WorldWideScience

Sample records for internal radiation exposure

  1. Explanation of diagnosis criteria for radiation sickness from internal exposure

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai; Du Jianying; Bai Guang

    2012-01-01

    A revised edition of the Diagnostic Criteria for Radiation Sickness from Internal Exposure has been approved and issued by the Ministry of Health. It is necessary to research the internal radiation sickness to adapt to the current serious anti-terrorism situation. This standard was enacted based on the extensive research of related literature, from which 12 cases with internal radiation sickness and screened out were involving 7 types of radionuclide. The Development of Emergency Response Standard Extension Framework: Midterm Evaluation Report is the main reference which approved by the International Atomic Energy Agency and World Health Organization. This amendment contains many new provisions such as internal radiation sickness effects models and threshold dose, and the appendix added threshold dose of serious deterministic effects induced by radionuclide intake and radiotoxicology parameters of some radionuclides. In order to understand and implement this standard, and to diagnose and treat the internal radiation sickness correctly, the contents of this standard were interpreted in this article. (authors)

  2. Retrospective internal radiation exposure assessment in occupational epidemiology

    International Nuclear Information System (INIS)

    Neton, J.W.; Flora, J.T.; Spitz, H.B.; Taulbee, T.D.

    2000-01-01

    Epidemiologic studies of workers at U.S. Department of Energy facilities are being conducted by the U.S. National Institute for Occupational Safety and Health to evaluate the health risk associated with exposure to sources of external and internal ionizing radiation. While exposure to external sources of radiation can be estimated from personal dosimeter data, reconstruction of exposure due to internally deposited radioactivity is more challenging because bioassay monitoring data is frequently less complete. Although comprehensive monitoring was provided for workers with the highest internal exposures, the majority of workers were monitored relatively infrequently. This monitoring was conducted to demonstrate compliance with regulations rather than to evaluate exposure for use in epidemiologic studies. Attributes of past internal monitoring programs that challenge accurate exposure assessment include: incomplete characterization of the workplace source term; a lack of timely measurements; insensitive and/or nonspecific bioassay measurements; and the presence of censored data. In spite of these limitations, many facilities have collected a large amount of worker and workplace monitoring information that can be used to evaluate internal exposure while minimizing worker misclassification. This paper describes a systematic approach for using the available worker and workplace monitoring data that can lead to either a qualitative or quantitative retrospective assessment of internal exposures. Various aspects of data analysis will be presented, including the evaluation of minimum detectable dose, the treatment of censored data, and the use of combinations of bioassay and workplace data to characterize exposures. Examples of these techniques applied to a cohort study involving chronic exposure scenarios to uranium are provided. A strategy for expressing exposure or dose in fundamental, unweighted units related to the quantity of radiation delivered to an organ will also

  3. Radiation internal exposure measurements archiving system (REMAS)

    International Nuclear Information System (INIS)

    Bitar, A.; Maghrabi, M.

    2013-01-01

    This paper describes a personal-computer-based software, REMAS, which helps users to estimate intake activity and resulting internal doses for all radionuclides existing in (International Commission on Radiological Protection) ICRP 78 and other important elements. In addition to its use in internal dose calculations, it facilitates management of data of monitored persons who are occupationally exposed to unsealed radioactive substances. Furthermore, REMAS offers the possibility to generate different reports of results. The program is suitable for laboratories working in the field of assessment of occupational intake and also for users of radioactive material who are routinely monitored. REMAS, which is bilingual program (English and Arabic), was built with GUI environment and was developed using Microsoft FoxPro. It runs on Microsoft Windows XP operating systems. (authors)

  4. Eating habits and internal radiation exposures in Japanese

    International Nuclear Information System (INIS)

    Shiraishi, Kunio

    1995-01-01

    Recently, annual dose equivalent for Japanese was estimated to be 3.75 mSv. Medical radiation exposures (2.25 mSv/y) and exposures from natural sources of radiation (1.48 mSv/y) were the major contributors to this dose. Dietary intakes of both natural and man-made radionuclides directly related to internal exposures. In this paper, internal doses received only through ingestion of radionuclides in food are described; internal doses through inhalation have been excluded. First, the representative intakes of radionuclides for Japanese were estimated from the literature. Second, the annual dose equivalents were calculated according to intakes of individual radionuclides and weighted committed dose equivalents (Sv/Bq) of the International Commission on Radiological Protection Pub. 30. Total annual doses through radiation of natural sources and man-made sources, were estimated as 0.35 mSv and 0.001 mSv, respectively. Furthermore, the effects of imported foods on internal dose in Japanese were calculated preliminarily, because the contribution of imported foods to Japanese eating habits is increasing annually and will not be negligible when assessing internal dose in the near future. (author)

  5. Diagnosis, injury and prevention of internal radiation exposure

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo

    2012-01-01

    Radiation exposure is classified into three categories: external exposure, surface contamination, and internal exposure (also called internal contamination). Internal exposure is an exposure by the ionizing radiation emitted from radioactive materials taken into a human body. Uptake of radioactive materials can go through inhalation, ingestion, or wound contamination. Not like external exposure, alpha ray or beta ray, which has a limited penetration, is also important in internal exposure. Diagnosis of internal exposure is based on measurement and dose assessment in addition to the history taking. Two methods, direct measurement and/or bioassay (indirect measurement), are used for the measurement. These measurements provide information of radioactive materials in the body at the time of the measurement. The exposure dose to the body needs to be calculated in a process of dose assessment, based on the results of these measurements and history of intake, either acute intake or chronic intake. Another method, measurement of environmental samples or food stuff, is also used for dose assessment. For internal exposure, radiation dose to the body is expressed as committed effective dose or committed equivalent dose, which are accumulation of dose over a defined period. Radioactive materials taken into body are transferred among many body components depending on the type of radionuclide or chemicals etc. Some radioactive materials concentrate in a specific organ. Symptoms and signs depend on the distribution of the radioactive materials in the body. Monitoring the concentration in air or foods is conducted in order to control human activities and foods and consequently reduce the amount of intake to human bodies as a preventive measure. Prevention of internal exposure is also conducted by protective gears such as full face masks. Iodine prophylaxis could be used against radioactive iodine intake. Stable iodine, mostly potassium iodide, could be taken into the thyroid and

  6. Internal and external radiation exposures of Fukushima residents

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2014-01-01

    The soil at Fukushima prefecture and its outskirts was heavily contaminated with radioactive materials from the troubled Fukushima Daiichi nuclear power plant, and the residents suffered risk from internal and external radiation exposure. At first, the average dose of internal radiation exposure was estimated to be several mSv based upon the results of Chernobyl nuclear disaster. But the result of massive measurements using whole body counters shows that the average quantity of internal radioactive cesium is less than that at the Cold Water period. In the meantime, someone shows exposure dose much higher than the average. The distribution of these abnormal doses is called 'Long Tail'. One must pay attention to the long tail at the assessment of the internal radiation exposure by Fukushima nuclear disaster. The main origin of the long tail is related to frequency eating of special food. It is thus important to find persons situated in the long tail and give them guidance on the meals. (J.P.N.)

  7. Global levels of radiation exposure: Latest international findings

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1993-01-01

    The radiation exposure of the world's population has recently been reviewed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR has reconfirmed that the normal operation of all peaceful nuclear installations contributes insignificantly to the global exposure to radiation. Even taking into account all the nuclear accidents to date (including Chernobyl), the additional exposure would be equivalent to only about 20 days of natural exposure. Military uses of nuclear energy have committed the world to most of the radiation exposure caused by human activities

  8. Internal exposure by natural radiation and decontamination of swimming pool

    International Nuclear Information System (INIS)

    Seki, Hideyuki

    2012-01-01

    This explanation concerns the scientific knowledge and finding of the title subjects for general public to understand their present radiation environment, id est (i.e.), at about 1 year after the Fukushima Daiichi Power Plant Accident (FDPPA). The first described is the world history of radiation exposure, where A-bomb explosion in Hiroshima and Nagasaki, Three Mile Island Power Plant Accident and Chernobyl Accident are told about their teachings and about internal nuclides at FDPPA: the author points out the natural high abundance of K-40 in contrast to the release of I-131, and Cs-137/-134 in the accident. The second is described about the effect of radiations on human cells, where characteristics, measurements, unit and their derived radionuclides of alpha, beta and gamma rays are explained together with their biological influences. Also explained are hydroxy-radical formation by alpha and beta rays in the internal exposure, and comparison of external photons, gamma and more risky ultraviolet rays. Third, the author mentions about man's natural functions to protect radiation hazard. Presented are an easy calculation and a comparison of K-40 and Cs-137 contents (weight and Bq) in the body and in the swimming pool with reference to Chernobyl standards. Internal exposure by natural radionuclides like K-40 and others, is also calculated, which is found equivalent to 0.29 mSv/y based on about 5,630 Bq/60 kg body weight. Finally, explained are the knowledge and practice of decontamination, where various adsorbents like zeolite (molecular sieve), ion exchanger, charcoal and natural zeolites (alumino-silicate) are compared and the last agent, clay easily and economically available, is recommended for decontamination. Clay material is said to adsorb 87% of Cs-137 at as low level as 750 mg/L and the author has an experience to use it successfully for decontamination of the pool. Importantly, the radioactivity of the resultant sludge should not exceed 8,000 Bq/kg. (T.T.)

  9. Personnel dosimetry in internal radiation exposure by excretory radionuclide measurement

    International Nuclear Information System (INIS)

    Balonov, M.I.; Bruk, G.Ya.; Korelina, N.F.; Likhtarev, I.A.; Repin, V.S.

    1986-01-01

    The collaboration with the SAAS resulted in the development of a mathematical method to calculate radiation doses in human tissues attributed to inhaled radionuclides concerning their retention dynamics in the respiratory system and their uptake into the blood as well as the metabolic pathways in the organs. 'Sanep-stations' and radiation protection service elaborated nomograms for the determination of the commitment doses in the critical organs based on the radionuclide content of a 24-hours urinalysis without intermediate calculations. Recommendations for the use of the method and the nomograms for various radionuclides (solubility classes D and N with MAAD of 1 and 10 μm) are given in the methodological document: 'Indirect dosimetry of inhaled radionuclides in workers'. A calculation method for the annual dose of internal irradiation in tritium workers is also cited

  10. Fertility of women after exposure to internal and external radiation

    International Nuclear Information System (INIS)

    Polednak, A.P.

    1982-01-01

    Fertility was examined in 199 women exposed to internal and external radiation while employed in the radium watch-dial painting industry in Illinois between 1916 and 1929. In women with at least one live birth, mean log live-birth rate was significantly lower in the highest (estimated) ovarian-dose group (i.e., greater than or equal to 20 rem) than in the lowest group (<5 rem). In multiple regression analysis, intake dose (proportional to alpha-particle dose to ovaries) but not duration of employment (relevant to external gamma-ray dose to ovaries) was a statistically significant predictor of log live-birth rate. There was no evidence for an increase in fetal deaths with increasing ovarian dose level (rem). This suggests that the findings on live-birth rate may not involve post-implantation dominant lethal mutations, but pre-implantation losses could not be evaluated. Some possible explanations for these findings are discussed

  11. Fertility of women after exposure to internal and external radiation

    International Nuclear Information System (INIS)

    Polednak, A.P.

    1980-01-01

    Fertility was examined in 199 women exposed to internal and external radiation while employed in the radium watch-dial painting industry in Illinois between 1916 and 1929. In women with at least one live birth, mean log live-birth rate was significantly lower in the highest (estimated) ovarian-dose group (i.e., greater than or equal to 20 rem) than in th lowest group (<5 rem). In multiple regression analysis, intake dose (proportional to alpha-particle dose to ovaries) but not duration of employment (relevant to external gamma-ray dose to ovaries) was a statistically significant predictor of log live-birth rate. There was no evidence for an increase in fetal deaths with increasing ovarian dose level (rem). This suggests that the findings on live-birth rate may not involve post-implantation dominant lethal mutations, but preimplantation losses could not be evaluated. Some possible explanations for these findings are discussed

  12. Fertility of women after exposure to internal and external radiation

    International Nuclear Information System (INIS)

    Polednak, A.P.

    1980-01-01

    Fertility was examined in 199 women exposed to internal and external radiation while employed in the radium watch-dial painting industry in Illinois between 1916 and 1929. In women with at least one live birth, mean log live-birth rate was significantly lower in the highest (estimated) ovarian-dose group than in the lowest group. In multiple regression analysis, intake dose but not duration of employment was a statistically significant predictor of log live-birth rate. There was no evidence for an increase in fetal deaths with increasing ovarian dose level (rem). This suggests that the findings on live-birth rate may not involve post-implantation dominant lethal mutations, but preimplantation losses could not be evaluated. Some possible explanations for these findings are discussed

  13. External and internal exposure to natural radiations inside ancient Egyptian tombs in Saqqara

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Elmagd, M [National Institute for Standard, Radiation Measurements Department, P.O. Box 136 Giza code no. 12211 (Egypt); Metwally, S M [Faculty of Science, Department of Physics, Ain Shams University, P.O. Box 11566, Cairo (Egypt); Elmongy, S A [Atomic Energy Authority, Nuclear Safety, Cairo (Egypt); Salama, E [Faculty of Science, Department of Physics, Ain Shams University, P.O. Box 11566, Cairo (Egypt); El-Fiki, S A [Faculty of Science, Department of Physics, Ain Shams University, P.O. Box 11566, Cairo (Egypt)

    2006-02-15

    Some ancient Egyptian tombs in Saqqara are closed for visit to undergo fixation processes. The workers inside these tombs exposed to natural radiations from natural Gamma emitters (external exposure) and inhale unknown radon doses (internal exposure) for long periods. The external exposure in all studied tombs is lower than the maximum recommended action level. The internal exposure in terms of annual effective dose in the south tomb is equal to 28.83mSv/year which highly exceed the recommended level (3-10mSv/year). In this tomb, the external exposure is equal to 21.43{mu}Sv/year. This reflects the hazards of radon over the other natural radiations in the closed area. Among the workers inside the studied tombs, the expected morality is equal to 0.0033%, 0.0199% and 0.0724% for the south entrance of Zoser pyramid, the Serapeum tomb, and the south tomb respectively. ctively.

  14. External and internal exposure to natural radiations inside ancient Egyptian tombs in Saqqara

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Metwally, S.M.; Elmongy, S.A.; Salama, E.; El-Fiki, S.A.

    2006-01-01

    Some ancient Egyptian tombs in Saqqara are closed for visit to undergo fixation processes. The workers inside these tombs exposed to natural radiations from natural Gamma emitters (external exposure) and inhale unknown radon doses (internal exposure) for long periods. The external exposure in all studied tombs is lower than the maximum recommended action level. The internal exposure in terms of annual effective dose in the south tomb is equal to 28.83mSv/year which highly exceed the recommended level (3-10mSv/year). In this tomb, the external exposure is equal to 21.43μSv/year. This reflects the hazards of radon over the other natural radiations in the closed area. Among the workers inside the studied tombs, the expected morality is equal to 0.0033%, 0.0199% and 0.0724% for the south entrance of Zoser pyramid, the Serapeum tomb, and the south tomb respectively. ctively

  15. External radiation dose and cancer mortality among French nuclear workers. Considering potential confounding by internal radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, L.; Laurent, O.; Samson, E.; Caer-Lorho, S.; Laurier, D.; Leuraud, K. [Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses (France). Ionizing Radiation Epidemiology Lab.; Laroche, P. [AREVA, Paris (France); Le Guen, B. [EDF, Saint Denis (France)

    2016-11-15

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat a l'Energie Atomique), AREVA NC, or EDF (Electricite de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  16. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    Science.gov (United States)

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  17. International comparison of regulations on abortion after radiation exposure

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1977-12-01

    Possible factors to consider when assessing the necessity of an abortion are: 1) Exposure in the highly sensitive phase (e.g. organogenesis); 2) after intake of radioactive substances, accumulation of this radioactive substance in critical organs; 3) doses higher than the dose limit of 1 rem; 4) the wish of the pregnant woman to have an abortion. (orig.) [de

  18. Accidents and incidents with external and/or internal radiation-exposure

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    An individual radiation exposure accident is an unexpected and unintended event which gives rise to an overexposure (external or internal). By overexposure one means all external or internal exposure which could lead to the exceeding of the regulatory norms. Going beyond these limits does not always produce pathological manifestations. The term radiological accident is, in practice, used only when there is an occurrence of some biological or clinical response, or when some therapeutic action is required. A radio-exposure accident can occur: within or from a nuclear power plant or from a center employing ionizing radiation. These are the most frequent; and during the transport of radioactive materials. These are exceptional events. The tanks and containers used in the transport of highly radioactive substances are exhaustively studied for their resistance to accidents, and the conditions of transport determined by very strict national and international regulations. The transport of substances of low radioactivity (labelled molecules, radiopharmaceuticals...) carries only minor risks

  19. Exposure to natural radiation

    International Nuclear Information System (INIS)

    Green, B.M.R.

    1985-01-01

    A brief report is given of a seminar on the exposure to enhanced natural radiation and its regulatory implications held in 1985 at Maastricht, the Netherlands. The themes of the working sessions included sources of enhanced natural radiation, parameters influencing human exposure, measurement and survey programmes, technical countermeasures, risk and assessment studies, philosophies of dose limitations and national and international policies. (U.K.)

  20. Occupational radiation exposure in international recommendations on radiation protection: Basic standards under review

    International Nuclear Information System (INIS)

    Kraus, W.

    1996-01-01

    The ICRP publication 60 contains a number of new recommendations on the radiological protection of occupationally exposed persons. The recommendations have been incorporated to a very large extent in the BSS, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, a publication elaborated by the IAEA in cooperation with many other international organisations, and in the Euratom Basic Safety Standards (EUR) to be published soon. However, there exist some considerable discrepancies in some aspects of the three publications. The ICRP committee has set up a task group for defining four general principles of occupational radiation protection, and a safety guide is in preparation under the responsibility of the IAEA. ''StrahlenschutzPraxis'' will deal with this subject in greater detail after publication of these two important international publications. The article in hand discusses some essential aspects of the recommendations published so far. (orig.) [de

  1. Student and intern awareness of ionising radiation exposure from common diagnostic imaging procedures

    International Nuclear Information System (INIS)

    Zhou, G. Z.; Wong, D. D.; Nguyen, L. K.; Mendelson, R. M.

    2010-01-01

    Full text: This study aims to evaluate medical student and intern awareness of ionising radiation exposure from common diagnostic imaging procedures and to suggest how education could be improved. Fourth to sixth year medical students enrolled at a Western Australian university and interns from three teaching hospitals in Perth were recruited. Participants were asked to complete a questionnaire consisting of 26 questions on their background, knowledge of ionising radiation doses and learning preferences for future teaching on this subject. A total of 331 completed questionnaires were received (95.9%). Of the 17 questions assessing knowledge of ionising radiation, a mean score of 6.0 was obtained by respondents (95% CI 5.8-6.2). Up to 54.8% of respondents underestimated the radiation dose from commonly requested radiological procedures. Respondents (11.3 and 25.5%) incorrectly believed that ultrasound and MRI emit ionising radiation, respectively. Of the four subgroups of respondents, the intern doctor subgroup performed significantly better (mean score 6.9, P< 0.0001, 95% CI 6.5-7.3) than each of the three medical student subgroups. When asked for the preferred method of teaching for future radiation awareness, a combination of lectures, tutorials and workshops was preferred. This study has clearly shown that awareness of ionising radiation from diagnostic imaging is lacking among senior medical students and interns. The results highlight the need for improved education to minimise unnecessary exposure of patients and the community to radiation. Further studies are required to determine the most effective form of education.

  2. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    Directory of Open Access Journals (Sweden)

    Masaharu Tsubokura

    Full Text Available Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg, and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg. Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2 mSv/y (range, 1.0 x 10(-2-4.1 x 10(-2 mSv/y. Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643. The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  3. Assessment of internal and external exposure to ionizing radiation in laboratories of nuclear medicine and radiotherapy

    International Nuclear Information System (INIS)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigations with determination of radioisotopes in urine led to detection of contamination with 99m Tc and radioactive iodine. The measurements and dosimetry of external radiation demonstrated that workers in laboratories of radioisotope diagnosis received a mean annual equivalent doses amounted less than 5% of the permissible dose for persons with occupational exposure. It was also established that external exposure was mainly responsible for this. The data about the levels of internal exposure in laboratories of nuclear medicine and radiotherapy demonstrated that introduction of a permanent central system of control of internal contamination of workers would be useless since the observation of the already accepted principles of radiological protection is sufficient for avoiding contamination. (author)

  4. Occupational radiation exposure at PWRs: international comparison of some exposure indicators between 1975 and 1976

    International Nuclear Information System (INIS)

    Benedittini, M.; Lochard, J.

    1988-03-01

    This report presents occupational radiation exposures at PWRs for 1986. It updates the CEPN report no 103 which covered the 1975-1985 period. Data have been collected for Belgium, Federal Republic of Germany, Finland (this country was not included in the previous report), France, Japan, Sweden, Switzerland, United-States. Only reactors in commercial operation since July 1974 have been considered in the analysis. Figures related to 1986, do not change significantly previous results for average annual doses over all operating years in the various countries. Differences between average annual collective doses remain important: from 0.95 to 4.68 expressed in terms of man-Sv/reactor, and from 1.4 to 8.3 expressed in terms of man-Sv/GW-y. As far as average annual individual doses are concerned, values are ranging between 1.6 and 4.8 mSv. The data up to the end of 1986 show however a general increase of collective doses in the various countries apart for the United-States. The average collective dose per reactor for all PWRs out of the United-States raised from 2.07 man-Sv in 1985 to 2.37 man-Sv in 1986. This general increase is mainly due to special or unscheduled maintenance works which tend to raise with plant age. In the United-States the dose reduction is reflecting the 5 new reactors that came on stream in 1986 with relatively lower doses in the first operating year. Excluding these 5 new reactors from the analysis, figures show a stability in the average annual collective dose. Generally it can be concluded that collective exposures in the various countries are coming closer. This probably shows a tendency towards an uniformization of practices and mode of operations in the different countries [fr

  5. Minimal Internal Radiation Exposure in Residents Living South of the Fukushima Daiichi Nuclear Power Plant Disaster.

    Science.gov (United States)

    Akiyama, Junichi; Kato, Shigeaki; Tsubokura, Masaharu; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Hayano, Ryugo; Tokiwa, Michio; Shimmura, Hiroaki

    2015-01-01

    Following the Fukushima nuclear power plant disaster, assessment of internal radiation exposure was indispensable to predict radiation-related health threats to residents of neighboring areas. Although many evaluations of internal radiation in residents living north and west of the crippled Fukushima nuclear power plant are available, there is little information on residents living in areas south of the plant, which were similarly affected by radio-contamination from the disaster. To assess the internal radio-contamination in residents living in affected areas to the south of the plant or who were evacuated into Iwaki city, a whole body counter (WBC) screening program of internal radio-contamination was performed on visitors to the Jyoban hospital in Iwaki city, which experienced less contamination than southern areas adjacent to the nuclear plant. The study included 9,206 volunteer subjects, of whom 6,446 were schoolchildren aged 4-15 years. Measurements began one year after the incident and were carried out over the course of two years. Early in the screening period only two schoolchildren showed Cs-137 levels that were over the detection limit (250 Bq/body), although their Cs-134 levels were below the detection limit (220 Bq/body). Among the 2,760 adults tested, 35 (1.3%) had detectable internal radio-contamination, but only for Cs-137 (range: 250 Bq/body to 859 Bq/body), and not Cs-134. Of these 35 subjects, nearly all (34/35) showed elevated Cs-137 levels only during the first year of the screening. With the exception of potassium 40, no other radionuclides were detected during the screening period. The maximum annual effective dose calculated from the detected Cs-137 levels was 0.029 and 0.028 mSv/year for the schoolchildren and adults, respectively, which is far below the 1 mSv/year limit set by the government of Japan. Although the data for radiation exposure during the most critical first year after the incident are unavailable due to a lack of systemic

  6. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-07-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs.

  7. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-01-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs

  8. Occupational radiation exposure in PWR: International comparison of some global indicators between 1975 and 1985

    International Nuclear Information System (INIS)

    Lochard, J.; Benedittini, M.

    1987-09-01

    This report presents the main results of an international comparative study of occupational radiation exposure in Pressurised Water Reactors (PWRs). The comparison is based on some synthetic indicators concerning both collective and mean individual exposures assessed for the following countries: Belgium, United-States, France, Japan, Federal Republic of Germany, Sweden and Switzerland. Information has been gained from the published literature and when it was possible, through direct correspondence with power station operators or national regulatory authorities. It concerns 120 reactors totalizing more than 900 reactor operating years. For the comparison, only reactors which were installed after 1974 have been considered, in order to have more homogeneous data representative of modern operating plants. Indicators calculated for the comparison are the collective and mean individual doses per reactor expressed either on a calendar year basis (from 1975 to 1985) or on a number of operating year basis (up to 11 years) [fr

  9. Radiation exposure

    International Nuclear Information System (INIS)

    Dalton, L.K.

    1991-01-01

    The book gives accounts of some social and environmental impacts of the developing radiation industries, including the experiences of affected communities and individuals. Its structure is based on a division which has been made between nuclear and non-nuclear radiation sources, because they create distinctly different problems for environmental protection and so for public health policy. The emissions from electronic and electrical installations - the non-nuclear radiations - are dealt with in Part I. Emissions from radioactive substances - the nuclear radiations - are dealt with in Part II. Part III is for readers who want more detailed information about scientific basis of radiation-related biological changes and their associated health effects. 75 refs., 9 tabs., 7 figs., ills

  10. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  11. Development of a Method to Assess the Radiation Dose due to Internal Exposure to Short-lived Radioactive Materials

    International Nuclear Information System (INIS)

    Benmaman, D.; Koch, J.; Ribak, J.

    2014-01-01

    Work with radioactive materials requires monitoring of the employees' exposure to ionizing radiation. Employees may be exposed to radiation from internal and/or external exposure. Control of external exposure is mostly conducted through personal radiation dosimeters provided to employees. Control of internal exposure can be performed by measuring the concentration of radioactive substances excreted in urine or through whole-body counting in which the entire body or target organs are scanned with a sensitive detector system (1). According to the regulations in Israel an employee that may be internally exposed must undergo an exposure control at least once every three months. The idea lying behind the control of internal exposure by urine testing is that if radioactive material has penetrated into the employee body, it can be detected even if the test is performed once every three months. A model was fitted for each element describing its dispersion in the body and its excretion therefrom (2). By means of this model, one can estimate the activity that entered the body and calculate the resulting radiation dose to which the worker was exposed. There is a problem to implement this method when it comes to short-lived radioactive materials, for which it is very likely that the material that penetrated into the body has decayed and cannot be detected by testing once every three months. As a result, workers with short-lived radioactive materials are presently not monitored for internal exposure, in contradiction to the requirements of the Safety at Work Regulations. The purpose of the study is to develop an alternative method to assess the amount of radioactive material absorbed in the body and the resulting radiation dose due to internal exposure of workers to short-lived radioactive materials

  12. Radiation exposure from incorporated isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Beleznay, F [Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics

    1985-01-01

    Recommendations for the limitation of the burden of the human body from radiation exposure were developed to avoid direct radiation health damage such that the occurrence of stochastic damage can be held below a resonable risk level. The recommendations, published under ICRP 26 and ICRP 30, contain several guidelines and concepts which are discussed here. They include the primary internal dose exposure limits, secondary and implied limits for the monitoring of internal radiation exposure (Annual Limit of Intake, Derived Air Concentrations). Methods are presented for inspection and monitoring of internal exposure in medical laboratories, inspection of incorporation of sup(131)I and sup(99m)Tc.

  13. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  14. Radiation Exposure and Pregnancy

    Science.gov (United States)

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  15. Basic safety standards for radiation protection and their application to internal exposures

    International Nuclear Information System (INIS)

    Dousset, M.

    Following a summary of the basic concepts on radiation protection units, the safety standards now in effect in France and those recommended by the International Commission on Radiological Protection (ICRP Publication 9, 1965) to be used as a basis to the next Euratom regulations are developed [fr

  16. Measurement methods and optimization of radiation protection: the case of internal exposure by inhalation to natural uranium compounds

    International Nuclear Information System (INIS)

    Degrange, J.P.; Gibert, B.

    1998-01-01

    The aim of this presentation is to discuss the ability of different measurement methods (air sampling and biological examinations) to answer to demands in the particular case of internal exposure by inhalation to natural uranium compounds. The realism and the sensitivity of each method are studied, on the base of new dosimetric models of the ICRP. The ability of analysis of these methods in order to optimize radiation protection are then discussed. (N.C.)

  17. Monitoring of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service.

  18. Monitoring of radiation exposure

    International Nuclear Information System (INIS)

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service

  19. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  20. An evaluation of early countermeasures to reduce the risk of internal radiation exposure after the Fukushima nuclear incident in Japan.

    Science.gov (United States)

    Nomura, Shuhei; Tsubokura, Masaharu; Gilmour, Stuart; Hayano, Ryugo S; Watanabe, Yuni N; Kami, Masahiro; Kanazawa, Yukio; Oikawa, Tomoyoshi

    2016-05-01

    After a radiation-release incident, intake of radionuclides in the initial stage immediately following the incident may be the major contributor to total internal radiation exposure for individuals in affected areas. However, evaluation of early internal contamination risk is greatly lacking. This study assessed the relationship between initial stage evacuation/indoor sheltering and internal radiation contamination levels 4 months after the 2011 Fukushima nuclear incident in Japan and estimated potential pathways of the contamination. The study population comprised 525 participants in the internal radiation screening program at Minamisoma Municipal General Hospital, 23 km north of the Fukushima nuclear plant. The analysed dataset included the results of a screening performed in July 2011, 4 months after the incident, and of a questionnaire on early-incident response behaviours, such as sheltering indoors and evacuations, completed by participants. Association between such early countermeasures and internal contamination levels of cesium-134 were assessed using Tobit multiple regression analyses. Our study shows that individuals who evacuated to areas outside Fukushima Prefecture had similar contamination levels of cesium-134 to individuals who stayed in Fukushima (relative risk: 0.86; 95% confidence interval: 0.74-0.99). Time spent outdoors had no significant relationship with contamination levels. The effects of inhalation from radiological plumes released from the nuclear plant on total internal radiation contamination might be so low as to be undetectable by the whole-body counting unit used to examine participants. Given the apparent limited effectiveness of evacuation and indoor sheltering on internal contamination, the decision to implement such early responses to a radiation-release incident should be made by carefully balancing their potential benefits and health risks. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  1. Hazards of radiation exposure

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1982-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risks to health from exposure to low levels of radiation. There is scant data on somatic and genetic risks at environmental and occupational levels of radiation exposure. The available data on radiation induced carcinogenesis and mutagenesis are for high doses and high dose rates of radiation. Risk assessments for low level radiation are obtained using these data, assuming a linear dose-response relationship. During uranium mining the chief source of radiation hazard is inhalation of radon daughters. The correlation between radon daughter exposure and the increased incidence of lung cancer has been well documented. For radiation exposures at and below occupational limits, the associated risk of radiation induced cancers and genetic abnormalities is small and should not lead to a detectable increase over naturally occurring rates

  2. Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946-2008

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M.; Dufey, F.; Schnelzer, M.; Sogl, M.; Walsh, L. [Federal Office for Radiation Protection, Neuherberg (Germany). Dept. of Radiation Protection and Health; Laurier, D. [Institute for Radiological Protection and Nuclear Safety (IRSN), Paris (France); Nowak, D. [LMU Muenchen (Germany). Inst. for Occupational Medicine and Environmental Medicine; Marsh, J.W. [Public Health England, Chilton, Didcot (United Kingdom)

    2015-05-15

    To examine exposure-response relationships between ionizing radiation and several mortality outcomes in a subgroup of 4,054 men of the German uranium miner cohort study, who worked between 1946 and 1989 in milling facilities, but never underground or in open pit mines. Mortality follow-up was from 1946 to 2008, accumulating 158,383 person-years at risk. Cumulative exposure to radon progeny in working level months (WLM) (mean = 8, max = 127), long-lived radionuclides from uranium ore dust in kBqh/m{sup 3} (mean = 3.9, max = 132), external gamma radiation in mSv (mean = 26, max = 667) and silica dust was estimated by a comprehensive job-exposure matrix. Internal Poisson regression models were applied to estimate the linear excess relative risk (ERR) per unit of cumulative exposure. Overall, a total of 457, 717 and 111 deaths occurred from malignant cancer, cardiovascular diseases and non-malignant respiratory diseases, respectively. Uranium ore dust and silica dust were not associated with mortality from any of these disease groups. A statistically significant relationship between cumulative radon exposure and mortality from all cancers (ERR/100 WLM = 1.71; p = 0.02), primarily due to lung cancer (n = 159; ERR/100 WLM = 3.39; p = 0.05), was found. With respect to cumulative external gamma radiation, an excess of mortality of solid cancers (n = 434; ERR/Sv = 1.86; p = 0.06), primarily due to stomach cancer (n = 49, ERR/Sv = 10.0; p = 0.12), was present. The present findings show an excess mortality from lung cancer due to radon exposure and from solid cancers due to external gamma radiation in uranium millers that was not statistically significant. Exposure to uranium was not associated with any cause of death, but absorbed organ doses were estimated to be low.

  3. Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946-2008

    International Nuclear Information System (INIS)

    Kreuzer, M.; Dufey, F.; Schnelzer, M.; Sogl, M.; Walsh, L.; Nowak, D.

    2015-01-01

    To examine exposure-response relationships between ionizing radiation and several mortality outcomes in a subgroup of 4,054 men of the German uranium miner cohort study, who worked between 1946 and 1989 in milling facilities, but never underground or in open pit mines. Mortality follow-up was from 1946 to 2008, accumulating 158,383 person-years at risk. Cumulative exposure to radon progeny in working level months (WLM) (mean = 8, max = 127), long-lived radionuclides from uranium ore dust in kBqh/m 3 (mean = 3.9, max = 132), external gamma radiation in mSv (mean = 26, max = 667) and silica dust was estimated by a comprehensive job-exposure matrix. Internal Poisson regression models were applied to estimate the linear excess relative risk (ERR) per unit of cumulative exposure. Overall, a total of 457, 717 and 111 deaths occurred from malignant cancer, cardiovascular diseases and non-malignant respiratory diseases, respectively. Uranium ore dust and silica dust were not associated with mortality from any of these disease groups. A statistically significant relationship between cumulative radon exposure and mortality from all cancers (ERR/100 WLM = 1.71; p = 0.02), primarily due to lung cancer (n = 159; ERR/100 WLM = 3.39; p = 0.05), was found. With respect to cumulative external gamma radiation, an excess of mortality of solid cancers (n = 434; ERR/Sv = 1.86; p = 0.06), primarily due to stomach cancer (n = 49, ERR/Sv = 10.0; p = 0.12), was present. The present findings show an excess mortality from lung cancer due to radon exposure and from solid cancers due to external gamma radiation in uranium millers that was not statistically significant. Exposure to uranium was not associated with any cause of death, but absorbed organ doses were estimated to be low.

  4. Thyroid cancer in the Marshallese: relative risk of short-lived internal emitters and external radiation exposure

    International Nuclear Information System (INIS)

    Lessard, E.T.; Brill, A.B.; Adams, W.H.

    1985-01-01

    In a study of the comparative effects of internal versus external irradiation of the thyroid in young people, we determined that the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times less thyroid cancer than did the same dose of radiation given externally. We determined this finding for a group of 85 Marshall Islands children, who were less than 10 years of age at the time of exposure and who were accidentially exposed to internal and external thyroid radiation at an average level of 1400 rad. The external risk coefficient ranged between 2.5 and 4.9 cancers per million person-rad-years at risk, and thus, from our computations, the internal risk coefficient for the Marshallese children was estimated to range between 1.0 and 1.4 cancers per million person-rad-years at risk. In contrast, for individual more than 10 years of age at the time of exposure, the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times more thyroid cancer than did the same dose of radiation given externally. The external risk coefficients for the older age groups were reported in the literature to be in the range of 1.0 to 3.3 cancers per million person-rad-years-at risk. We computed internal risk coefficients of 3.3 to 8.1 cancers per million person-rad-years at risk for adolescent and adult groups. This higher sensitivity to cancer induction in the exposed adolescents and adults, is different from that seen in other exposed groups. 14 refs., 8 tabs

  5. Thyroid cancer in the Marshallese: relative risk of short-lived internal emitters and external radiation exposure

    International Nuclear Information System (INIS)

    Lessard, E.T.; Brill, A.B.; Adams, W.H.

    1986-01-01

    In a study of the comparative effects of internal versus external irradiation of the thyroid in young people, we determined that the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times less thyroid cancer than did the same dose of radiation given externally. The authors determined this finding for a group of 85 Marshall Islands children, who were less than 10 years of age at the time of exposure and who were accidentally exposed to internal and external thyroid radiation at an average level of 1400 rad. The external risk coefficient ranged between 2.5 and 4.9 cancers per million person-rad-years at risk, and thus, from our computations, the internal risk coefficient for the Marshallese children was estimated to range between 1.0 and 1.4 cancers per million person-rad-years at risk. In contrast, for individuals more than 10 years of age at the time of exposure, the dose from internal irradiation of the thyroid with short-lived internal emitters produced several times more thyroid cancer than did the same dose of radiation given externally. The external risk coefficients for the older age groups were reported in the above literature to be in the range of 1.0 to 3.3 cancers per million person-rad-years-at risk. The authors computed internal risk coefficients of 3.3 to 8.1 cancers per million person-rad-years at risk for adolescent and adult groups. This higher sensitivity to cancer induction in the exposed adolescents and adults, is different from that seen in other exposed groups. The small number of cancers in the exposed population and the influence of increased levels of TSH, nonuniform irradiation of the thyroid, and thyroid cell killing at high dose make it difficult to draw firm conclusions from these studies. 14 references, 8 tables

  6. Radiation exposure records management

    International Nuclear Information System (INIS)

    Boiter, H.P.

    1975-12-01

    Management of individual radiation exposure records begins at employment with the accumulation of data pertinent to the individual and any previous occupational radiation exposure. Appropriate radiation monitorinng badges or devices are issued and accountability established. A computer master file is initiated to include the individual's name, payroll number, social security number, birth date, assigned department, and location. From this base, a radiation exposure history is accumulated to include external ionizing radiation exposure to skin and whole body, contributing neutron exposure, contributing tritium exposure, and extremity exposure. It is used also to schedule bioassay sampling and in-vivo counts and to provide other pertinent information. The file is used as a basis for providing periodic reports to management and monthly exposure summaries to departmental line supervision to assist in planning work so that individual annual exposures are kept as low as practical. Radiation exposure records management also includes documentation of radiation surveys performed by the health physicist to establish working rates and the individual estimating and recording his estimated exposure on a day-to-day basis. Exposure information is also available to contribute to Energy Research and Development Administration statistics and to the National Transuranium Registry

  7. Radiation exposure management

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    Radiation exposure management includes administrative control, education and training, monitoring and dose assessments and planning of work and radiation protection. The information and discussion given in the paper are based on experiences in Sweden mainly from nuclear power installations. (Author)

  8. Natural radiation exposure indoors

    International Nuclear Information System (INIS)

    Brown, L.; Cliff, K.D.; Wrixon, A.D.

    1981-01-01

    A brief review is presented of the state of knowledge of indoor natural radiation exposure in the U.K. and the current survey work the N.R.P.B. is carrying out in this field. Discussion is limited in this instance to the improvement in estimation of population exposure and the identification of areas and circumstances in which high exposure occur, rather than the study of properties of a building and methods of building affecting exposure to radiation. (U.K.)

  9. Natural and anthropogenic radiation exposure of humans in Germany

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2016-12-01

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  10. Chromosome aberrations in workers with exposure to α-particle radiation from internal deposits of plutonium: expectations from in vitro studies and comparisons with workers with predominantly external γ-radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Curwen, Gillian B.; Tawn, E.J. [The University of Manchester, Centre for Integrated Genomic Medical Research (CIGMR), School of Population Health, Faculty of Medical and Human Sciences, Manchester (United Kingdom); Sotnik, Natalia V.; Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region 456780 (Russian Federation); Cadwell, Kevin K. [Medical School, Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne (United Kingdom); Hill, Mark A. [University of Oxford, CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford (United Kingdom)

    2015-05-15

    mFISH analysis of chromosome aberration profiles of 47 and 144 h lymphocyte cultures following exposure to 193 mGy α-particle radiation confirmed that the frequency of stable aberrant cells and stable cells carrying translocations remains constant through repeated cell divisions. Age-specific rates and in vitro dose-response curves were used to derive expected translocation yields in nine workers from the Mayak nuclear facility in Russia. Five had external exposure to γ-radiation, two of whom also had exposure to neutrons, and four had external exposure to γ-radiation and internal exposure to α-particle radiation from incorporated plutonium. Doubts over the appropriateness of the dose response used to estimate translocations from the neutron component made interpretation difficult in two of the workers with external exposure, but the other three had translocation yields broadly in line with expectations. Three of the four plutonium workers had translocation yields in line with expectations, thus supporting the application of the recently derived in vitro α-particle dose response for translocations in stable cells. Overall this report demonstrates that with adequate reference in vitro dose-response curves, translocation yield has the potential to be a useful tool in the validation of red bone marrow doses resulting from mixed exposure to external and internal radiation. (orig.)

  11. Estimated Internal and External Radiation Exposure of Caregivers of Patients With Pediatric Neuroblastoma Undergoing 131I Metaiodobenzylguanidine Therapy: A Prospective Pilot Study.

    Science.gov (United States)

    Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin

    2017-04-01

    Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.

  12. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  13. Americans' Average Radiation Exposure

    International Nuclear Information System (INIS)

    2000-01-01

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body

  14. Radiation exposure during ESWL

    International Nuclear Information System (INIS)

    McCullough, D.L.; Van Swearingen, F.L.; Dyer, R.B.; Appel, B.

    1987-01-01

    This paper discusses exposure to ionizing radiation by the ESWL patient and for health professionals. Although the patient is exposed acutely to the highest level of radiation, the lithotripter team is chronically exposed to ionizing radiation at varying levels. Attention to detail is important in reducing that exposure. The operator should follow the guidelines set forth in this chapter in order to minimize exposure to the patient, himself or herself, and to all co-workers. At the present time, investigation of an alternative modality for stone localization, ultrasound, is being investigated

  15. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    1965-01-01

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  16. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  17. Environmental levels of 239+240Pu and 90Sr for internal radiation exposure assessment

    International Nuclear Information System (INIS)

    Anand, S.J.S.; Khandekar, R.N.; Krishnamoorthy, T.M.

    1995-01-01

    Measurements have been carried out on the concentration of low levels of long-lived isotopes of 239+240 Pu and 90 Sr in the environmental materials such as atmospheric particulates, drinking water and food. The estimation of daily intake of these isotopes through inhalation and ingestion is a pre-requisite for the assessment of internal exposure. This paper presents temporal distribution of 239+240 Pu and 90 Sr in rain water, drinking water and total diet samples collected at Trombay site. The annual committed effective dose due to 90 Sr through inhalation and diet to the population of Bombay has been estimated to be 0.06 nSv/y and 0.48 μSv/y, respectively, and the same for 239+240 Pu is 1.3 nSv/y and 0.9 nSv/y, respectively. The data is discussed in relation to previous years' values to assess for any significant increase. (author). 9 refs., 3 figs., 2 tabs

  18. Radiation exposure during ureteroscopy

    International Nuclear Information System (INIS)

    Bagley, D.H.; Cubler-Goodman, A.

    1990-01-01

    Use of fluoroscopy during ureteroscopy increases the risk of radiation exposure to the urologist and patient. Radiation entrance dosages were measured at skin level in 37 patients, and at the neck, trunk and finger of the urologist, and neck and trunk of the circulating nurse. Radiation exposure time was measured in 79 patients, and was related to the purpose of the procedure and the type of ureteroscope used, whether rigid or flexible. Exposure could be minimized by decreasing the fluoroscopy time. A portable C-arm fluoroscopy unit with electronic imaging and last image hold mode should be used to minimize exposure time. Lead aprons and thyroid shields should be used by the urologist and other personnel in the endoscopy room

  19. Survey data for the application to Japan of international ideas on safety of works involving radiation exposure

    International Nuclear Information System (INIS)

    1979-01-01

    In order to apply ICRP Publication 27 to Japan, various concerned data in the nation were collected and analyzed. The data are the following: (1) for the respective industries, the number of deaths, age distribution of deaths, and frequency of injuries with seriousness and occupational diseases; and (2) for industries involving radiation exposure, the average reduction of life span due to radiation-induced deaths, and bodily, genetic and pregnancy effects of radiation exposure. (Mori, K.)

  20. Does Occupational Exposure of Shahid Dastghieb International Airport Workers to Radiofrequency Radiation Affect Their Short Term Memory and Reaction Time?

    Directory of Open Access Journals (Sweden)

    Jarideh S.

    2015-05-01

    Full Text Available Background: Airport workers are continuously exposed to different levels of radiofrequency microwave (RF/MW radiation emitted by radar equipments. Radars are extensively used in military and aviation industries. Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. The main goal of this study was to investigate if occupational exposure of Shahid Dastghieb international airport workers to radiofrequency radiation affects their short term memory and reaction time. Methods: Thirty two airport workers involved in duties at control and approach tower (21 males and 11 females, with the age range of 27-67 years old (mean age of 37.38, participated voluntary in this study. On the other hand, 29 workers (13 males, and 16 females whose offices were in the city with no exposure history to radar systems were also participated in this study as the control group. The employees’ reaction time and short term memory were analyzed using a standard visual reaction time (VRT test software and the modified Wechsler memory scale test, respectively. Results: The mean± SD values for the reaction times of the airport employees (N=32 and the control group (N=29 were 0.45±0.12 sec and 0.46±0.17 sec, respectively. Moreover, in the four subset tests; i.e. paired words, forward digit span, backward digit span and word recognition, the following points were obtained for the airport employees and the control group, respectively: (i pair words test: 28.00±13.13 and 32.07±11.65, (ii forward digit span: 8.38±1.40 and 9.03±1.32, (iii backward digit span: 5.54±1.87 and 6.31±1.46, and (iv word recognition: 5.73±2.36 and 6.50±1.93. These differences were not statistically significant. Conclusion: The occupational exposure of the employees to the RF radiation in Shahid

  1. HELLE: Health Effects of Low Level Exposures/ Gezondheidseffecten van lage blootstellingniveaus [International workshop: Influence of low level exposures to chemicals and radiation on human and ecological health

    Energy Technology Data Exchange (ETDEWEB)

    Schoten, Eert

    1998-11-26

    The Health Council is closely involved in establishing the scientific foundation of exposure limits for substances and radiation in order to protect public health. Through the years, the Council has contributed to the formulation of principles and procedures, both for carcinogenic and for noncarcinogenic agents. As a rule, the discussion with regard to the derivation of health-based recommended exposure limits centers around the appropriateness of extrapolation methods (What can be inferred from data on high exposure levels and on experimental animals?). Generally speaking, there is a lack of direct information on the health effects of low levels of exposure. Effects at these levels cannot usually be detected by means of traditional animal experiments or epidemiological research. The capacity of these analytical instruments to distinguish between ''signal'' and ''noise'' is inadequate in most cases. Annex B of this report contains a brief outline of the difficulties and the established methods for tackling this problem. In spite of this, the hope exists that the posited weak signals, if they are indeed present, can be detected by other means. The search will have to take place on a deeper level. In other words, effort must be made to discover what occurs at underlying levels of biological organization when organisms are exposed to low doses of radiation or substances. Molecular and cell biology provide various methods and techniques which give an insight into the processes within the cell. This results in an increase in the knowledge about the molecular and cellular effects of exposure to agents, or stated differently, the working mechanisms which form the basis of the health effects. Last year, the Health Council considered that the time was ripe to take stock of the state of knowledge in this field. To this end, an international working conference was held from 19 to 21 October 1997, entitled ''Health Effects of

  2. NTPR Radiation Exposure Reports

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  3. Occupational radiation exposure in Slovakia

    International Nuclear Information System (INIS)

    Boehm, K.; Cabanekova, H.

    2014-01-01

    Recently are 2 nuclear power plants in operation in the Slovak republic. Apart from nuclear facilities there are 450 licensed undertakings with monitored workers. The majority of the licensed undertakings are active in health care. In Slovak republic are five dosimetry services performing assessments on personal doses due to external exposure and two dosimetry services are approved to carry out monitoring of internal exposure. Dosemeters used for the monitoring of external individual exposure include: personal whole-body film dosemeters, thermoluminescence dosemeters (TLD) or optically stimulated luminescence dosimeters (OSL) for measurements of beta and gamma radiation; TLD for measurements of neutron radiation and TLD for extremities. The measured operational dose quantities are Hp(10), Hp(3) and Hp(0.07). Approved dosimetry service reports the measured dose data to the employers and to the Central register of occupational doses (CROD). Annually are monitored about 12500 - 16200 active workers. Average effective doses per one monitored worker are presented. (author)

  4. System program information of internal occupational radiation exposure in Syria (SORIES)

    International Nuclear Information System (INIS)

    Bitar, A.; Moghrabi, M.

    2014-01-01

    The present work describes personal-computer-based software, SORIES, which enables users to estimate intake activity and the resulting internal doses for all radionuclides existing in ICRP /78/ and IAEA Safety Reports Series No.37. The program forms a useful tool to get a database containing all the information related to occupational internal monitoring program. Furthermore, SORIES offers the possibility to obtain different reports of results. The SORIES program was built to be easy-to-use and user friendly. The program is based on Microsoft FoxPro database program and runs on Microsoft Windows 97-XP. SORIES software is distributed by Atomic Energy Commission in Syria.(author)

  5. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  6. International efforts to reduce occupational radiation exposure at nuclear power plants

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.

    1986-01-01

    The efficacy of various national programs on dose reduction is examined with a view to evaluating the most significant factors that help in reducing occupational exposure. Among the most successful of the dose reduction programs at water reactors are those of France, Sweden, and Canada where average annual plant doses are significantly less than the dose at US plants. Important research is also going on in other countries such as the UK, West Germany, Switzerland, and Japan. Some programs are directed towards hardware solutions; others are oriented towards such approaches as better work planning and procedures. The general thrust and some of the specifics of these programs are examined and factors which may be applicable to US conditions are discussed

  7. Control of radiation exposure (principles and methods)

    International Nuclear Information System (INIS)

    Agwimah, R. I.

    1999-01-01

    Biological risks are directly related to the tissue radiation dose, so it is very important to maintain personnel doses as low as realistically possible. This goal can be achieved by minimizing internal contamination and external exposure to radioactive sources

  8. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    Haehnel, S.; Michalczak, H.; Reinoehl-Kompa, S.

    1995-01-01

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG) [de

  9. Radiation exposure in monazite industry

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C [Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.

    1979-04-01

    The monazite present in the beach sands of Kerala and Tamil Nadu (India) is separated in the mineral separation plants at Manavalakurichi and Chavara, operated by M/s Indian Rare Earths Ltd. The physical and chemical processing of the sand involves radiation hazards due to the presence of thorium, uranium and their daughter products in monazite. The paper reviews present status in the light of past experiences and analyses the dose apportionment in different work catagories. The problem of internal contamination and environmental radiation levels are also discussed with the help of the recently available data. Radiation fields in the physical processing of monazite at different stages are presented. Apportionment of doses at different stages of the chemical operation involving 10 tonne lots of monazite is presented in a tabular form. The changing trend in external exposure reflected in the man-rem/t of monazite over the years is illustrated in a graph.

  10. Techniques for controlling radiation exposure

    International Nuclear Information System (INIS)

    Ocken, H.; Wood, C.J.

    1993-01-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses

  11. Monitoring occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.B.C. [Radiation Safety Consultancy, Engadine, NSW (Australia)

    1997-12-31

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives. 8 refs., 9 tabs.

  12. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  13. Staff radiation exposure in radiation diagnostics

    International Nuclear Information System (INIS)

    Khakimova, N.U.; Malisheva, E.Yu.; Shosafarova, Sh.G.

    2010-01-01

    Present article is devoted to staff radiation exposure in radiation diagnostics. Data on staff radiation exposure obtained during 2005-2008 years was analyzed. It was found that average individual doses of staff of various occupations in Dushanbe city for 2008 year are at 0.29-2.16 mSv range. They are higher than the average health indicators but lower than maximum permissible dose. It was defined that paramedical personnel receives the highest doses among the various categories of staff.

  14. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  15. Pregnancy and radiation exposure

    International Nuclear Information System (INIS)

    Trott, K.H.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg

    1978-01-01

    In confirmed or presumptive pregnancy it is especially critical to determine the indications for X-ray examination. This assumes that every young woman, before an examination in the pelvic region, be asked explicity when her last normal period was. Examinations of the pelvis which are not acutely necessary should be postponed until the first 10 days after menstruation. If radiologic examination of the true pelvis must be carried out despite pregnancy or is inadvertently done because pregnancy was not recognized, the radiation exposure of the embryo is so small in most cases because of modern dose-sparing equipment, that an interruption of pregnancy is not justified. A dose of less than 1 rad is, as a rule, justifiable, but it is less justifiable that alarmed, uninformed physicians instill a deep-seated fear of giving brith to a freak in a woman through false information. (orig.) [de

  16. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    1981-02-01

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP) [de

  17. Guidance as to restrictions on exposures to time varying electromagnetic fields and the 1988 recommendations of the International Non-Ionizing Radiation Committee

    CERN Document Server

    Dennis, J A

    1989-01-01

    Under a direction from the Health Ministers, NRPB is required to advise on the acceptability to the United Kingdom of standards recommended or proposed by certain international bodies relating to protection from both ionising radiations and non-ionising electromagnetic radiations. This document contains the Board's advice in response to guidelines recommended by the International Non-Ionizing Radiation Committee (INIRC) on limiting exposures to electromagnetic fields in the frequency range 100 kHz to 300 GHz (Health Physics, 54, 115 (1988)). The Board's advice, however, extends over all frequencies up to 300 GHz. It has been prepared after considering advice from the Medical Research Council and responses to consultative documents published by the Board in 1982 and 1986. The Board's advice is intended to protect against the thermal effects of the absorption of electromagnetic energy and against the possibilities of electric shock and burn. It consists of a set of basic restrictions both on the average rate of...

  18. DOE 2012 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  19. DOE 2011 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  20. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1980-01-01

    In 1977 population exposure in the Federal Republic of Germany has not changed as compared to the previous years. The main share of the total exposure, nearly two thirds, is attributed to natural radioactive substances and cosmic radiation. The largest part (around 85%) of the artificial radiation exposure is caused by X-ray diagnostics. In comparison to this, radiation exposure from application of ionizing radiation in medical therapy, use of radioactive material in research and technology, or from nuclear facilities is small. As in the years before, population exposure caused by nuclear power plants and other nuclear facilities is distinctly less than 1% of the natural radiation exposure. This is also true for the average radiation exposure within a radius of 3 km around nuclear facilities. On the whole, the report makes clear that the total amount of artificial population exposure will substantially decrease only if one succeeds in reducing the high contribution to the radiation exposure caused by medical measures. (orig.) [de

  1. Exposures to natural radiation in Switzerland

    International Nuclear Information System (INIS)

    Murith, Ch.; Gurtner, A.

    1999-01-01

    The exposure of human beings to ionising radiation from natural sources is a continuing and inescapable feature of life on earth. There are two main sources that contribute to this exposure: high-energy cosmic-ray particles incident to the earth's atmosphere and radioactive nuclides that originated in the earth's crust and are present everywhere in the environment, including human body itself. Both external and internal exposures to humans arise from these sources. Exposures to natural radiation sources in Switzerland and some of their variations are here summarised and the resulting effective doses are compared to those from man-made sources exposures. It results that the natural background exposures are more significant for the population than most exposures to man-made sources. (authors)

  2. DOE 2010 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  3. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  4. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, O.; Kovalchuk, I.; Hohn, B. [Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel (Switzerland); Arkhipov, A. [Chernobyl Scientific and Technical Center of International Research, Shkolnaya Str. 6, 255620 Chernobyl (Ukraine); Barylyak, I.; Karachov, I. [Ukrainian Scientific Genetics Center, Popudrenko Str. 50, 253660 Kiev (Ukraine); Titov, V. [Ivano-Frankivsk State Medical Academy, Galitska Str.2, 284000 Ivano-Frankivsk (Ukraine)

    2000-04-03

    Ionizing radiation (IR) is a known mutagen responsible for causing DNA strand breaks in all living organisms. Strand breaks thus created can be repaired by different mechanisms, including homologous recombination (HR), one of the key mechanisms maintaining genome stability [A. Britt, DNA damage and repair in plants, Annu. Rev. Plant. Phys. Plant Mol. Biol., 45 (1996) 75-100; H. Puchta, B. Hohn, From centiMorgans to basepairs: homologous recombination in plants, Trends Plant Sci., 1 (1996) 340-348.]. Acute or chronic exposure to IR may have different influences on the genome integrity. Although in a radioactively contaminated environment plants are mostly exposed to chronic pollution, evaluation of both kinds of influences is important. Estimation of the frequency of HR in the exposed plants may serve as an indication of genome stability. We used previously generated Arabidopsis thaliana and Nicotiana tabacum plants, transgenic for non-active versions of the {beta}-glucoronidase gene (uidA) [P. Swoboda, S. Gal, B. Hohn, H. Puchta, Intrachromosomal homologous recombination in whole plants, EMBO J., 13 (1994) 484-489; H. Puchta, P. Swoboda, B. Hohn, Induction of homologous DNA recombination in whole plants, Plant, 7 (1995) 203-210.] serving as a recombination substrate, to study the influence of acute and chronic exposure to IR on the level of HR as example of genome stability in plants. Exposure of seeds and seedlings to 0.1 to 10.0 Gy 60Co resulted in increased HR frequency, although the effect was more pronounced in seedlings. For the study of the influence of chronic exposure to IR, plants were grown on two chemically different types of soils, each artificially contaminated with equal amounts of 137Cs. We observed a strong and significant correlation between the frequency of HR in plants, the radioactivity of the soil samples and the doses of radiation absorbed by plants (in all cases r0.9, n=6, P<0.05). In addition, we noted that plants grown in soils with

  5. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of occupational exposure is presented. Concepts and quantities used for radiation protection are explained as well as the ICRP system of dose limitation. The risks correlated to the limits are discussed. However, the actual exposure are often much lower than the limits and the average risk in radiation work is comparable with the average risk in other safe occupations. Actual exposures in various occupations are presented and discussed. (author)

  6. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  7. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  8. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    International Nuclear Information System (INIS)

    Peterson, L.E.; Cucinotta, F.A.

    1999-01-01

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/μm), 1 MeV α-particles (LET=100 keV/μm), and 600 MeV iron particles (LET=180 keV/μm) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 μm 2 . Lifetime risk per proton was 2.68x10 -2 % (90% confidence limit, 0.79x10 -3 %-0.514x10 -2 %). For α-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence. Probability density functions for

  9. Radiation exposures: risks and realities

    International Nuclear Information System (INIS)

    Ganesh, G.

    2010-01-01

    Discovery of radioactivity in 1869 by Henry Becquerel and artificial radioactivity by Irene Curie in 1934 led to the development of nuclear field and nuclear materials in 20th century. They are widely used for man-kind across the globe in electricity production, carbon dating, treatment and diagnosis of diseases etc. While deriving benefits and utilizing nuclear resources for the benefit of man-kind, it is inevitable that exposure to radiation can not be avoided. Radiation exists all around us either natural or man-made which can not be totally eliminated or avoided. Radiation exposures from natural background contribute 2.4 to 3.6 mSv in a year. Radiation exposures incurred by a member of public due to nuclear industries constitute less than one hundredth of annual dose due to natural background. Hence it is important to understand the risk posed by radiation and comparison of radiation risk with various risks arising due to other sources. Studies have indicated that risks due to environmental pollution, cigarette smoking, alcohol consumption, heart diseases are far higher in magnitude compared to radiation risks from man made sources. This paper brings about the details and awareness regarding radiation exposures, radiation risk, various risks associated with other industries and benefits of radiation exposures. (author)

  10. BNFL's experience in preparing and implementing radiation protection programmes for the control of exposure to workers involved with the international transport of nuclear cargoes

    International Nuclear Information System (INIS)

    Billing, D.

    2004-01-01

    BNFL International Transport have successfully developed appropriate Radiation Protection Programmes for their business. The business supports BNFL's worldwide Nuclear Fuel Services with key customer bases in Europe, Japan and the UK, utilising marine, rail and road modal transports. Experience in the business spans over 4 decades. The preparation of RPP's for each aspect of its operations has been made relatively straight forward in that the key elements within the internationally recognised model RPP (by WNTI) were already in place in BNFL's procedures to satisfy current National UK and International Regulations. Arrangements are supported by Management systems which comply with International Standards for Quality Assurance. Exposure to key worker groups continues to be within Category 1 (less than 1mSv/y) of the IAEA Transport Regulations TS-R-1 (ST-1 revised)

  11. Evaluation of internal alpha-particle radiation exposure and subsequent fertility among a cohort of women formerly employed in the radium dial industry

    International Nuclear Information System (INIS)

    Schieve, L.A.; Davis, F.; Freels, S.

    1997-01-01

    This study examined the effect of internal exposure to α-particle radiation on subsequent fertility among women employed in radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n = 603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of α particles emitted, fraction of energy absorbed within the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of γ-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility. 42 refs., 5 tabs

  12. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    Science.gov (United States)

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. © 2014 The American Society of Photobiology.

  13. Exposure to background radiation in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia)

    1997-12-31

    The average effective dose received by the Australian population is estimated to be {approx}1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m{sup -3} in Queensland to 16 Bq m{sup -3} in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year. 9 refs., 2 tabs., 4 figs.

  14. Exposure to background radiation in Australia

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1997-01-01

    The average effective dose received by the Australian population is estimated to be ∼1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m -3 in Queensland to 16 Bq m -3 in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year

  15. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    estimate of the frequency of genetic harm resulting from irradiation of gonadal tissues. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the permissible intake of an internal emitter can be replaced by a limitation based upon the levels of exposure of all tissues in relation to their estimated sensitivity to the induction of radiation effects

  16. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  17. Evaluation of environmental radiation exposure

    International Nuclear Information System (INIS)

    Imai, Kazuhiko

    1974-01-01

    The environmental radiation exposure due to radioactive rare gases is most important both at the time of reactor accidents and also in the long-term normal operation of reactor plants. The exposure dose is usually calculated by means of computers. The procedure of the calculation on environmental exposure dose is divided in several consecutive steps. The calculational formulae frequently used and those proposed recently are given with the explanation on released radionuclides, release to the atmosphere, concentration in the atmosphere, β-ray exposure, γ-ray exposure, and calculation of long-term exposure dose. (Mori, K.)

  18. Control of external radiation exposure

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following subjects are discussed - Control of external radiation exposure: working time, working distance, shielding: Total Linear Attenuation Coefficient, Half-Value Layer (HVL), Tenth-Value Layer (TVL); Build-up Factor

  19. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimized. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole-body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the

  20. Intentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Kivisakk, E.

    1987-01-01

    Exposure to UV radiation can cause a number of detrimental effects to human health. Some of these are particularly grave, as for instance the induction of skin cancer. Nevertheless, intentional exposure to UV radiation is commonly practiced for many purposes, ranging from medical treatment to merely a simple form of pastime. From the radiation point of view, the risks associated with exposure to UV radiation in any particular application should be carefully considered, and only accepted if they are obviously compensated by the benefits of the irradiation. This is not always the case today, to some extent due to shortage of information about the effect of UV radiation - especially on a long term basis

  1. Radiation exposure and infant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Watari, T [Tokyo Univ. (Japan). Faculty of Medicine

    1974-12-01

    Medical exposures accompanied by an increase in radiation use in the field of pediatrics were described. Basic ideas and countermeasures to radiation injuries were outlined. In order to decrease the medical exposure, it is necessary for the doctor, x-ray technician and manufacturer to work together. The mechanism and characteristics of radio carcinogenesis were also mentioned. Particularly, the following two points were described: 1) How many years does it take before carcinogenesis appears as a result of radiation exposure in infancy 2) How and when does the effect of fetus exposure appear. Radiosensitivity in infants and fetuses is greater than that of an adult. The occurrence of leukemia caused by prenatal exposure was reviewed. The relation between irradiation for therapy and morbidity of thyroid cancer was mentioned. Finally, precautions necessary for infants, pregnant women and nursing mothers when using radioisotopes were mentioned.

  2. Malignant mesothelioma following radiation exposure

    International Nuclear Information System (INIS)

    Antman, K.H.; Corson, J.M.; Li, F.P.; Greenberger, J.; Sytkowski, A.; Henson, D.E.; Weinstein, L.

    1983-01-01

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered

  3. Radiation Exposure from Medical Exams and Procedures

    Science.gov (United States)

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  4. Radiation Exposure - Multiple Languages

    Science.gov (United States)

    ... Rays) - 繁體中文 (Chinese, Traditional (Cantonese dialect)) PDF California Dental Association Nuclear or Radiation Emergencies - 繁體中文 (Chinese, Traditional (Cantonese dialect)) Bilingual PDF ...

  5. Radiation protection: occupational exposure

    International Nuclear Information System (INIS)

    Shah, G.A.

    1990-01-01

    The basis of the occupational exposure limit of 50 mSv recommended by the ICRP is questioned. New dosimetry at Hiroshima and Nagasaki, the fact that the dose-response curve may be non-linear and that the relative risk model may be applicable, are some of the arguments advanced to support a reduction in the occupational exposure dose limits. 5 refs., 2 tabs., 3 figs

  6. Routine medicare and radiation exposure. Introductory remarks

    International Nuclear Information System (INIS)

    Hirata, Hideki; Saito, Tsutomu

    2013-01-01

    As an introduction of the title series, outlines of radiation in physics, chemistry, biochemistry, biological effect and protection are explained from the clinical doctors' aspect of routine medicare, and of radiation exposure in which people's interest is raised after the Fukushima Nuclear Power Plant Accident in 2011. For physics, ionizing effects of radiation are described in relation to its quantum energy transfer and its medical utilization like imaging and radiotherapy. Then mentioned in brief is the radiation from elements consisting of human body, cosmic ray and background radiation from the earth, with reference to natural and standardized limits of exposure doses. Radiations from 226 Rn and 40 K are explained as an instance of environmental natural sources together with the concepts of radioactive decay series/scheme, of internal exposure, of hazard like double strand break (DSB) and of medical use such as boron neutron capture therapy (BNCT). For an artifact radiation source, shown are fission products of 235 U by neutron, first yielded in 1945. Evidence of evolution in biochemical repair mechanisms of DSB is explained with a comparison of irradiated drosophila mutation where linear non-threshold (LNT) hypothesis is proposed, and human non-homologous end joining and homologous recombination. Historical process of occupational, medical, public exposures and their protection is finally described from the discovery of X-ray in 1895 to the first ICRP publication in 1958 via the A-bomb explosion in 1945. (T.T.)

  7. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  8. Sarcoma risk after radiation exposure

    Directory of Open Access Journals (Sweden)

    Berrington de Gonzalez Amy

    2012-10-01

    Full Text Available Abstract Sarcomas were one of the first solid cancers to be linked to ionizing radiation exposure. We reviewed the current evidence on this relationship, focusing particularly on the studies that had individual estimates of radiation doses. There is clear evidence of an increased risk of both bone and soft tissue sarcomas after high-dose fractionated radiation exposure (10 + Gy in childhood, and the risk increases approximately linearly in dose, at least up to 40 Gy. There are few studies available of sarcoma after radiotherapy in adulthood for cancer, but data from cancer registries and studies of treatment for benign conditions confirm that the risk of sarcoma is also increased in this age-group after fractionated high-dose exposure. New findings from the long-term follow-up of the Japanese atomic bomb survivors suggest, for the first time, that sarcomas can be induced by acute lower-doses of radiation (

  9. DOE 2013 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  10. International Conference Medical Radiations

    International Nuclear Information System (INIS)

    2010-01-01

    Full text : The second edition of the international conference Medical radiation : research and applications which took place in Marrakech (Morocco) from 7 to 9 April 2010, was designed to bring together researchers and physicians from different countries who dedicated their talents and time to this endeavour. The conference's program defined goals were is to identify the most reliable techniques among the several tested so far and to establish the most practical standardized methodologies, taking into account such recent technological development in radiation medical research. The scientific objectives of this conference are as follows : present the state of the art of the various topics of the congress, give a progress report on the impact of the interaction of the various scientific and technical disciplinary fields (Medicine, Biology, Mathematics, Physics,..) on the applications of radiations in medicine, promote the interdisciplinary efforts of research among researchers, present new technologies and research and development tasks prepared in the field of medical radiations, contribute to the emergence of new ideas of research and development of new collaborations [fr

  11. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    Salah El-Din, T.; Gomaa, M.A.; Sallah, N.

    2010-01-01

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  12. Radiation Litigation and Internal Dosimetry

    International Nuclear Information System (INIS)

    Jose, D.E.

    1987-01-01

    Radiation Litigation refers to those lawsuits filed by individuals who claim to have been injured by some past exposure to ionizing radiation. Law classifies these cases as personal injury or tort cases. However, they are a new breed of such cases and the law is presently struggling with whether these cases can be resolved using the traditional methods of legal analysis or whether new forms of analysis, such as probability of causation, need to be applied. There are no absolutely certain rules concerning how these particular lawsuits will be tried and analyzed. The United States presently is defending cases filed by approximately 7000 plaintiffs. The private nuclear industry is defending cases filed by over 2000 plaintiffs. While not all of these cases will actually be tried on their merits, at least some will and internal dosimetry will play a very important part in many of these trials

  13. Nursing care update: Internal radiation therapy

    International Nuclear Information System (INIS)

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references

  14. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1976-01-01

    The environmental radioactivity in the Federal Republic of Germany was almost as high in 1976 as in 1975. It only increased temporarily in autumn 1976 as a result of the above-ground nuclear weapons test of the People's Republic of China on September 29th 1976 and then returned to its previous level. The radioactivity in food had a slight decreasing trend in 1976, apart from a temporary increase in the radioactivity in milk also caused by the nuclear weapons test mentioned. The population exposure remains basically unchanged in 1976 compared with 1975. The artificial radiation exposure is about half as high as the natural radiation exposure to which man has always been exposed. The former is based to 83% on using X-rays in medicine, particularly for X-ray diagnostic purposes. The population exposure due to nuclear power plants and other nuclear plants is still well below 1% of the natural radiation exposure although in 1976 three new nuclear power plants were put into operation. This is also true for the average radiation exposure within an area of 3 km around the nuclear plant. (orig.) [de

  15. Evolution of the concept of reduction the exposure levels to natural radiation and the new international standards in protection of radon

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.

    1995-01-01

    The new scientific information in last decade have caused significant changes in radiation protection standards. The subject of reduction the exposure to natural radiation is now regulated in more details. Some new aspects in protection against Rn exposure at home and work are discussed. (author)

  16. Occupational radiation exposures at PWR type reactors: international comparison of some global indicators between 1975 and 1988

    International Nuclear Information System (INIS)

    Benedittini, M.; Tabare, M.

    1989-12-01

    This report presents occupational radiation exposures at PWRs for 1988 in eight countries, i.e. Belgium, Federal Republic of Germany, Finland, France, Japan, Sweden, Switzerland, United-States. It updates the CEPN report no 145 which covered the 1975-1987 period. Only reactors in commercial operation since july 1974 are included in the analysis. As for the previous years, there is a general decrease of the mean annual collective dose per reactor: 2.42 man-Sv per reactor in 1988, while it was 2.56 man-Sv in 1987 and 2.83 man-Sv in 1986. The most important reduction concerns the US reactors (46% decrease since 1982) and those of the Federal Republic of Germany (49% decrease since 1981). This general trend is closely related to the dose reduction programs adopted in countries, combined with the positive impact of the past experience. However, despite this tendency, one may note a small increase of the collective occupational exposure for four out of the eight countries during the 1987-1988 period. The gap between lower and higher values is also continuously reducing: from respectively 0.67 man-Sv (Finland) and 3.66 man-Sv (US) in 1987 (factor of 5.5), to 0.88 man-Sv and 3.08 man-Sv in 1988 (factor of 3.5). Excluding Finland, the difference is reduced to a factor 2. These results show a clear tendency towards an uniformization of practices and operations. Annual collective dose results presented as a function of the number of operating years confirm previous results: for all units, a first period with a collective doses increase, followed by a relative stability or even a reduction, and then for some of them, a second increase. In 1988, the average annual collective dose per reactor for all PWRs is about 1.27 man-Sv after one operating year, 2.58 man-Sv after three years, and respectively 4.16, 3.86 and 3.96 man-Sv after seven, ten and fourteen years [fr

  17. Radiation exposure in manned spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Horneck, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Facius, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Reitz, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany))

    1993-08-01

    Space missions exposure humans to a radiation environment of a particulate composition and intensity not encountered within our biosphere. The natural radiation environment encountered in Earth orbit is a complex mixture of charged particles of galactic and solar origin and of those trapped by the geomagnetic field. In addition, secondaries are produced by interaction of cosmic ray primaries with the spacecraft shielding material. Among this large variety of radiation components in space, it is likely that the heavy ions are the significant species as far as radiobiological effects are concerned. In addition, a synergistic interaction of microgravity and radiation on living systems has been reported in some instances. Based on an admissible risk of 3% mortality due to cancers induced during a working career, radiation protection guidelines have been developed for this radiation environment. (orig.)

  18. Psychiatric disorders after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kokai, Masahiro [Hyogo Coll. of Medicine, Nishinomiya (Japan); Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-04-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  19. Psychiatric disorders after radiation exposure

    International Nuclear Information System (INIS)

    Kokai, Masahiro; Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-01-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  20. Internal Radiation Therapy for Cancer

    Science.gov (United States)

    When getting internal radiation therapy, a source of radiation is put inside your body, in either liquid or solid form. It can be used treat different kinds of cancer, including thyroid, head and neck, breast, cervix, prostate, and eye. Learn more about how what to expect when getting internal radiation therapy.

  1. Occupational radiation exposure in Germany: many monitored persons = high exposure?

    International Nuclear Information System (INIS)

    Nitschke, J.

    1996-01-01

    Natural radiation affects the entire population in Germany, and most of Germany's inhabitants are exposed to medical radiation in their lifetime. Occupational radiation exposure, however, is a kind of exposure affecting only a limited and well-defined group of the population, and this radiation exposure has been recorded and monitored as precisely as technically possible ever since the radiation protection laws made occupational radiation exposure monitoring a mandatory obligation. Official personal dosimetry applying passive dosemeters in fact does not offer direct protection against the effects of ionizing radiation, as dosemeter read-out and dose calculation is a post-exposure process. But it nevertheless is a rewarding monitoring duty under radiation protection law, as is shown by the radiation exposure statistics accumulated over decades: in spite of the number of monitored persons having been increasing over the years, the total exposure did not, due to the corresponding improvements in occupational radiation protection. (orig.) [de

  2. Natural and anthropogenic radiation exposure of humans in Germany; Natuerliche und zivilisatorische Strahlenexposition des Menschen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Koelzer, Winfried

    2016-12-15

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  3. Radiation exposure of the dentist

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D F; Wachsmann, F

    1975-08-01

    The radiation doses per person undergoing dental treatment measured at the trunk is rather considerable, though not alarming. However, the number of people whose hands had been exposed to radiation as well as the individual extent of exposure were unexpectedly high. The radiation doses measured at the hands was about 100 times bigger than the radiation doses determined at the trunk for the whole body. Although these results may be very impressive, it should be borne in mind that the data on which the investigation was based date from 1967/68 and may no longer be fully applicable to the present situation. Whether and to what extent this assumption is justified ought to be found out by control studies regarding radiation doses per person and Roepak programs which are presently being started and whose results will be discussed in this journal.

  4. Historical overview of radiation exposure guidance on radioactive consumer products

    International Nuclear Information System (INIS)

    Tapert, A.C.

    1978-01-01

    This paper is an historical overview of radiation exposure recommendations suggested by several commissions, committees, and agencies. Guidelines issued by the International Commission of Radiological Protection, International Atomic Energy Agency, Federal Radiation Council, Nuclear Energy Agency (formerly the European Nuclear Energy Agency), National Council on Radiation Protection and Measurements, Food and Drug Administration, Conference of Radiation Control Program Directors, and the US Nuclear Regulatory Commission are discussed

  5. Radiation exposure during equine radiography

    International Nuclear Information System (INIS)

    Ackerman, N.; Spencer, C.P.; Hager, D.A.; Poulos, P.W. Jr.

    1988-01-01

    All personnel present in the X-ray examination room during equine radiography were monitored using low energy direct reading ionization chambers (pockets dosimeters) worn outside the lead apron at neck level. The individuals' task and dosimeter readings were recorded after each examination. Average doses ranged from 0 to 6 mrad per study. The greatest exposures were associated with radiography of the shoulder and averaged less than 4 mrad. The individual extending the horse's limb was at greatest risk although the individual holding the horse's halter and the one making the X-ray exposure received similar exposures. A survey of the overhead tube assembly used for some of the X-ray examinations also was performed. Meter readings obtained indicated an asymetric dose distribution around the tube assembly, with the highest dose occurring on the side to which the exposure cord was attached. Although the exposures observed were within acceptable limits for occupational workers, we have altered our protocol and no longer radiograph the equine shoulder unless the horse is anesthetized. Continued use of the pocket dosimeters and maintenance of a case record of radiation exposure appears to make the technologists more aware of radiation hazards

  6. Diagnostic and therapeutic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J [Radiation Effects Research Foundation, Hiroshima (Japan)

    1975-09-01

    Diagnostic and therapeutic radiology were studied as possible contaminants in the evaluations of A-bomb survivors in the ABCC-JNIH Adult Health Study for radiation effects. Hiroshima and Nagasaki subjects received X-ray examinations elsewhere within three months of their ABCC visits at rates of 23 and 12%, respectively. Medical X-ray examinations were more frequent among survivors than comparison subjects. Hiroshima and Nagasaki radiologic practice steadily increased since 1948, and differed markedly by city. From 1946-70 the Hiroshima and Nagasaki X-ray bone marrow doses were 2,300 and 1,000 g-rads, respectively. By 1970, cumulated medical X-ray doses approximated A-bomb doses at distances from the hypocenters of 2,000 m in Hiroshima and 2,800 m in Nagasaki. ABCC X-ray examination doses per subject are routinely updated for comparison with A-bomb doses. Each subject's reported fluoroscopy, photofluorography and radiation therapy exposure elsewhere are for future reference. Dental radiography, though increasing, was not currently an important contributor to survivors' overall exposure. Radiation therapy exposures of 137 subjects were confirmed, and doses estimated for most. Two-thirds the treatments were for malignancies; therapy differed markedly by city; and five cancers possibly arose from earlier radiation therapy. This underscores the importance of considering diagnostic and therapeutic radiology when attributing diseases to the atomic bombs.

  7. Radiation exposure during air and ground transportation

    International Nuclear Information System (INIS)

    Hsu, P.C.; Weng, P.S.

    1976-01-01

    The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO 4 :Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)

  8. Estimation of health risks from radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks.

  9. Estimation of health risks from radiation exposures

    International Nuclear Information System (INIS)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks

  10. Radiation exposure by using unsealed radiation sources

    International Nuclear Information System (INIS)

    Preitfellner, J.

    1999-05-01

    Investigations on patients using radioactive substances are performed on a routinely basis in nuclear medicine facilities at many hospitals in our days. These investigations are performed by administering a radiopharmacon to the patient which, depending on several parameters, remains in the body of the patient for various periods of time. All these investigations have in common a g-ray exposure of the environment by the radioactive substance in the body of the patient. Among others, doctors, technical personnel, cleaning personnel, and accompanying persons of patients are exposed to g-rays. Based on these facts, the degree of danger for persons who get into contact with these patients is repeatedly questioned. An additional problem is the health risk of persons employed at a nuclear medicine facility. To answer the first question, the local dose rate in the environment of 102 patients was evaluated immediately after application of the radioactive substance, in intervals from 30 minutes up to several hours, over a period of up to 2 weeks. Depending on the nature of the investigation, the patients were subdivided into 6 groups of 16-20 persons. From the data measured, the effective and the biological half life as well as the local dose were computed. With the aid of concrete case examples, the possible radiation exposure for contact persons was estimated. Postulating unfavorable local and temporal factors in our estimations, the actual radiation exposure is to be estimated about 10-30 % lower. As a reference value for the danger of persons, the maximum permissible boundary values from the Austrian Regulations for Protection against Radiation were used. Referring to these boundary values, for none of the six nuclear medicine investigation methods a danger for contact persons could be derived, indicating that available security measures offer a sufficient protection for affected contact persons. To answer the question about the risk for persons employed at a nuclear

  11. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  12. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  13. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  14. The global assessment of medical radiation exposures

    International Nuclear Information System (INIS)

    Shannoun, F.

    2010-01-01

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to s tudy the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use . (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  15. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  16. Radiation exposure analysis of female nuclear medicine radiation workers

    International Nuclear Information System (INIS)

    Lee, Ju Young; Park, Hoon Hee

    2016-01-01

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  17. Radiation exposure analysis of female nuclear medicine radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young [Dept. of Biomedical Engineering Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Park, Hoon Hee [Dept. of Radiological Technologist, Shingu College, Sungnam (Korea, Republic of)

    2016-06-15

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  18. Radiation exposure and radiation hazards of human population. Pt. 1

    International Nuclear Information System (INIS)

    Jacobi, W.

    1982-01-01

    The present Part I provides a survey on the various sources of natural and artificial radiation exposure of human population. Furthermore, biological radiation effects and radiation damages are surveyed. In an appendix, radiation types, radiation doses, and radiation dose units are explained. (orig./GSCH) [de

  19. Occupational radiation exposures in Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, Prodromos A; Christofides, Stelios [Medical Physics Department, Nicosia General Hospital, 1450 Nicosia (Cyprus)

    1999-12-31

    For the first time ever the occupational radiation exposure data of all the radiation workers of Cyprus, as obtained by the personnel monitoring service of the Dosimetry Laboratory of the Medical Physics Department of the Ministry of Health, is published and compared with that of other countries. The presented data shows a systematic trend of improvement both with regards to the methodology of monitoring and data recording. The efforts of the past few years in educating and training the users of ionising radiation with regards to the importance of the personnel monitoring service and the hazards of ionising radiation, has paid off and this is evident from the doses recorded in the past three years which are compared favourably with those of other countries, as given by the UNSCEAR 1993 report. The introduction of extremity monitoring, promises even better improvement in the methodology of monitoring the doses received by personnel working in Interventional Radiology, as well as other groups whose hands, unavoidably, come close to radiation sources. (authors) 3 refs., 12 tabs.

  20. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  1. European studies on occupational radiation exposure - ESOREX

    International Nuclear Information System (INIS)

    Petrova, K.; Frasch, G.

    2005-01-01

    Full text: The ESOREX project was initiated by the European Commission in 1997. The objectives of this European study are: to provide the European Commission and the national competent radiation protection authorities with reliable information on how personal radiation monitoring, reporting and recording of dosimetric results is organized in European countries; to collect reliable and directly comparable data on individual and collective radiation exposure in all occupational sectors where radiation workers are employed. The information about the monitoring of occupational radiation exposure, the levels of individual personal doses of workers in the different work sectors, the changes and trends of these doses over a period of several years and the international comparison of these data are useful information for many stakeholders. The survey consists of two parts. Part I surveys how radiation protection monitoring, recording and reporting is arranged within each of the 30 European countries. Part II collects doses from occupational exposure of classified workers in the participating countries. For each country, information is provided on the number of workers in defined work categories and how annual individual personal doses are distributed. The summary and the conclusions provide tentative recommendations for harmonizing modifications of some of the national monitoring, reporting and recording arrangements. In all ESOREX studies a beneficial, effective and extensive information base about thirty European states has been created. The studies resulted in country reports describing the legislative, administrative, organizational and technical aspects of the national dose monitoring and recording systems for occupationally radiation exposed workers. These reports are standardized, i.e. they have as far as possible an internationally comparable structure. The dose distributions of the radiation workers and the annual average and collective doses in the various work

  2. Unintentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Sliney, D.H.

    1987-01-01

    To evaluate the risks from unintentional exposure to ultraviolet radiation (UVR), and to consider hazard control regulation, one must face first the problem of their state of scientific knowledge and the public's perception of UVR. Few people in the general public would question the health benefits of sunlight. Many flock to the beaches each summer to develop a healthy tan. Since the 1920's scientists have recognized that most of the benefits--and risks--of sunlight exposure result from the UVR present in sunlight. Dermatologists warn sunbathers to avoid exposure or protect themselves against the intense midday UVR or risk skin cancer. A growing number of scientists warn of hazards to the eye if UVR--perhaps even shorter visible wavelengths--are not filtered by lenses. In addition to any intentional exposure for health or cosmetic purposes, many people are also exposed to UVR without being aware of it or without their intent to be exposed. Outdoor workers are exposed to sunlight, many industrial workers (e.g., welders) are exposed to UVR from arc sources, some UVR penetrates clothing, and people indoors are exposed to UVR from artificial lighting

  3. Justification of novel practices involving radiation exposure

    International Nuclear Information System (INIS)

    Webb, G.; Boal, T.; Mason, C.; Wrixon, T.

    2006-01-01

    The concept of 'justification' of practices has been one of the three basic principles of radiation protection for many decades. The principle is simple in essence - that any practice involving radiation exposure should do more good than harm. There is no doubt that the many uses of radiation in the medical field and in industry generally satisfy this principle, yielding benefits that could not be achieved using other techniques; examples include CT scanning and industrial radiography. However, even in the early period after the introduction of the justification principle, there were practices for which the decision on justification was not clear and for which different decisions were made by the authorities in different countries. Many of these involved consumer products such as luminous clocks and watches, telephone dials, smoke detectors, lightning preventers and gas mantles. In most cases, these practices were relatively small scale and did not involve large exposures of either individual workers or members of the public. Decisions on justification were therefore often made by the regulator without extensive national debate. Over recent years, several practices have been proposed and undertaken that involve exposure to radiation for purposes that were generally not envisaged when the current system of radiation protection was created. Some of these practices were reviewed during a recent symposium held in Dublin, Ireland and involve, for example, the x-raying of people for theft detection purposes, for detection of weapons or contraband, for the prediction of physical development of young athletes or dancers, for age determination, for insurance purposes and in cases of suspected child abuse. It is particularly in the context of such novel practices that the need has emerged for clearer international guidance on the application of the justification principle. This paper reviews recent activities of the IAEA with respect to these issues, including the

  4. Justification of novel practices involving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G. [Radiation Protection Consul tant, Brighton (United Kingdom); Boal, T.; Mason, C.; Wrixon, T. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    The concept of 'justification' of practices has been one of the three basic principles of radiation protection for many decades. The principle is simple in essence - that any practice involving radiation exposure should do more good than harm. There is no doubt that the many uses of radiation in the medical field and in industry generally satisfy this principle, yielding benefits that could not be achieved using other techniques; examples include CT scanning and industrial radiography. However, even in the early period after the introduction of the justification principle, there were practices for which the decision on justification was not clear and for which different decisions were made by the authorities in different countries. Many of these involved consumer products such as luminous clocks and watches, telephone dials, smoke detectors, lightning preventers and gas mantles. In most cases, these practices were relatively small scale and did not involve large exposures of either individual workers or members of the public. Decisions on justification were therefore often made by the regulator without extensive national debate. Over recent years, several practices have been proposed and undertaken that involve exposure to radiation for purposes that were generally not envisaged when the current system of radiation protection was created. Some of these practices were reviewed during a recent symposium held in Dublin, Ireland and involve, for example, the x-raying of people for theft detection purposes, for detection of weapons or contraband, for the prediction of physical development of young athletes or dancers, for age determination, for insurance purposes and in cases of suspected child abuse. It is particularly in the context of such novel practices that the need has emerged for clearer international guidance on the application of the justification principle. This paper reviews recent activities of the IAEA with respect to these issues, including the

  5. Critical Dose of Internal Organs Internal Exposure - 13471

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, G.; Amirjanyan, A. [Nuclear and Radiation Safety Centre (Armenia); Grigoryan, N. [Yerevan State Medical University 4Tigran Mets,375010 Yerevan (Armenia)

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different

  6. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium

    International Nuclear Information System (INIS)

    Lorenz, Bernd

    2016-01-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  7. A comparison between the performance degradation of 3T APS due to radiation exposure and the expected internal damage via Monte-Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Yoon; Kim, Myung Soo; Lim, Kyung Taek; Lee, Eun Jung; Kim, Chan Kyu [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Park, Jong Hwan [Luvantix ADM , Daejeon (Korea, Republic of)

    2015-02-15

    The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of 20×20 pixels and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

  8. Radiation problems of Fukushima. Little exposure of residents

    International Nuclear Information System (INIS)

    Togasawa, Hidetoshi

    2012-01-01

    More than one and half year passed after Fukushima nuclear accident, radiation hazards, especially due to internal irradiation, were still public concern of people living within Fukushima prefecture and Tokyo metropolitan area. However according to several investigations, internal exposure was greatly lower than the level of health hazards due to internal radiation. In August 2012, Fukushima prefecture published internal dose rate of 26 persons was greater than 1 mSv (max 3 mSv) and others than 1 mSv based on whole body counters test results for 63366 residents after June 2011. Appropriate disclosure of exposure dose and related risks was required for risk communication. Target of internal exposure dose rate less than 1 mSv/year was almost attained and people with rather higher dose should be individually checked to reduce exposure. (T. Tanaka)

  9. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    Campanella, L.; Dragone, R.; Pastorelli, A.

    2001-01-01

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs [it

  10. International standards for radiation protection

    International Nuclear Information System (INIS)

    Ambrosi, P.

    2011-01-01

    International standards for radiation protection are issued by many bodies. These bodies differ to a large extent in their organisation, in the way the members are designated and in the way the international standards are authorised by the issuing body. Large differences also exist in the relevance of the international standards. One extreme is that the international standards are mandatory in the sense that no conflicting national standard may exist, the other extreme is that national and international standards conflict and there is no need to resolve that conflict. Between these extremes there are some standards or documents of relevance, which are not binding by any formal law or contract but are de facto binding due to the scientific reputation of the issuing body. This paper gives, for radiation protection, an overview of the main standards issuing bodies, the international standards or documents of relevance issued by them and the relevance of these documents. (authors)

  11. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  12. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  13. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Bergau, L.

    1995-01-01

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG) [de

  14. A new radiation exposure record system

    International Nuclear Information System (INIS)

    Lyon, M.; Berndt, V.L.; Trevino, G.W.; Oakley, B.M.

    1993-04-01

    The Hanford Radiological Records Program (HRRP) serves all Hanford contractors as the single repository for radiological exposure for all Hanford employees, subcontractors, and visitors. The program administers and preserves all Hanford radiation exposure records. The program also maintains a Radiation Protection Historical File which is a historical file of Hanford radiation protection and dosimetry procedures and practices. Several years ago DOE declared the existing UNIVAC mainframe computer obsolete and the existing Occupational Radiation Exposure (ORE) system was slated to be redeveloped. The new system named the Radiological Exposure (REX) System is described in this document

  15. Global environment and radiation exposure

    International Nuclear Information System (INIS)

    Okamoto, Kazuto

    1991-01-01

    The present status of investigation of acid rain, stratospheric ozone depletion and greenhouse effect and their relations to radiation exposure are reported. Soil acidification increases transfer rates of radioactivities to plants which increases the population dose. There are two types of ozone depletion, conventional type and ozone hole type and the latter is much more serious than the former. In the greenhouse effect, although there are large uncertainties both in theoretical and observational sides, present predictions about the global warming will not be very far from reality. Environmental effects are wide-ranging and serious. Radon and thoron exhalation rates are affected by the global warming. The influence of the greenhouse effect on ozone depletion is to suppress depletion for conventional type and enhance depletion for ozone hole type. (author) 65 refs

  16. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  17. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  18. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  19. Radiation protection programme for emergency exposure situations

    International Nuclear Information System (INIS)

    Amoah, Peter Atta

    2016-04-01

    An assessment of the Radiation Protection of Emergency Exposure Situations in Ghana was carried out in relation to documents provided by the International Atomic Energy Agency (IAEA). As realized in the document of the “Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency” of the IAEA, the National Nuclear and Radiological Emergency Response Plan (NNRERP) of Ghana also discusses the Infrastructural and Functional Requirements necessary for the intervention of a nuclear or radiological emergency. The NNRERP describes the concept of operations for a response designed to facilitate the delivery of coordinated assistance to government authorities such as the National Disaster Management Organisation (NADMO), the Radiation Protection Board (RPB) and other participating organizations. From the NNRERP, practices in Ghana, fall into emergency planning category III and IV. As part of the planning measures, one of Ghana Atomic Energy Commission’s primary functions is to provide technical support with a mechanism for timely, interagency coordination of advice and recommendations to NADMO concerning protective actions, environmental concerns, health matters and other related matters. It has been realized from this assessment that there is an urgent need to upgrade infrastructure with logistics for training, exercises and drills to achieve its optimum expectations which will eventually lead to high level of confidence in meeting the standard of a Radiation Protection Programme in Emergency Exposure Situations. (au)

  20. Radiation Exposure to Concrete in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Kovler, K.; Yungrais, G. Z.; Lavi, N.

    2014-01-01

    Most building materials of terrestrial origin contain small amounts of radionuclides of natural origin, mainly from the Uranium (238U) and Thorium (232Th) decay chains and the radioactive isotope of potassium, 40K. The external radiation exposure is caused by gamma emitting radionuclides, which in the uranium series mainly belong to the decay chain segment starting with Radium (226Ra). The internal (by inhalation) radiation exposure is due to Radon (222Rn), and its short lived decay products, exhaled from building materials into the room air. Due to economical and environmental reasons there is an increased tendency to use industrial by-products containing relatively high concentrations of radionuclides of natural origin in the building material industry. Fly ash (FA), produced as by-product in the combustion of coal, is extensively used in Israel since mid eighties of the last century in concrete and as an additive to cement . The increase of 226Ra activity concentration, the mineralogical characteristics of the FA and of the concrete may influence on the radon exhalation rate and consequently on the radon exposure of the public. The recently published Israeli Standard 5098 (IS 5098) 'Content of natural radioactive elements in building products' limits the content of natural radionuclides as well as the radon emanation from concrete. This paper presents a compilation of three studies conducted at Soreq Nuclear Research Centre (SNRC), Technion, NRG and Environmental Lab BGU (ELBGU) to investigate and quantify the influence of FA addition in concrete

  1. Radiation hormesis at occupational exposure

    International Nuclear Information System (INIS)

    Zaharieva, E.; Georgieva, R.

    2006-01-01

    Full text: The aim of our work was to find appropriate biomarkers applicable in molecular epidemiological surveys of occupationally exposed individuals to prove radiation hormesis. Blood samples were taken from a group of irradiated persons, and from a control group. For each worker we estimated a parameter arbitrarily called by us 'mean annual dose' as a quotient of cumulated dose and length of service. DNA repair synthesis in leucocytes before and after in vitro exposure to a challenge dose of 2.0 Gy gamma rays was determined by the level of incorporation of radioactively labeled nucleotides, level of DNA damage in lymphocytes was analyzed by single cell gel electrophoresis and level of lipid peroxidation processes was evaluated by malonedialdehyde concentration in blood plasma. A significant decrease of potentially lethal damage in persons with 'mean annual dose' lower or equal to 5 mSv/y was found, compared to the control group. The highest repair capacity after a challenging dose of 2.0 Gy gamma rays as well as a significant decrease in the level of oxidative stress determined in the blood plasma was evaluated for persons from the same group. The present investigation of occupationally exposed workers showed that annual doses no higher than twice the natural radiation background exert positive effects on DNA damage and repair, increase cellular resistance and decrease oxidative stress

  2. PET radiation exposure control for nurses

    International Nuclear Information System (INIS)

    Kawabata, Yumiko; Kikuta, Daisuke; Anzai, Taku

    2005-01-01

    Recently, the number of clinical PET centers is increasing all over Japan. For this reason, the monitoring and control of radiation exposure of employees, especially nurses, in PET-dedicated clinics and institutions are becoming very important issues for their health. We measured the radiation exposure doses of the nurses working at Nishidai Diagnostic Imaging Center, and analyzed the exposure data obtained from them. The exposure doses of the nurses were found to be 4.8 to 7.1 mSv between April 2003 and March 2004. We found that the nurses were mostly exposed to radiation when they had to have contact with patients received an FDG injection or they had trouble with the FDG automatic injection system. To keep radiation exposure of nurses to a minimum we reconfirmed that a proper application of the three principles of protection against radiation exposure was vital. (author)

  3. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  4. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  5. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  6. DOE 2012 Occupational Radiation Exposure October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Podonsky, Glenn S. [US Dept. of Energy, Washington, DC (United States). Office of Health, Safety and Security

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The

  7. Investigation of radiation exposure dosage in dental and panoramic radiography

    International Nuclear Information System (INIS)

    Ishii, Kenichi

    2005-01-01

    Dental radiography and a 10-sheet procedure were conducted at 10 sites in the maxillomandibular anterior teeth and at both sides of the premolar and molar teeth sections with and without a protective apron (total 22 patterns). Experiments, which included a total of five patterns, involving standard ortho-radiography were performed with and without a protective apron, positioning of an apron exclusively on the anterior or the posterior portion of the body and utility of an apron that covered the entire body. Results are as follows: In dental radiography, internal organs included in a bundle demonstrated high radiation exposure, whereas organs excluded from the bundle exhibited low radiation exposure. In organs situated below the thyroid gland, utilization of aprons resulted in lower radiation exposure. In ortho-radiography, radiation exposure was greatest in the parotid gland, followed by the mandibular, sublingual and thyroid glands, respectively. The protective apron resulted in lower radiation exposure at sites situated below the mammary glands; moreover, a protector covering the entire body led to lower radiation exposure in comparison to an apron worn exclusively on the anterior or the posterior aspect of the body. No significant difference was observed in terms of exposure between protective aprons worn on the anterior or the posterior aspect of the body. Furthermore, a protective collar resulted in nearly zero radiation exposure in the thyroid gland. However, a protective collar largely interferes with interpretation of the radiograph; thus, in order to produce interpretable radiographs, protection of the thyroid gland is not possible. In conclusion, radiation exposure dosage can be reduced via utilization of a protective apron positioned below the thyroid gland during dental radiography and below the mammary glands during ortho-radiography. We confirmed evidence indicating that application of a protective apron can reduce patient radiation exposure dosage

  8. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Directory of Open Access Journals (Sweden)

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  9. Occupational radiation exposure in the GDR in 1977

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1977, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,348 persons), measurements with a whole-body counter (198 persons) and analyses of biosamples (174 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 253. In 6 cases the monthly exposure exceeded 30 mGy and the 9 highest annual exposure values were in the range of 50 to 120 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual radiation exposure was below one-tenth the maximum permissible dose. (author)

  10. DOE Occupational Radiation Exposure, 2001 report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  11. Occupational radiation exposure in the GDR in 1978

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1978, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,980 persons), measurements with a whole-body counter (186 persons) and analyses of biosamples (144 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 427. In 13 cases the monthly exposure exceeded 30 mGy, 8 persons received annual doses in the range of 50 to 120 mGy, and the highest annual dose was above 250 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual internal radiation exposure was well below one-tenth the maximum permissible dose. (author)

  12. Radiation exposure mitigation through food

    International Nuclear Information System (INIS)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo; Watabe, Teruhisa; Miyazaki, Taeko

    2001-01-01

    137 CsCl 2 was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of 137 Cs incorporated into the plants were not significantly different from that of the 137 CsCl 2 solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of 232 Th and 238 U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  13. Ionizing radiation exposure of LDEF

    Science.gov (United States)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  14. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Mason, G.C.

    1990-01-01

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  15. The analysis of radiation exposure of hospital radiation workers

    International Nuclear Information System (INIS)

    Jeong, Tae Sik; Shin, Byung Chul; Moon, Chang Woo; Cho, Yeong Duk; Lee, Yong Hwan; Yum, Ha Yong

    2000-01-01

    This investigation was performed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyz ed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. The average of yearly radiation exposure of 347 persons was 1.52±1.35 mSv. Though it was less than 5OmSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87±1.01 mSv/year, mean 1.22±0.69 mSv between 31 and 40 year old and mean 0.97±0.43 mSv/year over, 41year old (p<0.001). Men received mean 1.67±1.54 mSv/year were higher than women who received mean 1.13±0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear medicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.69±1.81 mSv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (0<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74±1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17±0.35 mSv/year and upper gastrointestinal room of mean 1.74±1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75±1

  16. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  17. Minimizing radiation exposure during percutaneous nephrolithotomy.

    Science.gov (United States)

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  18. Radiation exposure of uranium mill workers

    International Nuclear Information System (INIS)

    Jha, Giridhar; Saha, S.C.

    1982-01-01

    The uranium mill workers at Jaduguda were covered by a regular film badge service from 1969 onwards. Since the log normal plot is useful in interpreting occupational exposure, a statistical analysis of the radiation exposure data was attempted. Exposure data for each year has been plotted as cumulative percentage and worker's population with exposure levels in different class intervals. The plot for each of the year under investigation shows an occupational exposure distribution more or less consistent with the log normal distribution function. The analysis shows that more than 98% of radiation workers received less than 200 mrem (2 mSv). (author)

  19. Radiation exposure of the population due to medical procedures

    International Nuclear Information System (INIS)

    Frischauf, H.

    1976-01-01

    The question of individual benefit-risk ratio in X-ray exposures is considered. The growth rate of the number of radiological examinations in New Zealand, Sweden, UK and USA is stated to be between 2 and 6 per cent per annum. The risks of internal radioisotope tests are emphasised and reductions of exposure are reported when 99Tc isotopes are used, counterbalanced by the increasing number of exposures made; the question of radiation-induced leukemia is raised in this respect. The problems of analysing delayed radiation effects are discussed, and the possibility of animal tests is suggested. (G.M.E.)

  20. Radiation exposure mitigation through food

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo [National Inst. of Radiological Sciences, Chiba (Japan); Watabe, Teruhisa; Miyazaki, Taeko [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    {sup 137}CsCl{sub 2} was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of {sup 137}Cs incorporated into the plants were not significantly different from that of the {sup 137}CsCl{sub 2} solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of {sup 232}Th and {sup 238}U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  1. External radiation exposure of the public

    International Nuclear Information System (INIS)

    Mehl, J.

    1977-01-01

    Results of several ten thousand measurements on external radiation (outside buildings, in living rooms) are used for illustrating by isodose charts covering the total area of the Federal Republic of Germany the exposure of the public from external radiation originating from natural radiation of the environment. Results of calculations on external radiation exposure of the public due to releases of radioactivity in air from nuclear installations are used for illustrating by coloured isodose charts the exposure of the public in the plant site vicinity. From comparison of the exposure levels it becomes obvious that if exposure levels of several 10 mrem per year are considered to be of real concern to public health, control of natural radoactivity in the environment of man would require more attention than present and foreseeable releases of radioactivity in air from nuclear inst

  2. Occupational exposure to natural radiation in Brazil

    International Nuclear Information System (INIS)

    Melo, D.R.

    2002-01-01

    The mining, milling and processing of uranium and thorium bearing minerals may result in radiation doses to workers. A preliminary survey pilot program, that included six mines in Brazil (two coal mines, one niobium mine, one nickel mine, one gold mine and one phosphate mine), was launched in order to determine the need to control the radioactive exposure of the mine-workers. Our survey consisted of the collection and analysis of urine samples, complemented by feces and air samples. The concentrations of uranium, thorium and polonium were measured in these samples and compared to background data from family members of the workers living in the same dwelling and from residents from the general population of Rio de Janeiro. The results from the coal mines indicated that the inhalation of radon progeny may be a source of occupational exposure. The workers from the nickel, gold and phosphate mines that were visited do not require a program to control internal radiological doses. The niobium mine results showed that in some areas of the industry exposure to thorium and uranium might occur. (author)

  3. Nuclear energy - Radioprotection - Procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation

    International Nuclear Information System (INIS)

    2002-01-01

    This International Standard specifies a procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation and describes the procedure in radiation protection monitoring for external exposure to weakly penetrating radiation in nuclear installations. This radiation comprises β - radiation, β + radiation and conversion electron radiation as well as photon radiation with energies below 15 keV. This International Standard describes the procedure in radiation protection planning and monitoring as well as the measurement and analysis to be applied. It applies to regular nuclear power plant operation including maintenance, waste handling and decommissioning. The recommendations of this International Standard may also be transferred to other nuclear fields including reprocessing, if the area-specific issues are considered. This International Standard may also be applied to radiation protection at accelerator facilities and in nuclear medicine, biology and research facilities

  4. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  5. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  6. Radiation exposure of children during cardiac catheterisation

    International Nuclear Information System (INIS)

    Popp, W.

    1979-01-01

    It is well known that in adults, cardiac catheterisation involves the highest possible radiation exposure for a single examination. The paper now investigates the radiation exposure in paediatric cardiac cathetrisations. Dosimeters attached to the children during the examination were used as well as phantom measurements under the conditions of cardiac catheterisation. With the aid of the phantom, also the total energy absorption during an examination procedure was determined. This value was estimated to be 80 mJ. In spite of the high individual exposure, the contribution to the population exposure is low due to the small number of cardiac catheterisations. (orig.) 891 AJ/orig. 892 MKO [de

  7. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  8. Electromagnetic radiation-2450 MHz exposure causes cognition ...

    Indian Academy of Sciences (India)

    83

    Electromagnetic radiation-2450 MHz exposure causes cognition deficit with mitochondrial. 1 ... decrease in levels of acetylcholine, and increase in activity of acetyl ...... neuronal apoptosis and cognitive disturbances in sevoflurane or propofol ...

  9. Occupational radiation exposure in nuclear medicine

    International Nuclear Information System (INIS)

    Gloebel, B.; Muth, H.; Keller, K.D.; Hector, G.; Lehnen, H.

    1982-01-01

    In a large hospital (University Hospital, Homburg/Saar, 2000 beds) the use of radionuclides was determined with the aim of a balance of the radionuclide flow through the clinic and the resulting radiation exposure for the persons involved. (author)

  10. Radiation exposure and management of medical employes

    International Nuclear Information System (INIS)

    Yamamoto, Chiaki

    1981-01-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ν-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ν-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years. (J.P.N.)

  11. Radiation exposure and management of medical employes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, C [Nagoya Univ. (Japan)

    1981-11-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ..gamma..-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ..gamma..-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years.

  12. Exposure of the orthopaedic surgeon to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori [Fukuoka Univ. (Japan). Chikushi Hospital

    1995-09-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 {mu}SV and the average exposure for each procedure was 1.68 {mu}SV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 {mu}SV, the measured dose beneath the apron 0.61 {mu}SV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 {mu}SV, 16.24 {mu}SV, 32.04 {mu}SV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author).

  13. Exposure of the orthopaedic surgeon to radiation

    International Nuclear Information System (INIS)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori

    1995-01-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 μSV and the average exposure for each procedure was 1.68 μSV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 μSV, the measured dose beneath the apron 0.61 μSV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 μSV, 16.24 μSV, 32.04 μSV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author)

  14. Cancer risks after radiation exposures

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1980-01-01

    A general overview of the effects of ionizing radiation on cancer induction is presented. The relationship between the degree of risk and absorbed dose is examined. Mortality from radiation-induced cancer in the US is estimated and percentages attributable to various sources are given

  15. The revision of dose limits for exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Hughes, D.

    1990-01-01

    The paper reviews the current dose limits for exposure to ionizing radiations and the risk factors on which they are based, and summarizes the revised risk factors and the draft proposals for new dose limits published by the International Commission on Radiological Protection. (author)

  16. Natural background radiation exposures world-wide

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    The average radiation dose to the world's population from natural radiation sources has been assessed by UNSCEAR to be 2.4 mSv per year. The components of this exposure, methods of evaluation and, in particular, the variations in the natural background levels are presented in this paper. Exposures to cosmic radiation range from 0.26 mSv per year at sea level to 20 times more at an altitude of 6000 m. Exposures to cosmogenic radionuclides ( 3 H, 14 C) are relatively insignificant and little variable. The terrestrial radionuclides 40 K, 238 U, and 232 Th and the decay products of the latter two constitute the remainder of the natural radiation exposure. Wide variations in exposure occur for these components, particularly for radon and its decay products, which can accumulate to relatively high levels indoors. Unusually high exposures to uranium and thorium series radionuclides characterize the high natural background areas which occur in several localized regions in the world. Extreme values in natural radiation exposures have been estimated to range up to 100 times the average values. (author). 15 refs, 3 tabs

  17. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  18. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  19. Occupational radiation exposure risks: a review

    Energy Technology Data Exchange (ETDEWEB)

    Besar, Idris [PUSPATI, Selangor (Malaysia)

    1984-06-01

    This paper presents a review of the health risk as a result of exposure to ionizing radiation. A comparison of occupational risk among workers exposed to radiological and nonradiological harms are also presented. This comparison shows that radiation workers exposed to the current nuclear industry average of 3.4 mSv. per year are among the safest of all industry groupings.

  20. Valuing the radiation detriment of occupational exposure

    International Nuclear Information System (INIS)

    Robb, J.D.; Crick, M.J.

    1989-01-01

    The implications of changes in the radiation risk estimates on the valuation of radiation detriment for use in cost-benefit analysis are being considered at the National Radiological Protection Board. This paper discusses the pertinent factors that are currently being considered for further investigation. An example of relevance to occupational exposure is detailed. (author)

  1. Occupational radiation exposure risks: a review

    International Nuclear Information System (INIS)

    Idris Besar

    1984-01-01

    This paper presents a review of the health risk as a result of exposure to ionizing radiation. A comparison of occupational risk among workers exposed to radiological and nonradiological harms are also presented. This comparison shows that radiation workers exposed to the current nuclear industry average of 3.4 mSv. per year are among the safest of all industry groupings. (author)

  2. Non-occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of non-occupational exposure is presented. The special problems in connection with assessments of collective doses (time, geographical extension, cut-off, uncertainties) are discussed. Examples of methods and principles for monitoring and dose assessments used for various sources of radiation are given and data on public exposure are presented and discussed. (author)

  3. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  4. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  5. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  6. Occupational radiation exposures in Canada - 1982

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fifth in a series of annual reports in Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which contains dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included, and individual cases are briefly summarized where the maximum permissible dose is exceeded

  7. Occupational radiation exposures in Canada - 1980

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1981-08-01

    This report is the third in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to be changing. In some occupational categories a consistent upward trend is observed

  8. Eighth annual occupational radiation exposure report, 1975

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1976-10-01

    This is a report by the U.S. Nuclear Regulatory Commission on the operation of the Commission's centralized repository of personnel occupational radiation exposure information. Annual reports were received from 387 covered licensees indicating that some 78,713 individuals, having an average exposure of 0.36 rems, were monitored for exposure to radiation during 1975 and that 21,601 individuals terminated their employment or work assignment with covered licensees in 1975. The number of personnel overexposures reported in 1975 decreased from previous years. The most significant overexposures which occurred in 1975 are summarized

  9. Integrated occupational radiation exposure information system

    International Nuclear Information System (INIS)

    Hunt, H.W.

    1983-06-01

    The integrated (Occupational Radiation Exposure) data base information system has many advantages. Radiation exposure information is available to operating management in a more timely manner and in a more flexible mode. The ORE system has permitted the integration of scattered files and data to be stored in a more cost-effective method that permits easy and simultaneous access by a variety of users with different data needs. The external storage needs of the radiation exposure source documents are several orders of magnitude less through the use of the computer assisted retrieval techniques employed in the ORE system. Groundwork is being layed to automate the historical files, which are maintained to help describe the radiation protection programs and policies at any one point in time. The file unit will be microfilmed for topical indexing on the ORE data base

  10. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  11. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  12. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  13. Indoor exposure to natural radiation in Denmark

    International Nuclear Information System (INIS)

    Ulbak, K.; Stenum, B.; Soerensen, A.; Majborn, B.; Boetter-Jensen, L.; Nielsen, S.P.

    1988-01-01

    Assessment of the exposures to the Danish population from different natural radiation sources including building materials, drinking water, fly ash etc. has been performed from 1975 and up till now. In 1987 a comprehensive nationwide investigation of the gamma exposures and radon levels in 500 randomly selected Danish dwellings will be concluded by the National Institute of Radiation Hygiene. At the same time the Danish authorities will publish a control strategy for limiting the exposure of the Danish population from natural sources, especially from radon daughter exposure in dwellings. The presentation will outline the main results of the nationwide survey in Danish dwellings together with the main principles behind and the consequences of the initiated control strategy for limiting the exposures from natural radioactive sources

  14. Radiation exposures for DOE and DOE contractor employees, 1990

    International Nuclear Information System (INIS)

    Smith, M.H.; Hui, T.E.; Millet, W.H.; Scholes, V.A.

    1994-03-01

    This is the 23rd in a series of annual radiation exposure reports published by the Department of Energy (DOE) or its predecessors. This report summarizes the radiation exposures received by both employees and visitors at DOE and DOE contractor facilities during 1990. Trends in radiation exposures are evaluated by comparing the doses received in 1990 to those received in previous years. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimated from expert groups. This report is the third that is based on detailed exposure data for each individual monitored at a DOE facility. Prior to 1988, only summarized data from each facility were available. This report contains information on different types of radiation doses, including total effective, internal, penetrating, shallow, neutron, and extremity doses. It also contains analysis of exposures by age, sex, and occupation of the exposed individuals. This report also continues the precedent established in the Twenty-First (1988) Annual Report by conducting a detailed, one-time review and analysis of a particular topic of interest. The special topic for this report is a comparison of total effective, internal, and extremity dose equivalent values against penetrating dose equivalent values

  15. Radiation exposure dose on persons engaged in radiation-related industries in Korea

    International Nuclear Information System (INIS)

    Lim, Bong Sik

    2006-01-01

    This study investigated the status of radiation exposure doses since the establishment of the 'Regulations on Safety Management of Diagnostic Radiation Generation Device' in January 6, 1995. The level of radiation exposure in people engaged or having been engaged in radiation-related industries of inspection organizations, educational organization, military units, hospitals, public health centers, businesses, research organizations or clinics over a 5 year period from Jan. 1, 2000 to Dec. 31, 2004 was measured. The 149,205 measurement data of 57,136 workers registered in a measurement organization were analysed in this study. Frequency analysis, a Chi-square test, Chi-square trend test, and ANOVA was used for data analysis. Among 57,136 men were 40,870 (71.5%). 50.3% of them were radiologic technologists, otherwise medical doctors (22.7%), nurse (2.9%) and others (24.1%). The average of depth radiation and surface radiation during the 5-year period were found to decrease each year. Both the depth radiation and surface radiation exposure were significantly higher in males, in older age groups, in radiological technologists of occupation. The departments of nuclear medicine had the highest exposure of both depth and surface radiation of the divisions of labor. There were 1.98 and 2.57 per 1,000 person-year were exposed more than 20 mSv (limit recommended by International Commission on Radiological Protection) in depth and surface radiation consequently. The total exposure per worker was significantly decreased by year. But Careful awareness is needed for the workers who exposed over 20 mSv per year. In order to minimize exposure to radiation, each person engaged in a radiation-related industry must adhere to the individual safety management guidelines more thoroughly. In addition, systematic education and continuous guidance aimed at increasing the awareness of safety must be provided

  16. electromagnetic radiation exposure from cellular base station

    African Journals Online (AJOL)

    eobe

    2DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING, FEDERAL ... equipment comply with international standards and thus the radiated field propagated from their installation ... adverse health effects such as blood brain barrier,.

  17. Human exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Bernhardt, J.H.; Matthes, R.

    1987-01-01

    Ultraviolet radiation is that part of the electromagnetic spectrum located between the softest ionizing radiation and visible radiation. The lower limit of 100 nm is equivalent to photon energies of 12.4 eV, which corresponds approximately to the limit for the production of ionization in biologically important materials. A historical subdividing of the UV-region takes some of the biological effects into account. In this arrangement the range 400-315 nm, the so-called black light region, is called UV-A. In this wavelength region, fluorescence can be induced in many substances. UV-B covers the range 315-280 nm (the skin erythemal region). Most of the biologically active and potentially harmful UV from the sun reaching the surface of the earth is part of this spectral region. UV-C includes the radiation of wavelengths less than 280 nm (the germicidal region). It should be noted that this classification is somewhat arbitrary, and today it is more usual to evaluate the biological effectiveness of the whole UV-range from 200 to 400 nm

  18. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Kargbo, A.A

    2012-04-01

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  19. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  20. Radiation exposure from civil aviation

    International Nuclear Information System (INIS)

    Schalch, D.

    1994-01-01

    The question as to whether civil air crews and frequent air passengers ought to be classified among the group of occupationally exposed persons has in principle been decided by the recommendations adopted by the ICRP, the competent bodies of the EU, and national authorities. Measurements for more information on the radiation fields involved are planned. The German Radiation Protection Office (BfS) recently published a statement on dose commitments, assuming a maximum annual dose of approx. 8 mSv in addition to the mean value already determined. Legal provisions, which ought to be adopted also on EU level since civil aviation is a transboundary traffic system, have yet to come. (orig./HP) [de

  1. Proposal of radiation exposure index, REXI

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    2002-01-01

    As a measure of harmful effect of radiation, radiation exposure index (REXI) is proposed. It is an integer expression of logarithmic ratio of radiation dose to a standard value. REXI is a dimensionless quantity and is free from the requirement of additivity, in contrast with dose. Not a few kinds of doses are used in the field of radiation protection and among them the effective dose plays main role, since the main target of radiation control is of the so-called stochastic effect and the effective dose is used as the controlling quantity. Effective dose is a radiation dose, namely, a quantity of caused to describe the effect, but it cannot be a representation of the effect itself. It is nothing but a measure of possibility of the effect. In addition, the LNT (linearity and non threshold) Postulation adopted by ICRP makes it difficult to understand the foreseen associated effect quantitatively. (author)

  2. Occupational radiation exposures in canada-1983

    International Nuclear Information System (INIS)

    Fujimoto, K.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1984-08-01

    This is the sixth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of the average doses with time. The format has been changed to provide more detailed information regarding the various occupations. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  3. Radiation exposure in nucleomedical examinations of children

    International Nuclear Information System (INIS)

    Hahn, K.; Hach, A.; Reber, H.

    1995-01-01

    The problem of radiation exposure must be subjected to particularly careful scrutiny in nuclear diagnostic procedures in children. The contribution provides a survey of factors influencing the radiation exposure of children in the diagnostic use of radionuclides. These include the age of the child examined, the type of radiopharmaceutical used, the dose of the radiopharmaceutical and the procedure followed. Any state-of-the-art renal function study or skeletal examination using radionuclides requires previous measures to ensure that the child is sufficiently hydrated. The tables in the appendix provide estimations of the doses from the individual nucleomedical procedures used in paediatrics. (orig./MG) [de

  4. Radiation exposure from radium-226 ingestion

    International Nuclear Information System (INIS)

    Keefer, D.H.; Fenyves, E.J.

    1980-01-01

    The contribution of radium to total radiation exposure resulting from the consumption of natural levels of 226 Ra in several public water supplies in an Oklahoma county was determined. A pilot-level study of total dietary intake indicated that the culinary use of water anomalously high in radium and the consumption of water-based beverages contributed significantly to radiation exposure. The mean dietary intake of 226 Ra was 20.6 pCi/day in one community and resulted in an estimated bone dose of 310 mrem/year

  5. Haematological and immunological indicators for radiation exposure

    International Nuclear Information System (INIS)

    Dehos, A.

    1990-01-01

    It is examined if haematological and immunological parameters can be used as biological indicators for radiation exposure. Additional criteria for biological indicators, apart from the dose dependence of the effect, are listed here. The state of the art concerning the development of haematological and immunological indicators is discussed. Several haematological indicators are currently used in diagnosis when excess radiation exposure has occurred (e.g., after the Chernobyl accident). However, further research work has to be done in the field of immunological indicators. (orig.) [de

  6. Basic units and concepts in radiation exposures

    International Nuclear Information System (INIS)

    Mlekodaj, R.L.

    1992-01-01

    Some of the most common units, concepts and models in use today in dealing with radiation exposures and the associated risks are presented. Discussions toward a better understanding of some of the basic difficulties in quantifying risks associated with low levels of radiation are presented. The main thrust of this talk is to lay a foundation for better understanding and appreciation of the talks to follow in this symposium

  7. Management of accidental internal exposure

    International Nuclear Information System (INIS)

    Fatome, M.

    1994-01-01

    Radionuclides can penetrate into the body via the lung, the digestive tract, wounds and sometimes through healthy skin. Once they have penetrated the body, they can either remain localized at the site of entry or be rapidly metabolized. The risk is late effects. Radioelements must be eliminated as rapidly as possible decreasing the exposure proportionally. The effectiveness of the treatment depends on early institution. Nevertheless, emergency intensive care or surgery may be required. As soon as possible, explorations must be carried out to evaluate the level of contamination (human spectrometry, radio toxicological examinations) and to start treatment. Modalities include non-specific techniques (lavage, insolubilization, laxatives) and specific techniques such as complexation or isotopic dilution (iodine for iodine, Prussian blue for cesium, DTPA for plutonium, Diamox or sodium bicarbonate for uranium). Surgical cleaning of wounds and burns is an excellent means of decontamination. External contamination is often associated. Further contamination must be prevented immediately. (author). 5 figs., 1 tab

  8. Radiation hormesis at occupational exposure

    International Nuclear Information System (INIS)

    Georgieva, R.; Rupova, I.; Zaharieva, E.; Acheva, A.

    2007-01-01

    Complete text of publication follows. Objective: The idea in favour of the auspicious effect of low dose ionizing radiation in biological systems exists for years and serves as basis of the radiation hormesis hypothesis. The results in support of this phenomenon are not accepted as reliable by ICRP. The available epidemiological data could only suppose the presence of hormetic effect because of statistics limitations and relatively high spontaneous rate of the examined effects. The present work was aimed at finding appropriate biomarkers applicable in molecular epidemiological surveys of occupationally exposed individuals and/or population to prove radiation hormesis. Methods: Blood samples were taken from more than 400 NPP workers, divided in two groups: from the 'strict regimen' area (exposed) and from the administration staff (control). Two levels of evaluation were used: 1) molecular - spontaneous and induced DNA repair by UDS, protein synthesis evaluated radio-metrically, DNA damage by SCGE - all of them in white blood cells, concentration of malonedialdehyde in blood serum; and 2) cellular - the Ly-subsets by flow cytometry, using a FacScan analyzer and immunofluorescent stained mouse monoclonal antibodies. Results: A significant decrease of potentially lethal damage was found in persons with 'mean annual dose' lower or equal to 5 mSv/a, compared to the control group. The highest repair capacity after a challenging dose of 2,0 Gy gamma rays as well as a significant decrease in the level of oxidative stress was evaluated for persons from the same group. At doses below 200 mSv statistically different decrease of the index of CD3+4+, CD4+25+, CD4+62L+ lymphocyte populations and CD4/CD8 cell ratio was established, and increased levels of NK cells, CD57+8+ , CD8+28+ and CD8+38 were recorded. Conclusion: The present investigation showed that annual doses lower than twice the natural radiation background exert positive effects on DNA damage and repair, increase

  9. Case of child abuse by radiation exposure

    International Nuclear Information System (INIS)

    Collins, V.P.; Gaulden, M.E.

    1980-01-01

    On 2 May 1974, a father was convicted of castrating his 13-year-old son by exposing him to a 1-curie source of 137 Cs to be used for oil gas well logging. The child was subjected to perhaps eight exposures or attempted exposures over a six-month period. A brief discussion of the medical descriptions of the radiation effects upon the skin and testes and the chromosomal system is included

  10. Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Jang, Yo Jong; Kim, Tae Yoon; Jeong, Do Hyung; Choi, Gye Suk

    2012-01-01

    cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  11. Natural radiation exposure modified by human activities

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1995-01-01

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  12. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  13. DOE occupational radiation exposure 1996 report

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ''As Low As Reasonably Achievable'' (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources

  14. Dose evaluation for external exposure in radiation accidents

    International Nuclear Information System (INIS)

    Maruyama, Takashi

    1989-01-01

    Abnormal exposures including emergency and accidental are categorized into external exposure and internal contamination, although both of these may be associated with external contamination. From a point of view of lifesaving in the abnormal exposures, it is primarily important to evaluate radiation dose of exposed persons as soon as possible. This report reviews the status of early dosimetry in the accidental exposures and discusses the optimum methodology of the early dose determination for external exposures in abnormal exposures. Personal monitors generally give an indication of dose to an exposed person only at a single part of the body. The data obtained from the personal monitors should be interpreted with care and in the light of information about the circumstances of exposure. In most cases, the records of environmental monitors or the survey with area monitors provide valuable information on the radiation fields. In the some cases, the reconstruction of the abnormal exposure is required for the dose evaluation by means of phantom experiments. In the case of neutron exposures, activation products in the body or its components or personnel possession can be useful for the early dosimetry. If the dose received by the whole body is evaluated as being very high, clinical observations and biological investigations may be more important guide to initial medical treatment than the early dosimetry. For the dose evaluation of general public, depending on the size of abnormal exposure, information that could be valuable in the assessment of abnormal exposures will come from the early dose estimates with environmental monitors and radiation survey meters. (author)

  15. Justification, optimization and classification of exposure situations in radiation protection

    International Nuclear Information System (INIS)

    Skrabalek, P.

    2017-01-01

    Inspiration to this brief information was the experience of studying the draft Radiation Protection Act submitted by the Ministry of Health to the Interdepartmental Annotation Procedure (IAP) on July 20, 2017 and of the IRP itself. The bill was drafted by officials from the Public Health Service. People who are expected to be well aware of the issue because they form national safety standards and laws, and manage and direct treatment of ionizing radiation sources, and oversee observing rules of protecting humans from the hazardous effects of ionizing radiation sources. Rules on the handling and protection of radiation sources for dangerous effects are recommended by multinational organizations. They are headed by ICRP International Radiological Protection Committee, which periodically issues updated radiation protection guidelines around the 10-year period. In line with ICRP recommendations, other professional organizations, such as the IAEA, WHO, EURATOM, and, ultimately, national governments, update their basic safety standards, translating recommendations into the national legal system. Most of interested know that ICRP 103 (2007) has brought some changes to the radiation protection system. In particular, there was an increased emphasis on the comprehensive optimization of radiation protection, and in the context of the recitals principle, the meaning of the word 'harm' was broadened. In addition to health damage, in the sense of which we have long been accustomed, it includes all economic and social losses to which comes from the introduction of the radiation source and introduction of protective measures around it. To simplify access to protect people from the effects of radiation and radiation sources, three basic models of human irradiation - exposure situations: - Exposure scenarios are the result of the optimization of human irradiation due to the operation of the radiation source or the performance of activities where the risk of irradiation is not

  16. [Risk of deterministic effects after exposure to low doses of ionizing radiation: retrospective study among health workers in view of a new publication of International Commission on Radiological Protection].

    Science.gov (United States)

    Negrone, Mario; Di Lascio, Doriana

    2016-01-01

    The new recommended equivalent (publication n. 118 of International Commission on Radiological Protection) dose limit for occupational exposure of the lens of the eye is based on prevention of radiogenic cataracts, with the underlying assumption of a nominal threshold which has been adjusted from 2,5 Gy to 0.5 Gy for acute or protracted exposure. The study aim was to determine the prevalence of ocular lens opacity among healthcare workers (radiologic technologists, physicians, physician assistants) with respect to occupational exposures to ionizing radiations. Therefore, we conducted another retrospective study to explore the relationship between occupational exposure to radiation and opacity lens increase. Healthcare data (current occupational dosimetry, occupational history) are used to investigate risk of increase of opacity lens of eye. The sample of this study consisted of 148 health-workers (64 M and 84 W) aged from 28 to 66 years coming from different hospitals of the ASL of Potenza (clinic, hospital and institute with scientific feature). On the basis of the evaluation of the dosimetric history of the workers (global and effective dose) we agreed to ascribe the group of exposed subjects in cat A (equivalent dose > 2 mSV) and the group of non exposed subjects in cat B (workers with annual absorbed level of dose near 0 mSv). The analisys was conducted using SPSS 15.0 (Statistical Package for Social Science). A trend of increased ocular lens opacity was found with increasing number for workers in highest category of exposure (cat. A, Yates' chi-squared test = 13,7 p = 0,0002); variable significantly related to opacity lens results job: nurse (Χ(2)Y = 14,3 p = 0,0002) physician (Χ(2)Y = 2.2 p = 0,1360) and radiologic technologists (Χ(2)Y = 0,1 p = 0,6691). In conclusion our provides evidence that exposure to relatively low doses of ionizing radiation may be harmful to the lens of the eye and may increase a long-term risk of cataract formation; similary

  17. Radiation exposure of man in the indoor environment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Pohl, E.

    1982-01-01

    Indoor exposure of man represents the major component of the dose from the natural radiation environment (NRE). The different sources of the NRE and their complex superposition are discussed. Due to the use of radiologically disadvantageous material in or near the building, radon-rich tap water, specific architectural styles and decreased ventilation rates NRE-levels indoors have been found to even exceed the upper limit for professional exposure. The inadequacy of the existing international regulatory framework and specific local problems resulted in the establishment of national exposure limits. In general, no remedial action is recommended at levels below 50 μR/h for external gamma radiation, 10 mWL for internal radon daughter exposure. Several technical countermeasures reducing indoor gamma dose rates and radon levels have been developed for existing buildings. However, the use of some of the techniques is limited due to low cost-effectiveness or lack of long-term stability. Different techniques in order to achieve low indoor exposures for new buildings and financial aspects associated the application of radiation protection concepts are discussed

  18. Realtime radiation exposure monitor and control apparatus

    International Nuclear Information System (INIS)

    Cowart, R.W.

    1981-01-01

    This patent application relates to an apparatus and methods used to obtain image information from modulation of a uniform flux. An exposure measuring apparatus is disclosed which comprises a multilayered detector structure having an external circuit connected to a transparent insulating layer and to a conductive plate a radiation source adapted to irradiate the detector structure with radiation capable of producing electron-hole pairs in a photoconductive layer of the detector wherein the flow of current within the external circuit is measured when the detector is irradiated by the radiation source. (author)

  19. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  20. Aircrew radiation exposure assessment for Yugoslav airlines

    Energy Technology Data Exchange (ETDEWEB)

    Antic, Dragoljub [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Petrovic, Zika [Yugoslav Airlines, JAT, Bulevar umetnosti 16, 11001 Belgrade (Yugoslavia)

    1997-12-31

    The presented study shows that the crews of the intercontinental flights can receive significant annual effective doses (1.5-2.0 mSv). The exposure of the crews is comparable with natural radiation level on the ground level (it can be up to 5 times higher for some air crew members in the intercontinental flights), but smaller than maximum permissible dose for general population. The annual exposures of the passengers are generally smaller than the exposures of tile air crews. because the passengers have a limited number of flights per year compared with the members of the air-crews. (author).

  1. Verification of radiation exposure using lead shields

    International Nuclear Information System (INIS)

    Hayashida, Keiichi; Yamamoto, Kenyu; Azuma, Masami

    2016-01-01

    A long time use of radiation during IVR (intervention radiology) treatment leads up to an increased exposure on IVR operator. In order to prepare good environment for the operator to work without worry about exposure, the authors examined exposure reduction with the shields attached to the angiography instrument, i. e. lead curtain and lead glass. In this study, the lumber spine phantom was radiated using the instrument and the radiation leaked outside with and without shields was measured by the ionization chamber type survey meter. The meter was placed at the position which was considered to be that for IVR operator, and changed vertically 20-100 cm above X-ray focus by 10 cm interval. The radiation at the position of 80 cm above X-ray focus was maximum without shield and was hardly reduced with lead curtain. However, it was reduced with lead curtain plus lead glass. Similar reduction effects were observed at the position of 90-100 cm above X-ray focus. On the other hand, the radiation at the position of 70 cm above X-ray focus was not reduced with either shield, because that position corresponded to the gap between lead curtain and lead glass. The radiation at the position of 20-60 cm above X-ray focus was reduced with lead curtain, even if without lead glass. These results show that lead curtain and lead glass attached to the instrument can reduce the radiation exposure on IVR operator. Using these shields is considered to be one of good means for IVR operator to work safely. (author)

  2. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  3. Exposure to UV radiation and human health

    Science.gov (United States)

    Kimlin, Michael G.

    2005-08-01

    This paper will overview the significant issues facing researchers in relating the impact of exposure to sunlight and human health. Exposure to solar ultraviolet radiation is the major causative factor in most sun-related skin and eye disorders, however, very little is known quantitatively about human UV exposures. Interestingly, human exposure to sunlight also has a nutritional impact, namely the development of pre-Vitamin D, which is an important nutrient in bone health. New research suggest that low vitamin D status may be a causative factor in the development of selective types of cancer and autoimminue diseases, as well as a contributing factor in bone health. The 'health duality' aspect of sunlight exposure is an interesting and controversial topic that is a research focus of Kimlin's research group.

  4. A translatable predictor of human radiation exposure.

    Science.gov (United States)

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  5. A translatable predictor of human radiation exposure.

    Directory of Open Access Journals (Sweden)

    Joseph Lucas

    Full Text Available Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB and humans treated with total body irradiation (TBI. Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  6. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  7. Risk of cardiovascular disease following radiation exposure

    International Nuclear Information System (INIS)

    Trivedi, A.; Vlahovich, S.; Cornett, R.J.

    2001-01-01

    Excess radiation-induced cardiac mortalities have been reported among radiotherapy patients. Many case reports describe the occurrence of atherosclerosis following radiotherapy for Hodgkin's disease and breast cancer. Some case reports describe the cerebral infarction following radiotherapy to neck region, and of peripheral vascular disease of the lower extremities following radiotherapy to the pelvic region. The association of atomic bomb radiation and cardiovascular disease has been examined recently by incidence studies and prevalence studies of various endpoints of atherosclerosis; all endpoints indicated an increase of cardiovascular disease in the exposed group. It is almost certain that the cardiovascular disease is higher among atomic bomb survivors. However, since a heavy exposure of 10-40 Gy is delivered in radiotherapy and the bomb survivors were exposed to radiation at high dose and dose-rate, the question is whether the results can be extrapolated to individuals exposed to lower levels of radiation. Some recent epidemiological studies on occupationally exposed workers and population living near Chernobyl have provided the evidence for cardiovascular disease being a significant late effect at relatively low doses of radiation. However, the issue of non-cancer mortality from radiation is complicated by lack of adequate information on doses, and many other confounding factors (e.g., smoking habits or socio-economic status). This presentation will evaluate possible radiobiological mechanisms for radiation-induced cardiovascular disease, and will address its relevance to radiation protection management at low doses and what the impact might be on future radiation risk assessments. (authors)

  8. Occupational exposure to ionizing radiation in Kenya

    International Nuclear Information System (INIS)

    Shadrack, Anthony Kiti

    2008-01-01

    Full text: This project is based on studies of radiation doses received by radiation workers from sample of radiation facilities in Nairobi, Kenya, using TLD badges. Radiation doses received by workers during performance of a few types of radiological exposures and application of sealed and unsealed radionuclides have been measured at a number of x ray departments (diagnostic radiology), radiotherapy and nuclear medicine and training and research. Radiation dose measurements were based on thermoluminescence dosimetry (TLD) techniques, using the laboratory facilities of the National Radiation Protection Laboratory (NRPL) at KNH, in Nairobi, Kenya. Evaluation of doses from TLD badges exposed to X-rays and radioisotopes are discussed. Nuclear medicine recorded the highest dose as compared to Radiotherapy, Training and research and Diagnostic radiology. Age and gender have no relation with dose absorption. Yearly average dose seems to have been reducing from 2002 to 2005, representing an improvement in radiation protection. Overall, the results show that radiation workers in Kenya are working under safe environments since the doses received are within acceptable limits of radiation protection. The data presented in this research provides a database, which should serve as a useful reference for comparison with similar studies in the future. (author)

  9. Human exposure to low level ionising radiation

    International Nuclear Information System (INIS)

    Paix, David

    1988-01-01

    This paper describes the low-level radiation sources and their effects on human populations, from a global perspective. 'Low-level' means exposures in the range of the natural background to which everybody is exposed. The quoted values are whole-world averages, but individual variations are mentioned in a few cases. (author). 22 refs

  10. Control of radiation exposures by decontamination

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1981-01-01

    The radiation exposures of workers at light water and heavy water cooled reactors can be reduced by dilute chemical decontamination as exemplified by the CAN-DECON process. The cost effectiveness of the CAN-DECON process is illustrated by actual service experience and by hypothetical cases

  11. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  12. Radiation exposure in CT-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Kloeckner, Roman, E-mail: Roman.Kloeckner@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Santos, Daniel Pinto dos; Schneider, Jens [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Kara, Levent [Department of Radiology, Inselspital Bern, Freiburgstraße 18, 3010 Bern (Switzerland); Dueber, Christoph; Pitton, Michael B. [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany)

    2013-12-01

    Purpose: To investigate radiation exposure in computed tomography (CT)-guided interventions, to establish reference levels for exposure, and to discuss strategies for dose reduction. Materials and methods: We analyzed 1576 consecutive CT-guided procedures in 1284 patients performed over 4.5 years, including drainage placements; biopsies of different organs; radiofrequency and microwave ablations (RFA/MWA) of liver, bone, and lung tumors; pain blockages, and vertebroplasties. Data were analyzed with respect to scanner settings, overall radiation doses, and individual doses of planning CT series, CT intervention, and control CT series. Results: Eighy-five percent of the total radiation dose was applied during the pre- and post-interventional CT series, leaving only 15% applied by the CT-guided intervention itself. Single slice acquisition was associated with lower doses than continuous CT-fluoroscopy (37 mGy cm vs. 153 mGy cm, p < 0.001). The third quartile of radiation doses varied considerably for different interventions. The highest doses were observed in complex interventions like RFA/MWA of the liver, followed by vertebroplasty and RFA/MWA of the lung. Conclusions: This paper suggests preliminary reference levels for various intervention types and discusses strategies for dose reduction. A multicenter registry of radiation exposure including a broader spectrum of scanners and intervention types is needed to develop definitive reference levels.

  13. Radiation exposure reduction in APR1400

    International Nuclear Information System (INIS)

    Bae, C. J.; Hwang, H. R.; Matteson, D. M.

    2002-01-01

    The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities during refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI and instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience and engineering judgement

  14. The occupational exposure of radiation workers, 1

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, S; Yamada, N; Sakurai, K [Yamaguchi Univ., Ube (Japan). School of Medicine

    1975-03-01

    Because the medical use of x-rays and radioisotopes is gradually increasing for diagnosis and therapy, radiation workers, special doctors, nurses and radiological technicians have occupational exposure. Procedures for monitoring external exposure of personnel include the wearing of a filmbadge or a pocket chamber. The results of filmbadge monitoring in Yamaguchi University Hospital for the last 10 years were described. In 1964, the total number of filmbadges that radiation workers used during a 2 week period of radiological examination and therapy was 610. This has been increasing yearly, and in 1972 it was 1999. Radiological technicians generally had low occupational exposure, and about 90 per cent of their filmbadges were exposed to less than 10 mR. Approximately 65 per cent of the filmbadges that nurses used were less than 10 mR, but some nurses who worked in radium therapy at the isotope ward suffered large doses. Some nurses had occasionally exposure higher than 100 mR in radiological examination. Some doctors sustained an occupational exposure of more than 150 mR. From these data, some problems on radiation monitoring using a filmbadge were discussed.

  15. The occupational exposure of radiation workers, 1

    International Nuclear Information System (INIS)

    Kawasaki, Shoji; Yamada, Norimasa; Sakurai, Koh

    1975-01-01

    Because the medical use of x-rays and radioisotopes is gradually increasing for diagnosis and therapy, radiation workers, special doctors, nurses and radiological technicians have occupational exposure. Procedures for monitoring external exposure of personnel include the wearing of a filmbadge or a pocket chamber. The results of filmbadge monitoring in Yamaguchi University Hospital for the last 10 years were described. In 1964, the total number of filmbadges that radiation workers used during a 2 week period of radiological examination and therapy was 610. This has been increasing yearly, and in 1972 it was 1999. Radiological technicians generally had low occupational exposure, and about 90 per cent of their filmbadges were exposed to less than 10 mR. Approximately 65 per cent of the filmbadges that nurses used were less than 10 mR, but some nurses who worked in radium therapy at the isotope ward suffered large doses. Some nurses had occasionally exposure higher than 100 mR in radiological examination. Some doctors sustained an occupational exposure of more than 150 mR. From these data, some problems on radiation monitoring using a filmbadge were discussed. (author)

  16. Occupational radiation exposures in Canada, 1981

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fourth in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes those records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to have resumed after an interruption during 1979 to 1980. A brief summary of extremity dose data is also included

  17. Occupational radiation exposures in Canada - 1979

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1980-12-01

    This report is the second in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1979 data indicate that the gradually decreasing trend of the last two decades may be changing. In a number of areas the overall average doses and the averages for some job categories have increased over the corresponding values for 1977 and 1978

  18. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in their management of radiological safety programs and to assist them in the prioritization of resources. We appreciate the efforts and contributions from the various stakeholders within and outside the DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of collective data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  19. DOE occupational radiation exposure 2000 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE in making this report most useful to them. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  20. DOE occupational radiation exposure 2003 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  1. DOE occupational radiation exposure 2004 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, and subcontractors, as well as members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  2. DOE occupational radiation exposure 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  3. Effects of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1990-01-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities

  4. Effects of prenatal exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W. (National Cancer Institute, Bethesda, MD (USA))

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  5. Diagnostic radiation exposure in pediatric trauma patients.

    Science.gov (United States)

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (pcumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  6. Radiation exposure of the population around Chernobyl

    International Nuclear Information System (INIS)

    Botsch, W.; Beltz, D.; Handl, J.; Michel, R.

    1999-01-01

    Although the population in large parts of northern Ukraine, the region around Chernobyl, was resettled, these people are now returning to their accustomed agricultural environment - illegally, but tolerated. In order for evacuated villages to be cleared for resettlement, the dose commitment due to continuous external and internal exposures of the persons returning must be determined. Examination concentrates on the fallout of reactor nuclides, the path of radionuclides through the food chain to people, and on present and post exposures. Special attention in this respect is paid to the deposition density of cesium. On the basis of the data collected so far, the village inhabitants considered in 1998/99 suffer an average external exposure of 0.7±0.2 mSv/a in addition to the natural external exposure of 0.8 mSv/a and, with a conversion factor of 0.038 mSv/a per kBq of 137 Cs whole body activity [8], 0.5±0.2 mSv/a (excluding inhabitants 17 and 18) of additional internal exposure, mainly as a function of mushroom intake. The ban on consumption of mushrooms and fruit growing in the forests, and education of the public about the reasons for it, could help to reduce the additional internal exposure further to approx. 0.1 mSv/a. (orig.) [de

  7. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    Ortiz, T.; Sciocchetti, G.; Rannou, A.

    1993-01-01

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  8. Predicted Radiation Exposure from Mining at Kvanefjeld

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul; Roos, Per; Andersson, Kasper Grann

    Baseline surveys of gamma radiation and environmental radioactivity have been carried out by Greenland Minerals and Energy Ltd (GMEL) to show existing levels in the town of Narsaq and in the Kvanefjeld project area. Radiation levels in Narsaq are low but elevated in the project area due the prese......Baseline surveys of gamma radiation and environmental radioactivity have been carried out by Greenland Minerals and Energy Ltd (GMEL) to show existing levels in the town of Narsaq and in the Kvanefjeld project area. Radiation levels in Narsaq are low but elevated in the project area due...... the presence of large uranium and thorium deposits in Kvanefjeld. These deposits are also the reason that radon in outdoor air show elevated concentrations in Narsaq and in the project area. It is recommended that future monitoring of external exposure and radon should be based on measurement techniques using...

  9. Radiation exposure and radiation risk of the population

    International Nuclear Information System (INIS)

    Jacobi, W.; Paretzke, H.G.; Ehling, U.H.

    1981-02-01

    The major scientifically founded results concerning the assessment of the radiation exposure and the analysis and evaluation of the radiationhazards for the population, particularly in the range of low doses, are presented. As to the risk analysis special attention is paid to the rays with low ionization density (X-, γ-, β- and electronrays). Contents: 1) Detailed survey of the results and conclusions; 2) Data on the radiation load of the population; 3) Results to epidemiological questioning on the risk of cancer; 4) Genetical radiation hazards of the population. For quantification purposes of the risk of cancer by γ-radiation the observations with the a-bomb survivors in Japan are taken as a basis, as the available dosimetrical data have to be revised. Appendices: 1) German translation of the UNSCEAR-Report (1977); 2) BEIR-Report (1980); 3) Comments from the SSK on the comparability of the risks of natural-artificial radiation exposure; 4) Comments from the SSK on the importance of synergistical influences for the radiation protection (23.9.1977). (HP) [de

  10. Radiation exposure of the UK population

    International Nuclear Information System (INIS)

    Taylor, F.E.; Webb, G.A.M.

    1978-11-01

    Man is continuously exposed to radiation from many sources, both natural and man-made. The man-made sources include medical irradiation, exposure from radioactive waste disposal, fallout from nuclear weapons tests and various 'miscellaneous sources' which include consumer products. The National Radiological Protection Board (NRPB) keeps these contributions to the radiation exposure of the population under continuous review and publishes reports on the subject periodically. This is the second such report and contains considerably more information than the first published in 1974. The balance of the report reflects the availability of data and the advice given in the sixth report of the Royal Commission on Environmental Pollution. The conclusions are: (a) that the major contribution to the dose to the population is from natural background radiation; (b) that the largest man-made contribution is from medical uses of radiation; (c) that the largest contribution from environmental contamination is still from the residual effects of fallout from nuclear weapons testing; (d) that occupational exposure and irradiation from miscellaneous sources, considered as contributions to the per caput dose to the population, are the next largest components; (e) that radioactive waste disposal is the smallest contributor to the per caput dose to the population. It was also felt useful to review the past trends in the doses resulting from the various sources and the authors have attempted to make some tentative predictions of doses up to the year 2000. (author)

  11. A review of child medical radiation exposure

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    During their first year, children may undergo a lot of X-ray exams: of hips at the age of 4 months to detect any deformities, of lungs to detect bronchiolitis, of bones to detect breaks, of jaw (dental panoramic) to prepare for possible medical care in orthodontics. A survey shows that the medical radiation dose received by children is less than 0.35 mSv a year while the average dose for an adult is 4.5 mSv. This figure is reassuring but children exposure needs to be carefully monitored as children are more sensitive to radiation because they are growing. The control of radiation exposure is made through a compulsory survey: every year radiologists must send to the IRSN (Institute for Radioprotection and Nuclear Safety) the radiation doses received by 30 patients for the most common radiological examinations and the IRSN will then define reference doses based on these figures. The feedback over the 2013-2015 period for children exposure is very low. A new methodology must be defined to compensate this lack of data. The strategy is to reduce the global dose by performing only fully justified examinations and to adapt the dose to the real size and weight of the child. (A.C.)

  12. Occupational radiation exposure in the GDR in 1980

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1982-01-01

    As in the previous year, the centralized monitoring of radiation workers for occupational exposure was carried out on the basis of film badges (38,781 persons), measurements with a whole-body counter and analyses of biosamples (351 persons in all). According to the film data, the monthly exposures exceeding 4 mGy totalled 682 including 48 doses higher than 10 mGy. Four workers received annual doses above 50 mGy, with the highest value being 1410 mGy. For the exposed population as a whole and some sub-groups, annual collective and mean annual doses have been given. In assessing internal exposure situation, use has been made of both data from the centralized monitoring program and those determined by some nuclear facilities themselves under the auspices of the SAAS. The results gave no indication of internal doses exceeding the annual limits of intake. (author)

  13. Occupational radiation exposure in the GDR in 1979

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1982-01-01

    As in the previous year, the centralized monitoring of radiation workers for occupational exposure was carried out on the basis of film badges (38,178 persons), measurements with a whole-body counter (247 persons) and analyses of biosamples (318 persons). According to the film data, the monthly exposures exceeding 4 mGy totalled 610 including 92 doses higher than 10 mGy. Six workers received annual doses above 50 mGy, with the highest value being 123 mGy. For the exposed population as a whole and some sub-groups, annual collective and mean annual doses have been given. In assessing the internal exposure situation, use has been made of both data from the centralized monitoring program and those determined by some nuclear facilities themselves under the auspices of the SAAS. The results gave no indication of internal doses exceeding the annual limits of intake. (author)

  14. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  15. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below); Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions; and Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  16. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below). Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions. And Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment. By persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients. And by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  17. Reducing occupational radiation exposures at LWRs

    International Nuclear Information System (INIS)

    Lattanzi, D.; Neri, C.; Papa, C.; Paribelli, S.

    1980-01-01

    The occupational radiation doses received by nuclear power plant personnel during a period of several years of operation are briefly reviewed. Comparisons are made between the data for BWRs and PWRs in order to identify the more ''critical'' reactor type, from a radiological poin; of view. Attention is also devoted to GCRs. Furthermore the areas which contribute most to personnel doses are considered and briefly reviewed. The main steps to be taken in order to reduce occupational radiation exposures at LWRs are discussed. (H.K.)

  18. Distribution of Radiation Exposure from Natural Radiation in Big Cities

    International Nuclear Information System (INIS)

    Udiyani, P.M.; Ahmad, Yus R.

    2000-01-01

    The measurement of radiation exposure from the natural radiation in the big city in Java such as Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya have be done. Based on radiation dose and population at the sample location, the dose collective and risk probability will be know. The maximal exposure at Yogyakarta is 0.291 mSv/year and the minimal exposure at Surabaya is 0.216 mSv/year. Collective dose at Jakarta is 1.649.526 men mSv/year; Bandung 124.844 men mSv/year; Semarang : 64.558 men mSv/year; Yogyakarta 136.188 men mSv/year; and Surabaya 145.152 men mSv/year. The person probability of radiation disease at jakarta is 16.49 person/year, Bandung is 1.24 person/year, Semarang 1.64 person/year, Yogyakarta is 1.36 person/year, and Surabaya is 1.45 person/year

  19. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  20. Reference methodologies and datasets of ICRP Committee 2 on doses from radiation exposure

    International Nuclear Information System (INIS)

    Berkovskyvl, V.; Harrison, J.D.

    2018-01-01

    A quantitative characterisation of exposures is a core element of the ICRP system of protection of people and the environment from harmful effects of ionizing radiation. Such prospective and retrospective characterisations, or 'dose assessments', are required by international and national safety standards for public, occupational and medical exposures that can occur in various exposure situations

  1. Electromagnetic Radiation Exposure from Cellular Base Station: A ...

    African Journals Online (AJOL)

    Electromagnetic Radiation Exposure from Cellular Base Station: A Concern for Public ... as well as safety guidelines relating to exposure of non-ionizing radiation. Global System for Mobile Communication (GSM) operators claimed that their ...

  2. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  3. Radiation protection programme for existing exposure situation

    International Nuclear Information System (INIS)

    Ramadhani, Hilali Hussein

    2016-04-01

    This study was conducted to develop the Radiation protection Programme (RPP) to ensure that measures are in place for protection of individuals from the existing source of exposure. The study established a number of protective and remedial actions to be considered by the responsible regulatory Authority, licensee for existing exposure in workplace and dwellings. Tanzania is endowed with a number NORMs processing industries with an experience of uncontrolled exploration and extraction of minerals and the use of unsafe mining methods leading to severe environmental damage and appalling living conditions in the mining communities. Some of NORMs industries have been abandoned due to lack of an effect management infrastructure. The residual radioactive materials have been found to be the most import source of existing exposure resulted from NORMs industries. The Radon gas and its progeny have also been found to be a source of existing exposure from natural source as well as the major source of risk and health effects associated with existing exposure situation. The following measures have been discovered to play a pivotal role in avoiding or reducing the source of exposure to individuals such as restriction of the use of the construction materials, restriction on the consumption of foodstuffs and restriction on the access to the land and buildings, the removal of the magnitude of the source in terms of activity concentration as well as improvement of ventilation in dwellings. Therefore, the regulatory body (Tanzania Atomic Energy Commission) should examine the major areas outlined in the established RRP for existing exposure situation resulted from the NORMs industries and natural sources so as to develop strategies that will ensure the adequate protection of members of the public and the environment as well as guiding operating organizations to develop radiation protection and safety measures for workers. (au)

  4. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  5. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  6. Population exposure to ionising radiation in India

    International Nuclear Information System (INIS)

    Narayanan, K.K.; Krishnan, D.; Subba Ramu, M.C.

    1991-01-01

    Estimates of exposure from various radiation sources to Indian population are given. The per caput dose from all the identifiable sources, both natural and man-made is estimated to be 2490 μSv per year to the present population of India. 97.9% of this dose is contributed by natural sources which include cosmic and terrestrial radiations, 1.93% by medical sources used for diagnostic and treatment purpose, 0.3% by exposures due to activities related nuclear fuel cycle, nuclear tests and nuclear accidents, and 0.07% by miscellaneous sources such as industrial applications, consumer products, research activities, air travel etc. The monograph is written for the use of the common man. (M.G.B.). 25 refs., 7 tabs., 7 figs

  7. Proposal for the development of ICNIRP guidelines on limits for optical radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, H. [Berufsgenossenschaftliches Institut fuer Arbeitsschutz - FIA, Sankt Augustin (Germany); Reidenbach, H.D. [Fachhochschule Koeln (Germany)

    2004-07-01

    Guidelines on limits of exposure to incoherent ultraviolet radiation, to incoherent visible and infrared radiation and to laser radiation have been published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are accepted globally and form the basis for risk assessment procedures for optical radiation in many countries. With the appearance of new scientific cognition the ICNIRP guidelines will be revised from time to time. A revision may also concern more formal aspects. Some proposals for the development of the ICNIRP limit value recommendations for optical radiation exposures follow. (orig.)

  8. Controlling occupational radiation exposure. Alternatives to regulation

    International Nuclear Information System (INIS)

    Sagan, L.A.; Squitieri, R.; Wildman, S.S.

    1980-01-01

    The principal strategy adopted for the control of occupational radiation exposure has been the establishment of standards expressed as maximum permissible exposures. The use of such standards is subject to a number of defects, among which is the neglect of the economic impact of imposing such standards. Furthermore, such standards carry the implication of a threshold for radiation effects, a concept now widely challenged. Lastly, the use of standards makes it impossible to evaluate the efficiency of the regulatory agency or to compare its performance with other similar agencies. An alternative to the use of standards, i.e. cost-benefit analysis, is discussed. The advantages of this technique meet many of the objections to the use of standards alone and allow health and safety resources to be allocated in a manner most likely to save the most lives. The greatest disadvantage of cost-benefit analysis has been the difficulty in evaluating the benefit side of the equation. Although the risks of radiation exposure are not known with precision, they are nevertheless well understood. Therefore, the application of cost-benefit analysis to occupational radiation exposure is rational. There are a number of barriers to reform in the use of standards and the adoption of cost-benefit analysis. These attitudinal and institutional constraints are discussed. The nature of private or market systems of control are discussed, i.e. the use of liability and insurance mechanisms. These also have shortcomings that require further development but are seen as potentially more efficient for both employer and employee than is the use of regulatory standards. (author)

  9. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  10. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  11. World high background natural radiation areas: Need to protect public from radiation exposure

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi

    2013-01-01

    Highlights of findings on radiological measurements, radiobiological and epidemiological studies in some main world high background natural radiation (HBNR) areas such as in Brazil, China, India and Iran are presented and discussed with special regard to remediation of radiation exposure of inhabitants in such areas. The current radiation protection philosophy and recommendations applied to workers and public from operation of radiation and nuclear applications are based on the linear non-threshold (LNT) model. The inhabitants of HBNR and radon prone areas receive relatively high radiation doses. Therefore, according to the LNT concept, the inhabitants in HBNR areas and in particular those in Ramsar are considered at risk and their exposure should be regulated. The HBNR areas in the world have different conditions in terms of dose and population. In particular, the inhabitants in HBNR areas of Ramsar receive very high internal and external exposures. This author believes that the public in such areas should be protected and proposes a plan to remedy high exposure of the inhabitants of the HBNR areas of Ramsar, while maintaining these areas as they stand to establish a national environmental radioactivity park which can be provisionally called “Ramsar Research Natural Radioactivity Park” (RRNRP). The major HBNR areas, the public exposure and the need to remedy exposures of inhabitants are reviewed and discussed. - Highlights: ► Highlights of findings on studies in HBNR areas are reviewed and discussed. ► The need to protect HBNR area inhabitants and remedy public exposure is emphasized. ► A collective approach is proposed to remedy exposure of Ramsar HBNR area inhabitants. ► Relocation of HBNR area inhabitants and establishing a park at the location is proposed. ► The advantages and disadvantages of the methods are discussed and recommendations are made

  12. Occupational radiation exposures in Canada - 1978

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    This 1978 report is the first in a series of annual reports on occupational radiation exposures in Canada. The data are derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of overexposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1978 data indicate that the gradually decreasing trend of the last two decades may have changed. In a number of areas the overall average doses and the averages for some job categories have increasd over the corresponding values for 1977

  13. Lung cancer following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Blot, W.J.

    1985-01-01

    A case-control study of lung cancer was conducted in Hiroshima and Nagasaki, Japan, to evaluate risk factors for this common neoplasm, with special attention given to assessing the potentially interactive roles of cigarette smoking and atomic radiation. The investigation involved interviews with 428 patients with primary lung cancer and 957 matched controls, or with their next of kin in the event of death or disability. The interview information was supplemented by data on atomic bomb radiation exposure for each individual and on smoking and other factors from prior surveys of subsets of the population studied. Separate effects of smoking and high dose (greater than 100 rad) radiation were found, with the two exposures combining to affect lung cancer risk in an approximate additive fashion. The additive rather than multiplicative model was favored whether the smoking variable was dichotomized (ever vs. never smoked), categorized into one of several groups based on amount smoked, or treated as a discrete variable. The findings are contrasted with those for Colorado uranium miners and other cohorts occupationally exposed to radon and its daughter products, where smoking and radiation have been reported to combine multiplicatively to enhance lung cancer risk

  14. Unjustified prenatal radiation exposure in medical applications

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lamadrid, A.I.; Garcia Lima, O.; Diaz Bernal, E.; Freixas, V.; Lopez Bejerano, G.; Sanchez, R.

    2001-01-01

    The exposure to the radiation ionising of pregnant women, frequently constitutes motive of preoccupation for the expectant mother and the medical professionals taken the responsibility with its attention. The protection of the embryo-fetus against the ionising radiation is of singular importance due to its special vulnerability to this agent. On the other hand the diagnosis or treatment with radiations ionising beneficial for the expectant mother, are only indirectly for the embryo-fetus that is exposed to a hazard without perceiving anything. The present paper presents the experience obtained in the clinical and dosimetric evaluation from twenty-one pregnant patients subjected to diverse radiodiagnostic procedures or nuclear medicine during the years 1999-2000. The obtained results evidence that 24% of the patients was subjected to procedures of nuclear medicine with diagnostic purposes. While the period of pregnancy of the patients ranged between 4 and 12 weeks, it could be concluded that in all the cases the doses received by the patients in the whole body did not exceed 2 mSv. When conjugating the period of pregnancy of the patients with the doses received, there is no evidence of significant risk for the embryo-fetus. Paradoxically the physicians of assistance suggested to their patients in all the cases to carry out the interruption of the pregnancy, demonstrating with this decision ignorance on the biological effects of the ionizing radiations during the prenatal exposures. (author)

  15. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    Brooks, B.; McDonald, S.; Richardson, E.

    1982-08-01

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  16. Optimization and radiation protection of the patient in medical exposure

    International Nuclear Information System (INIS)

    Mwambinga, S.A.

    2012-04-01

    Radiography has been an established imaging modality for over a century, continuous developments have led to improvements in technique resulting in improved image quality at reduced patient dose. If one compares the technique used by Roentgen with the methods used today, one finds that a radiograph can now be obtained at a dose which is smaller. The International Atomic Energy Agency (IAEA) has a statutory responsibility to establish standards for the protection of people against exposure to ionising radiation and to provide for the worldwide application of those standards. A fundamental requirement of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (BSS) is the optimization of radiological protection of patients undergoing medical exposure. By using technique such as added filtration, use of high kVp techniques, low mAs, use of appropriate screen-film combination and making sure that all practices and any exposure to patient are justified, using ALARA principles and diagnostic Reference Levels, patient protection can be optimised. (author)

  17. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    Angelis, G. De; Ballard, T.; Lagorio, S.; Verdecchia, A.

    2000-01-01

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  18. Monitoring and control of occupational radiation exposure in Switzerland

    International Nuclear Information System (INIS)

    Moser, M.

    1997-01-01

    Occupational exposure is the most prominent example for the prolonged exposure to low level ionizing radiation characterized by low doses and dose rates. In this paper the occupational exposure in Switzerland is presented and the regulatory control of this exposure in the framework of the new radiation protection regulations is discussed. (author)

  19. The radiation exposure regulation for XXI century

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    2000-01-01

    The regulation of the people radiation exposure by the ICRP and IAEA is subject to well-founded criticism for the excessive severity and complexity. In Russia these shortcomings adversely affected at the removal of consequences of the Chernobyl accident. The future regulation system must be better coordinated with the other sources of human life risks. In the advanced countries the death probability from the all reasons is equal 1-2·10 -2 year -1 with the age variation from 5·10 -4 to 2·10 -1 . Therefore it is reasonable to consider that death risk from radiation less than 1·10 -5 - 1·10 -3 depending on age, as an insignificant, but not 1·10 -6 as it is accepted now. Whatever heritable effects of human irradiation are not revealed by the observation during a half on century. Therefore, there is no any reason to account them. As concern the dose dependence of the stochastic effects of radiation the new information is already demonstrating that more than an a half of the whole human's radiation cancers are submitted to dependence with the threshold from 0.3 to tens of sievert at the low dose rate. Therefore, the linear nonthreshold dependence is not true. This fact is undermining the modern system of irradiation regulation institution. One can't use the effective dose. One hasn't to fear of the radiation exposure in small doses. There isn't the necessity in optimization of such exposure all the more the balance detriment-benefit depends on not only dose but even not so much on dose. It is reasonable to base the future system regulation of radiation exposure with the only one principle: one mustn't exceed the limit of the personal life-span dose, which must be set at the level 2.5 Sv for the staff. The limit equal to 0.5 Sv during every 10 consecutive years will ensure that. For the population, the limit as 50-70 mSv during every 10 consecutive years will ensure the level 0.35-05 Sv for life-span. Equally, with the half century dose it is necessary to regulate

  20. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  1. Environmental radioactivity and radiation exposure in 2013; Umweltradioaktivitaet und Strahlenbelastung im Jahr 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The report on the environmental radioactivity and radiation exposure in 2013 covers the natural radiation exposure due to radon, food, cosmic and terrestric radiation and the radiation exposure due to nuclear medicine nuclear facilities, mining, industry household and fallout. Special issues are the occupational radiation exposure the medical radiation exposure and the exposure to non-ionizing radiation.

  2. The problems of individual monitoring for internal exposure of monazite storage facility workers

    International Nuclear Information System (INIS)

    Ekidin, A.; Kirdin, I.; Yarmoshenko, I.; Zhukovsky, M.

    2006-01-01

    traditionally two situations of internal inhalation exposure by alpha emitting nuclides are considered in radiological protection: occupational exposure due to inhalation of plutonium aerosols; inhalation exposure by 222 Rn daughters in working places and in home. for these situations the problems of radioactive aerosols intake, nuclide dynamics in human body, internal dosimetry, nuclide excretion, monitoring of internal exposure have been investigated in details especially for plutonium inhalation exposure. The results of these studies are presented in details in ICRP Publications and UNSCEAR reports. However there is very specific case in which the special analysis of internal inhalation exposure is need. it is the working places with anomalous, extremely high concentration of thoron ( 220 Rn) daughters. The problems of internal radiation exposure of workers in such working place are the main topic of this publication. (authors)

  3. Occupational exposures worldwide and revision of international standards for protection

    International Nuclear Information System (INIS)

    Czarwinski, R.; Crick, M. J.

    2011-01-01

    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has become the world authority on the levels and effects of ionising radiation. Since 1975, UNSCEAR has evaluated inter alia the level of occupational exposure worldwide. Based on revised questionnaires, more detailed information is now available. The results of the last evaluation (1995-2002) will be shown in the paper. Lessons learned from the responses by UN Member States will be given, as well as an outline of plans for data collection in future cycles. The requirements for protection against exposure to ionising radiation of workers, the public and patients are established in the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS), published in 1996. As a result of a review of the BSS in 2006, the International Atomic Energy Agency (IAEA) started a process for the revision of these standards in 2007. International organisations including the joint sponsoring organisations of the BSS-IAEA, FAO, ILO, OECD/NEA, PAHO and WHO-as well as potential new joint sponsoring organisations of the revised BSS-the European Commission and UNEP-were involved from the beginning in the revision process. The paper also provides a summary of the status of the Draft Revised BSS and describes the new format. The paper focuses, in particular, on requirements for the protection of workers as well as record keeping requirements, which provide the legal basis for the collection of specific data; these data are of the type that can be used by UNSCEAR. (authors)

  4. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2002-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications; this Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  5. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2003-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications. This Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  6. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2004-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications. This Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  7. Occupational radiation exposure in Korea: 2002

    International Nuclear Information System (INIS)

    Jeong, Je Ho; Kwon, Jeong Wan; Lee, Jai Ki

    2005-01-01

    Dose distribution of Korean radiation workers classified by occupational categories was analyzed. Statistics of the Occupational Radiation Exposure(ORE) in 2002 of the radiation workers in diagnostic and dental radiology were obtained from the Korea Food and Drug Agency(KFDA) who maintains the database for individual radiation dose records. Corresponding statistics for the rest of radiation workers were obtained by processing the individual annual doses provided by the Korea RadioIsotope Association(KRIA) after deletion of individual information. The ORE distribution was classified in term of 28 occupational categories, annual individual dose levels, age groups and gender of 52733 radiation workers as of the year of 2002. The total collective dose was 66.4 man-Sv and resulting average individual ORE was 1.26 mSv. Around 80% of the workers were exposed to minimal doses less than 1.2 mSv. However, it appeared that the recorded doses exceeded 20 mSv for 43 workers in the industrial radiography and for 147 workers in the field of radiology. Particularly, recorded doses of 23 workers in radiology exceeded the annual dose limits of 50 mSv, which is extraordinary when the working environment is considered. It is uncertain whether those doses are real or caused by careless placing of dosimeters in the imaging rooms while the X-ray units are in operation. No one in the workforce of 16 operating nuclear power plant units was exposed over 20 mSv in 2002. Number of workers was the largest in their 30's of age and the mean individual dose was the highest in their 20's. Women were around 20% of the radiation workers and their average dose was around one half of that of man workers

  8. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  9. Evaluation of radiation exposure from a consumer product. A pillow

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Aburai, Tamaru

    1999-01-01

    Radiation exposure from a pillow was analyzed. According to an advertisement of the pillow, this radioactive consumer product contains enough amounts of radioactive materials to induce radiation hormesis effects. The pillow consists of the filling chips made from kneading mineral ores and the polynosic linings contains natural radioactive ores. A γ-ray analysis of the pillow using pure Ge-MCA reveals that there exist radioactivities of thorium and uranium series mixtures in it at concentration of 0.58% by the weight. The observations of a chip surface by a scanning electron microscope show that the shapes of two sides are different each other. There are lots of sharp protuberances on the outside of the chip. To determine the direct external exposures from the pillow, film badges were placed on the pillow for 210 h and 2555 h. The dose equivalents of 210 h exposure was under 0.1 mSv which is a detection limit of a γ-ray by the film badges. However, that of 2555 h exposure was over 0.1 mSv less than 0.15 mSv. Quantities of internal exposures from inhalation of the vaporized Rn were measured by a Lucas Cell. It was 79 Bq/m 3 . There is no necessity for anxious about being broken in health inhaling the Rn-gass. (author)

  10. 3.International conference 'Nuclear and Radiation Physics'

    International Nuclear Information System (INIS)

    2001-01-01

    The 3-rd International Conference 'Nuclear and Radiation Physics' was held in Almaty (Kazakhstan) 4-7 June 2001. The primary purpose of the conference is consolidation of the scientists efforts in the area of fundamental and applied investigations on nuclear physics, radiation physics of solids and radioecology. In the conference more than 350 papers were presented by participants from 17 countries

  11. Report on emergency exposure to external radiation

    International Nuclear Information System (INIS)

    Pochin, E.E.; Rock Carling, Ernest; Court Brown, W.M.

    1960-01-01

    The Medical Research Council has continued a study of the effects on the health of persons in the neighbourhood of atomic energy installations should there be a release of radioactive material as a result of fires or other incidents. The Council's Committee on Protection against Ionizing Radiations has already reported (Medical Research Council, 1959) on the maximum permissible dietary contamination for iodine 131, strontium 89, strontium 90 and caesium. 137, since it was considered that for the members of the public normally resident in the area affected ingestion of contaminated food would generally be the limiting source of hazard after any such accident and that intake by inhalation, or radiation from the exterior, would become of importance only in rather special circumstances The present report deals with the problem of exposure from the exterior, namely, from external sources of beta and gamma radiation. This exposure might be derived from two sources, one of relatively short duration from the passage of a cloud of radioactive material, the other of longer duration from deposited material

  12. Patient radiation exposure in computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V [Meditsinska Akademiya, Sofia (Bulgaria)

    1980-01-01

    Radiation exposure to patients undergoing axial computerized tomography as a tool of neurological X-ray diagnostics was studied. Doses thereby delivered were compared with those from routine head films at X-ray tube parameters 200 W, 70 kV, and 70 cm target-to-patient distance. Radiation exposures were analyzed with a view to improving shielding and procedural techniques. Comparisons were made using LiF TLD measurements with an Alderson phantom (standard for axial computer tomography). Skin and intracranial space doses were compared using two computers, Siretom I and Siretom 2000, for various positionings: frontal, fronto-lateral, temporal, temporo-occipital, and occipital. In addition, patient body doses with or without shielding and doses to subjects attending sick children or restless adults were examined. Achievable protection was estimated for lead shields of 0.5 mm lead equivalent. It was concluded that radiation doses delivered to neurologic patients undergoing axial computer tomography are smaller than those resulting from conventional X-ray examinations.

  13. Report on emergency exposure to external radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pochin, E E; Rock Carling, Ernest; Court Brown, W M [Medical Research Council, Committee on Protection against Ionizing Radiations, London (United Kingdom); and others

    1960-12-01

    The Medical Research Council has continued a study of the effects on the health of persons in the neighbourhood of atomic energy installations should there be a release of radioactive material as a result of fires or other incidents. The Council's Committee on Protection against Ionizing Radiations has already reported (Medical Research Council, 1959) on the maximum permissible dietary contamination for iodine 131, strontium 89, strontium 90 and caesium. 137, since it was considered that for the members of the public normally resident in the area affected ingestion of contaminated food would generally be the limiting source of hazard after any such accident and that intake by inhalation, or radiation from the exterior, would become of importance only in rather special circumstances The present report deals with the problem of exposure from the exterior, namely, from external sources of beta and gamma radiation. This exposure might be derived from two sources, one of relatively short duration from the passage of a cloud of radioactive material, the other of longer duration from deposited material.

  14. Basis for limiting exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Bush, W.R.

    1979-07-01

    In view of the uncertainty about the size of the risk from radiation, it is assumed that all doses are potentially harmful with the probability of harm proportional to the dose, without threshold. Canada participates in the work of UNSCEAR, and the Canadian Atomic Energy Control Board follows the recommendations of the International Commission on Radiological Protection in setting its dose limits, encouraging the application of the ALARA (as low as reasonably achievable) concept through its licensing and compliance activities

  15. Exposures to natural radiation sources. Annex B

    International Nuclear Information System (INIS)

    1982-01-01

    The assessment of the radiation doses from natural sources in humans is presented. Both external sources of extraterrestrial origin (cosmic rays) and of terrestrial origin, and internal sources, comprising the naturally-occurring radionuclides which are taken into the human body, are discussed. This Annex is to a large extent a summary of Annex B of the 1977 report of the Committee. The doses due to the radon isotopes and to their short-lived decay products are briefly reviewed.

  16. Exposure to natural sources of radiation in Spain

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Soto, J.

    1992-01-01

    Studies carried by us during last three years have produced a map of natural radiation for Spain. The map contains, by administrative region, the respective contributions of terrestrial gamma rays, both outdoors and indoors, cosmic rays and indoor radon. Terrestrial gamma rays have been measured outdoors 'in situ' in more than 1,000 locations. Data for indoor gamma rays were derived from the radioactivity content of more typical spanish building materials as also by 'in situ'measurements in approximately 100 houses. The cosmic ray component is calculated from latitude and altitude. Values for indoor radon exposure have been derived from a national survey and covering more than 2,000 individual measurements employing active and passive detectors. When account is taken of exposures elsewhere, the mean annual effective dose equivalent from these sources is evaluated. Doses from thoron decay products and internal exposure due to natural activity retained in the body from diet are not dealt with in this evaluation. (author)

  17. Radiation exposure in medicare-occupational and medical exposure

    International Nuclear Information System (INIS)

    Morozumi, Kunihiko

    2012-01-01

    Recent cases of the occupational and medical exposures are discussed in relation to the justification of practice, optimization of protection and effort to reduce the dose. Instances of the occupational exposure in doctors and nurses like 26.5 mSv/15 mo and 53.9 mSv/y, and of skin cancer were reported in newspapers of 1999-2004, which might have had been prevented by their self evaluation of daily and monthly exposed dose. For reasonably lowering the occupational dose and number of exposed stuff in the present law, the prior radiation protection measures are to be taken in consideration of social/economical factors to conduct beneficial radiation medicare without restriction of practice under safest conditions, protecting personal determinative hazard and preventing stochastic effect. Medical stuff must be equipped with personal dosimeter. Further, recent media also commented such cases as unwished abortions after careless X-CT of pregnant women, and risk of increased cancer prevalence (3.2% in Japan) due to medical exposure, etc (200-2010). The prevalence is calculated on the linear non-threshold (LNT) hypothesis and is probably overestimated, possibly causing patient's fear. There has been a history of proposal by IAEA (1996) of the guidance levels of the ordinary roentgenography and in vivo nuclear medical test, and introduction of the concept of dose constraint by ICRP (Pub. 60). The incident dose rate to the patient under fluoroscopy defined by Japan Medical Service Law (2001) is, as an air-kerma rate, 15,600 residents for their contamination as well as remains, and measured the ambient dose rate of cities nearby. (T.T.)

  18. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  19. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  20. Indirect monitoring of internal exposure for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro G, C.J.; Barreto F, J.; Todo A, A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes No. 2242, Zip code 05508-000, Sao Paulo (Brazil)

    2006-07-01

    The procedure used to the assessment of internal exposure of workers involved with dismantling lightning rods and radioactive smoke detectors is described. Due to the presence of the sources of {sup 241} Am in these devices, a monitoring program to the workers have been implemented. This paper presents an analytical method for the separation and analysis of plutonium (Pu) and americium (Am) in urine samples using solid-phase extraction chromatography and alpha spectrometry. The mean recovery obtained with this technique is about 80% and the detection limit for 24 h urine sample range between 0.6 mBqL{sup -1} and 1.0 mBqL{sup -1}. The assessment of intakes and internal doses are performed following ICRP Publication 78 recommendations and appropriated biokinetic models (ICRP, 1997). Assumptions have been made for routine monitoring of these workers and it is also discussed the establishment of the internal monitoring program using the results of alpha measurements. (Author)

  1. Indirect monitoring of internal exposure for actinides

    International Nuclear Information System (INIS)

    Carneiro G, C.J.; Barreto F, J.; Todo A, A.

    2006-01-01

    The procedure used to the assessment of internal exposure of workers involved with dismantling lightning rods and radioactive smoke detectors is described. Due to the presence of the sources of 241 Am in these devices, a monitoring program to the workers have been implemented. This paper presents an analytical method for the separation and analysis of plutonium (Pu) and americium (Am) in urine samples using solid-phase extraction chromatography and alpha spectrometry. The mean recovery obtained with this technique is about 80% and the detection limit for 24 h urine sample range between 0.6 mBqL -1 and 1.0 mBqL -1 . The assessment of intakes and internal doses are performed following ICRP Publication 78 recommendations and appropriated biokinetic models (ICRP, 1997). Assumptions have been made for routine monitoring of these workers and it is also discussed the establishment of the internal monitoring program using the results of alpha measurements. (Author)

  2. Radiation injury caused by internal contamination

    International Nuclear Information System (INIS)

    Petyrek, P.

    1988-01-01

    Basic data are given of radiation injury of the respiratory organs, digestive tract, hematogenous tissues and the thyroid due to internal contamination. Attention is drawn to the complexity of the problem and to the effect of the various factors affecting the picture and course of the radiation damage. The treatment is based on the assumption that fundamental is the damage of the stem cells of the critical organs. Discussed are also the basic clinical pictures that can occur due to internal contamination with activities causing radiation injury. (B.S.). 27 refs

  3. Radiation exposure to skin following radioactive contamination

    International Nuclear Information System (INIS)

    Baumann, H.; Beyermann, M.; Kraus, W.

    1989-01-01

    In the case of skin contamination intensive decontamination measures should not be carried out until the potential radiation exposure to the basal cell layer of the epidermis was assessed. Dose equivalent rates from alpha-, beta- or photon-emitting contaminants were calculated with reference to the surface activity for different skin regions as a function of radiation energy on the condition that the skin was healthy and uninjured and the penetration of contaminants through the epidermis negligible. The results have been presented in the form of figures and tables. In the assessment of potential skin doses, both radioactive decay and practical experience as to the decrease in the level of surface contamination by natural desquamation of the stratum corneum were taken into account. 9 figs., 5 tabs., 46 refs. (author)

  4. Scatter radiation exposure during knee arthrography

    International Nuclear Information System (INIS)

    Light, M.C.; Molloi, S.Y.; Yandow, D.R.; Ranallo, F.N.

    1987-01-01

    Knee arthrography, as performed at the authors' institution, was simulated and scattered radiation exposure to a radiologist's gonads, thyroid, and eye lens was measured with a sensitive ionization chamber. Results show that radiologists who regularly conduct knee arthrography examinations can incur doses to the gonads that are less than 6% of the U.S. limits, and to the thyroid and eye that are approximately 10% of the U.S. limits. Since the scatter radiation from overhead imaging of stress views constituted most (greater than or equal to 60%) of the dose to the lens of the eye and the thyroid, spot imaging was evaluated as a substitute for overhead imaging in the assessment of the anterior cruciate ligament. This substitution resulted in no loss of clinical information and has now completely replaced overhead imaging of stress views at this institution

  5. Radiation exposure during cardiac catheterization procedures

    International Nuclear Information System (INIS)

    Kicken, P.J.H.; Huyskens, C.J.; Michels, H.R.

    1988-01-01

    For some time there has been an increased interest in more information about radiation exposure during cardiac catheterization because of: relatively high doses to workers and patient; rapid increase of numbers of examinations; introduction of new procedure-types (e.g. Percutaneous Transluminal Coronary Angiography, PTCA) and introduction of new techniques (e.g. Digital Subtraction Angiography, DSA). This paper reports about a study on the exposure to medical personnel and patient in two major hospitals in the Netherlands. The Total number of cardiac catheterization procedures in both hospitals amounts to circa 3000 per year (approximately 10% of all cardiac procedures c.q. 20% of all PTCA procedures in the Netherlands). This study is related to 1300 cardiac examinations

  6. New radiation limits and air crew exposure

    International Nuclear Information System (INIS)

    Antic, D.

    1999-01-01

    Commercial aircraft have optimum cruising speed of 800 - 900 km/h and the cruising altitude near 13 km.The flight paths are assigned according to airway corridors and safety requirements.The relatively high dose-equivalent rates at cruising altitudes near 13 km (about 0.5-2 mSv/h, and the shielding effect of the atmosphere corresponds to about 2 M of water) can cause exposures greater than 5 mSv/y, for a crew with full-time flight (500-600 h/y).The radiation exposure of the crew in commercial air traffic has been studied for the associations of the crews and airline management and published, and regulatory authorities are slowly accepting the fact that there indeed is a problem which needs investigations and protective regulation

  7. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    Rantanen, E.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  8. DOE 2008 Occupational Radiation Exposure October 2009

    International Nuclear Information System (INIS)

    2009-01-01

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  9. A radiopharmacological study without human radiation exposure

    International Nuclear Information System (INIS)

    Loew, D.; Graul, E.H.; Kunkel, R.

    1984-01-01

    The development, study and control of new drugs today is hardly conceivable without nuclear medicine studies. Nuclear physicians on ethical commissions bear great responsibility in the planning and execution of such studies. In order to protect subjects and patients those nuclear techniques are therefore to be welcome which do not include exposure to radiation. Nuclear techniques used in in-vitro diagnostics (RIA) and the determination of naturally occurring nuclides incorporated in the human body belong to this category. With the aid of a clinico-pharmacological study of a new combination of diuretics it is shown that both methods supply valuable pharmacodynamic evidence. (orig.) [de

  10. Radiation exposure monitoring: a new IHE profile

    International Nuclear Information System (INIS)

    O'Donnell, Kevin

    2011-01-01

    A method is described for gathering and distributing radiation exposure data from X-ray-based imaging procedures such as CT, angiography, fluoroscopy, mammography and digital X-ray systems with integrated generators. The data are recorded in a standard format as a DICOM dose object and are managed in a similar fashion to the DICOM images produced by the procedure. The Integrating the Healthcare Enterprise (IHE) process for standardizing such methods is presented and applications of such data for activities, such as dose QA and national dose repositories, are also discussed. (orig.)

  11. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    International Nuclear Information System (INIS)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-01-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial

  12. Intrauterine radiation exposures and mental retardation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1988-01-01

    Small head size and mental retardation have been known as effects of intrauterine exposure to ionizing radiation since the 1920s. In the 1950s, studies of Japanese atomic-bomb survivors revealed that at 4-17 wk of gestation, the greater the dose, the smaller the brain (and head size), and that beginning at 0.5 Gy (50 rad) in Hiroshima, mental retardation increased in frequency with increasing dose. No other excess of birth defects was observed. Otake and Schull (1984) pointed out that the period of susceptibility to mental retardation coincided with that for proliferation and migration of neuronal elements from near the cerebral ventricles to the cortex. Mental retardation could be the result of interference with this process. Their analysis indicated that exposures at 8-15 wk to 0.01-0.02 Gy (1-2 rad) doubled the frequency of severe mental retardation. This estimate was based on small numbers of mentally retarded atomic-bomb survivors. Although nuclear accidents have occurred recently, new cases will hopefully be too rare to provide further information about the risk of mental retardation. It may be possible, however, to learn about lesser impairment. New psychometric tests may be helpful in detecting subtle deficits in intelligence or neurodevelopmental function. One such test is PEERAMID, which is being used in schools to identify learning disabilities due, for example, to deficits in attention, short- or long-term memory, or in sequencing information. This and other tests could be applied in evaluating survivors of intrauterine exposure to various doses of ionizing radiation. The results could change our understanding of the safety of low-dose exposures

  13. Radiation protection in occupational exposure to microwave electrotherapy units

    International Nuclear Information System (INIS)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-01-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  14. Breast cancer induced by protracted radiation exposures

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1997-01-01

    The experience at Hiroshima/Nagasaki demonstrated that breast cancer can be induced by single doses of ionizing radiation following latencies of 10-40 years. Several epidemiological studies, usually involving ancillary low-LET radiation to the breast, have demonstrated that breast cancer can be induced by protracted exposures, with similar latencies, and with similar dependencies on dose. Radiobiologically these results suggest that the target cells involved were deficient in repair of low-LET damage even when the protraction was over months to years. Since three-quarters of breast tumors originate in the ducts where their proliferation is controlled by menstrual-cycle timed estrogen/progesterone secretions, these cells periodically were in cycle. Thus, the two main elements of a conceptual model for radon-induced lung cancer -- kinetics and deficient repair -- are satisfied. The model indicates that breast cancer could be the cumulative effect of protracted small exposures, the risk from any one of which ordinarily would be quite small. (author)

  15. Human population exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bouville, A.; Lowder, W.M.

    1988-01-01

    Critical evaluations of existing data on cosmic radiation in the atmosphere and in interplanetary space have been carried out in order to estimate the exposure of the world's population to this important component of natural background radiation. Data on population distribution and mean terrain heights on a 1 x 1 degree grid have been folded in to estimate regional and global dose distributions. The per caput annual dose equivalent at ground altitudes is estimated to be 270 μSv from charged particles and 50 μSv from neutrons. More than 100 million people receive more than 1 mSv in a year, and two million in excess of 5 mSv. Aircraft flight crews and frequent flyers receive an additional annual dose equivalent in the order of 1 mSv, though the global per caput annual dose equivalent from airplane flights is only about 1 μSv. Future space travellers on extended missions are likely to receive dose equivalents in the range 0.11 Sv, with the possibility of higher doses at relatively high dose rates from unusually large solar flares. These results indicate a critical need for a better understanding of the biological significance of chronic neutron and heavy charged particle exposure. (author)

  16. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency radiation exposure limits. 1... Procedures Implementing the National Environmental Policy Act of 1969 § 1.1310 Radiofrequency radiation... exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable...

  17. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Directory of Open Access Journals (Sweden)

    David L Wenzler

    2017-01-01

    Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury.

  18. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  19. Radiation exposures for DOE and DOE contractor employees, 1987

    International Nuclear Information System (INIS)

    1989-10-01

    This report is one of series of annual reports provided by the US Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year, as well as identification of trends in exposures being experienced over the years. 5 figs., 30 tabs

  20. Radiation exposure of nursing personnel to brachytherapy patients

    International Nuclear Information System (INIS)

    Cobb, P.D.; Kase, K.R.; Bjaerngard, B.E.

    1978-01-01

    The radiation exposure of nursing personnel to brachytherapy patients has been analyzed from data collected during the years 1973-1976, at four different hospitals. The average annual dose per exposed nurse ranged between 25 and 150 mrem. The radiation exposure per nurse was found to be proportional to the total potential exposure and was uncorrelated with the size of the nursing staff. (author)

  1. Control of occupational exposure to cosmic radiation outside the atmosphere

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Kaneko, Masahito

    2000-01-01

    Japan is participating in the project of constructing ISS, International Space Station, and taking part of constructing JEM, Japan Experimental Module. It is expected that people working in this module upon completion should be controlled their exposure to cosmic radiation according to Japanese laws. Hence, the issue has been studied by a committee in NASDA, National Space Development Agency of Japan. In 1999, its interim report was released and public comments had been invited. In this presentation, following the introduction of the gist of the interim report as well as comments by the authors, countermeasures are proposed. (author)

  2. Ocular ultraviolet radiation exposure of welders.

    Science.gov (United States)

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a

  3. GPU Nuclear Corporation's radiation exposure management system

    International Nuclear Information System (INIS)

    Slobodien, M.J.; Bovino, A.A.; Perry, O.R.; Hildebrand, J.E.

    1984-01-01

    GPU Nuclear Corporation has developed a central main frame (IBM 3081) based radiation exposure management system which provides real time and batch transactions for three separate reactor facilities. The structure and function of the data base are discussed. The system's main features include real time on-line radiation work permit generation and personnel exposure tracking; dose accountability as a function of system and component, job type, worker classification, and work location; and personnel dosemeter (TLD and self-reading pocket dosemeters) data processing. The system also carries the qualifications of all radiation workers including RWP training, respiratory protection training, results of respirator fit tests and medical exams. A warning system is used to prevent non-qualified persons from entering controlled areas. The main frame system is interfaced with a variety of mini and micro computer systems for dosemetry, statistical and graphics applications. These are discussed. Some unique dosemetry features which are discussed include assessment of dose for up to 140 parts of the body with dose evaluations at 7,300 and 1000 mg/cm 2 for each part, tracking of MPC hours on a 7 day rolling schedule; automatic pairing of TLD and self-reading pocket dosemeter values, creation and updating of NRC Forms 4 and 5, generation of NRC required 20.407 and Reg Guide 1.16 reports. As of July 1983, over 20 remote on-line stations were in use with plans to add 20-30 more by May 1984. The system provides response times for on-line activities of 2-7 seconds and 23 1/2 hours per day ''up time''. Examples of the various on-line and batch transactions are described

  4. External exposure due to natural radiation (KINKI)

    International Nuclear Information System (INIS)

    1978-01-01

    A field survey of exposure rates due to natural radiation has been conducted throughout the Kinki district of Japan during both September and October 1973. In each location, measurements of exposures at one to fifteen sites, one of where contained 5 stations at least, were made. A total of 143 sites were measured. Observations were made using a spherical ionization chamber and several scintillation surveymeters. The spherical plastic ionization chamber of which inner diameter and wall thickness are 200 mm and 3 mm (acrylate) respectively has adequate sensitivity for field survey. The chamber was used as a standard of apparatus, but it is difficult to use the apparatus in all locations only by the apparatus, so that a surveymeter with a NaI(Tl) 1''phi x 1'' scintillator was used for regular measurements. Two types of surveymeters, the one with a 2''phi x 2'' NaI(Tl) scintillator and the other with a 3''phi x 3'' NaI(Tl) scintillator, were used as auxiliary devices. Both the chamber and the surveymeter were used in 20 sites and their readings were compared for drawing a relationship between them. Practically the direct reading of the surveymeter were reduced into the corresponding value of the plastic chamber through the relationship of linear proportion. Systematic error at calibration ( 60 Co) and reading error (rodoh) of the plastic chamber were within +-6% (maximum over all error) and within +-3.5% (standard error for 6μ R/hr) respectively. Reading error of the surveymeter is about +-3% (standard error for 6μ R/hr). Measurements in open bare field were made at one meter above the ground and outdoor gamma-rays exposure rates (μ R/hr) were due to cosmic rays as well as terrestrial radiation, as it may be considered that the contribution of fallout due to artificial origin was very small. (J.P.N.)

  5. Troubles in vacuum system and radiation exposure

    International Nuclear Information System (INIS)

    Konno, Osamu

    1978-01-01

    It is about eleven years since the LINAC of 300 MeV in Tohoku University has first accelerated electrons. The maintenance and improvement of the accelerator used more than 10 years now give the related personnel an important problem of radiation exposure. 40 days were required for the maintenance and checking-up in 1977, and other 26 days were used for other construction works. The troubles in the vacuum system occurred 81 times in total. The vacuum system is divided into two subsystems, each being provided with a leak detector. Either of them enables to detect and locate the leak. Silver-alloy brazing of a duct with a cooling water tube has deteriorated in the strength because of repeated baking temperature and/or the copper tubes for cooling have been eroded due to the large local cell action by purified water. The similar phenomena have occurred in RF windows, outside of which is cooled with water. Carbonaceous matter has stuck to the element of the ion pump, but successfully been cleaned. Though the energy compression system was installed for the efficient use of electrons, the troubles due to overheating of the current monitor have increased because of its limited space, and the change of location was made. Considerable surface residual radiation dose was found at some parts of transport system, and a few personnel have been exposed to radiation over 1000 mrem/year as a result of the troubles in vacuum system. (Wakatsuki, Y.)

  6. The report of medical exposures in diagnostic radiology. Pt. 1. The questionnaire of medical exposure and standard radiation exposure

    International Nuclear Information System (INIS)

    Sasakawa, Yasuhiro; Matsumura, Yoshitaka; Iwasaki, Takanobu; Segawa, Hiroo; Yasuda, Sadatoshi; Kusuhara, Toshiaki

    1997-01-01

    We had made reports of patient radiation exposure for doctors to judge adaptation of medical radiation rightly. By these reports the doctors can be offered data of exposure dose and somatic effect. First, we sent out questionnaires so that we grasped the doctor's understanding about radiation exposure. Consequently we understood that the doctors had demanded data of exposure dose and somatic effect. Secondly, by the result of questionnaires we made the tables of exposure dose about radiological examination. As a result we have be able to presume exposure dose about high radiation sensitive organization as concrete figures. (author)

  7. History of international symbol for ionizing radiation

    International Nuclear Information System (INIS)

    Franic, Z.

    1996-01-01

    The year 1996 marks the 50th anniversary of the radiation warning symbol as we currently know it. It was (except the colours used) doodled out at the University of California, Berkeley, sometime in 1946 by a small group of people. The key guy responsible was Nelson Garden, then the head of the Health Chemistry Group, at the Radiation Laboratory. The radiation warning symbol should not be confused with the civil defence symbol (circle divided into six equal sections, three of these being black and three yellow), designed to identify fallout shelters. The basic radiation symbol was eventually internationally standardized by ISO code: 361-1975 (E). Variations of this symbol are frequently used in logotypes radiation protection organizations or associations. Particularly nice are those of International Radiation Protection Association (IRPA) and Croatian Radiation Protection Association (CRPA) that combines traditional Croatian motives with high technology. However, apart from speculations, there is no definite answer why did the Berkeley people chose this particular symbol. Whatever the reason was, it was very good choice because the ionizing radiation symbol is simple, readily identifiable, i.e., not similar to other warning symbols, and discernible at a large distance. (author)

  8. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Exposure of humans to natural sources of radiation has been a continuous and inevitable feature of life on earth. This exposure exceeds all due to artificial sources combined for most people. Many exposures to natural radiation sources are modified by human action. In particular, natural radionuclides are released into the environment in mineral processing and in activities such as the production of phosphate fertilizers and the use of fossil fuels. An increase of exposures to this natural radiation is caused. The relevance of exposure to natural radiation is confirmed by the fact that, for most people, the exposures to natural background radiation have been much more significant than exposures to artificial sources, with exceptions. Among these exceptions have been noted: medical exposures, accidents with release of radionuclides and some specific workplaces. In all cases, however, the natural background radiation has formed the basis on which all the others exposures are added and is a common level serving as compared to other exposures. Regulations and instructions have begun to establish in some countries to regulate natural radiation, countries like Spain, have already incorporated into its regulations on health protection against ionizing radiation the subject of natural radiation. (author) [es

  9. Limitation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The Atomic Energy Control Board (AECB) proposes to amend the Atomic Energy Control Regulations in the light of the latest recommendations of the International Commission on Radiological Protection (ICRP). Guidance on how the AECB would apply its proposed amended regulations is provided in this document, which also explains the more important changes from the present regulations. The most basic change is the introduction of the concept of effective dose equivalent. Another is a requirement to keep doses of radiation as low as reasonably achievable. (L.L.)

  10. Studies on the reference Korean and estimation of radiation exposure dose

    International Nuclear Information System (INIS)

    Kim, Y.J.; Lee, K.S.; Chun, K.J.; Kim, J.B.; Chung, G.H.; Kim, S.R.

    1982-01-01

    For the purpose of establishment of Reference Korean and estimation of internal and external exposure doses in the Reference Korean, we have surveyed reference values for Koreans such as physical standards including height, weight, and body surface area, food consumption rate of daily intake of radioactive substances and exposure dose from natural radiation. (Author)

  11. Intervention in emergency situations involving radiation exposure (1990)

    International Nuclear Information System (INIS)

    1992-01-01

    This document covers radiation protection aspects arising in emergency situations. It does not cover the measures necessary to reduce the health consequences of radiation exposure, i.e. the medical care of exposed individuals, nor does it cover psychological problems arising from the exposure of individuals or of a population. These problems may arise from anxiety about possible late effects of radiation exposure and from any actions implemented to reduce exposure. Even though radiation exposure levels may be low and insignificant, these problems must be taken into account in determining any action to be implemented to reduce radiation exposure. The primary concern of this document is with exposure in areas which are close to the source and in the period immediately after a source is out of control. It outlines the principles which can be used for planning and implementing countermeasures for protection of the public. 24 refs., 13 tabs

  12. Ultraviolet radiation exposure from UV-transilluminators.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  13. Patient radiation exposure during different kyphoplasty techniques

    International Nuclear Information System (INIS)

    Panizza, D.; Barbieri, M.; Parisoli, F.; Moro, L.

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient bio-metric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure -1 for study A and 3.6±0.9 mSv procedure -1 for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient. (authors)

  14. Patient radiation exposure during different kyphoplasty techniques.

    Science.gov (United States)

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  15. Internal radiation dose of Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Nagaratnam, A.; Sharma, U.C.

    2001-01-01

    The measurement of γ-rays from 40 K by whole-body counting provides a sensitive technique to estimate the body 40 K radioactivity. In India, right from the whole body counter (WBC) of Trombay in the early 1960s to the INMAS WBC of 1970s, some limited information has been available about the internal 40 K of Indians. However, information on 40 K dose with age and sex of Indians is scanty. Therefore, a systematic study was taken up to generate this information

  16. Technologically modified exposures to natural radiation. Annex C

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex deals with some examples of technologically modified exposures to natural radiation. Radiation exposures due to coal-fired power plants, geothermal energy production, exploitation of phosphate rock, aircraft travel, and consumer products are discussed. The present state of knowledge does not allow an accurate estimate of the collective effective dose equivalent from technologically modified exposures to natural radiation to be made. This annex has an extensive bibliography with at least 200 references.

  17. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    OpenAIRE

    David L Wenzler; Joel E Abbott; Jeannie J Su; William Shi; Richard Slater; Daniel Miller; Michelle J Siemens; Roger L Sur

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at...

  18. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  19. Physician and nurse knowledge about patient radiation exposure in ...

    African Journals Online (AJOL)

    2015-11-23

    Nov 23, 2015 ... Physician and nurse awareness of the radiation dose in the ED and the associated cancer risks to ... has activated mass media and Internet communications, and .... explained that radiation exposure has no relationship to.

  20. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  1. Investigation of the electromagnetic radiation field level in the vicinity of Damascus international airport

    International Nuclear Information System (INIS)

    Abukassem, I.

    2011-07-01

    The aim of this work is to estimate the electromagnetic radiation exposure of Damascus international airport workers.Different kinds of electromagnetic wave sources exist in the vicinity of the airport, for example, mobile phone base stations. It was found that the exposure level in all studied points (offices, halls, traffic control tour, etc) is lower than the international restriction levels. Few recommendations were given for some work situation or places where the measured electromagnetic radiation levels were relatively high.(author)

  2. Health effects and radiation dose from exposure to radon indoors

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1998-01-01

    Radon exposure has been declared a health hazard by several organisations, for example the International Commission on Radiological Protection (ICRP) and the World Health Organisation (WHO). The basis for the risk estimate has been the results from epidemiological studies on miners exposed to radon, supported by the results of residential epidemiology. Only few of the many residential epidemiological studies carried out hitherto have a design applicable for a risk estimate. The largest is the Swedish national study but several large well designed studies are ongoing. An excess risk has also been found in animal research. The model describes smoking and radon exposure as between additive and multiplicative, found in both miners and residential studies. The relatively few non-smokers among the miners and also among the residents give a problem at estimating the radon risk for these groups. It would also be desirable to know more about the importance of the age and the time period at exposure. Lung dose calculations from radon exposure are not recommended by ICRP in their publication 66. For comparison with other radiation sources the ICRP recommends the concept 'dose conversion convention' obtained as the risk estimate divided by the detriment. Other effects of radon exposure than lung cancer have not been shown epidemiologically, but dose calculations indicate an excess risk of about 5% of the excess lung cancer risk. (author)

  3. European study of occupational radiation exposure - ESOREX -. Proceedings

    International Nuclear Information System (INIS)

    Frasch, G.; Anatschkowa, E.

    1997-11-01

    The ESOREX-Project consists of several surveys executed in the Member States of the European Union, furthermore in Iceland, Norway and Switzerland. Its purpose is to survey in each of these countries 1. the administrative systems used to register individual occupational radiation exposure, 2. the numbers of occupationally radiation exposed persons and dose distributions for the year 1995. The study shall describe and compare the administrative structures of the various national registration systems and the quantity structures. It shall identify the differences between the states and analyze the possibilities for a European harmonization. In order to achieve the co-operation of the European states the European Commission and the BfS organized an international introductory workshop in Luxembourg in May, 1997. The proceedings reflect the presentations of the participants and the results of the discussions. (orig.) [de

  4. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  5. French population's exposure to ionizing radiations

    International Nuclear Information System (INIS)

    2016-01-01

    This report deals with the exposure of the French population to ionizing radiation. The exposures taken into account are related to cosmic and telluric radiations, to radon, to ingestion of natural radionuclides, to medical imaging and to industrial and military sources. Additionally to the mean effective dose, considered as the macroscopic indicator of the population exposure, the variations of the effective dose for each source of exposure are also presented. Then, the variation of the total effective dose is presented. (authors)

  6. Radiation exposure in the wismut mines

    International Nuclear Information System (INIS)

    Seitz, G.; Ludwig, T.; Bauer, H.D.; Lehmann, F.

    1996-01-01

    Uranium mining grew fast in Saxonia after Second World War. No radiation protection was performed in the first 'wild' years (1946-1954). Winning with air hammer and drilling had been done without dust reduction and led to an enormous airborne dust concentration. These bad working conditions were unique world-wide. Measurements of dustborne activity concentrations had not been taken. To reconstruct the exposure conditions of miners in these years, four series of experiments under original working conditions were carried out. Stress must be laid on the fact that these measurements should result in the received doses according to uranium and it's long living daughters. Personal and stationary air samplers were used to collect the dust. Activity concentration measurements were done by gamma spectrometry. (author)

  7. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  8. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  9. International regulations for radiation protection

    International Nuclear Information System (INIS)

    Daw, H.T.

    1982-01-01

    A review of the development of the IAEA Radiological Protection standards is given. The basic features of the latest revision recently adopted by the governing bodies of the sponsoring organizations, i.e. IAEA, WHO, ILO, NEA/OECD are discussed and some of the features of the future Agency programme for its implementation will be outlined. In particular, attention will be given to development of the basic principles for setting release limits of radioactive materials into the environment. An important aspect of this is when the release of radioactive materials into the environment crosses international boundaries. The Agency is best suited to try to reach a consensus on the minimum monetary value for the unit collective dose. (orig./RW)

  10. Controlling radiation exposure during interventional procedures in childhood cancer patients

    International Nuclear Information System (INIS)

    Racadio, John M.

    2009-01-01

    Many pediatric cancer patients undergo multiple diagnostic and therapeutic radiologic procedures over the course of their illnesses and are therefore at high risk for radiation exposure. There are a variety of measures that radiologists can employ to reduce this risk. These include limiting the use of radiation whenever possible, using specific strategies to reduce radiation exposure during interventional procedures, using quality assurance programs to ensure compliance, and maintaining continuing staff radiation safety educational programs. Some of the diagnostic and therapeutic interventional radiologic procedures that are performed in pediatric oncology patients are discussed here, along with specific tips for managing radiation exposure. (orig.)

  11. Monitoring programmes for internal exposure: designing criteria

    International Nuclear Information System (INIS)

    Rojo, Ana M.; Gomez Parada, Ines.

    2007-01-01

    The purpose of this document is to offer guidance for the decision whether a monitoring programme is required and how it should be designed. It can be also used as a tool for making the standing programmes consistent with the most recent publications on internal dosimetry, such as ISO 20553 'Monitoring of workers occupationally exposed to a risk of internal contamination with radioactive material', specific publications of the IAEA and ICRP, and including the conclusions of the OMINEX Project ('Optimisation of Monitoring for Internal Exposures') and IDEAS Project. It is established that the general purpose of the monitoring is verify that each worker is protected adequately against risks from radionuclide intakes and document that the protection complies with legal requirements. The criteria for a particular monitoring programme designing is based on the magnitude of the probable intake and the possibility of detecting a significant event when it occurs. So, the risk assessment for each work process must be evaluated and each worker is classified accordingly. This classification implies the acceptance of reference effective dose values (1 y 6 mSv/y ). (author) [es

  12. Internal pigment cells respond to external UV radiation in frogs.

    Science.gov (United States)

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. © 2016. Published by The Company of Biologists Ltd.

  13. Radiation exposure of patients due to medical measures

    International Nuclear Information System (INIS)

    Schwarz, E.R.; Tsavachidis, C.; Hinz, G.; Eigelsreiter, H.

    1987-01-01

    The main objective of this research project supported by the Federal Ministry of the Interior was to collect the data required as a basis for an up-to-date assessment of the radiation exposure of the population as a result of medical measures. Apart from the fact that this had to be done in order to fulfill a commitment required by the EURATOM principles, the report in hand also presents a useful survey of the improvements achieved over the last years in terms of radiation hygiene in the field of imaging technology applied for medical diagnostics. The data obtained from four hospital centers (2 university hospitals, 1 city hospital, and one county hospital) and from three medical practices (radiologist, internal specialist, orthopedics), the changes experienced in the selection of imaging methods for diagnostic purposes in the period 1976 to 1983 or 1985 are illustrated, and analyses show the developmental trends. The results show that there is reason to assume the radiation exposure of the population to be receding. (orig./MG) [de

  14. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  15. Radiation exposures for DOE and DOE contractor employees, 1989

    International Nuclear Information System (INIS)

    Smith, M.H.; Eschbach, P.A.; Harty, R.; Millet, W.H.; Scholes, V.A.

    1992-12-01

    All US Department of Energy (DOE) and DOE contractors, are required to submit occupational radiation exposure records to a central depository. In 1989, data were required to be submitted for all employees who were required to be monitored in accordance with DOE Order 5480.11 and for all visitors who had a positive exposure. The data required included the external penetrating whole-body dose equivalent, the shallow dose equivalent, and a summary of internal depositions of radioactive material above specified limits. Data regarding the exposed individuals included the individual's age, sex, and occupational category. This report is a summary of the external penetrating whole-body dose equivalents and shallow dose equivalents reported by DOE and DOE contractors for the calendar year 1989. A total of 90,882 DOE and DOE contractor employees were reported to have been monitored for whole-body ionizing radiation exposure during 1989. This represents 53.6% of all DOE and DOE contractor employees and is an increase (4.3 %) from the number of monitored employees for 1988. In addition to the employees, 12,643 visitors were monitored

  16. Medical radiation exposure and genetic risks

    International Nuclear Information System (INIS)

    Baker, D.G.

    1980-01-01

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%

  17. Operation control device under radiation exposure

    International Nuclear Information System (INIS)

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  18. External radiation exposure after deposition of man-made radionuclides

    International Nuclear Information System (INIS)

    Jacob, P.

    1991-01-01

    The first step in assessing the external radiation exposure of the population is the determination of the gamma dose rate over meadows, which are used as reference points for various reasons. The second step is the description of external radiation exposures in urban and rural environments. The relation to the radiation exposure in a meadow is a function of the radionuclide distribution, i.e. the type of deposition. Finally, a simple method of calculating external radiation exposure is developed on the basis of recent findings. The method is compared with the method used in the UNSCEAR report for calculating radiation exposures after Chernobyl and with the method described in the AVV (General Administrative Regulation) of the Radiation Protection Ordinance. (orig./HP) [de

  19. Effects of high vs low-level radiation exposure

    International Nuclear Information System (INIS)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved

  20. Dosimetry Methods for Human Exposure to Non-Ionising Radiation

    International Nuclear Information System (INIS)

    Poljak, D.; Sarolic, A.; Doric, V.; Peratta, C.; Peratta, A.

    2011-01-01

    The paper deals with human exposure to electromagnetic fields from extremely low frequencies (ELF) to GSM frequencies. The problem requires (1) the assessment of external field generated by electromagnetic interference (EMI) source at a given frequency (incident field dosimetry) and then (2) the assessment of corresponding fields induced inside the human body (internal field dosimetry). Several methods used in theoretical and experimental dosimetry are discussed within this work. Theoretical dosimetry models at low frequencies are based on quasistatic approaches, while analyses at higher frequencies use the full-wave models. Experimental techniques involve near and far field measurement. Human exposure to power lines, transformer substations, power line communication (PLC) systems, Radio Frequency Identification (RFID) antennas and GSM base station antenna systems is analyzed. The results o are compared to the exposure limits proposed by relevant safety guidelines. Theoretical incident dosimetry used in this paper is based on the set of Pocklington integro-differential equations for the calculation of the current distribution and subsequently radiated field from power lines. Experimental incident dosimetry techniques involve measurement techniques of fields radiated by RFID antennas and GSM base station antennas. First example set of numerical results is related to the internal dosimetry of realistic well-grounded body model exposed to vertical component of the electric field E = 10 kV/m generated by high voltage power line. The results obtained via the HNA model exceed the ICNIRP basic restrictions for public exposure (2 mA/m 2 ) in knee (8.6 mA/m 2 ) and neck (9.8 mA/m 2 ) and for occupational exposure (10 mA/m 2 ) in ankle (32 mA/m 2 ). In the case of a conceptual model of a realistic human body inside a transformer substation room touching a control panel at the potential φ0 = 400 V and with two scenarios for dry-air between worker's hand and panel, the values

  1. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Science.gov (United States)

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  2. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  3. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  4. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  5. The primary exposure standard for Co-60 gamma radiation: characteristics and measurements procedures

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.

    1983-01-01

    A description is given of a cavity ionization chamber used, as a primary exposure standard, at the Laboratorio di Metrologia delle Radiazioni Ionizzanti of the ENEA in Italy. The primary standard is designed to make absolute measurements of exposure due to the Co-60 gamma radiation. The procedures for the realizationof the exposure unit are also described. Finally results of some international comparisons are reported

  6. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    Science.gov (United States)

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative

  7. From dermal exposure to internal dose

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Dellarco, M.; Hemmen, J.J. van

    2007-01-01

    Exposure scenarios form an essential basis for chemical risk assessment reports under the new EU chemicals regulation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals). In case the dermal route of exposure is predominant, information on both exposure and dermal

  8. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  9. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  10. Problems is applying new internal dose coefficients to radiation control

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi [Oarai Laboratory, Chiyoda Technol Corporation, Ibaraki (Japan)

    1998-06-01

    The author discussed problems concerning the conceivable influence in the radiation control and those newly developing when the new internal dose coefficients are applied in the law in the future. For the conceivable influence, the occupational and public exposure was discussed: In the former, the effective dose equivalent limit (at present, 50 mSv/y) was thought to be reduced and in the latter, the limit to be obscure although it might be more greatly influenced by the new coefficients. For newly developing problems, since the new biological model which is more realistic was introduced for calculation of the internal dose and made the calculation more complicated, use of computer is requisite. The effective dose of the internal exposure in the individual monitoring should be conveniently calculated as done at present even after application of the new coefficients. For calculation of the effective dose of the internal exposure, there are such problems as correction of the inhaled particle size and of the individual personal parameter. A model calculation of residual rate in the chest where the respiratory tract alone participated was presented as an example but for the whole body, more complicated functions were pointed out necessary. The concept was concluded to be incorporated in the law in a convenient and easy manner and a software for calculation of internal dose using the new coefficients was wanted. (K.H.)

  11. Radiation exposure by man-modified materials containing natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.E. [Technical Inspection Agency of Bavaria, Munich (Germany); Eder, E. [Government of Bavaria, Ministry for State Development and Environmental Affairs Development, Munich (Germany); Reichelt, A. [Technical Inspection Agency of Bavaria, Munich (Germany)

    1992-07-01

    More than one hundred materials, containing natural radioactive nuclides, are being investigated due to radiation exposure to people. This paper deals with thoriated gas mantles and shows that the radiation exposure by inhalation of radionuclides released while burning and exchange is not negligible. (author)

  12. Epistemological limitation for attributing health effects to natural radiation exposure

    International Nuclear Information System (INIS)

    González, Abel J.

    2010-01-01

    The attribution of health effects to prolonged radiation exposure situations, such as those experienced in nature, is a challenging problem. The paper describes the epistemological limitations for such attribution it demonstrate that in most natural exposure situations, the theory of radiation-related sciences is not capable to provide the scientific evidence that health effects actually occur (or do not occur) and, therefore, that radiation effects are attributable to natural exposure situations and imputable to nature. Radiation exposure at high levels is known to provoke health effects as tissue reactions. If individuals experience these effects they can be attributed to the specific exposure with a high degree of confidence under the following conditions: the dose incurred have been higher that the relevant dose-threshold for the specific effect; and an unequivocal pathological diagnosis is attainable ensuring that possible competing causes have been eliminated. Only under these conditions, the occurrence of the effect may be properly attested and attributed to the exposure. However, even high levels of natural radiation exposure are lower than relevant dose-thresholds for tissue reactions and, therefore, natural radiation exposure is generally unable to cause these type of effects. One exception to this general rule could be situations of high levels of natural radiation exposure that might be sufficient to induce opacities in the lens of the eyes (which could be considered a tissue-reaction type of effect)

  13. Radiation exposure after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Cattani, Federica; Vavassori, Andrea; Polo, Alfredo; Rondi, Elena; Cambria, Raffaella; Orecchia, Roberto; Tosi, Giampiero

    2006-01-01

    Background and purpose: Limited information is available on the true radiation exposure and associated risks for the relatives of the patients submitted to prostate brachytherapy with permanent implant of radioactive sources and for any other people coming into contact with them. In order to provide appropriate information, we analyzed the radiation exposure data from 216 prostate cancer patients who underwent 125 I or 103 Pd implants at the European Institute of Oncology of Milan, Italy. Patients and methods: Between October 1999 and October 2004, 216 patients with low risk prostate carcinoma were treated with 125 I (200 patients) or 103 Pd (16 patients) permanent seed implantation. One day after the procedure, radiation exposure measurements around the patients were performed using an ionization chamber survey meter (Victoreen RPO-50) calibrated in dose rate at an accredited calibration center (calibration Centre SIT 104). Results: The mean dose rate at the posterior skin surface (gluteal region) following 125 I implants was 41.3 μSv/h (range: 6.2-99.4 μSv/h) and following 103 Pd implants was 18.9 μSv/h (range 5.0-37.3 μSv/h). The dose rate at 50 cm from the skin decreased to the mean value of 6.4 μSv/h for the 125 I implants and to the mean value of 1.7 μSv/h for the 103 Pd implants. Total times required to reach the annual dose limit (1 mSv/year) recommended for the general population by the European Directive 96/29/Euratom and by the Italian law (Decreto Legislativo 241/2000) at a distance of 50 cm from the posterior skin surface of the implanted patient would be 7.7 and 21.6 days for 125 I and for 103 Pd. Good correlation between the measured dose rates and both the total implanted activity and the distance between the most posteriorly implanted seed and the skin surface of the patients was found. Conclusions: Our data show that the dose rates at 50 cm away from the prostate brachytherapy patients are very low and that the doses possibly absorbed by the

  14. Operator dependency of the radiation exposure in cardiac interventions: feasibility of ultra low dose levels

    International Nuclear Information System (INIS)

    Emre Ozpelit, Mehmet; Ercan, Ertugrul; Pekel, Nihat; Tengiz, Istemihan; Yilmaz, Akar; Ozpelit, Ebru; Ozyurtlu, Ferhat

    2017-01-01

    Introduction: Mean radiation exposure in invasive cardiology varies greatly between different centres and interventionists. The International Commission on Radiological Protection and the EURATOM Council stipulate that, despite reference values, 'All medical exposure for radiodiagnostic purposes shall be kept as low as reasonably achievable' (ALARA). The purpose of this study is to establish the effects of the routine application of ALARA principles and to determine operator and procedure impact on radiation exposure in interventional cardiology. Materials and methods: A total of 240 consecutive cardiac interventional procedures were analysed. Five operators performed the procedures, two of whom were working in accordance with ALARA principles (Group 1 operators) with the remaining three working in a standard manner (Group 2 operators). Radiation exposure levels of these two groups were compared. Results: Total fluoroscopy time and the number of radiographic runs were similar between groups. However, dose area product and cumulative dose were significantly lower in Group 1 when compared with Group 2. Radiation levels of Group 1 were far below even the reference levels in the literature, thus representing an ultra-low-dose radiation exposure in interventional cardiology. Conclusion: By use of simple radiation reducing techniques, ultra-low-dose radiation exposure is feasible in interventional cardiology. Achievability of such levels depends greatly on operator awareness, desire, knowledge and experience of radiation protection. (authors)

  15. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  16. Background radiation levels and medical exposure levels in Australia

    International Nuclear Information System (INIS)

    Webb, D.V.; Solomon, S.B.; Thomson, J.E.M.

    1999-01-01

    The average effective background dose received by the Australian population has been reassessed to be ∼1.5 millisievert (mSv) per year. Over half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This background is to be compared with medical radiation, primarily diagnostic, which could add half as much again to the population exposure. This paper reviews research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background and from medical use. While the latter exposure is accepted to have a social benefit, there is a need to ensure that doses are no more than necessary to provide effective diagnosis and optimal treatment. Copyright (1999) Australasian Radiation Protection Society Inc

  17. Optimizing radiation exposure for CT localizer radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Bohrer, Evelyn; Maeder, Ulf; Fiebich, Martin [Univ. of Applied Sciences, Giessen (Germany). Inst. of Medical Physics and Radiation Protection-IMPS; Schaefer, Stefan; Krombach, Gabriele A. [Univ. Hospital Giessen (Germany). Dept. of Radiology; Noel, Peter B. [Technische Univ. Muenchen (Germany). Dept. of Diagnostic and Interventional Radiology

    2017-08-01

    The trend towards submillisievert CT scans leads to a higher dose fraction of localizer radiographs in CT examinations. The already existing technical capabilities make dose optimization of localizer radiographs worthwhile. Modern CT scanners apply automatic exposure control (AEC) based on attenuation data in such a localizer. Therefore not only this aspect but also the detectability of anatomical landmarks in the localizer for the desired CT scan range adjustment needs to be considered. The effective dose of a head, chest, and abdomen-pelvis localizer radiograph with standard factory settings and user-optimized settings was determined using Monte Carlo simulations. CT examinations of an anthropomorphic phantom were performed using multiple sets of acquisition parameters for the localizer radiograph and the AEC for the subsequent helical CT scan. Anatomical landmarks were defined to assess the image quality of the localizer. CTDI{sub vol} and effective mAs per slice of the helical CT scan were recorded to examine the impact of localizer settings on a helical CT scan. The dose of the localizer radiograph could be decreased by more than 90% while the image quality remained sufficient when selecting the lowest available settings (80 kVp, 20 mA, pa tube position). The tube position during localizer acquisition had a greater impact on the AEC than the reduction of tube voltage and tube current. Except for the use of a pa tube position, all changes of acquisition parameters for the localizer resulted in a decreased total radiation exposure. A dose reduction of CT localizer radiograph is necessary and possible. In the examined CT system there was no negative impact on the modulated helical CT scan when the lowest tube voltage and tube current were used for the localizer.

  18. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  19. DOE occupational radiation exposure. Report 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  20. DOE occupational radiation exposure. Report 1992--1994

    International Nuclear Information System (INIS)

    1997-01-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace

  1. Radiation exposure of nurses in a coronary care unit

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1984-01-01

    In response to increasing awareness of radiation as a possible occupational hazard, nursing personnel staffing a hospital CCU were monitored over a 3-year period to determine occupational exposure. Portable x-ray machines, fluoroscopic units, and patients injected with radiopharmaceuticals were all potential radiation sources on such a unit. Whole-body TLD badges, exchanged monthly, indicated no cumulative exposures over 80 mR during the entire study period. The minimal exposures reported do not justify regular use of dosimeters. Adherence to standard protective measures precludes most exposure to machine-produced radiation. Close, prolonged contact with a patient after an RVG study that utilizes /sup 99m/Tc may account for some exposure. The data indicate that radiation is not a significant occupational hazard for CCU nurses at this hospital; similar minimal exposures would be expected of other nonoccupationally exposed nursing personnel in like environments

  2. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  3. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  4. Maintenance hemodialysis patients have high cumulative radiation exposure.

    LENUS (Irish Health Repository)

    Kinsella, Sinead M

    2010-10-01

    Hemodialysis is associated with an increased risk of neoplasms which may result, at least in part, from exposure to ionizing radiation associated with frequent radiographic procedures. In order to estimate the average radiation exposure of those on hemodialysis, we conducted a retrospective study of 100 patients in a university-based dialysis unit followed for a median of 3.4 years. The number and type of radiological procedures were obtained from a central radiology database, and the cumulative effective radiation dose was calculated using standardized, procedure-specific radiation levels. The median annual radiation dose was 6.9 millisieverts (mSv) per patient-year. However, 14 patients had an annual cumulative effective radiation dose over 20 mSv, the upper averaged annual limit for occupational exposure. The median total cumulative effective radiation dose per patient over the study period was 21.7 mSv, in which 13 patients had a total cumulative effective radiation dose over 75 mSv, a value reported to be associated with a 7% increased risk of cancer-related mortality. Two-thirds of the total cumulative effective radiation dose was due to CT scanning. The average radiation exposure was significantly associated with the cause of end-stage renal disease, history of ischemic heart disease, transplant waitlist status, number of in-patient hospital days over follow-up, and death during the study period. These results highlight the substantial exposure to ionizing radiation in hemodialysis patients.

  5. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  6. An assessment of the potential radiation exposure from residual radioactivity in scrap metal for recycling

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Lee, Kun Jai

    1997-01-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low level waste (LLW), generated within nuclear facilities, is in fact uncontaminated. This may include operational wastes, metal and rubble, office waste and discrete items from decommissioning or decontamination operations. Materials that contain only trivial quantities of radionuclides could realistically be exempted or released from regulatory control for recycle or reuse. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective doses of 10 μ Sv as a limit for the individual radiation dose. In 1990, new recommendation on radiation protection standards was developed by International Commission on Radiological Protection (ICRP) to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30, Parts 1 ∼ 4. This study summarized the potential radiation exposure from valuable scrap metal considered to uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people following were analyzed and relevant models developed. Finally, concentrations leading to an individual dose of 10 μ Sv/yr were calculated for 14 key radionuclides. These potential radiation exposures are compared with the results of an IAEA study. 12 refs., 6 tabs., figs

  7. Ocular exposure to ultraviolet and visible radiation from light sources

    International Nuclear Information System (INIS)

    Hietanen, M.

    1992-01-01

    Exposure of the eyes to UV radiation and blue light of artificial light sources and the sun was evaluated. A spectroradiometer was used to determine the spectral irradiance at 1 nm intervals from 250 to 800 nm. Various groups of workers are at risk of ocular over-exposure to optical radiation, outdoor workers maintenance personnel of bright light source as and wear eye-protectors with effective filtering of UV radiation and blue light. (author)

  8. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  9. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Ionizing radiation includes natural radiation which has been part cosmic radiation. Radon in homes, irradiation, gamma, among others, they have also been part of ionizing radiation. The activities that have lead to natural radiation materials are: mining and processing of uranium, radio application and thorium, phosphate industry, mining and smelting of metals, oil and gas extraction, coal mining and power generation, rare earth industry and titanium, zirconium and ceramics, building materials, waste water purification. Therefore, different criteria for radiation protection have had to create against exposure to natural radiation. Distinct rules and regulations to control were created in that sense [es

  10. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  11. Observations of nesting avifauna under gamma-radiation exposure

    International Nuclear Information System (INIS)

    Buech, R.R.

    1977-01-01

    An opportunity arose to observe the nesting success of birds (up to the time of fledging) when the Enterprise Forest Radiation Facility was established for a study of the effects of gamma radiation on the flora and fauna of northern forest communities. The results of these observations on the fate of the nest occupants in relation to radiation exposure are presented

  12. The treatment progress of radiation dermatitis from external exposure

    International Nuclear Information System (INIS)

    Pu Wangyang; Liu Yulong

    2009-01-01

    Radiation dermatitis is often seen and is often a complication of radiation therapy of tumors. It is characterized by poor healing, stubborn relapse, and carcinogenesis.. The treatment include drug, physical therapy and surgery. This article describes the treatment progress of radiation dermatitis from external exposure. (authors)

  13. On the radiation exposure in temporomandibular joint examinations

    International Nuclear Information System (INIS)

    Rother, U.; Hildebrandt, K.H.

    1979-01-01

    The radiation exposure caused by standardized examinations of the temporomandibular joint has been determined with the aid of 660 exposures of an Alderson phantom. Comparative examinations were performed with the classic contact technique according to Parma to elucidate the results obtained. The lowest surface exposure was observed in contact examinations of the temporomandibular joint. Application of a flat cone led to a 13-fold reduction in surface exposure compared to contact examinations according to Parma. Furthermore, radiation exposure strongly decreased from the irradiation field to the adjacent area if a cone (flat cone and ear cone) was used. (author)

  14. Radiation exposure in I-131 iodine therapy

    International Nuclear Information System (INIS)

    Friedrich, W.

    1985-01-01

    In the past five years, the applied I-131 radioactivity quantity has doubled with a constant number of beds. In 1984, it was 925 GBq (25 Ci). Despite this development, no changes in the professional radiation exposure were made out. The evaluation shows a dose smaller than 0.04 man Sv/TBq (0.16 man rem/Ci) of I-131 applied. This value is below the traceability limit of the film badges. The incorporation load of the personnel (27 members) was determined by monthly body counter measurements. Only in one measurement thyroid gland activity of 5 kBq (140 nCi) was detected. Most measurements did not show any incorporation; and the few positive results were below 0.74 kBq (20 nCi). The environmental load due to unfiltered release from patients' rooms was determined at the fence of the nuclear research plant. The maximum was 0.24 mSv/a thyroid gland dose of a small child in 1982 taking into account the measured 90% partion of organic compound iodine. The waste water is decayed following chemical treatment in storage tanks. (orig./HP) [de

  15. The role of the United Nations Scientific Committee on the Effects of Atomic Radiation in relation to medical radiation exposures

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2001-01-01

    In 1955, growing global concerns about ionizing radiation led the General Assembly of the United Nations to establish the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The mandate of this committee, which presently includes 21 Member States, is to assess and report on the levels and effects of exposure to ionizing radiation. Accordingly, UNSCEAR applies scientific judgement in undertaking comprehensive reviews and evaluations concerning radiation and maintains an independent and neutral position in drawing its conclusions. These are published in authoritative reports to the UN General Assembly, with there having been 14 such substantive reports, with technical annexes, since 1958. The information provided by UNSCEAR assists the General Assembly in making recommendations in relation, for example, to international collaboration in the field of health. Governments and organizations all over the world rely on the committee's evaluations as the scientific basis for estimating radiation risk, establishing radiation protection and safety standards, and regulating radiation sources

  16. Picture quality in mammography, and interrelation of radiation exposure. Invisible patient care

    International Nuclear Information System (INIS)

    Katsura, Takahide; Yamamoto, Y.

    2006-01-01

    In these days when there are rumors about medical radiation exposure, it is the greatest keyword which it was inflicted with to radioactive ray's worker to secure radiation exposure reduction. I assume International Atomic Energy Agency (IAEA) BSS (Basic Safety Standards) guidance level, the medical radiation exposure reduction targeted value by JART (Japan Association of Radiological Technologists) a reasonable standard and, besides, must be able to tie equality and high quality medical care to an offer of security for a patient by getting rid of a difference in each institution. In mammography that needs is high in cancer death rate high rank of a woman as a background, authorization engineer system and institution authorization system establish it with a made guideline by a mammography precision management central committee, and not only an offer of a high quality picture depicting a minute mental change caused by a disease but also consideration of radiation exposure with the photography is done. Radiation exposure dose of radioactivity reduction by operation of a picture is nominated for possibility in digital system, but that radiation exposure dose of radioactivity increase than S/F system is felt uneasy about because actually I aim at the institution authorization acquisition. Maintain the high quality picture and to consider radiation exposure reduction are real invisible patient care, and I report the picture quality and interrelation of radiation exposure, and also speak a consideration method of the picture of the always equal tolerance level/tolerance level of the radiation exposure that a gap is not over in each institution. (author)

  17. Effect of respiratory motion on internal radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  18. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  19. International Society of Radiology and Radiation Protection

    International Nuclear Information System (INIS)

    Standertskjoeld-Nordenstam, C.G.

    2001-01-01

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  20. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  1. Prenatal radiation exposure. Conclusions in the light of radiology

    International Nuclear Information System (INIS)

    Leppin, W.

    1987-01-01

    Within 6 years of the appearance of the guideline for action to be taken by doctors in the event of prenatal exposure to radiation, intended as a proposal for discussion, the following has turned out: in no case has termination of pregnancy become necessary following prenatal radiation exposure, prenatal radiation exposure was always low (about 20 mSv), there is no risk below respective threshold doses, teratogenesis is a non-stochastic process, which is why risk assessment was modified, the sensitivity of the human fetus to radiation is highest during the period of neuroblast development (9th to 16th week p.c.), and knowledge about an existing pregnancy can be taken for granted by that time, so radiation exposure is calculable and can be restricted to negligible quantities. (TRV) [de

  2. Evoked bioelectrical brain activity following exposure to ionizing radiation.

    Science.gov (United States)

    Loganovsky, K; Kuts, K

    2017-12-01

    The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.

  3. Effect of respiratory motion on internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    2014-01-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences

  4. Female gonadal shielding with automatic exposure control increases radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Summer L.; Zhu, Xiaowei [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Magill, Dennise; Felice, Marc A. [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Xiao, Rui [University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, PA (United States); Ali, Sayed [Temple University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2018-02-15

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation. (orig.)

  5. Female gonadal shielding with automatic exposure control increases radiation risks

    International Nuclear Information System (INIS)

    Kaplan, Summer L.; Zhu, Xiaowei; Magill, Dennise; Felice, Marc A.; Xiao, Rui; Ali, Sayed

    2018-01-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation. (orig.)

  6. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    Science.gov (United States)

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.

  7. Female gonadal shielding with automatic exposure control increases radiation risks.

    Science.gov (United States)

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  8. Technologically enhanced natural radiation (TENR II). Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Natural radiation is ubiquitous. In recent decades, there has been a developing interest in fully documenting exposure of human beings to radiation of natural origin. Radiation experts have recognized that natural sources of radiation can cause exposure of members of the general public and workers to levels that warrant consideration of whether controls should be applied. The second International Symposium on Technologically Enhanced Natural Radiation (TENR II) was held in Rio de Janeiro from 12 to 17 September 1999. The objective of the symposium was to provide a forum for the international exchange of information on the scientific and technical aspects of those components of exposure to natural radiation that warrant consideration. These components were examined under the headings: the technological enhancement of natural radiation in mining and non-nuclear industries; radon indoors and outdoors; mobility and transfer of natural radionuclides; natural radiation and health effects; analytical techniques and methodologies; the remediation of contaminated sites; and regulatory and legal aspects. The symposium found that exposures to natural sources of radiation should be considered from the point of view of their amenability to control. This approach is reflected in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) and the associated IAEA documents on occupational exposure and rehabilitation of contaminated lands. The concepts of exclusion and intervention are particularly relevant to the amenability to control of natural sources of radiation. Indeed, the BSS specify that any exposure whose magnitude is essentially unamenable to control through the requirements of the BSS is out of the scope of the BSS. The BSS further indicate that protective or remedial actions shall be undertaken whenever they are justified in terms of the benefit to be obtained. Following their deliberations, the

  9. DOE 2010 Occupational Radiation Exposure November 2011

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  10. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  11. Radio frequency radiation (RFR) exposures from mobile phones

    International Nuclear Information System (INIS)

    Joyner, K.H.; Lubinas, V.; Wood, M.P.; Saribalas, J.; Adams, J.A.

    1992-01-01

    Measurements of the free space levels of radio frequency radiation (RFR) around a hand-held mobile phone and the specific absorption rate (SAR) induced in the ocular region of a phantom head exposed to RFR from a mobile phone are presented. The level of RFR measured 5 cm from the antenna of a mobile phone transmitting 600 mW was 0.27 mW/cm 2 . The average SAR level measured in the nearside eye of the phantom head containing tissue equivalent jellies was 0.7 W/kg for a 600 mW transmit power which is very much less than the spatial peak limit of 8 W/kg underlying the Australian and other national and international RFR exposure standards. (author)

  12. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  13. Radiation exposure in homes through radon and thoron daughter products

    International Nuclear Information System (INIS)

    Schmier, H.

    1984-01-01

    In a random selection of about 6000 homes in the Federal Republic of Germany, the radon concentration in room air has been measured using a simple dosemeter developed by Karlsruhe Nuclear Research Centre. The mean radon concentration has been determined to be approximately 40-50 Bqu/m 3 . If this experiment is taken as a representative survey for the FRG, the mean dose contributed by the natural radiation exposure through radon and its short-lived decay products to the effective annual dose to the lungs can be computed to be about 1 mSv (100 mrem), using the internationally accepted conversion factors. Apart from this survey, special radon measuring programmes have been carried out, including simultaneous recording of meteorological data, in order to obtain information on the parameters to be taken into account when describing the daily variations of radon concentrations. (orig./DG) [de

  14. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  15. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  16. Exposure to ultraviolet radiation: recommendations for cosmetic use

    International Nuclear Information System (INIS)

    Dias, C.; Carvalho, F.R.S.

    2000-01-01

    The beginning of the so-called tanning industry made possible the acquisition of a tanned skin independently of the available solar radiation. The tan is produced by ultraviolet radiation and, as well as in solar exposure, there are additional risks on the use of the so-called sun-beds. The damaging effects of ultraviolet exposure are well documented and reasonably quantified. The objective of this paper is to inform the potential effects of ultraviolet radiation exposure in sun-beds and to provide recommendations in order to reduce the associated risks. These recommendations are adapted for cosmetics use only (author)

  17. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status

    Directory of Open Access Journals (Sweden)

    Ola Engelsen

    2010-05-01

    Full Text Available This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  18. Regulation of nuclear radiation exposures in India

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, U.C. E-mail: ucmishra@yahoo.com

    2004-07-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radio activity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the de- commissioning stage. The data is provided to AERB and is available to members of the public. In addition, a

  19. Regulation of nuclear radiation exposures in India

    International Nuclear Information System (INIS)

    Mishra, U.C.

    2004-01-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radio activity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the de- commissioning stage. The data is provided to AERB and is available to members of the public. In addition, a multi

  20. Leukaemia risks and exposure to ionizing radiations. ASN seminar, Tuesday, June 9, 2015, report

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe; Samain, Jean-Paul; Colonna, Marc; Maynadie, Marc; Richardson, David; Bey, Pierre; Leuraud, Klervi; Laurier, Dominique; Hemon, Denis; Spycher, Ben; Kosti, Ourania; Bouville, Andre; Grosche, Bernd; Ziegelberger, Gunde; Kesminiene, Ausrele; Clavel, Jacqueline; Smeesters, Patrick; Murith, Christophe

    2015-08-01

    This seminar aims at proposing a review of present knowledge on leukaemia risks for children and adults associated with ionizing radiations, and at sharing knowledge between experts. After an introduction which outlined the interest of the ASN in research issues, and the importance awarded by the ASN to the variety of points of view, a first session addressed leukaemia and exposures to ionizing radiations. The contributions addressed some general aspects (an overview of leukaemia in France, the different types of adult and child leukaemia), leukaemia and acute exposures to ionizing radiations (ionizing radiation and leukaemia among Japanese bomb survivors, risks of leukaemia after radiotherapy), leukaemia and chronic exposures to ionizing radiations (assessment of epidemiological studies for adult chronic exposures). The second session addressed childhood leukaemia and ionizing radiations. The contributions of this second session more particularly addressed the following topics: childhood leukaemia and natural radioactivity (French studies, synthesis of international studies and a new Swiss study), childhood leukaemia and proximity of nuclear base installations (assessment of national and international studies, analysis of cancer risks in populations near nuclear facilities in the US, calculation of dose at the medulla as example of dosimetry of ionizing radiations and leukaemia, conclusions of the 2012 MELODI workshop), childhood leukaemia and scanner (recent results and perspectives), childhood leukaemia and other risk factors (etiology of childhood leukaemia - presentation of French studies initiated by the INSERM, and presentation of studies initiated by BfS)

  1. Evaluation of the radiation exposure. Recommendation of the radiation protection commission

    International Nuclear Information System (INIS)

    Baldauf, Daniela

    2014-01-01

    The recommendation of the Strahlenschutzkommission (radiation protection commission) deals with the realistic requirements for the radiation exposure assessment based on radio-ecological modeling. The recommendation is applicable for all exposure situations that can be derived from FEP (features, events processes) exposure scenarios. In this case the exposure scenario consists of natural and technical features and a set of processes and events that can influence the radiation exposure of the population. The report includes the scientific justification, the previous procedure in Germany and abroad (EURATOM, France, UK, Ukraine, USA).

  2. Radiation dosimetry in radiotherapy with internal emitters

    International Nuclear Information System (INIS)

    Stabin, Michael G.

    1997-01-01

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  3. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  4. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Marti, J.M.; Robles, J.E.; Arbizu, J.; Castro, F. de; Berian, J.M.; Richter, J.A.

    1992-01-01

    We analyzed the radiological exposure to patients during Extracorporeal Shock Wave Lithotripsy (ESWL) using a second generator lithotriptor. Stone location is accomplished by fluoroscopy and 'quick pics' or snapshots. A prospective study over 55 patients showed a mean exposure of 32.2 R. The introduction of the ALARA criterion reduced it to 16.1 R in the following 145 patients. Mean radiation exposure to patient varies according to treatment difficulty. A mean increase of radiation exposure of 1.6 between low and high difficulty treatment groups was observed. This variation was about 96% when the physician who performed the treatment was considered. (author)

  5. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  6. Measurement of man's exposure to external radiation

    International Nuclear Information System (INIS)

    Becker, K.

    1975-01-01

    After outlining briefly the rationale for personnel radiation monitoring with integrating detectors, a review is presented of some developments which have taken place in personnel and environmental dosimetry during the past 3.5 years. The results of a pilot field experiment concerning the stability of film and thermoluminescent dosimeters (TLDs) in four Latin-American countries are summarized. It shows that film dosimeters should be used only with caution, and in locations with a moderate climate. A survey is being conducted on the current status and trends in personnel monitoring, involving detailed questioning of over 150 laboratories in about forty countries to obtain information on the type of service and detectors, evaluation and recordkeeping, additional applications, problem and development areas, intercomparisons, practical experiences with different systems, administrative and legal aspects, etc. According to the preliminary results, the trend is away from photographic film and towards mostly automatic TLD systems, not only in the industrialized countries but also in several of the larger and more advanced developing countries. The need for higher quality standards and frequent performance tests under realistic conditions is emphasized. Differences in the requirements for personnel and []stationary environmental dosimeters are outlined. As evidenced by the results of a recent international intercomparison of such dosimeters under laboratory and field conditions, involving 56 dosimeter sets from eleven countries, reasonably accurate results can be obtained with several TLD systems including LiF, CaSO 4 :Dy, and CaF 2 :Mn; however CaF 2 :Dy is less reliable than the others and film is not adequate at all. Transit doses were found to be erratic and frequently high. Limitations in the assessment of population doses from stationary detector readings are discussed. (auth)

  7. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  8. Fluoroscopic radiation exposure: are we protecting ourselves adequately?

    Science.gov (United States)

    Hoffler, C Edward; Ilyas, Asif M

    2015-05-06

    While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures

  9. The causes and consequences of human exposure to ionising radiation

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1991-01-01

    Few phenomena cause as much concern in developed countries as human exposure to artificial sources of radiation, and yet there are more potent threats to health: natural radiation is more pervasive and exposures more substantial; common practices such as smoking and drinking are more detrimental. Developing countries may be more anxious to establish radiological procedures than radiological protection. This paper gives the ranges of exposure to which people are subjected from natural and artificial sources which should help to put all doses in perspective. The relationship between dose and risk is established and used to show that exposures to radiation leak to low levels of risk. Finally, the new recommendations of ICRP for the control of radiation risk are presented. (Author)

  10. Mouse fecal microbiome after exposure to high LET radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — Space travel is associated with continuous low-dose-rate exposure to high Linear Energy Transfer (LET) radiation. Pathophysiological manifestations after low-dose...

  11. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang (Division of Urology, Dept. of Surgery, National Yang-Ming Medical College and Veterans General Hospital-Taipei, Taiwan (China))

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au).

  12. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au)

  13. Evaluation of natural radiation exposure of the French population

    International Nuclear Information System (INIS)

    Billon, S.; Morin, A.; Baysson, H.; Gambard, J.P.; Rannou, A.; Tirmarche, M.; Laurier, D.; Caer, S.

    2004-01-01

    Exposure of the French population to ionising radiation is mainly due to natural radiation (i.e. exposure through: inhalation of radon decay products, external radiation of terrestrial and cosmic origin and water and food ingestion). In an epidemiological context, it is necessary to estimate as precisely as possible the population exposure, in order to study its influence on health indicators. In this aim, indicators of population exposure should be created taking into account results of environmental measurements by controlling the different factors that may influence these measurements (dwelling characteristics, seasonal variations, population density). The distribution of these exposures should also be studied at different geographical levels (department, job area). This work updates the estimation of the French population exposure to natural radiation. Radon exposure indicators have been based on concentrations measured in dwellings, corrected on season and dwelling characteristics (departmental range: 19-297 Bq/m 3 ). Indicators of terrestrial gamma ray exposure have been based on measured indoor and outdoor dose rates adjusted on dwelling characteristics (22-95 nSv/h). Cosmic ray exposure has been evaluated from altitude and weighted by population density (0.27-0.38 mSv/yr). Due to these three components, the effective annual dose was estimated to be at 2.2 mSv. (author)

  14. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  15. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  16. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  17. Exposure of the Spanish population to radiation from natural sources

    International Nuclear Information System (INIS)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L.

    2006-01-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value by a conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  18. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  19. Patient radiation exposure during pediatric cardiac catheterization

    International Nuclear Information System (INIS)

    Fellows, K.E.; Leibovic, S.J.

    1983-01-01

    Exposure air product (EAP) and center field entrance exposure (free-in-air) were measured in seventeen pediatric patients undergoing cardiac catheterization. Exposures were recorded separately for biplane fluoroscopy and cine angiocardiography using flat-plate ionization chambers. In the posterior-anterior (PA) projections, median EAP was 425 Roentgen-square centimeter (R-cm 2 ), with a range of 90.5-3,882 R-cm 2 ; 29-35% of this exposure occurred during cine filming. In the lateral projection, median EAP was 276 R-cm 2 (range 117-1,173); 52-59% of this exposure was due to cine filming. Median center field entrance exposure in the PA view was 7.86 Roentgens (R) with a range 2.16-73.9 of and in the lateral projection 7.39 R (range 2.64-24.6). As much as 25% of the exposure from the entire examination was contributed by manual ''test'' exposures to set cine radiographic kVp. We recommend use of testing circuits, which determine cine radiographic factors automatically and thus should lower levels of exposure

  20. Patient radiation exposure during pediatric cardiac catheterization

    International Nuclear Information System (INIS)

    Fellows, K.E.; Leibovic, S.J.

    1983-01-01

    Exposure are product (EAP) and center field entrance exposure (free-in-air) were measured in seventeen pediatric patients undergoing cardiac catheterization. Exposures were recorded separately for biplane fluoroscopy and cine angiocardiography using flat-plate ionization chambers. In the posterior-anterior (PA) projections, median EAP was 425 Roentgen-square centimeter (R-cm 2 ), with a range of 90.5-3,882 R-cm 2 ; 29-35% of this exposure occurred during cine filming. In the lateral projection, median EAP was 276 R-cm 2 (range 117-1,173); 52-59% of this exposure was due to cine filming. Median center field entrance exposure in the PA view was 7.86 Roentgens (R) with a range 2.16-73.9 of and in the lateral projection 7.39 R (range 2.64-24.6). As much as 25% of the exposure from the entire examination was contributed by manual ''test'' exposures to set cine radiographic kVp. We recommend use of testing circuits, which determine cine radiographic factors automatically and thus should lower levels of exposure. (orig.)

  1. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Van Swearingen, F.L.; McCullough, D.L.; Dyer, R.; Appel, B.

    1987-01-01

    Extracorporeal shock wave lithotripsy is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved to image the stones it is important to know how much radiation the patient receives during this procedure. Surface radiation exposure to the patient was measured in more than 300 fluoroscopic and radiographic procedures using thermoluminescent dosimeters. Initial results showed an average skin exposure of 10.1 rad per procedure for each x-ray unit, comparing favorably with exposure rates for percutaneous nephrostolithotomy and other routine radiological procedures. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician experience and number of shocks required. Suggestions are given that may result in a 50 per cent reduction of radiation exposure

  2. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  3. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  4. Correlation between natural radiation exposure and cancer mortality, (4)

    International Nuclear Information System (INIS)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro.

    1987-01-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them. (author)

  5. Correlation between natural radiation exposure and cancer mortality, (4)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro

    1987-03-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them.

  6. The influence of potential exposure to radiation protection system of accelerator installation TESLA

    International Nuclear Information System (INIS)

    Orlic, M.; Cuknic, O.

    2000-01-01

    Potential exposure of individuals at big nuclear machines like Accelerator Installation Tesla (AIT) generates direct requirements to reliability of radiation protection system. Starting from technical characteristics of AlT and international recommendation concerning potential exposure and the probability of death has been calculated. The reference risk has been specified. Comparing then we calculated the probability of the failure of the protective system. The reliability of the system has to be better (author)

  7. Late health effects of chronic radiation exposure of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, Ilia V.; Malinovsky, Georgy P.; Konshina, Lidia G.; Zhukovsky, Michael V. [Institute of Industrial Ecology UB RAS, 620219, 20, Sophy Kovalevskoy St., Ekaterinburg (Russian Federation); Tuzankina, Irina A. [Institute of Immunology and Physiology UB RAS, 620049, 106, Pervomayskaya St., Ekaterinburg (Russian Federation)

    2014-07-01

    Accidental explosion of waste storage tank at former soviet plutonium production plant 'Mayak' in 1957 resulted in emission of considerable amount of radioactive substances to the atmosphere. Atmospheric transfer and fallout caused contamination of the environment by Sr-90 and short-lived radionuclides (East-Ural Radioactive Trace, EURT). Due to consumption of contaminated food and milk some internal organs were affected to relatively high radiation exposure. Archive data of causes of deaths of rural population of EURT northern part for period 1957-2000 were used to create the Register on causes of deaths. Register records related to the settlements where initial surface contamination by Sr-90 was above and below 3.7 kBq/m2 were included to exposed (4 844 records) and unexposed (6 158 records) group respectively. Basing on the Register the analysis of cancer and non-cancer health effects of radiation exposure was conducted. By estimating proportionate mortality ratios statistically significant excess mortality due to the groups of causes of death as follow was observed in exposed population: stomach, liver and cervix cancers; group consisted only of stomach cancer; non-cancer deceases of infectious etiology. Non-significant but remarkably high risk was observed for the following groups of causes of death: bone cancer; leukemia; liver cancer; cervix cancer. Insignificant, virtually zero risk was found for: non-gastrointestinal solid cancers; colon and lung cancers; non-infectious non-cancer deceases. At the same time, considerable radiation doses were absorbed in bone (mean bone surface dose about 0.1 Gy) and colon (mean dose about 0.07 Gy). Doses absorbed in other organs and tissues were negligible and amounted less than 0.01 Gy for most tissues. It can be seen that some disagreement between observed effects and absorbed doses is revealed. Most remarkable is the high excess risks of stomach, liver and cervix cancers as well as non-cancer deceases of

  8. Childhood cancer and occupational radiation exposure in parents

    International Nuclear Information System (INIS)

    Hicks, N.; Zack, M.; Caldwell, G.G.; Fernbach, D.J.; Falletta, J.M.

    1984-01-01

    To test the hypothesis that a parent's job exposure to radiation affeOR). its his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR)) . infinity, one-sided 95% lower limit . 1.5; P . 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR . 2.73; P . 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations

  9. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  10. Radio frequency (RF) radiation exposure and health

    NARCIS (Netherlands)

    Visser, H.J.; Mahmoudi, R.; Iniewski, K.

    2013-01-01

    Through the history of wireless communication I show the explosive growth in time of mobile telephony and explain how this affects the perception of fear of the general public for electromagnetic radiation. Then, after explaining the physics of electromagnetic radiation, I discuss the interaction

  11. Cost benefit analysis for occupational radiation exposure

    International Nuclear Information System (INIS)

    Caruthers, G.F.; Rodgers, R.C.; Donohue, J.P.; Swartz, H.M.

    1978-01-01

    In the course of system design, many decisions must be made concerning different aspects of that particular system. The design of systems and components in a nuclear power plant has the added faction of occupational exposure experienced as a result of that design. This paper will deal with the different methods available to factor occupational exposure into design decisions. The ultimate goal is to have exposures related to the design 'As Low As Reasonably Achievable' or ALARA. To do this an analysis should be performed to show that the cost of reducing exposures any further cannot be justified in a cost-benefit analysis. In this paper examples will be given that will show that it is possible to change to a design which would increase occupational exposure somewhat but would increase the benefit over the cost of the extra exposure received. It will also be shown that some changes in design or additional equipment could be justified due to a reduction in exposure while some changes could not be justified on a reduction in exposure aspect alone but are justified on a time saving aspect such as during a refueling outage. (author)

  12. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium; ICRP 2015. 3. Internationales Symposium zum System des Strahlenschutzes. Bericht und Reflexion ueber ein bedeutsames Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2016-08-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  13. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  14. Radiation exposure during travelling in Malaysia

    International Nuclear Information System (INIS)

    Omar, M.; Hassan, A.; Sulaiman, I.

    2006-01-01

    Absorbed dose rates in vehicles during travelling by different modes of transport in Malaysia were measured. Radiation levels measured on roads in Peninsular Malaysia were within a broad range, i.e. between 36 and 1560 nGy h -1 . The highest reading, recorded while travelling near monazite and zircon mineral dumps, was 13 times the mean environmental radiation level of Malaysia. It is evident that radioactive material dumps on the roadsides can influence the radiation level on the road. The absorbed dose rates measured while travelling on an ordinary train were between 60 and 350 nGy h -1 . The highest reading was measured when the train passed a tunnel built through a granite rock hill. The measurement during sea travelling by ferries gave the lowest radiation level owing to merely cosmic radiation at the sea level. (authors)

  15. Cancer risks following diagnostic and therapeutic radiation exposure in children

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A. [National Institutes of Health, Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS 7044, Rockville, MD (United States)

    2006-09-15

    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life. (orig.)

  16. Cancer risks following diagnostic and therapeutic radiation exposure in children

    International Nuclear Information System (INIS)

    Kleinerman, Ruth A.

    2006-01-01

    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life. (orig.)

  17. Radiation exposure from Chest CT: Issues and Strategies

    Science.gov (United States)

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  18. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  19. Effects of radiation exposure from radiopharmaceuticals used in diagnostic studies

    International Nuclear Information System (INIS)

    Witcofski, R.L.

    1981-01-01

    In the United States about 90 percent of man-made radiation exposure to the general population is from the use of radiation in diagnostic medicine. Although the doses of radiation from these procedures to individuals are generally quite small, large numbers of people are exposed. Estimates of the radiation doses associated with such use in the healing arts are approximately 15 million person-rem to the general population from diagnostic x ray and 3.3 million person-rem from the diagnostic use of radiopharmaceuticals. The purpose of this paper is to present what is known about the possible effects of radiation from diagnostic radiopharmaceuticals

  20. Radiation exposure of radiographers who handle 18 F ...

    African Journals Online (AJOL)

    18F-fluorodeoxyglucose (18F-FDG) is used in most diagnostic applications of Positron Emission Tomography (PET). It has high annihilation energy of 511 keV, which results in potentially high radiation doses for staff. This study investigated radiographer radiation exposure during receipt, administration and scanning of ...

  1. Radiation exposure from diagnostic imaging among patients with gastrointestinal disorders.

    LENUS (Irish Health Repository)

    Desmond, Alan N

    2012-03-01

    There are concerns about levels of radiation exposure among patients who undergo diagnostic imaging for inflammatory bowel disease (IBD), compared with other gastrointestinal (GI) disorders. We quantified imaging studies and estimated the cumulative effective dose (CED) of radiation received by patients with organic and functional GI disorders. We also identified factors and diagnoses associated with high CEDs.

  2. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    Antic, D.; Markovic, P.; Petrovic, Z.

    1993-01-01

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  3. Improvement of NSSS design to reduce occupational radiation exposure (ORE)

    International Nuclear Information System (INIS)

    Dubourg, M.

    1985-05-01

    As a result of its R and D activities, FRAMATOME has initiated concrete measures to help to reduce personnel radiation exposure. These measures include reduction in the sources and quantity of activable products, and in the duration of personnel exposure during maintenance

  4. Assessment of occupational exposures to external radiation - IAEA recommendation 1995

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Praha (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The IAEA recommendation contains the guidance on: (1) establishing monitoring programmes; (2) the interpretation of results; (3) records keeping; (4) quality assurance. The objectives for workplace monitoring including the recommended methods are also involved. The choice of personal dosemeter depends not only on the type of radiation but also on the method of interpretation what will be used: (1) photon dosemeters giving information only on the personal dose equivalent Hp(10) - mostly TL or RPL dosemeters are used; (2) photon dosemeter of discriminating type giving, in addition to Hp(10) and Hp(0.07), some indication of radiation type and effective energy and detection of electrons - data which must be known for E calculation -mostly film badge is used; (3) extremity dosemeters giving information on Hp(0.07) - mostly TL dosemeters are used; (4) neutron dosemeters giving information on Hp(10) -track-etch or albedo dosemeters are used. The monitoring service should have quality assurance testing which is an organization`s internal system of procedures and practices which assures the quality of its service. This process may be part of the approval performance testing which is a part of approved procedures carried out be the authoritative organization in regular intervals. The approved monitoring service should perform the dose records keeping which serve the protection of the workers and these data are the part of the Register of the Professional Exposures which is mostly organized by the authoritative body. (J.K.).

  5. Assessment of occupational exposures to external radiation - IAEA recommendation 1995

    International Nuclear Information System (INIS)

    Trousil, J.; Plichta, J.; Nikodemova, D.

    1995-01-01

    The IAEA recommendation contains the guidance on: (1) establishing monitoring programmes; (2) the interpretation of results; (3) records keeping; (4) quality assurance. The objectives for workplace monitoring including the recommended methods are also involved. The choice of personal dosemeter depends not only on the type of radiation but also on the method of interpretation what will be used: (1) photon dosemeters giving information only on the personal dose equivalent Hp(10) - mostly TL or RPL dosemeters are used; (2) photon dosemeter of discriminating type giving, in addition to Hp(10) and Hp(0.07), some indication of radiation type and effective energy and detection of electrons - data which must be known for E calculation -mostly film badge is used; (3) extremity dosemeters giving information on Hp(0.07) - mostly TL dosemeters are used; (4) neutron dosemeters giving information on Hp(10) -track-etch or albedo dosemeters are used. The monitoring service should have quality assurance testing which is an organization's internal system of procedures and practices which assures the quality of its service. This process may be part of the approval performance testing which is a part of approved procedures carried out be the authoritative organization in regular intervals. The approved monitoring service should perform the dose records keeping which serve the protection of the workers and these data are the part of the Register of the Professional Exposures which is mostly organized by the authoritative body. (J.K.)

  6. Cosmic radiation exposure on Canadian-based commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R

    1998-07-01

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y{sup -1} but will be well below the occupational limit of 20 mSv y{sup -1}. (author)

  7. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R

    1999-07-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y{sup -1}, but will be below the occupational limit of 20 mSv.y{sup -1}. (author)

  8. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  9. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Someswara Rao, M.; Nagaratnam, A.; Mishra, U.C.

    2002-01-01

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40 K radiation dose from the naturally occurring body 40 K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40 K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40 K turned out to be 165 mSv for Indians. (author)

  10. Occupational radiation exposure monitoring among radiation workers in Nepal

    International Nuclear Information System (INIS)

    Bhatt, Chhavi Raj; Shrestha, Shanta Lall; Khanal, Tara; Ween, Borgny

    2008-01-01

    Nepal was accepted as a member of the IAEA in 2007. Nepal is one of the world's least developed countries and is defined in Health Level IV. The population counted 26.4 millions in 2007. The health care sector increases with new hospitals and clinics, however, Nepal has no radiation protection authority or radiation protection regulation in the country until now. The radiation producing equipment in the health sector includes conventional X-ray and dental X-ray equipment, fluoroscopes, mammography, CT, catheterization laboratory equipment, nuclear medicine facilities, a few linear accelerators, Co 60 teletherapy and High Dose Rate brachytherapy sources. The situation regarding dosimetry service for radiation workers is unclear. A survey has been carried out to give an overview of the situation. The data collection of the survey was performed by phone call interviews with responsible staff at the different hospitals and clinics. Data about different occupationally exposed staff, use of personal radiation monitoring and type of dosimetry system were collected. In addition, it was asked if dosimetry reports were compiled in files or databases for further follow-up of staff, if needed. The survey shows that less of 25% of the procedures performed on the surveyed hospitals and clinics are performed by staff with personnel radiation monitoring. Radiation monitoring service for exposed staff is not compulsory or standardized, since there is no radiation protection authority. Nepal has taken a step forward regarding radiation protection, with the IAEA membership, although there are still major problems that have to be solved. An evaluation of the existing practice of staff dosimetry can be the first helpful step for further work in building a national radiation protection authority. (author)

  11. Occupational radiation exposure and mortality study

    International Nuclear Information System (INIS)

    Coppock, E.; Dobson, D.; Fair, M.

    1992-06-01

    An epidemiological cohort study of some 300,000 Canadians enrolled in the National Dose Registry (NDR) is being undertaken to determine if there is excess cancer or other causes of mortality among those workers who are occupationally exposed to low levels of ionizing radiation. The results of this study may provide better understanding of the dose-response relationship for low doses of ionizing radiation and aid in the verification of risk estimates for radiation-induced cancer mortality. The Department of National Health and Welfare (DNHW) is responsible for the Registry; this study is being carried out by the Bureau of Radiation and Medical Devices (BRMD) with financial assistance and co-operation of various agencies including Statistics Canada and the Atomic Energy Control Board

  12. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  13. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. E-mail: gianni.deangelis@iol.it; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A

    2001-06-01

    A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.

  14. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  15. Fitness of equipment used for medical exposures to ionising radiation

    International Nuclear Information System (INIS)

    1998-01-01

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious consequences, the incident would not

  16. National registry of workers occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Cunha, P.G. da; Mota, H.C.; Alegre, S.

    1995-01-01

    The Brazilian Nuclear Energy Commission started in 1987 a nationwide program in order to collect and maintain the radiation exposure records of the Brazilian workers. This data base consists of several files including: workers - personal data; institutions - section or department where the workers perform their activities; and annual doses - annual integrated doses and any relevant information regarding their exposures. The data base structure is introduced in the present work where its objectives are discussed taking into account the magnitude of the program as well as the difficulties of maintaining and the long term perspectives of a nationwide register of radiation occupational exposures. (author). 15 refs., 1 fig

  17. Radiation exposure and risk of death

    International Nuclear Information System (INIS)

    Hongo, Syozo

    1979-01-01

    By using the risk factor given in ICRP publication 26 and an assumption of linear relationship between risk and dose, death rate and death number which correspond to radiation dose level and collective dose level of Japanese are estimated and they are compared with vital statistics of Japanese in 1975 to get out some ideas about radiation risk relative to the risks of everyday life. (author)

  18. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  19. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  20. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs