect of noise reduction could be reduced because of flow.

  18. Generation of internal solitary waves by frontally forced intrusions in geophysical flows.

    Science.gov (United States)

    Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric

    2016-12-06

    Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.

  19. Generation of internal solitary waves by frontally forced intrusions in geophysical flows

    Science.gov (United States)

    Bourgault, Daniel; Galbraith, Peter S.; Chavanne, Cédric

    2016-12-01

    Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.

  20. Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves

    Science.gov (United States)

    2016-09-01

    B.E.E., Nanyang Technological University, 2002 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN...Figure 1. The red dots indicate the locations where internal waves are recorded in “An Atlas of Oceanic Internal Solitary Waves.” The lack of...Temperature Plot—Week 8, First 3 Days. B. INTERNAL TIDES From these plots, it was observed that there was great variability in internal wave activity

  1. Near-inertial parametric subharmonic instability of internal wave beams

    Science.gov (United States)

    Karimi, Hussain H.; Akylas, T. R.

    2017-07-01

    Parametric subharmonic instability (PSI) of internal wave beams in a uniformly stratified fluid is discussed, for the case where the beam frequency is nearly twice the inertial frequency due to background rotation. Compared with generic PSI, beams of finite width are expected on physical grounds to be more vulnerable to subharmonic perturbations of near-inertial frequency, as these disturbances have small group velocity and stay in contact with the underlying beam longer, thus extracting more energy. A weakly nonlinear theory for such near-inertial PSI is developed in the "distinguished limit" where the effects of triad nonlinear interactions, dispersion, and viscous dissipation are equally important. This model is used to examine the linear stability of a uniform beam to infinitesimal perturbations under a "pump-wave" approximation, as well as the nonlinear development of PSI that takes into account the effect of the growing perturbations on the beam evolution. Near-inertial PSI is possible for beams of general locally confined profile, in sharp contrast to generic PSI which can arise only for quasimonochromatic beams whose profile comprises a sinusoidal carrier modulated by a locally confined envelope. The theoretical predictions are consistent with earlier numerical simulations of semidiurnal internal tide beams generated over the continental shelf break at latitudes above and below the critical value 28 .8∘N , at which the subharmonic semidiurnal frequency matches the local inertial frequency.

  2. Decreasing Internal Focus of Attention Improves Postural Control during Quiet Standing in Young Healthy Adults

    Science.gov (United States)

    Nafati, Gilel; Vuillerme, Nicolas

    2011-01-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…

  3. Multifrequency Compressional Magnetic Field Oscillations and Their Relation to Multiharmonic Toroidal Standing Alfvén Waves

    Science.gov (United States)

    Takahashi, K.; Waters, C. L.; Kletzing, C.; Kurth, W. S.; Smith, C. W.; Glassmeier, K. H.

    2015-12-01

    The power spectrum of the compressional component of magnetic field observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from spatially separated two Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contain field line resonance characteristics.

  4. Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves

    Science.gov (United States)

    Takahashi, Kazue; Waters, Colin; Glassmeier, Karl-Heinz; Kletzing, Craig A.; Kurth, William S.; Smith, Charles W.

    2015-12-01

    The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two spatially separated Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contains field line resonance characteristics.

  5. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  6. Particle dynamics and spatial $e^-e^+$ density structures at QED cascading in circularly polarized standing waves

    CERN Document Server

    Bashinov, A V; Kim, A V

    2016-01-01

    We present a comprehensive analysis of longitudinal particle drifting in a standing circularly polarized wave at extreme intensities when quantum radiation reaction (RR) effects should be accounted for. To get an insight into the physics of this phenomenon we made a comparative study considering the RR force in the Landau-Lifshitz or quantum-corrected form, including the case of photon emission stochasticity. It is shown that the cases of circular and linear polarization are qualitatively different. Moreover, specific features of particle dynamics have a strong impact on spatial structures of the electron-positron ($e^-e^+$) density created in vacuum through quantum electrodynamic (QED) cascades in counter-propagating laser pulses. 3D PIC modeling accounting for QED effects confirms realization of different pair plasma structures.

  7. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    Science.gov (United States)

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  8. Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves.

    Science.gov (United States)

    Papke, Thomas; Yadavalli, Nataraja Sekhar; Henkel, Carsten; Santer, Svetlana

    2014-08-27

    We use a photosensitive layer containing azobenzene moieties to map near-field intensity patterns in the vicinity of nanogrids fabricated within a thin silver layer. It is known that azobenzene containing films deform permanently during irradiation, following the pattern of the field intensity. The photosensitive material reacts only to stationary waves whose intensity patterns do not change in time. In this study, we have found a periodic deformation above the silver film outside the nanostructure, even if the latter consists of just one groove. This is in contradiction to the widely accepted viewpoint that propagating surface plasmon modes dominate outside nanogrids. We explain our observation based on an electromagnetic hologram formed by the constructive interference between a propagating surface plasmon wave and the incident light. This hologram contains a stationary intensity and polarization grating that even appears in the absence of the polymer layer.

  9. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles

    OpenAIRE

    Shields, C. Wyatt; Cruz, Daniela F.; Ohiri, Korine A.; Yellen, Benjamin B.; Lopez, Gabriel P.

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the ...

  10. Dynamical analysis of mesoscale eddy-induced ocean internal waves using linear theories

    Institute of Scientific and Technical Information of China (English)

    XU Qing; ZHENG Quanan; LIN Hui; LIU Yuguang; SONG YTony; YUAN Yeli

    2008-01-01

    This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diame-ter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of me-ters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale ed-dy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.

  11. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  12. ENVIRONMENTAL AND TOPOGRAPHIC INFLUENCES ON ATMOSPHERIC INTERNAL SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    ZANG Zeng-liang; PAN Xiao-bin; ZHANG Ming

    2008-01-01

    A theoretical model was used to investigate the influences of environmental and topographic parameters on the atmospheric three-layer internal ship waves. The results show that both the wavelength and the wedge angle decrease with an increase in the Scorer parameter, and the rate of changes in the wavelength and wedge angle are also alike. The results also show that the wedge angle decreases with an increase in the width of mountain, but the wavelength varies little with it. It is suggested that the wedge angle is determined by the ratio of the wavelength to the scale of the mountain. Besides, numerical sensitivity experiments were performed to test the former numerical experiments. The simulated results are consistent with the analytical results.

  13. Observations of Shoaling Nonlinear Internal Waves: Formation of Trapped Cores

    Science.gov (United States)

    Lien, R.; D'Asaro, E. A.; Chang, M.; Tang, T.; Yang, Y.

    2006-12-01

    Large-amplitude nonlinear internal waves (NLIWs) shoaling on the continental slope in the northern South China Sea are observed. Observed NLIWs often reach the breaking limit, the maximum horizontal current velocity exceeding the wave speed, and trapped cores are formed with recirculating fluid. The conjugate flow does not form. The vertical position of the maximum horizontal velocity is displaced from surface to subsurface, via the formation of the trapped core. Trapped-core NLIWs are strongly dissipative and evolve rapidly into trains of NLIWs. The vertical overturning is as large as 75 m, and the turbulence kinetic energy dissipation rate is estimated as O(10^{-5}) W kg-1. We propose that the formation and the evolution of trapped cores catalyze the generation of the trains of NLIWs on the Dongsha plateau often captured by satellite images and by recent field observations. The generation, evolution, fission, dissipation, and energetics of observed trapped-core NLIWs will be discussed and compared with results of numerical models and laboratory experiments.

  14. Rectified Circulation of the Arabian Sea and its Seasonal Internal Wave Field

    Science.gov (United States)

    2015-09-30

    residual circulation and internal wave field of the Arabian Sea as well as its connectivity with adjacent basins. OBJECTIVES (1) To characterize and...dissipation, and mixing in the Arabian Sea and investigate the relationship between seasonal changes in the internal wave field and variability in the...the internal wave field. These are important drivers of stratification and sea surface temperature (SST) changes across the Arabian Sea . Hence, our

  15. Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating

    Institute of Scientific and Technical Information of China (English)

    Shunli Chen; Yuan'an Zhao; Hongbo He; Manda Shao

    2011-01-01

    Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Tksapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron density during pulse duration.%@@ Single-pulse and multi-pulse damage behaviors of "standard"(with λ/4 stack structure) and "modified"(with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs,800-nm Thsapphire laser system.以Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings .

  16. Goos-Hänchen shift in a standing-wave-coupled electromagnetically-induced-transparency medium

    Science.gov (United States)

    Zhang, Xiao-Jun; Wang, Hai-Hua; Liang, Zhi-Peng; Xu, Yan; Fan, Cun-Bo; Liu, Cheng-Zhi; Gao, Jin-Yue

    2015-03-01

    The Goos-Hänchen shift of the system composed by two cavity walls and an intracavity atomic sample is presented. The atomic sample is treated as a four-level double-Λ system, driven by the two counterpropagating coupling fields. The probe field experiences the discontinuous refractive index variation and is reflected. Moreover, under the phase-matching condition, the four-wave mixing effect based on electromagnetically induced transparency can cause effective reflection. The Goos-Hänchen shifts appear in both situations and are carefully investigated in this article. We refer to the first one with the incident and reflected light having identical wavelength as the linear Goos-Hänchen shift, and the second one with the reflection wavelength determined by the phase-matching condition as the nonlinear Goos-Hänchen shift. The differences between the two kinds of shifts, such as the incident angle range, conditions for the shift peaks, and controllability, are discussed.

  17. A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    SHI Xin-gang; FAN Zhi-song; LIU Hai-long

    2009-01-01

    Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..

  18. Propagation regimes and populations of internal waves in the Mediterranean Sea basin

    Science.gov (United States)

    Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Soomere, Tarmo

    2017-02-01

    The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves are derived from the Generalized Digital Environmental Model (GDEM) climatology for the Mediterranean Sea region, including the Black Sea. The considered parameters are phase speed of long internal waves and the coefficients at the dispersion, quadratic and cubic terms of the weakly-nonlinear Korteweg-de Vries-type models (in particular, the Gardner model). These parameters govern the possible polarities and shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key outcome is an express estimate of the expected parameters of internal waves for different regions of the Mediterranean basin.

  19. Wave-Induced Pressure Under an Internal Solitary Wave and Its Impact at the Bed

    Science.gov (United States)

    Rivera, Gustavo; Diamesis, Peter; Jenkins, James; Berzi, Diego

    2015-11-01

    The bottom boundary layer (BBL) under a mode-1 internal solitary wave (ISW) of depression propagating against an oncoming model barotropic current is examined using 2-D direct numerical simulation based on a spectral multidomain penalty method model. Particular emphasis is placed on the diffusion into the bed of the pressure field driven by the wake and any near-bed instabilities produced under specific conditions. To this end, a spectral nodal Galerkin approach is used for solving the diffusion equation for the wave-induced pressure. At sufficiently high ISW amplitude, the BBL undergoes a global instability which produces intermittent vortex shedding from within the separation bubble in the lee of the wave. The interplay between the bottom shear stress field and pressure perturbations during vortex ejection events and the subsequent evolution of the vortices is examined. The potential for bed failure upon the passage of the ISW trough and implications for resuspension of bottom particulate matter are both discussed in the context of specific sediment transport models.

  20. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, University of Western Australia, Crawley, WA (Australia); Stamps, R. L. [School of Physics, University of Western Australia, Crawley, WA (Australia); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2014-09-21

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  1. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210046 (China); Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Srivastava, A. K.; Dwivedi, B. N., E-mail: guoyang@nju.edu.cn [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  2. Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO

    Science.gov (United States)

    Pukite, P. R.

    2016-12-01

    inversion of the biennial mode lasting from 1980 to 1996. The parsimony of these analytical models arises from applying only known cyclic forcing terms to fundamental wave equation formulations. This raises the possibility that both QBO and ENSO can be predicted years in advance, apart from a metastable biennial phase inversion in ENSO.

  3. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia

    Science.gov (United States)

    Wolanski, E.; Colin, P.; Naithani, J.; Deleersnijder, E.; Golbuu, Y.

    2004-08-01

    Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50-100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.

  4. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Science.gov (United States)

    Vigeesh, G.; Jackiewicz, J.; Steiner, O.

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high-β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  5. Standing-wave excited hard x-ray phototemission studies on a Au-sandwiched Fe/MgO interface

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sven; Keutner, Christoph; Schoenbohm, Frank; Berges, Ulf; Westphal, Carsten [DELTA/Experimentelle Physik I, TU Dortmund, Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Buergler, Daniel E.; Schneider, Claus M. [IFF-9, Forschungszentrum Juelich, 52425 Juelich (Germany); Gorgoi, Mihaela; Schaefers, Franz [Helmholtzzentrum Berlin fuer Materialien und Energie, Albert Einstein Str. 15, 12489 Berlin (Germany)

    2011-07-01

    Magnetic tunnel junctions (MTJs) consisting of a thin layer-stack of Fe/MgO/Fe show a high tunnel-magneto resistance (TMR) ratio at room temperature. The strength of this effect is mainly driven by the interface and thus the Fe/MgO interface has been subject of many studies during the last years. Quite recently, calculations predicted an even higher TMR ratio for modified interfaces. In that work it was proposed that a monolayer of Au at the interface prevents the oxidation of the Fe-layer, and thus an increase of the TMR effect is expected. Up to now there is no experimental evidence that a well-defined Au monolayer can be prepared with the objective of preventing the Fe oxidation at the interface. In this work we studied a Au-modified interface with standing-wave excited hard X-ray photoemission. The goal of this study was the determination of the effective roughness of the Au layer. Our data-analysis shows that Au does not grow as a protective monolayer nor any hint of FeO formation was found.

  6. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    Science.gov (United States)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  7. Ultrahigh vacuum diffractometer for grazing-angle x-ray standing-wave experiments at a vertical-wiggler source

    Science.gov (United States)

    Sakata, O.; Hashizume, H.

    1995-02-01

    An ultrahigh vacuum (UHV) diffractometer has been designed for studies of surface structures using the grazing-angle x-ray standing-wave method. The design is featured by a horizontal plane of diffraction for use at a vertical-wiggler source of synchrotron radiation. A sample is horizontally mounted in an UHV chamber (4×10-7 Pa) placed on crossed swivels, which control the glancing-incidence angle of x rays on the sample surface with a 50-μrad accuracy. The chamber accepts a sample from a transportation vessel under high vacuum. A beryllium window allows x-ray fluorescence to reach a semiconductor detector at short access. The whole assembly sits on a high-precision rotary table, regulating the sample Δθ angle with a reproducibility of better than 0.5 μrad required for control of the x-ray field profile. The system has been successfully applied to an accurate determination of the in-plane ordering of As atoms on a Si(111) surface with a 1×1 structure.

  8. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were perf

  9. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  10. Oceanic pycnocline depth retrieval from SAR imagery in the existence of solitary internal waves

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oceanic pycnocline depth is usually inferred from in situ measurements. It is attempted to estimate the depth remotely. As solitary internal waves occur on oceanic pycnocline and propagate along it, it is possible to retrieve the depth indirectly in virtue of the solitary internal waves. A numerical model is presented for retrieving the pycnocline depth from synthetic aperture radar (SAR) images where the solitary internal waves are visible and when ocean waters are fully stratified. This numerical model is constructed by combining the solitary internal wave model and a two-layer ocean model. It is also assumed that the observed groups of solitary internal wave packets on the SAR imagery are generated by local semidiurnal tides. A case study in the East China Sea shows a good agreement with in situ CTD (conductivity-temperature-depth) data.

  11. Analysis of Standing Waves on GPR Hyperbolic Travel-Time Responses - Case Studies in a Fractured Granitic Rock and a Deteriorating Coastal Structure

    Directory of Open Access Journals (Sweden)

    Yun-Li Chen

    2007-01-01

    Full Text Available Utilizing Ground Penetrating Radar (GPR, emitted electromagnetic (EM standing waves can be generated in underground voids. This phenomenon can be employed for the detection of subterranean voids and fractures when one has a proper understanding of relation between the widest inner length in an underground vacant space and half an EM wavelength. In this study, indoor and outdoor small-scale experiments verified the generation of EM standing waves. These responses were then applied in an arched-top cave covered by a single layer of backfill at Gongzihliao, Taiwan. Further studies were carried out at two other sites, including a fracture located in a granite mountain without regolith on the surface at Kinmen, and a deteriorating fishing port in Nanfangao, northeast Taiwan. Applying a band-pass filter with bandwidth narrower than a typical two-octave bandwidth produced the required standing waves with recognizable positions of minimum amplitude. A hyperbolic travel-time (HTT curve revealing the minimum amplitude, known as standing-wave nodes, indicates the presence of an underground hollow diffractor with the widest inner length in the vacant space being larger than half an EM wavelength. However, a HTT curve without nodal points signifies a hollow object with the widest inner length smaller than half an EM wavelength or an underground solid diffractor. An underground arched-top cave was detected by nodal points in the arc-like curves. When emitting the radar waves toward a wall, the interval of the nodes was used for estimating the wavelength of receiving GPR signals. Identifying the occurrence of nodal points in HTT or HTTlike curves in radargrams may assist the GPR interpreting work for underground tunnels, drainages, cavities, fractures, or solid objects.

  12. Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes

    Directory of Open Access Journals (Sweden)

    V. I. Vlasenko

    Full Text Available For many lakes the nonlinear transfer of energy from basin-scale internal waves to short-period motions, such as solitary internal waves (SIW and wave trains, their successive interaction with lake boundaries, as well as over-turning and breaking are important mechanisms for an enhanced mixing of the turbulent benthic boundary layer. In the present paper, the evolution of plane SIWs in a variable depth channel, typical of a lake of variable depth, is considered, with the basis being the Reynolds equations. The vertical fluid stratification, wave amplitudes and bottom parameters are taken close to those observed in Lake Constance, a typical mountain lake. The problem is solved numerically. Three different scenarios of a wave evolution over variable bottom topography are examined. It is found that the basic parameter controlling the mechanism of wave evolution is the ratio of the wave amplitude to the distance from the metalimnion to the bottom d. At sites with a gentle sloping bottom, where d is small, propagating (weak or strong internal waves adjust to the local ambient conditions and preserve their form. No secondary waves or wave trains arise during wave propagation from the deep part to the shallow water. If the amplitude of the propagating waves is comparable with the distance between the metalimnion and the top of the underwater obstacle ( d ~ 1, nonlinear dispersion plays a key role. A wave approaching the bottom feature splits into a sequence of secondary waves (solitary internal waves and an attached oscillating wave tail. The energy of the SIWs above the underwater obstacle is transmitted in parts from the first baroclinic mode, to the higher modes. Most crucially, when the internal wave propagates from the deep part of a basin to the shallow boundary, a breaking event can arise. The cumulative effects of the nonlinearity lead to a steepening and

  13. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    CERN Document Server

    Mitri, F G

    2016-01-01

    Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...

  14. International Competitiveness â۠Where Pakistan Stands?

    OpenAIRE

    Uzma Zia

    2007-01-01

    The concept of competitiveness has been widely accepted and has become a part of discussion in world-wide forums. Today global economy cannot be explained in the same manner as it was a few decades ago. Improved competitiveness of economies is a need of the day and ability to compete in the world market is of major concern. This paper attempts to assess the position of Pakistan in the International Competitiveness. As a survey paper, the concept, definition and the measurement of competitiven...

  15. The determinants of merger waves: An international perspective

    Science.gov (United States)

    Gugler, Klaus; Mueller, Dennis C.; Weichselbaumer, Michael

    2012-01-01

    One of the most conspicuous features of mergers is that they come in waves that are correlated with increases in share prices and price/earnings ratios. We use a natural way to discriminate between pure stock market influences on firm decisions and other influences by examining merger patterns for both listed and unlisted firms. If “real” changes in the economy drive merger waves, as some neoclassical theories of mergers predict, both listed and unlisted firms should experience waves. We find significant differences between listed and unlisted firms as predicted by behavioral theories of merger waves. PMID:27346903

  16. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  17. Laboratory measurements of the effect of internal waves on sound propagation

    Science.gov (United States)

    Zhang, Likun; Swinney, Harry L.; Lin, Ying-Tsong

    2016-11-01

    The fidelity of acoustic signals used in communication and imaging in the oceans is limited by density fluctuations arising from many sources, particularly from internal waves. We present results from laboratory experiments on sound propagation through an internal wave field produced by a wave generator consisting of multiple oscillating plates. The fluid density as a function of height is measured and used to determine the sound speed as a function of the height. Sound pulses from a transducer propagate through the fluctuating stratified density field and are detected to determine sound refraction, pulse arrival time, and sound signal distortion. The results are compared with sound ray model and numerical models of underwater sound propagation. The laboratory experiments can explore the parameter dependence by varying the fluid density profile, the sound pulse signal, and the internal wave amplitude and frequency. The results lead to a better understanding of sound propagation through and scattered by internal waves.

  18. River plumes as a source of large-amplitude internal waves in the coastal ocean

    Science.gov (United States)

    Nash, Jonathan D.; Moum, James N.

    2005-09-01

    Satellite images have long revealed the surface expression of large amplitude internal waves that propagate along density interfaces beneath the sea surface. Internal waves are typically the most energetic high-frequency events in the coastal ocean, displacing water parcels by up to 100m and generating strong currents and turbulence that mix nutrients into near-surface waters for biological utilization. While internal waves are known to be generated by tidal currents over ocean-bottom topography, they have also been observed frequently in the absence of any apparent tide-topography interactions. Here we present repeated measurements of velocity, density and acoustic backscatter across the Columbia River plume front. These show how internal waves can be generated from a river plume that flows as a gravity current into the coastal ocean. We find that the convergence of horizontal velocities at the plume front causes frontal growth and subsequent displacement downward of near-surface waters. Individual freely propagating waves are released from the river plume front when the front's propagation speed decreases below the wave speed in the water ahead of it. This mechanism generates internal waves of similar amplitude and steepness as internal waves from tide-topography interactions observed elsewhere, and is therefore important to the understanding of coastal ocean mixing.

  19. On revealing the vertical structure of nanoparticle films with elemental resolution: A total external reflection X-ray standing waves study

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan, E-mail: zargham@ifp.uni-bremen.d [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Schmidt, Thomas; Flege, Jan Ingo; Sauerbrey, Marc; Hildebrand, Radowan [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Roehe, Sarah; Baeumer, Marcus [Applied and Physical Chemistry, University of Bremen, Leobener Str. 2, 28359, Bremen (Germany); Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany)

    2010-02-15

    We present a promising combination of methods to precisely determine the morphology of nanostructures, drawing on the example of monodisperse CoPt{sub 3} nanoparticle films deposited by spin coating and dip coating techniques on functionalized Au substrates. Ex-situ X-ray standing waves in total external reflection combined with X-ray reflectivity measurements were employed to determine element-specific atomic-density distributions in vertical direction.

  20. Vertical heat and salt fluxes induced by inertia-gravity internal waves on sea shelf

    Science.gov (United States)

    Slepyshev, A. A.; Vorotnikov, D. I.

    2017-07-01

    Free inertia-gravity internal waves are considered in a two-dimensional vertically nonuniform flow in the Boussinesq approximation. The equation for vertical velocity amplitude includes complex factors caused by the gradient of the flow velocity component transverse to the wave-propagation direction; therefore, the eigenfunction and wave frequency are complex. It is shown that the decrement of damping (imaginary correction to the frequency) of 15-min internal waves is two orders of magnitude smaller than the wave frequency; i.e., the waves weakly damp. Vertical wave fluxes of heat and salt are nonzero due to the phase shift between fluctuations of the vertical velocity and temperature (salinity) different from π 2. The vertical component of the Stokes drift speed is also nonzero and contributed into the vertical transport.

  1. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.

    Science.gov (United States)

    Kuznetsova, Larisa A; Martin, Stacey P; Coakley, W Terence

    2005-12-15

    The capture of 200 nm biotinylated latex beads from suspensions of concentration 10(7) to 2.5 x 10(8) particle/ml on an immuno-coated surface of the acoustic reflector in an ultrasound standing wave (USW) resonator has been studied while the acoustic pathlength was less than one half wavelength (lambda/2). The particles were delivered to the reflector's surface by acoustically induced flow. The capture dependencies on suspension concentration, duration of experiments and acoustic pressure have been established at 1.09, 1.46 and 1.75 MHz. Five-fold capture increase has been obtained at 1.75 MHz in comparison to the control (no ultrasound) situation. The contrasting behaviours of 1, 0.5 and 0.2 mum fluorescent latex beads in a lambda/4 USW resonator at 1.46 MHz have been characterized. The particle movements were observed with an epi-fluorescent microscope and the velocities of the particles were measured by particle image velocimetry (PIV). The experiments showed that whereas the trajectories of 1 mum particles were mainly affected by the direct radiation force, 0.5 mum particles were influenced both by the radiation force and acoustic streaming. The 0.2 mum latex beads followed acoustic streaming in the chamber and were not detectably affected by the radiation force. The streaming-associated behaviour of the 200 nm particles has implications for enhanced immunocapture of viruses and macromolecules (both of which are also too small to experience significant acoustic radiation force).

  2. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-10-08

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine. The first and second inlets can be aligned along a common axis. The inlets can be connected to nozzles and a separator can be positioned between the nozzles and along the common axis.

  3. Surfing a Standing Wave

    Science.gov (United States)

    de Campos Valadares, Eduardo; Alves, Esdras Garcia

    2005-05-01

    Local "reversal of gravity" can be simulated with an inverted pendulum whose pivot is made to oscillate vertically. A beautiful demonstration of this surprising effect can be found in Ref. 1. In this case, the pendulum is a piece of plastic straw and its pivot pin is fixed at the end of a plastic ruler that is made to oscillate vertically by a small eccentric motor. A theoretical treatment of this inverted pendulum may be found in Ref. 2.

  4. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal

    Science.gov (United States)

    Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.

    2016-08-01

    Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.

  5. Fundamental problems of modeling the dynamics of internal gravity waves with applications to the Arctic Basin

    CERN Document Server

    Bulatov, Vitaly V

    2012-01-01

    In this paper, we consider fundamental problems of the dynamics of internal gravity waves. We present analytical and numerical algorithms for calculating the wave fields for a set of values of the parameters, as observed in the ocean. We show that our mathematical models can describe the wave dynamics of the Arctic Basin, taking into account the actual physical characteristics of sea water, topography of its floor, etc. The numerical and analytical results show that the internal gravity waves have a significant effect on underwater sea objects in the Arctic Basin.

  6. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence

  7. Laboratory Modeling of Internal Wave Generation in Straits

    Science.gov (United States)

    2013-09-30

    nonlinearity we assume the waves to be governed by a weakly nonlinear, KdV -like equation. The nonlinearity of the wave field is assessed by the ratio ζ/H...the rotationally- modified KdV equation. Figure 1: (a) Colormap of the east-west velocity in the isopycnal plane at z = -0.04m at an instant of

  8. International Paralympic Committee position stand--background and scientific principles of classification in Paralympic sport.

    Science.gov (United States)

    Tweedy, S M; Vanlandewijck, Y C

    2011-04-01

    The Classification Code of the International Paralympic Committee (IPC), inter alia, mandates the development of evidence-based systems of classification. This paper provides a scientific background for classification in Paralympic sport, defines evidence-based classification and provides guidelines for how evidence-based classification may be achieved. Classification is a process in which a single group of entities (or units) are ordered into a number of smaller groups (or classes) based on observable properties that they have in common, and taxonomy is the science of how to classify. Paralympic classification is interrelated with systems of classification used in two fields: Health and functioning. The International Classification of Functioning, Disability and Health is the most widely used classification in the field of functioning and health. To enhance communication, Paralympic systems of classification should use language and concepts that are consistent with the International Classification of Functioning, Disability and Health. Sport. Classification in sport reduces the likelihood of one-sided competition and in this way promotes participation. Two types of classification are used in sport-performance classification and selective classification. Paralympic sports require selective classification systems so that athletes who enhance their competitive performance through effective training will not be moved to a class with athletes who have less activity limitation, as they would in a performance classification system. Classification has a significant impact on which athletes are successful in Paralympic sport, but unfortunately issues relating to the weighting and aggregation of measures used in classification pose significant threats to the validity of current systems of classification. To improve the validity of Paralympic classification, the IPC Classification Code mandates the development of evidence-based systems of classification, an evidence

  9. STATISTICAL PROPERTIES OF HIGH-FREQUENCY INTERNAL WAVES IN QINGDAO OFFSHORE AREA OF THE YELLOW SEA

    Institute of Scientific and Technical Information of China (English)

    王涛; 高天赋

    2002-01-01

    Densely-sampled thermistor chain data obtained from a shallow-water acoustics experiment in the Yellow Sea off the coast of Qingdao were analyzed to examine the statistical properties of the 6 to 520 cpd frequency band internal waves observed. The negative skewness coefficients and the greater-than-3 kurtosis coefficients indicated non-Gaussianity of the internal waves. The probability distributions were negatively skewed and abnormally high peaks. Nonlinear properties, as exemplified by the asymmetric waveshapes of the internal waves in the offshore area are described quantitatively.

  10. X-ray standing-wave study of (AlAs){sub m}(GaAs){sub n} short-period superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, A.; Brennan, S.; Munkholm, A. [Stanford Synchrotron Radiation Laboratory SSRL/SLAC, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Schuster, M.; Riechert, H. [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Materlik, G. [Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    1999-04-01

    X-ray standing-waves (XSW) are used for an investigation of the structure of (AlAs){sub m}(GaAs){sub n} short-period superlattices (SL{close_quote}s). The XSW induced modulation of x-ray fluorescence from the Al, As, and Ga atoms and the total photoelectron yield are monitored around the 0th order SL satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the specific shape of these modulations and the sample reflectivity, an atomic model about the interfaces is derived. This is accomplished by comparing the experimental data with dynamical calculations of x-ray wavefield distribution and reflectivity, which are based on the Takagi-Taupin equation. The fluorescence measurements at the 0th order SL satellite reveal a high crystalline order in the AlAs layers of the short-period SL, whereas in the GaAs layers, a fraction of the Ga and As atoms is not on the ideal lattice positions. From the analysis, a model of the atomic distribution along the [001] direction can be determined. This reveals that at each internal interface in the GaAs layers, two Ga atom planes are shifted by up to 0.035 nm and one As atom plane by 0.023 nm. At each interface, the shifts are directed towards the substrate. In addition, the XSW field at the GaAs(004) substrate reflection results in a moir{acute e} or beating effect in the SL structure, which can be used to determine the information depth {Lambda}{sub e} of total electron-yield measurements in a more detailed approach. {copyright} {ital 1999} {ital The American Physical Society}

  11. Steady internal waves in an exponentially stratified two-layer fluid

    Science.gov (United States)

    Makarenko, Nikolay; Maltseva, Janna; Ivanova, Kseniya

    2016-04-01

    The problem on internal waves in a weakly stratified two-layered fluid is studied analytically. We suppose that the fluid possess exponential stratification in both the layers, and the fluid density has discontinuity jump at the interface. By that, we take into account the influence of weak continuous stratification outside of sharp pycnocline. The model equation of strongly nonlinear interfacial waves propagating along the pycnocline is considered. This equation extends approximate models [1-3] suggested for a two-layer fluid with one homogeneous layer. The derivation method uses asymptotic analysis of fully nonlinear Euler equations. The perturbation scheme involves the long wave procedure with a pair of the Boussinesq parameters. First of these parameters characterizes small density slope outside of pycnocline and the second one defines small density jump at the interface. Parametric range of solitary wave solutions is characterized, including extreme regimes such as plateau-shape solitary waves. This work was supported by RFBR (grant No 15-01-03942). References [1] N. Makarenko, J. Maltseva. Asymptotic models of internal stationary waves, J. Appl. Mech. Techn. Phys, 2008, 49(4), 646-654. [2] N. Makarenko, J. Maltseva. Phase velocity spectrum of internal waves in a weakly-stratified two-layer fluid, Fluid Dynamics, 2009, 44(2), 278-294. [3] N. Makarenko, J. Maltseva. An analytical model of large amplitude internal solitary waves, Extreme Ocean Waves, 2nd ed. Springer 2015, E.Pelinovsky and C.Kharif (Eds), 191-201.

  12. Whales and waves: Humpback whale foraging response and the shoaling of internal waves at Stellwagen Bank

    Science.gov (United States)

    Pineda, Jesús; Starczak, Victoria; Silva, José C. B.; Helfrich, Karl; Thompson, Michael; Wiley, David

    2015-04-01

    We tested the hypothesis that humpback whales aggregate at the southern flank of Stellwagen Bank (SB) in response to internal waves (IWs) generated semidiurnally at Race Point (RP) channel because of the presence of their preferred prey, planktivorous fish, which in turn respond to zooplankton concentrated by the predictable IWs. Analysis of synthetic aperture radar (SAR) images indicates that RP IWs approach the southern flank of SB frequently (˜62% of the images). Published reports of whale sighting data and archived SAR images point to a coarse spatial coincidence between whales and Race Point IWs at SB's southern flank. The responses of whales to IWs were evaluated via sightings and behavior of humpback whales, and IWs were observed in situ by acoustic backscatter and temperature measurements. Modeling of IWs complemented the observations, and results indicate a change of ˜0.4 m/s in current velocity, and ˜1.5 Pa in dynamic pressure near the bottom, which may be sufficient for bottom fish to detect the IWs. However, fish were rare in our acoustic observations, and fish response to the IWs could not be evaluated. RP IWs do not represent the leading edge of the internal tide, and they may have less mass-transport potential than typical coastal IWs. There was large interannual variability in whale sightings at SB's southern flank, with decreases in both numbers of sightings and proportion of sightings where feeding was observed from 2008 to 2013. Coincidence of whales and IWs was inconsistent, and results do not support the hypothesis.

  13. Parametrically excited internal wave breathers and kinks in liquids

    Institute of Scientific and Technical Information of China (English)

    陈伟中; 魏荣爵; 王本仁

    1996-01-01

    In parametrically excited Faraday experiment the non-propagating solitons-breathers, kinksand breather pairs-have been observed at the interface of two insoluble liquids with different densities.Phenomena observed at the interface are similar to those on the surface, except that the eigenfrequencies are remarkably red-shifted, and the wave forms are flatter and less stable due to the presence of the upper liquid. A nonlinear Schrodinger equation with damping and drive terms has been derived to explain the new observations. Both experiment and theory show that the free surface wave is a special case of the interface wave.

  14. Generation and evolution of internal waves in Banderas Bay, Jalisco-Nayarit, Mexico.

    Science.gov (United States)

    Plata, L. J.; Anatoliy, F.; Iryna, T.; Carlos, V.; Liza, K.; César, M.

    2007-05-01

    The characteristics of internal waves in Banderas Bay (Mexico) were determined by means of data from oceanographical measurements carried on spring and winter during the years 2001 and 2003. The intense fluctuations in the fields of temperature and salinity obtained from a fast oceanographical survey with an undulating CTD on April, 2001, give evidence of the presence and propagation of an internal waves' field. With the help of a bathymetric chart elaborated from a survey carried on in March and May, 2002, we found that the submarine canyon close to the southern coast of the bay, from Cabo Corrientes to Mismaloya, acts like a filter that reflects the diurnal internal tide and allows only the entrance of semidiurnal internal tide. The results of a special experiment measuring the spatiotemporal parameters of internal waves on the wide continental shelf of northwestern Banderas Bay are discussed. The oceanographical measurements consisted of: a) a fast survey with an undulating CTD along a transect perpendicular to the coast, (b) the towing of an array of temperature and depth sensors several times over the continental shelf along transects perpendicular to the coast, and (c) time series of velocity components registered by an acoustic Doppler current profiler placed on the seabed of the bay at 28 m depth. The presence of internal waves generated by semidiurnal tide and corresponding to the second normal oscillation mode (according to the linear theory of internal waves) was determined. Analysis of the data showed that, in the study area, the internal waves generated over the continental slope by the barotropic tide have the shape of an oscillatory bore, which quickly disintegrates during their propagation shoreward, producing short nonlinear waves that dissipate close to the coast, and intense vertical mixing of the whole water column. The interpretation of the results was based on the linear and nonlinear (Korteweg-de Vries equation) theories of internal waves.

  15. Background current affects the internal wave structure of the northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    Shuqun Cai; Xiaomin Long; Danpeng Dong; Shengan Wang

    2008-01-01

    The internal wave modal equations are solved with the consideration of background currents.Analytical and numerical solutions of some specific examples,including observations in the northern South China Sea(SCS),are obtained to investigate the effect of background current on internal wave vertical structure.The effects of current shear and curvature on intemal wave vertical structure are evaluated separately.It is found that the phase speed and wave structure are modified by background currents,the current shear has little effect on wave structure.whilst the current curvature Could have a strong impact on the wave structure.The extent of the effect by the current curvature on the wave structure depends on the magnitudes of current curvature,relative wave speed,and buoyancy frequency,sometimes the effect by the current curvature may even cause the wave to attenuate severely with depth.A new method to obtain the real eigenfunction with depth in the case that the waves become evanescent is also put forward.It is shown that the residual tidal current in the northern SCS is strong enough to cause the wave to attenuate severely at the upper layer.

  16. Conjugate flows and amplitude bounds for internal solitary waves

    Directory of Open Access Journals (Sweden)

    N. I. Makarenko

    2009-03-01

    Full Text Available Amplitude bounds imposed by the conservation of mass, momentum and energy for strongly nonlinear waves in stratified fluid are considered. We discuss the theoretical scheme which allows to determine broadening limits for solitary waves in the terms of a given upstream density profile. Attention is focused on the continuously stratified flows having multiple broadening limits. The role of the mean density profile and the influence of fine-scale stratification are analyzed.

  17. Angular momentum transport by internal gravity waves III - Wave excitation by core convection and the Coriolis effect

    CERN Document Server

    Pantillon, Florian P; Charbonnel, Corinne

    2007-01-01

    This is the third in a series of papers that deal with angular momentum transport by internal gravity waves. We concentrate on the waves excited by core convection in a 3Msun, Pop I main sequence star. Here, we want to examine the role of the Coriolis acceleration in the equations of motion that describe the behavior of waves and to evaluate its impact on angular momentum transport. We use the so-called traditional approximation of geophysics, which allows variable separation in radial and horizontal components. In the presence of rotation, the horizontal structure is described by Hough functions instead of spherical harmonics. The Coriolis acceleration has two main effects on waves. It transforms pure gravity waves into gravito-inertial waves that have a larger amplitude closer to the equator, and it introduces new waves whose restoring force is mainly the conservation of vorticity. Taking the Coriolis acceleration into account changes the subtle balance between prograde and retrograde waves in non-rotating ...

  18. Nonhydrostatic effects of nonlinear internal wave propagation in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Fringer, O. B.

    2007-05-01

    It is well known that internal tides are generated over steep topography at the Luzon Strait on the eastern boundary of the South China Sea. These internal tides propagate westward and steepen into trains of weakly nonlinear internal waves that propagate relatively free of dissipation until they interact with the continental shelf on the western side of the South China Sea, some 350 km from their generation point. The rate at which the internal tide transforms into trains of nonlinear waves depends on the Froude number at the generation site, which is defined as the ratio of the barotropic current speed to the local internal wave speed. Large Froude numbers lead to rapid evolution of wave trains while low Froude numbers generate internal tides that may not evolve into wave trains before reaching the continental shelf. Although the evolution into trains of weakly nonlinear waves results from the delicate interplay between nonlinear steepening and nonhydrostatic dispersion, the steepening process is represented quite well, at least from a qualitative standpoint, by hydrostatic models, which contain no explicit nonhydrostatic dispersion. Furthermore, hydrostatic models predict the propagation speed of the leading wave in wave trains extremely well, indicating that its propagation speed depends very weakly on nonlinear or dispersive effects. In order to examine how hydrostatic models introduce dispersion that leads to the formation of wave trains, we simulate the generation and evolution of nonlinear waves in the South China Sea with and without the hydrostatic approximation using the nonhydrostatic model SUNTANS, which can be run in either hydrostatic or nonhydrostatic mode. We show that the dispersion leading to the formation of wave trains in the hydrostatic model results from numerically-induced dispersion that is implicit in the numerical formulation of the advection terms. While the speed of the leading wave in the wave trains is correct, the amplitude and number

  19. Evolution of nonlinear internal waves in the East and South China Seas

    Science.gov (United States)

    Liu, Antony K.; Chang, Y. Steve; Hsu, Ming-K.; Liang, Nai K.

    1998-04-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves northeast and south of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. On the basis of the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water by a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by the nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a "turning point" of approximately equal layer depths that has been observed in the SAR image and simulated by the numerical model. The importance of the dissipation effect in the coastal area is also discussed and demonstrated.

  20. SAR IMAGING SIMULATION OF HORIZONTAL FULLY TWO-DIMENSIONAL INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    SHEN Hui; HE Yi-Jun

    2006-01-01

    Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.

  1. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  2. Self-action of propagating and standing Lamb waves in the plates exhibiting hysteretic nonlinearity: Nonlinear zero-group velocity modes.

    Science.gov (United States)

    Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua

    2017-09-01

    An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    Science.gov (United States)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2016-09-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  4. Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk

    Science.gov (United States)

    Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana

    2017-04-01

    The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.

  5. Near-Inertial Internal Gravity Waves in the Ocean.

    Science.gov (United States)

    Alford, Matthew H; MacKinnon, Jennifer A; Simmons, Harper L; Nash, Jonathan D

    2016-01-01

    We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period f, and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.

  6. Wave propagation in pantographic 2D lattices with internal discontinuities

    CERN Document Server

    Madeo, A; Neff, P

    2014-01-01

    In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

  7. Fourier, Scattering, and Wavelet Transforms: Applications to Internal Gravity Waves with Comparisons to Linear Tidal Data

    Science.gov (United States)

    2009-10-09

    phenomena came later with Korteweg and de Vries and their description of the KdV solu- tions to the one dimensional problem (see [1]) for a brief... KdV ) equation, which describes the dynamics of weakly- nonlinear dispersive waves, for the internal-waves problem. Under the assumption that the...internal solitary waves are ’long’ and that they are traveling in a ’shallow’ layer (this will be made more precise be- low), the governing ( KdV

  8. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    Science.gov (United States)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width

  9. Analysis of Vibrating String Standing Wave Formed by Origin%利用Origin分析弦振动形成驻波的规律

    Institute of Scientific and Technical Information of China (English)

    李生仁; 白琼燕; 杨军; 李春望

    2014-01-01

    In this paper, analyzing the movement of the tiny sport on string section through wave equation in theory, deriving the relationship among the wavelength, the string tension, frequency and the density of strings when standing wave forms. Meanwhile, with evenly string vibration tester XZDY-type B, obtaining a lot of experimental data. And processing the data under the environment of Origin fitting processing system, making the data relationship chart to enable experimental data vis-ualization and informationization, the law that formed standing wave audio-visual and easier to understand.%本文通过波动方程和对弦上某一微小段的运动理论分析,推导出弦振动形成驻波时波长、弦中张力、频率和弦线密度之间的关系。同时借助XZDY-B型均匀弦振动仪,获得大量的实验数据,并在Origin环境下对数据进行系统的拟合处理,做出了数据间的关系图,使实验数据可视化和信息化,使弦振动形成驻波的规律更为直观,更容易理解。

  10. NUMERICAL STUDIES OF INTERNAL SOLITARY WAVE GENERATION AND EVOLUTION BY GRAVITY COLLAPSE

    Institute of Scientific and Technical Information of China (English)

    LIN Zhen-hua; SONG Jin-bao

    2012-01-01

    In this study,an analysis on the internal wave generation via the gravity collapse mechanism is carried out based on the theoretical formulation and the numerical simulation.With the linear theoretical model,a rectangle shape wave is generated and propagates back and forth in the domain,while a two-dimensional non-hydrostatic numerical model could reproduce all the observed phenomena in the laboratory experiments conducted by Chen et al.(2007),and the related process realistically.The model results further provide more quantitative information in the whole domain,thus allowing an in depth understanding of the corresponding internal solitary wave generation and propagation.It is shown that the initial type of the internal wave is determined by the relative height between the perturbation and the environmental density interface,while the final wave type is related to the relative height of the upper and lower layers of the environmental fluid.The shape of the internal wave generated is consistent with that predicted by the KdV and EKdV theories if its amplitude is small,as the amplitude becomes larger,the performance of the EKdV becomes better after the wave adjusts itself to the ambient stratification and reaches an equilibrium state between the nonlinear and dispersion effects.The evolution of the mechanical energy is also analyzed.

  11. On the nonlinear internal waves propagating in an inhomogeneous shallow sea

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2016-04-01

    Full Text Available A concept of conservation of energy flux for the internal waves propagating in an inhomogeneous shallow water is examined. The emphasis is put on an application of solution of the Korteweg–de Vries (KdV equation in a prescribed form of the cnoidal and solitary waves. Numerical simulations were applied for the southern Baltic Sea, along a transect from the Bornholm Basin, through the Słupsk Sill and Słupsk Furrow to the Gdańsk Basin. Three-layer density structure typical for the Baltic Sea has been considered. An increase of wave height and decrease of phase speed with shallowing water depth was clearly demonstrated. The internal wave dynamics on both sides of the Słupsk Sill was found to be different due to different vertical density stratification in these areas. The bottom friction has only negligible influence on dynamics of internal waves, while shearing instability may be important only for very high waves. Area of possible instability, expressed in terms of the Richardson number Ri, is very small, and located within the non-uniform density layer, close to the interface with upper uniform layer. Kinematic breaking criteria have been examined and critical internal wave heights have been determined.

  12. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    Science.gov (United States)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  13. Modification on Lynett and Liu's model for internal solitary wave propagation over variable bathymetry

    Institute of Scientific and Technical Information of China (English)

    BAI Yefei; SONG Jinbao

    2006-01-01

    A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave profiles obtained based on the modified model can better fit the experiment data reported by Helfrich (1992)than those from original model.

  14. Structure of internal solitary waves in two-layer fluid at near-critical situation

    Science.gov (United States)

    Kurkina, O.; Singh, N.; Stepanyants, Y.

    2015-05-01

    A new model equation describing weakly nonlinear long internal waves at the interface between two thin layers of different density is derived for the specific relationships between the densities, layer thicknesses and surface tension between the layers. The equation derived and dubbed here the Gardner-Kawahara equation represents a natural generalisation of the well-known Korteweg-de Vries (KdV) equation containing the cubic nonlinear term as well as fifth-order dispersion term. Solitary wave solutions are investigated numerically and categorised in terms of two dimensionless parameters, the wave speed and fifth-order dispersion. The equation derived may be applicable to wave description in other media.

  15. Strongly nonlinear models for internal waves: an application for the dam-break problem

    CERN Document Server

    Chen, Shengqian

    2016-01-01

    Strongly nonlinear models of internal wave propagation for incompressible stratified Euler fluids are investigated numerically and analytically to determine the evolution of a class of initial conditions of interest in laboratory experiments. This class of step-like initial data severely tests the robustness of the models beyond their strict long-wave asymptotic validity, and model fidelity is assessed by direct numerical simulations (DNS) of the parent Euler system. It is found that the primary dynamics of near-solitary wave formation is remarkably well predicted by the models for both wave and fluid properties, at a fraction of the computational costs of the DNS code.

  16. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  17. Shoaling of internal solitary waves at the ASIAEX site in the South China Sea

    Directory of Open Access Journals (Sweden)

    K. G. Lamb

    2014-07-01

    Full Text Available The interaction of barotropic tides with Luzon Strait topography generates westward propagating internal bores and solitary waves trains which eventually shoal and dissipate on the western side of the South China Sea. Two-dimensional numerical simulations of this shoaling process at the site of the Asian Seas International Acoustic Experiment (ASIAEX have been undertaken in order to investigate the sensitivity of the shoaling process to the stratification and the underlying bathymetry, and to explore the influence of rotation. A range of wave amplitudes are considered. Comparisons with adiabatic shoaling waves are also made and the potential impact of a non-slip boundary condition are briefly explored. On the slope secondary solitary waves and mode-two wave packets are generated which propagate towards the shelf. Comparisons with observations made during the ASIAEX experiment are made.

  18. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    Science.gov (United States)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  19. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    Science.gov (United States)

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  20. Mixing by internal waves quantified using combined PIV/PLIF technique

    Science.gov (United States)

    Dossmann, Y.; Bourget, B.; Brouzet, C.; Dauxois, T.; Joubaud, S.; Odier, P.

    2016-08-01

    We present a novel characterization of mixing events associated with the propagation and overturning of internal waves studied, thanks to the simultaneous use of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. This combination of techniques had been developed earlier to provide an access to simultaneous velocity and density fields in two-layer stratified flows with interfacial gravity waves. Here, for the first time, we show how it is possible to implement it quantitatively in the case of a continuously stratified fluid where internal waves propagate in the bulk. We explain in details how the calibration of the PLIF data is performed by an iterative procedure, and we describe the precise spatial and temporal synchronizations of the PIV and PLIF measurements. We then validate the whole procedure by characterizing the triadic resonance instability (TRI) of an internal wave mode. Very interestingly, the combined technique is then applied to a precise measurement of the turbulent diffusivity K t associated with mixing events induced by an internal wave mode. Values up to K t = 15 mm2 s-1 are reached when TRI is present (well above the noise of our measurement, typically 1 mm2 s-1), unambiguously confirming that TRI is a potential pathway to turbulent mixing in stratified flows. This work therefore provides a step on the path to new measurements for internal waves.

  1. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    Science.gov (United States)

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.

  2. Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel

    Directory of Open Access Journals (Sweden)

    J. C. Sánchez-Garrido

    2009-09-01

    Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.

  3. A New International Standard for "Actions from Waves and Currents on Coastal Structures"

    DEFF Research Database (Denmark)

    Tørum, Alf; Burcharth, Hans F.; Goda, Yoshimi

    2007-01-01

    The International Organization for Standardization (ISO) is going to issue a new standard concerning "Actions from Waves and Currents on Coastal Structures," which becomes the first international standard in coastal engineering. It is composed of a normative part (29 pages), an informative part (80...... standard on coastal engineering practice....

  4. The formation and fate of internal waves in the South China Sea

    Science.gov (United States)

    Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung

    2015-05-01

    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

  5. The formation and fate of internal waves in the South China Sea.

    Science.gov (United States)

    Alford, Matthew H; Peacock, Thomas; MacKinnon, Jennifer A; Nash, Jonathan D; Buijsman, Maarten C; Centurioni, Luca R; Centuroni, Luca R; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M; Fringer, Oliver B; Fu, Ke-Hsien; Gallacher, Patrick C; Graber, Hans C; Helfrich, Karl R; Jachec, Steven M; Jackson, Christopher R; Klymak, Jody M; Ko, Dong S; Jan, Sen; Johnston, T M Shaun; Legg, Sonya; Lee, I-Huan; Lien, Ren-Chieh; Mercier, Matthieu J; Moum, James N; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I; Pinkel, Robert; Rainville, Luc; Ramp, Steven R; Rudnick, Daniel L; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L; St Laurent, Louis C; Venayagamoorthy, Subhas K; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J; Paluszkiewicz, Theresa; Tang, Tswen-Yung David

    2015-05-07

    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

  6. The dynamics of internal tidal waves in Todos Santos Bay, Baja California, during experiment FLOO-2007

    Science.gov (United States)

    Filonov, A.; Lavin, M. F.; Ladah, L. B.; Tereshchenko, I.

    2012-04-01

    The aim of this work is to describe the characteristics of internal waves in Todos Santos Bay, Baja California (Mexico) from direct measurements made during the international experiment Fluxes Linking the Offshore with the Onshore (FLOO), which was held in August 2007. Time series of temperature and currents were obtained in the study area, placing several submerged moorings with chains of HOBO-V2 sensors and an ADCP. In addition, transects were made using a towed undulating CTD system and chains of thermographs which had a response time of 5 s. These measurements allowed the construction of the scenarios of generation, propagation and disintegration of the internal tide in the Bay. The internal tidal waves are generated by the barotropic tide at the edge of the continental shelf north of the Bay, have wavelengths ~9 km, are distributed in the form of an arc, and travel to the southeast with phase velocity ~20 cm/s . In shallow waters near the coast, tidal waves are refracted and quickly divide into groups of short nonlinear internal waves with amplitudes 15-20 m, periods 5-20 minutes, and wavelengths 50-200 m. Nonlinear internal waves play an important role in the dynamics of Todos Santos Bay, especially in the coastal zone. During partial or total destruction, vertical mixing and sudden changes of stratification take place. This affects the formation of the vertical structure of water density and ocean biological productivity.

  7. Observations of High-frequency Internal Wave Energy Offshore of Point Loma, California

    Science.gov (United States)

    Rhee, K.; Crosby, S. C.; Fiedler, J. W.

    2016-12-01

    As coastally directed internal wave energy shoals in shallow water, the resulting bores can transport cold, dense, nutrient-rich waters shoreward, influencing local fauna and ultimately dissipating tidal energy into heat. Understanding the mechanisms, propagation, and resultant transport is crucial for determining the physical-biological interactions along our coasts. We observed significant internal wave energy offshore of Point Loma, San Diego using a thermistor chain moored in 22m depth. Temperature observations spaced 1.5m apart from 0 to 18m were sampled at 2Hz and recorded for a period of ten days during July 2016. Temperature, salinity, oxygen, and nutrient profiles were obtained at 3 stations further offshore during deployment and recovery cruises. At the time of mooring deployment, thermocline depth was 10 to 20m. During recovery we observed a significant decrease of thermocline depth, which was likely caused by surface mixing during a strong wind event. During the 10-day deployment we observed many high frequency (5 to 10 minute periods) internal waves events. In addition, we noticed rapid temperature changes (4oC in less than a minute) suggestive of internal bores; however, other events appeared to be linear, possibly indicating unbroken internal waves. Here, we examine the critical slope for linear mode-1 propagation, the correlation of these events with tidal ebb and flow, and infer how a deeper mixed layer effects internal wave propagation.

  8. Head-on collision of the second mode internal solitary waves

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the

  9. Phase matching in frequency mixing with internally generated waves

    Science.gov (United States)

    Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.

    1983-11-01

    The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.

  10. Laboratory Observations on Internal Solitary Wave Evolution over A Submarine Ridge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Laboratory experiments were conducted in a wave flume on internal solitary wave (ISW) of depression and elevation types propagating over a submarine ridge in semicircular/triangular shape. Tests were arranged in series for combinations of submarine ridges of different heights and ISW of different amplitudes. The resultant wave motions were found differing from those of surface gravity waves. In deeper water, where an ISW of depression-type prevailed, the process of wave breaking displayed downward motion with continuous eddy on the front face of the ridge followed by upward motion towards the apex of the obstacle. Experimental results also suggested that blockage parameter ζ could be applied to classify various degrees of ISW-ridge interaction, i.e., ζ<0.5 for weak interaction, 0.5<ζ<0.7 for moderate interaction, and 0.7<ζ for wave breaking.

  11. Study of molecule-metal interfaces by means of the normal incidence X-ray standing wave technique

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Giuseppe

    2012-07-01

    Functional surfaces based on monolayers of organic molecules are currently subject of an intense research effort due to their applications in molecular electronics, sensing and catalysis. Because of the strong dependence of organic based devices on the local properties of the molecule-metal interface, a direct investigation of the interface chemistry is of paramount importance. In this context, the bonding distance, measured by means of the normal incidence X-ray standing wave technique (NIXSW), provides a direct access to the molecule-metal interactions. At the same time, NIXSW adsorption heights are used to benchmark different density functional theory (DFT) schemes and determine the ones with predictive power for similar systems. This work investigates the geometric and chemical properties of different molecule/metal interfaces, relevant to molecular electronics and functional surfaces applications, primarily by means of the NIXSW technique. All NIXSW data are analyzed with the newly developed open source program Torricelli, which is thoroughly documented in the thesis. In order to elucidate the role played by the substrate within molecule/metal interfaces, the prototype organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) is explored on the Ag(110) surface. The molecule results more distorted and at smaller bonding distances on the more reactive Ag(110) surface, in comparison with the Ag(100), the Ag(111) and Au(111) substrates. This conclusion follows from the detailed molecular adsorption geometry obtained from the differential analysis of nonequivalent carbon and oxygen species (including a careful error analysis). Subsequently, the chemisorptive PTCDA/Ag(110) interaction is tuned by the co-deposition of an external alkali metal, namely K. As a consequence, the functional groups of PTCDA unbind from the surface, which, in turn, undergoes major reconstruction. In fact, the resulting nanopatterned surface consists of alternated up and down

  12. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine.

    Science.gov (United States)

    Kreider, Richard B; Kalman, Douglas S; Antonio, Jose; Ziegenfuss, Tim N; Wildman, Robert; Collins, Rick; Candow, Darren G; Kleiner, Susan M; Almada, Anthony L; Lopez, Hector L

    2017-01-01

    Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).

  13. Internal wave-mediated shading causes frequent vertical migrations in fishes

    KAUST Repository

    Kaartvedt, Stein

    2012-04-25

    We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspondingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descending to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to 4 orders of magnitude caused by shading from a turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 to 50 m at a temporal scale corresponding to the internal wave period (30 min). This migration frequency thus is much higher than that of the common and widespread light-associated diel vertical migration. Vertical movements affect prey encounters, growth, and survival. We hypothesize that FVM increase the likelihood of prey encounters and the time for safe visual foraging among planktivorous fish, thereby contributing to efficient trophic transfer in major upwelling areas.

  14. Turbulent mixing driven by mean-flow shear and internal gravity waves in oceans and atmospheres

    CERN Document Server

    Baumert, Helmut Z

    2012-01-01

    This study starts with balances deduced by Baumert and Peters (2004, 2005) from results of stratified-shear experiments made in channels and wind tunnels by Itsweire (1984) and Rohr and Van Atta (1987), and of free-decay experiments in a resting stratified tank by Dickey and Mellor (1980). Using a modification of Canuto's (2002) ideas on turbulence and waves, these balances are merged with an (internal) gravity-wave energy balance presented for the open ocean by Gregg (1989), without mean-flow shear. The latter was augmented by a linear (viscous) friction term. Gregg's wave-energy source is interpreted on its long-wave spectral end as internal tides, topography, large-scale wind, and atmospheric low-pressure actions. In addition, internal eigen waves, generated by mean-flow shear, and the aging of the wave field from a virginal (linear) into a saturated state are taken into account. Wave packets and turbulence are treated as particles (vortices, packets) by ensemble kinetics so that the loss terms in all thre...

  15. Effects of the internal waves on the time correlation of the acoustic fields in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaodi; LI Zhenglin; ZHANG Renhe

    2004-01-01

    Internal waves are one of the primary causes of sea water mass variations in shallow water. The time stability of an acoustic channel may be degraded by the activities of internal waves. Based on the oceanographic data of Asian Seas International Acoustics Experiment (ASIAEX), the characteristics of the internal waves in the East China Sea (ECS) are analyzed and the effects of linear and solitary internal waves on broadband acoustic field correlation are numerically investigated. The numerical results of the length of the correlation time affected by the internal waves are compared with the experimental data. It was found that the existence of both linear internal waves and soliton packets may be one of the explanations of the experimental correlation drop.

  16. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, I.; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, E.; Kruijs, van de R.W.E.; Bijkerk, F.; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  17. Transformation of mode-2 internal solitary wave over a pseudo slope-shelf

    Science.gov (United States)

    Cheng, Ming-Hung; Hsieh, Chih-Min; Hsu, John R.-C.; Hwang, Robert R.

    2017-09-01

    Numerical simulations are performed to investigate the effect of wave amplitude in a numerical wave tank on the evolution of a convex mode-2 internal solitary wave (ISW) propagating over a pseudo slope-shelf. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using Improved Delayed Detached Eddy Simulation model for the turbulent closure. Numerical results reveal three types of waveform during wave generation on the flat bottom: (1) pseudo vortex shedding in the case of very large initial amplitude; (2) PacMan phenomenon in large amplitude; and (3) smooth mode-2 ISW for small amplitude. During wave propagation on the plateau, the first type of waveform induces a quasi-elevated mode-1 ISW; the second generates chaotic internal waves with significant reduction in amplitude; while the third renders a slightly deformed mode-2 ISW across the plateau. Moreover, the decrease in the magnitude of leading trough is more intense than that in the leading crest due to strong wave-obstacle interaction in the case of very large initial wave amplitude.

  18. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  19. The Third Wave: Future Trends in International Education.

    Science.gov (United States)

    Mazzarol, Tim; Soutar, Geoffrey Norman; Seng, Michael Sim Yaw

    2003-01-01

    Describes how the second half of the twentieth century saw the development of a global market in international education, so that by the 1990s, the systems of many host nations (e.g., Australia, Canada, United Stated, United Kingdom, and New Zealand) had become more market focused and were adopting professional marketing strategies to recruit…

  20. Wave-like free-standing NiCo2O4 cathode for lithium-oxygen battery with high discharge capacity

    Science.gov (United States)

    Shen, Chen; Wen, Zhaoyin; Wang, Fan; Rui, Kun; Lu, Yan; Wu, Xiangwei

    2015-10-01

    A novel free-standing air electrode for Li-O2 battery with a wave-like microstructure is designed and synthesized through a facile electrochemical deposition process. Interconnected NiCo2O4 nanosheets with planes grown almost parallel to the surface of Ni foam build up continues porous catalytic surface with open space for the growth of Li2O2 discharge product. Li-O2 battery with the synthesized cathode delivers a high discharge capacity of 7004 mAh g-1 at 40 mA g-1 with a charge potential lower than 3.6 V (vs. Li/Li+), and significantly lower impedance compared to conventional electrode. Flower-like Li2O2 particles with a large size are observed as discharge products, consisting with the high discharge capacity. The unique wave-like microstructure and DMSO-based electrolyte with a high-doner-number are proposed to be responsible for the high discharge capacity, and the formation of large size Li2O2 discharge products. In addition, the electrode also exhibits stable cycle performance up to 100 cycles at the current density of 100 mA g-1 due to the robust composition and microstructure of the free-standing design.

  1. Electronic standing waves on the surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Vershinin, M.; Misra, S.; Abe, Y.; Ono, S.; Ando, Y.; Yazdani, A

    2004-08-01

    Scanning tunneling microscopy (STM) measurements have shown that electronic states at the surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals form standing wave patterns at temperatures far below the superconducting transition. It has been shown that these patterns are consistent with those expected from the interference of well-defined quasi-particles around the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} Fermi surface. We have extended STM measurements of these standing wave patterns to higher temperatures and have found that four unit-cell periodicity patterns observed in the superconducting state persist well above T{sub C}, in the pseudogap state. In this regime, many different experimental studies of the cuprates have long claimed the absence of well-defined quasi-particles. If the pseudogap regime is indeed devoid of any coherent quasi-particles then our results suggest that other phenomena, such as stripe formation, must play a role in formation of these patterns.

  2. W-waveform Standing Surface Acoustic Waves with Two Equilibrium Positions under Linear Phase Modulation for Patterning Microparticles into Alternate Grid Patterns

    CERN Document Server

    Lee, Junseok

    2016-01-01

    This paper presents W-waveform Standing Surface Acoustic Waves (W-SSAW), and as its application, patterning of two groups of microparticles with different sizes alternately without fixing firstly patterned particles. W-SSAW is constructed by two standing surface acoustic waves of frequencies $f$ and $2f$. Combined with linear phase modulation to translate Gor'kov potential at a constant speed, W-SSAW can selectively trap particles. The trapped particles follow the moving Gor'kov potential maintaining force equilibrium between Stokes' drag and the radiation force by W-SSAW. There exist two asymmetric equilibrium positions every period, and by the asymmetry, each group of particles is trapped at different equilibrium positions to form an alternate pattern. This technique is extended to two-dimensional alternate patterning by maintaining phase difference $90^\\circ$ between X- and Y-directional W-SSAWs. The patterning method utilizing W-SSAW is advantageous over SSAW-based patterning in that it does not require t...

  3. The role of internal waves in larval fish interactions with potential predators and prey

    Science.gov (United States)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  4. Subsurface Signature of the Internal Wave Field Radiated by Submerged High Reynolds Number Stratified Wakes

    Science.gov (United States)

    2014-05-26

    parametric subharmonic instability. 15. SUBJECT TERMS Stratified turbulent wakes, high Reynolds numbers, internal waves, nonlinear effects, harmonics, mean...beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of our...found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long enough time

  5. Hamiltonian long wave expansions for internal waves over a periodically varying bottom

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-yan; PIAO Da-xiong

    2008-01-01

    We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom.From the formulation and using the Hamiltonian perturbation theory,we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale.The computations for these results are performed in the framework of an asymptotic analIysis of multiple scale operators.

  6. Footprints of Obliquely Incident Internal Solitary Waves near the Shelf Break, northern South China Sea

    Science.gov (United States)

    Ma, X.; Yan, J.; Hou, Y.; Lin, F.; Zheng, X.

    2016-12-01

    The northern South China Sea provides prominent examples of internal waves, however, rare studies have been done on the associated bedforms and sediment transport near the shelf break. Here, we report the unique data of bedform details which probably caused by the internal solitary waves and internal tides near the shelf break in the areas west of Dongsha Atoll. In the study area, most internal solitary waves (ISWs) are found to propagate onto the shelf obliquely in an approximately 290° through the MODIS image. Several typical events of ISWs were also captured during our observation by an mooring system on the continental slope. Bottom current data near the shelf break showed that extremely strong speed (exceeding 80 cm/s) occurred when the obliquely incident ISWs propagated. The strong currents have the capability to move coarse grains or suspend and transport fine grains but, cannot change the long-term trend of sediment transport on the slope (γ/c>1). Two types of sand waves were also found on the seabed. The upslope-dipping sand waves (type 1) are only found at depths of 120-150 m with flat crests and intersecting the depth contours, being ascribed to the obliquely incident ISWs. In contrast, the downslope-dipping sand waves (type 2) are parallel to the depth contours and obviously migrated over eight months, which were probably caused by internal tides. The ISWs could also produce along-slope currents to form and maintain channels on seabed with a larger gradient (γ>0.8°). The bedforms are likely widespread near the shelf break in the northern South China Sea and other seas but are limited on mild slopes where ISWs do not break. Additional detailed research needs to be deployed on wave behaviors, sediment transport, and the bedforms associated with obliquely incident ISWs.

  7. INFLUENCE OF OCEAN INTERNAL WAVE ON PROPAGATION OF UNDERWATER RADIATION NOISE

    Institute of Scientific and Technical Information of China (English)

    YE Chun-sheng; SHEN Guo-guang

    2004-01-01

    The underwater acoustic field influenced by a selected ocean internal wave was computed using the Parabolic Equation (PE) method and split-step difference algorithm in this paper. Acoustic field is formed by sound source with different frequency covering the range of radiation noise of ships and submarines. Owing to the adoption of complex variables, sparse matrix, Gaussian source and analysis on the grid size, numerical results are achieved smoothly. The results show that internal wave's influence on underwater sound can't be neglected, especially for higher sound frequency. So it's necessary to take internal wave into account in identifying radiation noise of ships and submarines, namely for sound intensity, transmission loss and spectra shape.

  8. Experimental investigation of the generation of large-amplitude internal solitary wave and its interaction with a submerged slender body

    Science.gov (United States)

    Wei, Gang; Du, Hui; Xu, XiaoHui; Zhang, YuanMing; Qu, ZiYun; Hu, TianQun; You, YunXiang

    2014-01-01

    A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is proposed according to the `jalousie' control mode. A new wave-maker based on the principle was manufactured and the experiments on the generation and evolution of internal solitary wave were conducted. Both the validity of the new device and applicability range of the KdV-type internal soliton theory were tested. Furthermore, a measurement technique of hydrodynamic load of internal waves was developed. By means of accurately measuring slight variations of internal wave forces exerted on a slender body in the tank, their interaction characteristics were determined. It is shown that through establishing the similarity between the model scale in the stratified fluid tank and the full scale in the numerical simulation the obtained measurement results of internal wave forces are confirmed to be correct.

  9. Internal wave emission from baroclinic jets: experimental results

    Science.gov (United States)

    Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe

    2016-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.

  10. Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer

    Directory of Open Access Journals (Sweden)

    G. Stenberg

    2007-11-01

    Full Text Available We use whistler waves observed close to the magnetopause as an instrument to investigate the internal structure of the magnetopause-magnetosheath boundary layer. We find that this region is characterized by tube-like structures with dimensions less than or comparable with an ion inertial length in the direction perpendicular to the ambient magnetic field. The tubes are revealed as they constitute regions where whistler waves are generated and propagate. We believe that the region containing tube-like structures extend several Earth radii along the magnetopause in the boundary layer. Within the presumed wave generating regions we find current structures moving at the whistler wave group velocity in the same direction as the waves.

  11. On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations.

    Science.gov (United States)

    Alias, A; Grimshaw, R H J; Khusnutdinova, K R

    2013-06-01

    In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation.

  12. A supercell, Bloch wave method for calculating low-energy electron reflectivity with applications to free-standing graphene and molybdenum disulfide

    Science.gov (United States)

    McClain, John

    This dissertation reports on a novel theoretical and computational framework for calculating low-energy electron reflectivities from crystalline surfaces and its application to two layered systems of two-dimensional materials, graphene and molybdenum disulfide. The framework provides a simple and efficient approach through the matching of a small set of Fourier components of Bloch wave solutions to the Schrodinger Equation in a slab-in-supercell geometry to incoming and outgoing plane waves on both sides of the supercell. The implementation of this method is described in detail for the calculation of reflectivities in the lowest energy range, for which only specular reflection is allowed. This implementation includes the calculation of reflectivities from beams with normal or off-normal incidence. Two different algorithms are described in the case of off-normal incidence which differ in their dependence on the existence of a symmetry with a mirror plane parallel to the crystal surface. Applications to model potentials in one, two, and three dimensions display consistent results when using different supercell sizes and convergent results with the density of Fourier grids. The design of the Bloch wave matching also allows for the accurate modeling of crystalline slabs through the use of realistic potentials determined via density functional theory. The application of the method to low-energy electron scattering from free-standing systems of a few layers of graphene, including the use of these realistic potentials, demonstrates this ability of the method to accurately model real systems. It reproduces the layer-dependent oscillations found in experimental, normal incidence reflectivity curves for a few layers of graphene grown on silicon carbide. The normal incidence reflectivity curves calculated for slabs consisting of few-layer graphene on 10 layers of nickel show some qualitative agreement with experiment. General incidence reflectivity spectra for free-standing

  13. Numerical modeling on the interaction of internal solitary wave with slope-shelf and modal analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of a nonhydrostatic numerical model, the interaction of internal solitary wave with slope-shelf was studied. The breaking and polarity transformation were analyzed. A "kink" structure, due to shoaling topography and higher nonlinear effect, was found to be generated by the leading wave before breaking. Coherent vortex shedding behind the leading wave was presented. The evolution characteristics of the modal structure were analyzed based on the empirical orthogonal function method. The modal structure was complicated due to the effect of the variable topography, especially when breaking occurred. In the performed experiments, the contributions to the total variance from higher mode jumped from no more than 20% to over 40%.

  14. Layered semi-convection and tides in giant planet interiors. I. Propagation of internal waves

    Science.gov (United States)

    André, Q.; Barker, A. J.; Mathis, S.

    2017-09-01

    Context. Layered semi-convection is a possible candidate to explain Saturn's luminosity excess and the abnormally large radius of some hot Jupiters. In giant planet interiors, it could lead to the creation of density staircases, which are convective layers separated by thin stably stratified interfaces. These are also observed on Earth in some lakes and in the Arctic Ocean. Aims: We aim to study the propagation of internal waves in a region of layered semi-convection, with the aim to predict energy transport by internal waves incident upon a density staircase. The goal is then to understand the resulting tidal dissipation when these waves are excited by other bodies such as moons in giant planets systems. Methods: We used a local Cartesian analytical model, taking into account the complete Coriolis acceleration at any latitude, thus generalising previous works. We used a model in which stably stratified interfaces are infinitesimally thin, before relaxing this assumption with a second model that assumes a piecewise linear stratification. Results: We find transmission of incident internal waves to be strongly affected by the presence of a density staircase, even if these waves are initially pure inertial waves (which are restored by the Coriolis acceleration). In particular, low-frequency waves of all wavelengths are perfectly transmitted near the critical latitude, defined by θc = sin-1(ω/ 2Ω), where ω is the wave's frequency and Ω is the rotation rate of the planet. Otherwise, short-wavelength waves are only efficiently transmitted if they are resonant with a free mode (interfacial gravity wave or short-wavelength inertial mode) of the staircase. In all other cases, waves are primarily reflected unless their wavelengths are longer than the vertical extent of the entire staircase (not just a single step). Conclusions: We expect incident internal waves to be strongly affected by the presence of a density staircase in a frequency-, latitude- and wavelength

  15. A 3D unstructured non-hydrostatic ocean model for internal waves

    Science.gov (United States)

    Ai, Congfang; Ding, Weiye

    2016-10-01

    A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max-min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max-min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model's capability to resolve internal waves relating to complex non-hydrostatic phenomena.

  16. Experimental study of periodic linear internal waves transform at the shelf edge

    Science.gov (United States)

    Shishkina, Olga; Litvin, Alexander; Vladimirova, Eleonora; Ivanov, Dmitry; Ivanov, Vladlen

    2010-05-01

    The report contains results of the experimental study of the fine structure of hydrophysical processes of internal waves transform in the shelf zone observed within a thin thermocline. A series of experiments was performed in the stratified tank with its overall dimensions L*B*H = 2.15*0.15*0.35 m where the model of the shelf has been installed. The shadowgraph IAB-455 as well as the multidot spatial system of 40 thermocouples were used for distance and contact measurements. Methods of a digital video fixation of shadow pictures of currents in the thermally stratified liquid, as well as methods of the statistical analysis of non-stationary hydrodynamic processes were applied. As a result of the series of experiments it was revealed that interaction of internal waves in the pycnocline with the shelf model leads to transformation of the internal waves, formation of currents of vortical and turbulent character and water mass mixture. The observations concern a case of creation of a package of five periodic internal waves made in the pycnocline by a submerged wave-maker. Acknowledgement: this work is supported through NWO-RFBR Project (Code: 047.017.2006.003).

  17. Mass transport induced by internal Kelvin waves beneath shore-fast ice

    Science.gov (United States)

    StøYlen, Eivind; Weber, Jan Erik H.

    2010-03-01

    A one-layer reduced-gravity model is used to investigate the wave-induced mass flux in internal Kelvin waves along a straight coast beneath shore-fast ice. The waves are generated by barotropic tidal pumping at narrow sounds, and the ice lid introduces a no-slip condition for the horizontal wave motion. The mean Lagrangian fluxes to second order in wave steepness are obtained by integrating the equations of momentum and mass between the material interface and the surface. The mean flow is forced by the conventional radiation stress for internal wave motion, the mean pressure gradient due to the sloping surface, and the frictional drag at the boundaries. The equations that govern the mean fluxes are expressed in terms of mean Eulerian variables, while the wave forcing terms are given by the horizontal divergence of the Stokes flux. Analytical results show that the effect of friction induces a mean Eulerian flux along the coast that is comparable to the Stokes flux. In addition, the horizontal divergence of the total mean flux along the coast induces a small mass flux in the cross-shore direction. This flux changes the mean thickness of the upper layer outside the trapping region and may facilitate geostrophically balanced boundary currents in enclosed basins. This is indeed demonstrated by numerical solutions of the flux equations for confined areas larger than the trapping region. Application of the theory to Arctic waters is discussed, with emphasis on the transport of biological material and pollutants in nearshore regions.

  18. Interaction of a mode-2 internal solitary wave with narrow isolated topography

    Science.gov (United States)

    Deepwell, David; Stastna, Marek; Carr, Magda; Davies, Peter A.

    2017-07-01

    Numerical and experimental studies of the transit of a mode-2 internal solitary wave over an isolated ridge are presented. All studies used a quasi-two-layer fluid with a pycnocline centred at the mid-depth. The wave amplitude and total fluid depth were both varied, while the topography remained fixed. The strength of the interaction between the internal solitary waves and the hill was found to be characterized by three regimes: weak, moderate, and strong interactions. The weak interaction exhibited negligible wave modulation and bottom surface stress. The moderate interaction generated weak and persistent vorticity in the lower layer, in addition to negligible wave modulation. The strong interaction clearly showed material from the trapped core of the mode-2 wave extracted in the form of a thin filament while generating a strong vortex at the hill. A criterion for the strength of the interaction was found by non-dimensionalizing the wave amplitude by the lower layer depth, a /ℓ . A passive tracer was used to measure the conditions for resuspension of boundary material due to the interaction. The speed and prevalence of cross boundary layer transport increased with a /ℓ .

  19. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  20. Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves

    Science.gov (United States)

    van Oers, Alexander M.; Maas, Leo R. M.; Bokhove, Onno

    2017-02-01

    The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.

  1. Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts

    Science.gov (United States)

    Mitchell, Neil; Simmons, Harper; Lear, Carrie

    2013-04-01

    Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotropic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.

  2. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model\\'s output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  3. Nonlinear Internal Waves in the South China Sea: Their generation and transformation

    Science.gov (United States)

    Farmer, D. M.; Qiang, L.; Park, J.

    2008-12-01

    Observations of thermocline motions using inverted echo-sounders in the South China Sea provide evidence of the generation and evolution of an internal tide which can ultimately steepen to form nonlinear internal waves. The sill topography is complex and the observations are primarily sensitive to the first internal mode, requiring care in the interpretation of measurements close to the source. However, a two dimensional analysis illustrates the sensitivity of the response to tidal forcing over the Luzon sill between Taiwan and the Philippines, which exhibits a strong diurnal inequality leading to great variability in the far-field response. Negative interfacial slopes in the internal tide steepen with time, their subsequent evolution depending on the competing effects of nonlinearity, non-hydrostatic and rotational dispersion. Large initial interfacial slopes steepen to form a nonlinear wave train. For weak initial slopes, rotational dispersion inhibits steepening and formation of waves of permanent form. Analysis of our observations with simplified models support a dynamical explanation of internal wave development in terms of the stratification, tidal forcing, nonlinearity, nonhydrostatic and rotational effects.

  4. Classification of regimes of internal solitary waves transformation over a shelf-slope topography

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae

    2015-04-01

    The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of

  5. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    Science.gov (United States)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  6. High-speed camera observation of multi-component droplet coagulation in an ultrasonic standing wave field

    Science.gov (United States)

    Reißenweber, Marina; Krempel, Sandro; Lindner, Gerhard

    2013-12-01

    With an acoustic levitator small particles can be aggregated near the nodes of a standing pressure field. Furthermore it is possible to atomize liquids on a vibrating surface. We used a combination of both mechanisms and atomized several liquids simultaneously, consecutively and emulsified in the ultrasonic field. Using a high-speed camera we observed the coagulation of the spray droplets into single large levitated droplets resolved in space and time. In case of subsequent atomization of two components the spray droplets of the second component were deposited on the surface of the previously coagulated droplet of the first component without mixing.

  7. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    OpenAIRE

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2011-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to stand...

  8. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    Science.gov (United States)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  9. Eikonal Simulations for the Energy Transfer in the Deep Ocean Internal Wave Field near Mixing Hotspots

    Science.gov (United States)

    Ijichi, T.; Hibiya, T.

    2016-02-01

    In the proximity of mixing hotspots, the observed internal wave spectra are usually distorted from the Garrett-Munk (GM) spectrum and are characterized by the high energy level E as well as the shear/strain ratio Rω quite different from the corresponding value for the GM spectrum (Rω = 3). Accurate parameterization of the energy transfer toward dissipation scales that takes into account the effects of E and Rω is therefore indispensable to quantify the deep ocean mixing. In this study, a series of eikonal simulations are carried out to examine energy transfer within such distorted internal wave spectra. The obtained results are used to assess the recently proposed parameterization for energy dissipation in the distorted internal wave field near mixing hotspots (Ijichi and Hibiya, 2015). In particular, several factors neglected by these authors in formulating the parameterization such as the background vertical divergence and the WKB horizontal scale-separation between small-scale test waves and the background waves are all taken into account throughout the eikonal simulations. It is shown that the calculated energy transfer rate ɛ is fairly consistent with the scaling ɛ E2N2f with N the local buoyancy frequency and f the local inertial frequency. Furthermore, the calculated results exhibit strong Rω dependence quite similar to that predicted from the parameterization by Ijichi and Hibiya (2015), suggesting the validity of their formulation.

  10. The Interaction of Short-Wavelength Internal Waves with a Background Current,

    Science.gov (United States)

    1982-12-01

    challenging feature of the internal wave field is its maintenance of high and uniform energy levels. A central difficulty arises from our poor...coefficient of the Taylor-Goldstein equation. The asymptotic predicitions (dashed lines), obtained by neglecting the curvature term U/(c- U) in the Taylor

  11. A statistical study of variations of internal gravity wave energy characteristics in meteor zone

    Science.gov (United States)

    Gavrilov, N. M.; Kalov, E. D.

    1987-01-01

    Internal gravity wave (IGW) parameters obtained by the radiometer method have been considered by many other researchers. The results of the processing of regular radiometeor measurements taken during 1979 to 1980 in Obninsk (55.1 deg N, 36.6 deg E) are presented.

  12. Separating Internal Waves and Vortical Motions: Analysis of LatMix -EM-APEX Float Measurements

    Science.gov (United States)

    2015-09-30

    Washington 98105 Phone: (206) 685-1079 fax: (206) 543-6785 email: lien@apl.washington.edu Thomas B. Sanford Applied Physics Laboratory and School ...project is to separate internal waves and vortical motions. These two processes coexist at small spatial scales (Müller 1984). However, they have distinct

  13. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to sear

  14. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  15. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  16. Fourier spectrum and shape evolution of an internal Riemann wave of moderate amplitude

    Directory of Open Access Journals (Sweden)

    E. Kartashova

    2013-08-01

    Full Text Available The nonlinear deformation of long internal waves in the ocean is studied using the dispersionless Gardner equation. The process of nonlinear wave deformation is determined by the signs of the coefficients of the quadratic and cubic nonlinear terms; the breaking time depends only on their absolute values. The explicit formula for the Fourier spectrum of the deformed Riemann wave is derived and used to investigate the evolution of the spectrum of the initially pure sine wave. It is shown that the spectrum has exponential form for small times and a power asymptotic before breaking. The power asymptotic is universal for arbitrarily chosen coefficients of the nonlinear terms and has a slope close to –8/3.

  17. The effect of stochastic perturbations on plankton transport by internal solitary waves

    Directory of Open Access Journals (Sweden)

    M. Stastna

    2011-12-01

    Full Text Available Internal solitary and solitary-like waves are a commonly observed feature of density stratified natural waters, including lakes and the coastal ocean. Since such waves induce significant currents throughout the water column they can be responsible for significant transport of both passive and swimming biota. We consider simple models of moving zooplankton based on the Langevin equation. The small amplitude randomness significantly alters the nature of particle motion. In particular, passage through the wave leads to strongly non Gaussian particle distributions. When the plankton swims to return to its equilibrium photic level, a steady state that balances randomness, swimming and wave-induced motions is possible. We discuss possible implications of this steady state for organisms that feed on plankton.

  18. Characterizing the nonlinear internal wave climate in the northeastern South China Sea

    Directory of Open Access Journals (Sweden)

    S. R. Ramp

    2010-09-01

    Full Text Available Four oceanographic moorings were deployed in the South China Sea from April 2005 to June 2006 along a transect extending from the Batanes Province, Philippines in the Luzon Strait to just north of Dong-Sha Island on the Chinese continental slope. The purpose of the array was to observe and track large-amplitude nonlinear internal waves (NIWs from generation to shoaling over the course of one full year. The basin and slope moorings observed velocity, temperature (T and salinity (S at 1–3 min intervals to observe the waves without aliasing. The Luzon mooring observed velocity at 15 min and T and S at 3 min, primarily to resolve the tidal forcing in the strait.

    The observed waves travelled WNW towards 282–288 degrees with little variation. They were predominantly mode-1 waves with orbital velocities exceeding 100 cm s−1 and thermal displacements exceeding 100 m. Consistent with earlier authors, two types of waves were observed: the a-waves arrived diurnally and had a rank-ordered packet structure. The b-waves arrived in between, about an hour later each day similar to the pattern of the semi-diurnal tide. The b-waves were weaker than the a-waves, usually consisted of just one large wave, and were often absent in the deep basin, appearing as NIW only upon reaching the continental slope. The propagation speed of both types of waves was 323±31 cm s−1 in the deep basin and 222±18 cm s−1 over the continental slope. These speeds were 11–20% faster than the theoretical mode-1 wave speeds for the observed stratification, roughly consistent with the additional contribution from the nonlinear wave amplitude. The observed waves were clustered around the time of the spring tide at the presumed generation site in the Luzon Strait, and no waves were observed at neap tide. A remarkable feature was the distinct lack of waves during the winter months, December 2005 through February

  19. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    Science.gov (United States)

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  20. Continuously Phase-Modulated Standing Surface Acoustic Waves for Separation of Particles and Cells in Microfluidic Channels Containing Multiple Pressure Nodes

    CERN Document Server

    Lee, Junseok; Kang, Byungjun; Lee, Hyungsuk

    2016-01-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with the target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of the target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressu...

  1. Synthesis of Linear Array of Parallel Dipole Antennas with Minimum Standing Wave Ratio Using Simulated Annealing and Particle Swarm Optimization approach

    Directory of Open Access Journals (Sweden)

    Banani Basu

    2010-05-01

    Full Text Available In this paper, we propose a technique based on two evolutionary algorithms simulated annealing and particle swarm optimization to design a linear array of half wavelength long parallel dipole antennas that will generate a pencil beam in the horizontal plane with minimum standing wave ratio (SWR and fixed side lobe level (SLL. Dynamic range ratio of current amplitude distribution is kept at a fixed value. Two different methods have been proposed withdifferent inter-element spacing but with same current amplitude distribution. First one uses a fixed geometry and optimizes the excitation distribution on it. In the second case further reduction of SWR is done via optimization of interelement spacing while keeping the amplitude distribution same as before. Coupling effect between the elements is analyzed using induced EMF method and minimized interms of SWR. Numerical results obtained from SA are validated by comparing with results obtained using PSO.

  2. Development of A New Waveguide Arc /Standing-wave Protecting Device%新型波导电弧/驻波保护装置的研制

    Institute of Scientific and Technical Information of China (English)

    钱锰

    2001-01-01

    The waveguide arc is one of the important reasons of damaging klystron. The practical block diagram , improvement circuit and relevant data of arc/standing-wave are given in this paper. The selection of the key device is analyzed. Finally, the experimental results and characteristic curve are also given.%波导电弧(俗称打火)/驻波过大是损坏速调管的重要原因之一。本文给出了电弧/驻波保护装置的实用框图、改进电路及有关数据,并对关键器件的选择进行了详细分析,最后给出了实验结果及特性曲线。

  3. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    Science.gov (United States)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  4. Developments in the use and capability of millimetre wave technologies for stand-off detection of threat items over the last decade

    Science.gov (United States)

    Ollett, E.; Clark, A.

    2017-05-01

    The Home Office Centre for Applied Science and Technology (CAST) has a longstanding history in the evaluation of passive and active millimetre wave (mmW) systems for stand-off detection. The requirements for stand-off detection have evolved greatly over the last decade due to changes in threat, as has the capability of technologies. CAST has worked with these changes to evaluate systems alongside other government departments, developing expertise in the standard of technology from low to high technology readiness level (TRL) as well as understanding the limitations in detection. In this paper I discuss the work that has been undertaken by CAST since 2007, exploring the developments in methodology that have become necessary for trials to capture the requirements successfully. This involves utilising aspects of test protocols to ensure consistency across testing between CAST and other organisations, allowing for a fair comparison of data. The trials undertaken vary from evaluating the system capability in a static setting to the capability in a crowded environment such as a shopping centre. Understanding the performance capability of passive and active (mmW) systems in crowded places is particularly important given the current threat status of the UK.

  5. X-ray standing wave studies of strained InxGa1-xAs/InP short-period superlattices

    Science.gov (United States)

    Aruta, Carmela; Lamberti, Carlo; Gastaldi, Luigi; Boscherini, Federico

    2003-05-01

    We report an x-ray standing wave (XSW) study on a set of structurally well-characterized InxGa1-xAs/InP short-period superlattices grown by metal-organic chemical vapor deposition and chemical-beam epitaxy techniques. It was possible to model the x-ray standing wave profiles only once the superlattice period has been assumed to be constituted by four layers of well-defined chemical composition [barrier (InP), first interface (InAs0.7P0.3), well (In0.53Ga0.47As), and second interface (In0.53Ga0.47As0.7P0.3)], and of variable thickness. The thickness of the four layers have been obtained by fitting the high resolution x-ray diffraction profiles of the heterostructures. The presence of partially disordered interface layers, as evidenced by a transmission electron microscopy study, causes a significant reduction of the coherent fraction, F, of both Ga and As atoms. The difference in F values among measured samples illustrates how the XSW can provide important information on the quality of semiconductor superlattices. Comparison with a "long period (160 Å)" In0.53Ga0.47As/InP superlattice, where the role played by InAs0.7P0.3 and In0.53Ga0.47As0.7P0.3 interface layers is negligible, confirms this picture. The coherent fraction of both As and Ga correlates well with the average perpendicular lattice misfit determined by x-ray diffraction.

  6. Keqiao Trade Fair Stands Out on Three Features——2009 CHINA KEQIAO INTERNATIONAL TEXTILE EXPO ceremoniously opens

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the morning of October 25th,2009,China Keqiao International Textile Expo (autumn) opened ceremoniously in China Textile City International Convention & Exhibition Center. "Large-Scale,internationalization and

  7. Drive Stands

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  8. A model for large-amplitude internal solitary waves with trapped cores

    Directory of Open Access Journals (Sweden)

    K. R. Helfrich

    2010-07-01

    Full Text Available Large-amplitude internal solitary waves in continuously stratified systems can be found by solution of the Dubreil-Jacotin-Long (DJL equation. For finite ambient density gradients at the surface (bottom for waves of depression (elevation these solutions may develop recirculating cores for wave speeds above a critical value. As typically modeled, these recirculating cores contain densities outside the ambient range, may be statically unstable, and thus are physically questionable. To address these issues the problem for trapped-core solitary waves is reformulated. A finite core of homogeneous density and velocity, but unknown shape, is assumed. The core density is arbitrary, but generally set equal to the ambient density on the streamline bounding the core. The flow outside the core satisfies the DJL equation. The flow in the core is given by a vorticity-streamfunction relation that may be arbitrarily specified. For simplicity, the simplest choice of a stagnant, zero vorticity core in the frame of the wave is assumed. A pressure matching condition is imposed along the core boundary. Simultaneous numerical solution of the DJL equation and the core condition gives the exterior flow and the core shape. Numerical solutions of time-dependent non-hydrostatic equations initiated with the new stagnant-core DJL solutions show that for the ambient stratification considered, the waves are stable up to a critical amplitude above which shear instability destroys the initial wave. Steadily propagating trapped-core waves formed by lock-release initial conditions also agree well with the theoretical wave properties despite the presence of a "leaky" core region that contains vorticity of opposite sign from the ambient flow.

  9. Sensitivity of Internal Wave Energy Distribution over Seabed Corrugations to Adjacent Seabed Features

    CERN Document Server

    Karimpour, F; Alam, M -R

    2016-01-01

    Here we show that the distribution of internal gravity waves energy over a patch of seabed corrugations strongly depends on the "distance" of the patch to adjacent seafloor features. Specifically, we consider the energy distribution over a patch of seabed ripples neighbored to i. another patch of ripples, and ii. a vertical wall. Seabed undulations with dominant wavenumber twice as large as overpassing internal waves reflect back part of the energy of the internal waves (Bragg reflection), let the rest of the energy to transmit or to be transferred to higher and lower modes. In the presence of a neighboring topography on the downstream side, the transmitted energy from the patch may reflect back, e.g. partially if the downstream topography is another set of seabed ripples, or fully if it is a vertical wall. The reflected wave from downstream topography is again reflected back by the patch of ripples through the same mechanism. This consecutive reflection goes on indefinitely leading to a complex interaction p...

  10. Internal wave generation by convection in water. Part 2. Numerical simulations

    CERN Document Server

    Lecoanet, Daniel; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S

    2014-01-01

    Water's density maximum at 4C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4C, but stably stratified above 4C. We present numerical simulations of water near its density maximum in a two dimensional tank, similar to the experiment described in a companion paper (Le Bars et al. 2015). The simulations agree very well with the experiments, despite differences in lateral boundary conditions in the two systems. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. In order to isolate the physical mechanism exciting internal waves, we use the novel spectral code Dedalus to run several simulations of the simulation. We use data from the full simulation as source terms in two simplified models of internal wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via th...

  11. The International Workshop on Wave Hindcasting and Forecasting and the Coastal Hazards Symposium

    CERN Document Server

    Breivik, Øyvind; Babanin, Alexander; Horsburgh, Kevin

    2015-01-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  12. Laboratory and numerical simulation of internal wave attractors and their instability.

    Science.gov (United States)

    Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias

    2015-04-01

    Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F

  13. INTERNAL RESONANT INTERACTIONS OF THREE FREE SURFACE-WAVES IN A CIRCULAR CYLINDRICAL BASIN

    Institute of Scientific and Technical Information of China (English)

    马晨明

    2003-01-01

    The basic equations of free capillary-gravity surface-waves in a circular cylindrical basin were derived from Luke' s principle. Taking Galerkin ' s expansion of the velocity potential and the free surface elevation, the second-order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface-waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non-resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second-order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.

  14. On the generation and evolution of numerically simulated large-amplitude internal gravity wave packets

    Science.gov (United States)

    Abdilghanie, Ammar M.; Diamessis, Peter J.

    2012-01-01

    Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed

  15. A note on radar altimeter signatures of internal solitary waves in the ocean

    Science.gov (United States)

    da Silva, J. C. B.; Cerqueira, A. L. F.

    2016-10-01

    It is well known that Internal Waves of tidal frequency (i.e. Internal Tides) are successfully detected in seasurface height (SSH) by satellite altimetry [1]. Shorter period Internal Solitary Waves (ISWs), whose periods are an order of magnitude smaller than tidal internal waves, are however generally assumed too small to be detected with standard altimeters (at low sampling rates, i.e. 1 Hz). This is because the Radar Altimeter (RA) footprint is somewhat larger, or of similar size at best, than the ISWs typical wavelengths. Here it will be demonstrated that new generation high sampling rate satellite altimetry data (i.e. 20 Hz) hold a variety of short-period signatures that are consistent with surface manifestations of ISWs in the ocean. Our observational method is based on satellite synergy with imaging sensors such as Synthetic Aperture Radar (SAR) and other high-resolution optical sensors (e.g. 250m resolution MODIS images) with which ISWs are unambiguously recognized. A first order commonly accepted ISW radar imaging mechanism is based on hydrodynamic modulation models [2] [3] in which the straining of surface waves due to ISW orbital currents is known to cause modulation of decimeter-scale surface waves, which have group velocities close to the IW phase velocity. This effect can be readily demonstrated by measurements of wind wave slope variances associated with short-period ISWs, as accomplished in the pioneer work of Hughes and Grant [4]. Mean square slope can be estimated from nadir looking RAs using a geometric optics (specular) scattering model [5][6][7], and directly obtained from normalized backscatter (sigma0) along-track records. We use differential scattering from the dual-band (Ku- and C-bands) microwave pulses of the Jason- 2 high-rate RA to isolate the contribution of small-scale surface waves to mean square slope. The differenced altimeter mean square slope estimate, derived for the nominal wave number range 40-100 rad/m, is then used to detect

  16. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves

    Science.gov (United States)

    Smolarkiewicz, Piotr; Szmelter, Joanna

    2011-12-01

    A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-147)].

  17. A steady-state solver and stability calculator for nonlinear internal wave flows

    Science.gov (United States)

    Viner, Kevin C.; Epifanio, Craig C.; Doyle, James D.

    2013-10-01

    A steady solver and stability calculator is presented for the problem of nonlinear internal gravity waves forced by topography. Steady-state solutions are obtained using Newton's method, as applied to a finite-difference discretization in terrain-following coordinates. The iteration is initialized using a boundary-inflation scheme, in which the nonlinearity of the flow is gradually increased over the first few Newton steps. The resulting method is shown to be robust over the full range of nonhydrostatic and rotating parameter space. Examples are given for both nonhydrostatic and rotating flows, as well as flows with realistic upstream shear and static stability profiles. With a modest extension, the solver also allows for a linear stability analysis of the steady-state wave fields. Unstable modes are computed using a shifted-inverse method, combined with a parameter-space search over a set of realistic target values. An example is given showing resonant instability in a nonhydrostatic mountain wave.

  18. Parameterization of the Near-Field Internal Wave Field Generated by a Submarine

    CERN Document Server

    Rottman, James W; Dommermuth, Douglas; Broutman, Dave

    2014-01-01

    We attempt to gain some insight into the modeling of the generation of internal waves produced by submarines traveling in the littoral regions of the ocean with the use of high fidelity numerical simulations. These numerical simulations are shown to be capable of simulating high Reynolds number flow around bodies, including the effects of stable stratification. In addition, we use the results of these detailed numerical studies to test and revise the source distribution parameterizations of the near-field waves that have been used in analytical studies based on linear theory. Such parameterizations have been shown to be useful in initializing ray-tracing schemes that can be used for computing wave propagation through realistic oceans with variable background properties. For simplicity, we focus on the idealized case of a spherical body traveling horizontally at constant speed through a uniformly stratified fluid.

  19. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    CERN Document Server

    Brouzet, Christophe; Scolan, H; Ermanyuk, E V; Dauxois, Thierry

    2016-01-01

    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numeri...

  20. Numerical studies of large-amplitude internal waves shoaling and breaking at shelf slopes

    Science.gov (United States)

    Thiem, Øyvind; Berntsen, Jarle

    2009-12-01

    Hydro carbon fields beyond the shelf break are presently being explored and developed, which has increased the scientific focus in this area. Measurements from the slopes reveal large variability in temperature and velocity, and some of the observed events are due to interactions between large-amplitude oscillations of the thermocline and the topography. The present study focuses on the strong currents that are generated near the seabed during shoaling and breaking of internal waves along shelf slopes. The parameter regime used is similar to the one for the Nordic Seas. The results show that, during shoaling of large internal waves along (gentle) slopes, the energy is transferred towards smaller scales and strong velocities (over 1 m s - 1) can be generated. To resolve all scales involved is still not feasible, and therefore, the model results are sensitive to the grid size and the subgrid scale closure.