WorldWideScience

Sample records for internal oxygen concentrations

  1. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  2. HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers.

    Science.gov (United States)

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-11-01

    The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.

  3. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  4. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Radiation survival of cells from spheroids grown in different oxygen concentrations

    International Nuclear Information System (INIS)

    Franko, A.J.; Sutherland, R.M.

    1979-01-01

    The position of the internal, chronically hypoxic cells in spheroids was varied by alterations in the oxygen concentration in the growth medium. Such alterations were expected to cause large changes in the size of the radiobiologically hypoxic fraction. This was tested by growing and irradiating spheroids in oxygen concentrations between 5 and 20.3%, ensuring that the irradiation and growth conditions were as similar as possible. The survival curves appeared to be linear below a surviving fraction of 3 x 10 -2 , and the slopes were intermediate between the slopes of control curves for cells from spheroids irradiated in nitrogen or when fully oxygenated. Thus direct estimates of the hypoxic fractions could not be made. Two models of oxygen diffusion might explain the data. One model assumes that a large fraction of cells was fully hypoxic (radiobiologically) and that these internal, G 1 -confined, chronically hypoxic cells had a lower inherent radioresistance than the outer proliferating cells. Evidence was presented which indicated that this model was unlikely to be correct. The other model assumes that the inherent radioresistance was equal throughout the spheroid, and that the innermost cells died before the oxygen concentration was reduced sufficiently to cause full hypoxic protection. Theoretical survival curves based on this model were generated using the measured geometries ofthe spheroids and multitarget single-hit survival theory. Acceptable agreement with the postulate that the innermost cells of spheroids die at between 0.2 and 0.4% oxygen was obtained. These data may have implications regarding the relative contributions of chronic and acute hypoxia to the fraction of hypoxic cells in tumors

  6. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    Science.gov (United States)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  7. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  8. Hydrogen and oxygen concentrations in IXCs: A compilation

    International Nuclear Information System (INIS)

    Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

    1996-06-01

    This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins

  9. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  10. Effect of Mechanical Alloying Atmospheres and Oxygen Concentration on Mechanical Properties of ODS Ferritic Steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Choi, Byoungkwon; Han, Changhee; Kim, Kibaik; Kang, Sukhoon; Chun, Youngbum; Kim, Taekyu

    2013-01-01

    Finely dispersed nano-oxide particles with a high number density in the homogeneous grain matrix are essential to achieve superior mechanical properties at high temperatures, and these unique microstructures can be obtained through the mechanical alloying (MA) and hot consolidation process. The microstructure and mechanical property of ODS steel significantly depends on its powder property and the purity after the MA process. These contents should be carefully controlled to improve the mechanical property at elevated temperature. In particular, appropriate the control of oxygen concentration improves the mechanical property of ODS steel at high temperature. An effective method is to control the mechanical alloying atmosphere by high purity inert gas. In the present study, the effects of mechanical alloying atmospheres and oxygen concentration on the mechanical property of ODS steel were investigated. ODS ferritic alloys were fabricated in various atmospheres, and the HIP process was used to investigate the effects of MA atmospheres and oxygen concentration on the microstructure and mechanical property. ODS ferritic alloys milled in an Ar-H 2 mixture, and He is effective to reduce the excess oxygen concentration. The YH 2 addition made an extremely reduced oxygen concentration by the internal oxygen reduction reaction and resulted in a homogeneous microstructure and superior creep strength

  11. Medical Oxygen Concentrator for Microgravity Operation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have all seen people carrying portable oxygen tanks or concentrators to provide critical life support respiratory oxygen. Heavy, bulky, and for O2 concentrators,...

  12. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  13. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  14. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  15. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  16. Oxygen concentration diffusion analysis of lead-bismuth-cooled, natural-circulation reactor

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki

    2001-11-01

    The feasibility study on fast breeder reactors in Japan has been conducted at JNC and related organizations. The Phase-I study has finished in March, 2001. During the Phase-I activity, lead-bismuth eutectic coolant has been selected as one of the possible coolant options and a medium-scale plant, cooled by a lead-bismuth natural circulation flow was studied. On the other side, it is known that lead-bismuth eutectic has a problem of structural material corrosiveness. It was found that oxygen concentration control in the eutectic plays an important role on the corrosion protection. In this report, we have developed a concentration diffusion analysis code (COCOA: COncentration COntrol Analysis code) in order to carry out the oxygen concentration control analysis. This code solves a two-dimensional concentration diffusion equation by the finite differential method. It is possible to simulate reaction of oxygen and hydrogen by the code. We verified the basic performance of the code and carried out oxygen concentration diffusion analysis for the case of an oxygen increase by a refueling process in the natural circulation reactor. In addition, characteristics of the oxygen control system was discussed for a different type of the control system as well. It is concluded that the COCOA code can simulate diffusion of oxygen concentration in the reactor. By the analysis of a natural circulation medium-scale reactor, we make clear that the ON-OFF control and PID control can well control oxygen concentration by choosing an appropriate concentration measurement point. In addition, even when a trouble occurs in the oxygen emission or hydrogen emission system, it observes that control characteristic drops away. It is still possible, however, to control oxygen concentration in such case. (author)

  17. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    Science.gov (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  18. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2003-01-27

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes.

  19. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2003-01-01

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes

  20. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  1. Application of Nanosize Zeolite Molecular Sieves for Medical Oxygen Concentration

    Directory of Open Access Journals (Sweden)

    Mingfei Pan

    2017-07-01

    Full Text Available The development of a portable oxygen concentrator is of prime significance for patients with respiratory problems. This paper presents a portable concentrator prototype design using the pressure/vacuum swing adsorption (PVSA cycle with a deep evacuation step (−0.82 barg instead of desorption with purge flow to simplify the oxygen production process. The output of the oxygen concentrator is a ~90 vol % enriched oxygen stream in a continuous adsorption and desorption cycle (cycle time ~90 s. The size of the adsorption column is 3 cm in diameter and 20 cm in length. A Li+ exchanged 13X nanosize zeolite is used as the adsorbent to selectively adsorb nitrogen from air. A dynamic model of the pressure and vacuum swing adsorption units was developed to study the pressurization and depressurization process inside the microporous area of nanosized zeolites. The describing equations were solved using COMSOL Multiphysics Chemical Engineering module. The output flow rate and oxygen concentration results from the simulation model were compared with the experimental data. Velocity and concentration profiles were obtained to study the adsorption process and optimize the operational parameters.

  2. Use of an oxygen concentrator in a Nigerian neonatal unit: economic implications and reliability.

    Science.gov (United States)

    Mokuolu, Olugbenga A; Ajayi, Oluade A

    2002-09-01

    A 3-year experience of using an oxygen concentrator in a Nigerian newborn unit and economic appraisal of its effectiveness is reported. The oxygen concentrator is a device that absorbs nitrogen from ambient air, with a resultant oxygen concentration of 85 to 95% at different flow rates. The oxygen concentrator met our oxygen needs which averaged 18 hours a day, and had a huge cost advantage over the oxygen cylinders. The cost of oxygen via cylinder for just one patient for a year exceeds the initial capital outlay for a concentrator. The Puritan-Bennett oxygen concentrator has a lifespan of at least 7 years and is virtually maintenance-free for the 1st 26,400 hours of use, after which some major components might need replacement. We conclude that in developing countries oxygen concentrators are a more cost-effective, reliable and convenient means of oxygen supply than oxygen cylinders, and recommend their use where there is a high demand for oxygen.

  3. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  4. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  5. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    National Research Council Canada - National Science Library

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  6. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  7. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  8. Monitoring and measurement of oxygen concentrations in liquid sodium

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-01-01

    The measurement of oxygen concentrations in sodium at levels of interest for LMFBR applications is reviewed. Additional data are presented to support the validity of the vanadium-equilibration method as a reference for determination of oxygen concentrations in sodium at levels equal to or less than 15 ppM. Operating experience with electrochemical oxygen meters that have a thoria-yttria electrolyte and a Na--Na 2 O reference electrode is described. Meter lifetimes in excess of one year have generally been achieved for operating temperatures of 352 and 402 0 C, and fairly stable emfs have been observed for periods of several months. 7 fig, 21 references

  9. Changes in Oxygen Partial Pressure in the Vitreous Body and Arterial Blood of Rabbits Depending on Oxygen Concentration in Inspired Mixture.

    Science.gov (United States)

    Amkhanitskaya, L I; Nikolaeva, G V; Sokolova, N A

    2015-07-01

    We demonstrated that the vitreous body of one-month-old rabbits becomes a "reservoir" for storage and accumulation of oxygen after exposure to additional oxygenation of the organism (O2 concentrations in inspired gas mixture were 40, 60, 85, and 99%). The higher was O2 concentration in inspired mixture, the higher was oxygen saturation of the blood and vitreous body. O2 concentration of 40% was relatively safe for eye tissues. O2 concentration >60% induced oxygen accumulation in the vitreous body, which can be a provoking factor for the development of oxygen-induced pathologies.

  10. About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2008-01-01

    Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.

  11. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R.

    2004-01-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  12. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  13. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  14. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    International Nuclear Information System (INIS)

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  15. Correlation of Oxygenated Hemoglobin Concentration and Psychophysical Amount on Speech Recognition

    Science.gov (United States)

    Nozawa, Akio; Ide, Hideto

    The subjective understanding on oral language understanding task is quantitatively evaluated by the fluctuation of oxygenated hemoglobin concentration measured by the near-infrared spectroscopy. The English listening comprehension test wihch consists of two difficulty level was executed by 4 subjects during the measurement. A significant correlation was found between the subjective understanding and the fluctuation of oxygenated hemoglobin concentration.

  16. Characterization of reaction products in sodium-oxygen batteries : An electrolyte concentration study

    OpenAIRE

    Hedman, Jonas

    2017-01-01

    In this thesis, the discharge products formed at the cathode and the performance and cell chemistry of sodium-oxygen batteries have been studied. This was carried out using different NaOTf salt concentrations. The influence of different salt concentrations on sodium-oxygen batteries was investigated since it has been shown that increasing the salt concentration beyond conventional concentrations could result in advantages such as increased stability of the electrolytes towards decomposition, ...

  17. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    Science.gov (United States)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  18. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  19. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  20. The effect of inhaling concentrated oxygen on performance during repeated anaerobic exercise

    Directory of Open Access Journals (Sweden)

    J Heller

    2010-09-01

    Full Text Available The objective of the pilot study was to test the effect of inhaling 99.5% oxygen on recovery. The source of concentrated oxygen was O-PUR (Oxyfit. Research subjects completed two thirty-second Wingate tests at an interval of ten minutes, and in the interval between the tests the subjects inhaled either oxygen or a placebo in random order. This procedure was then repeated. The pilot study revealed a significantly (p<0.03 smaller performance drop in the second Wingate test following the inhalation of 99.5% oxygen when compared with the placebo. The results of the study indicate that inhaling concentrated oxygen may have a positive effect on short-term recovery processes.

  1. Reduction of oxygen concentration by heater design during Czochralski Si growth

    Science.gov (United States)

    Zhou, Bing; Chen, Wenliang; Li, Zhihui; Yue, Ruicun; Liu, Guowei; Huang, Xinming

    2018-02-01

    Oxygen is one of the highest-concentration impurities in single crystals grown by the Czochralski (CZ) process, and seriously impairs the quality of the Si wafer. In this study, computer simulations were applied to design a new CZ system. A more appropriate thermal field was acquired by optimization of the heater structure. The simulation results showed that, compared with the conventional system, the oxygen concentration in the newly designed CZ system was reduced significantly throughout the entire CZ process because of the lower crucible wall temperature and optimized convection. To verify the simulation results, experiments were conducted on an industrial single-crystal furnace. The experimental results showed that the oxygen concentration was reduced significantly, especially at the top of the CZ-Si ingot. Specifically, the oxygen concentration was 6.19 × 1017 atom/cm3 at the top of the CZ-Si ingot with the newly designed CZ system, compared with 9.22 × 1017 atom/cm3 with the conventional system. Corresponding light-induced degradation of solar cells based on the top of crystals from the newly designed CZ system was 1.62%, a reduction of 0.64% compared with crystals from the conventional system (2.26%).

  2. The influence of oxygen admixture concentration on microdeformation behavior of niobium

    International Nuclear Information System (INIS)

    Ivantsov, V.I.

    2004-01-01

    The microplasticity behavior of solid solutions Nb-O (relative residual deformations ε = 2 centre dot 10 -7 ...10 -4 ) in dependence on oxygen admixture concentration (C = 0,06...1,4 at.% O) was studied. The values of microplastic deformation parameters (precision elastic limit σ E , micro yield stress σ A and elastic module E) of pure niobium and solid solutions Nb-O were determinated. The empiric correlation of dependence σ E and σ A versus oxygen concentration were got. It was discussed the mechanism of oxygen admixture influence on stage nature of microflow and deformation hardening of niobium

  3. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    Science.gov (United States)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA

  4. [Effect of different oxygen concentrations on biological properties of bone marrow hematopoietic stem cells of mice].

    Science.gov (United States)

    Ma, Yi-Ran; Ren, Si-Hua; He, Yu-Xin; Wang, Lin-Lin; Jin, Li; Hao, Yi-Wen

    2012-10-01

    This study purposed to investigate the effects of different oxygen concentrations and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and their possible mechanisms through simulating oxygen environment to which the peripheral blood HSC are subjected in peripheral blood HSCT. The proliferation ability, cell cycle, directed differentiation ability, ROS level and hematopoietic reconstitution ability of Lin(-)c-kit(+)Sca-1(+) BMHSC were detected by using in vitro amplification test, directional differentiation test, cell cycle analysis, ROS assay and transplantation of Lin(-)c-kit(+)Sca-1(+) HSC from sublethally irradiated mice respectively. The results showed that oxygen concentrations lower than normal oxygen concentration, especially in hypoxic oxygen environment, could reduce ROS generation and amplify more primitive CD34(+)AC133(+) HSC and active CD34(+) HSC, and maintain more stem cells in the G(0)/G(1) phase, which is more helpful to the growth of CFU-S and viability of mice. At the same time, BMHSC exposed to normal oxygen level or inconstant and greatly changed oxygen concentrations could produce a high level of ROS, and the above-mentioned features and functional indicators are relatively low. It is concluded that ROS levels of HSC in BMHSCT are closely related with the oxygen concentration surrounding the cells and its stability. Low oxygen concentration and antioxidant intervention are helpful to transplantation of BMHSC.

  5. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    Science.gov (United States)

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P oxygen levels significantly increased viability (P oxygen levels significantly reduced ATP production (P oxygen was significant in regards to cell viability (P oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  7. A theoretical evaluation of the oxygen concentration in a corrosion-fatigue crack

    International Nuclear Information System (INIS)

    Turnbull, A.

    1981-01-01

    The oxygen concentration in a corrosion-fatigue crack has been evaluated theoretically by assuming that oxygen was consumed by cathodic reduction on the walls of the crack and mass transport occurred by diffusion and advection (forced convection), with the latter resulting from the sinusoidal variation of the displacement of the crack walls. By using parameters relevant to a compact tension specimen, the time-dependent distribution of the oxygen concentration in the crack was calculated as a function of ΔK (the range of the stress intensity factor), R-value (minimum load/maximum load), frequency, crack length, and electrode potential. The influence of advection was to significantly enhance the mass transport of oxygen in the crack compared with ''diffusion-only'' even at low frequencies and low ΔK. Regions in the crack were identified in which advection dominance or diffusion dominance of the mass transport of oxygen occurred

  8. Lifetime of the internal reference oxygen sensor

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    The internal reference oxygen sensor (IROS) based on a binary mixture of metal and its stoichiometric oxide is subject to leaks that result in consumption of the binary mixture. An IROS loses the functionality when the binary mixture is exhausted. Among the possible leak sources the electronic leak...

  9. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  10. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  11. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  13. Influence of variable oxygen concentration on the response of cells to heat or x irradiation

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Richards, B.; Jennings, M.

    1981-01-01

    The influence of oxygen concentration on the lethal response of cells exposed to 43 0 C hyperthermia was determined and compared to the response of cells exposed to radiation under equivalent culturing and environmental conditions. Chinese hamster ovary (CHO) cells were heated or irradiated 0.5 h after induction of hypoxia and then reoxygenated following treatment. The oxygen enhancement ratio (OER) for heat or radiation was determined at the 1% survival level from least-squares fit of survival curves. A maximum OER of 3.1 +- 0.2 was observed in the 20 to 95% oxygen concentration range. The OER for heat, however, was 1.0 +- 0.1 irrespective of the gas-phase oxygen concentration. These results show that the lethal effects of heat are not influenced by the oxygen concentration at the time of treatment in CHO cells exposed to 43 0 C hyperthermia

  14. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  15. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    Science.gov (United States)

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  17. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  18. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  19. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  20. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Fagundes Neves

    2013-09-01

    Full Text Available OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each: control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.

  1. Effects of vacuum suctioning and strategic drape tenting on oxygen concentration in a simulated surgical field.

    Science.gov (United States)

    Kung, Theodore A; Kong, Sarah W; Aliu, Oluseyi; Azizi, Jahan; Kai, Salim; Cederna, Paul S

    2016-02-01

    To investigate the isolated and combined effects of vacuum suctioning and strategic drape tenting on oxygen concentration in an experimental setting. Experimental. Clinical simulation center of a university-affiliated hospital. Mannequin simulation of a patient undergoing facial surgery under sedation anesthesia. Supplemental oxygen was delivered via nasal cannula. Vacuum suctioning and strategic drape tenting. The experimental trials entailed measuring oxygen concentration around the nasal cannula continuously either in the presence or absence of a standard operating room vacuum suction system and strategic tenting of surgical drapes. The primary outcome was the time required for oxygen concentration to reach 21%. In the control group (without suction or strategic tenting), a mean time of 180 seconds elapsed until the measured oxygen concentration reached 21% after cessation of oxygen delivery. Use of a vacuum suction device alone (110 seconds; P strategic tenting (110 seconds; P strategic tenting of surgical drapes has a theoretical benefit to decreasing the pooling of oxygen around the surgical site, further investigation is necessary before its routine use is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  3. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.

    2015-01-01

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  4. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    Andrade, C.; Fullea, J.; Toro, L.; Martinez, I.; Rebolledo, N.

    2013-01-01

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  5. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    Science.gov (United States)

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  6. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    Science.gov (United States)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  7. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration

    Directory of Open Access Journals (Sweden)

    Ulrike eAvenhaus

    2016-01-01

    Full Text Available Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier located in the nodule cortex. Flexibility of the oxygen diffusion barrier is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30 % oxygen around root nodules by measuring nodule H2 evolution. Within about two minutes of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about eight minutes later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency towards upregulation during the recovery. The recovery resulted in a new constant activity after about 30 minutes, corresponding to approximately 90 % of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050 showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased

  8. Mapping oxygen concentration in the awake mouse brain

    Science.gov (United States)

    Lyons, Declan G; Parpaleix, Alexandre; Roche, Morgane; Charpak, Serge

    2016-01-01

    Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism. DOI: http://dx.doi.org/10.7554/eLife.12024.001 PMID:26836304

  9. Oxygen diffusion-concentration in phospholipidic model membranes. An ESR-saturation study

    International Nuclear Information System (INIS)

    Vachon, A.; Lecomte, C.; Berleur, F.

    1986-04-01

    Fully hydrated liposomes of dipalmitoyl-phosphatidylcholine were labelled with 5 (or 7, 10, 12, 16)-doxyl stearic acid at pH 6 and 8, and studied by the continuous wave ESR-saturation technique. The ESR spectral magnitude depends on the hyperfrequency power P and on both T 1 and T 2 relaxation times. Saturation, i.e. the non linearity of the spectral magnitude plotted versus √P can be quantified by a P1/2 parameter (power at which the signal is half as great as it would be without saturation). If we assume T 2 weakly modified by spin exchange between paramagnetic spin probe and oxygen in triplet state, P1/2 is inversely proportional to T 1 , and becomes a sensitive parameter to appreciate the oxygen transport (oxygen diffusion-concentration product) inside the bilayers. According to the DPPC bilayer phase transition diagrams, P1/2 (oxygen diffusion-concentration) is related to the thermodynamic state of the membrane. This technique provides further informations on a particular property of a radioprotective agent, cysteamine, which seems to inhibit spin-triplet exchange and hence maximizes T 1 (minimizes P1/2). Since radioprotective agents are known to act by scavenging radiation-induced free radicals and by inhibiting oxygen-dependent free radical processes, such a result may contribute to elucidate radioprotecting mechanisms

  10. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  11. The role of changes in the oxygen concentration in modification of reproductive death of cells in vitro

    International Nuclear Information System (INIS)

    Korystov, Yu.N.

    1983-01-01

    In this report the data are discussed and summarized concerning cell oxygenation in culture. Formulae are proposed for calculation of the oxygen concentration in suspension, monolayer and spheroid, as well as numerical parameters are submitted determining the oxygenation of cells in vitro. This permits to estimate quantitatively the oxygen concentration at the cell surface upon irradiation in different experimental conditions

  12. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Directory of Open Access Journals (Sweden)

    Katz I

    2016-09-01

    Full Text Available Ira Katz,1,2 Marine Pichelin,1 Spyridon Montesantos,1 Min-Yeong Kang,3 Bernard Sapoval,3,4 Kaixian Zhu,5 Charles-Philippe Thevenin,5 Robert McCoy,6 Andrew R Martin,7 Georges Caillibotte1 1Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 2Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 3Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, 4Centre de Mathématiques et de leurs Applications, CNRS, UniverSud, Cachan, 5Centre Explor!, Air Liquide Healthcare, Gentilly, France; 6Valley Inspired Products, Inc, Apple Valley, MN, USA; 7Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada Abstract: Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered, and pulse delay (the time for the pulse to be initiated from the start of inhalation as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth, can be

  13. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    International Nuclear Information System (INIS)

    Moll, M.; Fretwurst, E.; Lindstroem, G.

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2x10 14 to 9x10 17 cm -3 have been irradiated with fast neutrons up to a fluence of 2x10 15 cm -2 . Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10% of the initial doping concentration for [O i ]=9x10 17 cm -3 , while for normal detector grade material with [O i ] below 5x10 16 cm -3 that value is 60-90%. Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentration with an averaged introduction rate of (1.49±0.03)x10 -2 cm -1 . Only one material was found exhibiting a significantly smaller value of about 0.6x10 -2 cm -1 and thus indicating the possibility to suppress the radiation-induced acceptor creation by material modification. Finally, we show that the experimental findings disagree in several important aspects with predictions made by microscopic defect kinetics models, leaving the physical background of some of the measured data as an open question

  14. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color

  15. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Nielsen, Jens Bredal; Villadsen, John

    1997-01-01

    The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 m...... penicillin productivity decreases, and a value of 17 (mu mol/g of DW)/h was obtained when the dissolved oxygen concentration was 0.042 mM. A further lowering of the dissolved oxygen concentration to 0.019 mM resulted in the loss of penicillin production. However, penicillin productivity was instantly...

  16. Combustion of pulverized fuel under oxycoal conditions at low oxygen concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Toporov D.; Foerster M.; Kneer R. [RWTH Aachen University, Aachen (Germany). Institute of Heat and Mass Transfer

    2007-07-01

    Oxycoal combustion followed by post-combustion CO{sub 2} sequestration has gained justified interest as an option for significant and relatively quick reduction of emissions from fossil fuel power generation, while taking advantage of the existing power plant infrastructure. Burning pulverised coal in a mixture of CO{sub 2}/O{sub 2} instead of air, however, will lead to modified distributions of temperature, species, and radiation fluxes inside the combustion chamber causing a retroaction on the homogeneous and heterogeneous reactions. Utilizing a burner design, which was optimised for coal combustion in air, for oxycoal combustion will lead to flame instability and poor burnout. Stabilisation of the combustion process can be obtained by: i) an increased oxygen concentration (more than 21% vol.) in the oxidiser mixture, thus achieving similar reaction rates and temperature levels to a pulverised fuel-air flame without significant changes to the flame aerodynamics. ii) modifications to the burner aerodynamics, as presented here. The results in this study are obtained in the frame of OXYCOAL-AC, the research project, having the aim to burn a pulverised coal in a CO{sub 2}/O{sub 2}-atmosphere with oxygen, produced from high-temperature ceramic membrane thus leading to higher efficiency of the whole oxycoal process. Numerical and experimental investigations of a stable oxycoal flame, obtained with {le} 21% oxygen concentration in the burning mixture at the RWTH test facility are reported. Two different burner designs are considered, conclusions concerning the achievement of a stable oxycoal flame at O{sub 2} volume concentrations equal and less to the one of oxygen in air are derived. 8 refs., 7 figs., 1 tab.

  17. The Relationship between Mollusks and Oxygen Concentrations in Todos Santos Bay, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    J. Gabriel Kuk-Dzul

    2016-01-01

    Full Text Available This study describes the relationship between mollusks, physicochemical properties of seawater, and sediments under natural conditions of low impact. Thirty-nine stations were sampled in October 1994 using a Van Veen grab (0.1 m−2. Temperature, salinity, and dissolved oxygen (DO concentrations of bottom water were obtained with a CTD. Organic matter content and sediment grain analysis were determined. A total of 836 mollusks were collected. Gastropoda was the most abundant (52% and diverse class with 27 genera, followed by Bivalvia with eight genera and Scaphopoda with only one genus. According to CCA analysis, dominant mollusks were significantly related with high DO concentrations. Donax, Natica, Acteocina, Bulla, Anachis, Odostomia, and Crucibulum can be classified as sensitive genera because they were found mainly in high oxygen concentrations (3.1–5.6 mL L−1; on the other hand, Cardiomya, Nuculana, Laevicardium, Chione, Truncatella, and Dentalium can be classified as tolerant genera (1.0–5.6 mL L−1. Todos Santos Bay hosts a diverse malacological fauna (36 genera; our results show that the dominant genera were mainly related to high dissolved oxygen concentrations. Mollusks can be a useful tool in environmental monitoring programs related with oxygen depletion in coastal areas.

  18. Control systems for the dissolved oxygen concentration in condensate- and feed-water systems in nuclear power plants

    International Nuclear Information System (INIS)

    Mikajiri, Motohiko; Hosaka, Seiichi.

    1981-01-01

    Purpose: To surely prevent the generation of corrosion products and contaminations in the systems thereby decreasing the exposure dose to operators in BWR type nuclear power plants. Constitution: Dissolved oxygen concentration in condensates is measured by a dissolved oxygen concentration meter disposed to the pipeway down stream of the condensator and the measured value is sent to an injection amount control mechanism for heater drain water. The control mechanism controls the injection amount from the injection mechanism that injection heater drain water from a feed-water heater to the liquid phase in the hot wall of the condensator. Thus, heater drawin water at high dissolved oxygen is injected to the condensates in the condensator which is de-airated and reduced with dissolved oxygen concentration, to maintain the dissolved oxygen concentration at a predetermined level, whereby stable oxide films are formed to the inner surface of the pipeways to prevent the generation of corrosion products such as rusts. (Furukawa, Y.)

  19. Effect of varying concentrations of caffeine and ascorbic acid on the radiosensitivity of barley seed irradiated in oxygenated or oxygen-free hydration medium at 25 and 3700C

    International Nuclear Information System (INIS)

    Afzal, S.M.J.; Kesavan, P.C.

    1977-01-01

    The modification of radiosensitivity of barley seed with 1.75 x 10 -3 M and 3.8 x 10 -3 M concentrations of caffeine and ascorbic acid during irradiation in oxygenated and oxygen-free hydration medium was studied at 25 and 37 0 C, respectively. Both concentrations of caffeine and ascorbic acid afforded protection against oxic radiation damage which was maximal at 25 0 C. Caffeine effectively potentiated the anoxic component of damage but ascorbic acid had no influence at all. At 25 0 C there was no concentration-dependent effect of caffeine or ascorbic acid. At 37 0 C, there was no effect, whatsoever, of either concentration of ascorbic acid, whereas caffeine dramatically potentiated the radiation damage under both oxygenated and oxygen-free conditions, and the magnitude of potentiation was concentration-dependent. The possible reactivity of caffeine and ascorbic acid towards the precursors of oxygen-dependent and -independent components of damage in determining the mode and magnitudes of modification is discussed briefly. (author)

  20. 75 FR 739 - Use of Additional Portable Oxygen Concentrator Devices on Board Aircraft

    Science.gov (United States)

    2010-01-06

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... approved by the Food and Drug Administration (FDA) reduce the risks typically associated with compressed... developed small portable oxygen concentrators (POC) that work by separating oxygen from nitrogen and other...

  1. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Chile at manipulated O2 levels between 5 nmol⋅L(-1) and 20 μmol⋅L(-1) Rates of both processes were detectable in the low nanomolar range (5-33 nmol⋅L(-1) O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L(-1) O2 for ammonium oxidation and 778 ± 168 nmol⋅L(-1) O2 for nitrite oxidation assuming one-component Michaelis-Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  2. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  3. Comparison of portable oxygen concentrators in a simulated airplane environment.

    Science.gov (United States)

    Fischer, Rainald; Wanka, Eva R; Einhaeupl, Franziska; Voll, Klaus; Schiffl, Helmut; Lang, Susanne M; Gruss, Martin; Ferrari, Uta

    2013-01-01

    Portable oxygen concentrators (POC) are highly desirable for patients with lung disease traveling by airplane, as these devices allow theoretically much higher travel times if additional batteries can be used. However, it is unclear whether POCs produce enough oxygen in airplanes at cruising altitude, even if complying with aviation regulations. We evaluated five frequently used POCs (XPO2 (Invacare, USA), Freestyle (AirSep C., USA), Evergo (Philipps Healthcare, Germany), Inogen One (Inogen, USA), Eclipse 3 (Sequal, USA)) at an altitude of 2650 m (as simulated airplane environment) in 11 patients with chronic obstructive lung disease (COPD) and compared theses POCs with the standard oxygen system (WS120, EMS Ltd., Germany) used by Lufthansa. Oxygen was delivered by each POC for 30 min to each patient at rest, blood gases were then drawn from the arterialized ear lobe. All POCs were able to deliver enough oxygen to increase the PaO(2) of our subjects by at least 1.40 kPa (10 mmHg). However, to achieve this increase, the two most lightweight POCs (Freestyle and Invacare XPO2) had to be run at their maximum level. This causes a significant reduction of battery life. The three other POCs (EverGo, Inogen One, Eclipse 3) and the WS120 were able to increase the PaO(2) by more than 2.55 kPa (20 mmHg), which provides extra safety for patients with more severe basal hypoxemia. When choosing the right oxygen system for air travel in patients in COPD, not only weight, but also battery life and maximum possible oxygen output must be considered carefully. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Validation of NIRS in measuring tissue hemoglobin concentration and oxygen saturation on ex vivo and isolated limb models

    Science.gov (United States)

    Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo

    2003-07-01

    Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer

  5. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  6. Material Usage in High Pressure Oxygen Systems for the International Space Station

    Science.gov (United States)

    Kravchenko, Michael; Sievers, D. Elliott

    2014-01-01

    The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.

  7. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oxygenation level and hemoglobin concentration in experimental tumor estimated by diffuse optical spectroscopy

    Science.gov (United States)

    Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.

    2017-07-01

    Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.

  9. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75S...... the application of IROSes are provided. Based on the concepts and fundamentals of the IROS, internal reference sensors that detect other gas species such as hydrogen, chlorine and bromine may be developed.......The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... from 8YSZ is evaluated quantitatively and figures that may be used to design the depletion period of an IROS due to the electronic leak of 8YSZ are provided. One dimensional numerical simulations are performed to study the variation in cell voltage during the process of gas mixing, and the asymmetric...

  10. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  11. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  12. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Radiation-induced strand-breaks and DNA-protein crosslinks depend predominantly on the dose, oxygen concentration and repair time

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Miyagi, Y.; Zhang, H.

    1995-01-01

    It has been known for many years that the DNA damage produced by ionizing radiation depends upon the oxygen concentration around the DNA. For example, the number of DNA strand-breaks (SBs) formed per unit dose decreases at low oxygen concentrations, and the number of DNA-protein crosslinks formed per unit dose increases at low oxygen concentrations. If radiation-induced SBs and DPCs are to be useful for detecting and/or quantifying hypoxic cells in solid tumors, the formation of these lesions must depend predominantly on the oxygen concentration around the DNA. All other physical, biological, and physiological factors must either be controllable or have little influence on the assay used to measure these lesions. This paper is a summary of the authors' recent experiments to determine if the radiation-induced SBs and DPCs measured by alkaline elution may be used to estimate the hypoxic fraction or fractional hypoxic volume of solid tumors

  14. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  15. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field

    Science.gov (United States)

    Chen, Jyh-Chen; Chiang, Pei-Yi; Nguyen, Thi Hoai Thu; Hu, Chieh; Chen, Chun-Hung; Liu, Chien-Cheng

    2016-10-01

    A three-dimensional simulation model is used to study the oxygen concentration distribution in silicon crystal during the Czochralski growth process under a transverse uniform magnetic field. The flow, temperature, and oxygen concentration distributions inside the furnace are calculated for different crystal lengths. There is significant variation in the flow structure in the melt with the growth length. The results show that in the initial stages, there is a decrease in the oxygen concentration at the crystal-melt interface as the length of the growing crystal increases. As the crystal lengthens further, a minimum value is reached after which the oxygen concentration increases continuously. This trend is consistent with that shown in the experimental results. The variation of the oxygen concentration with the growth length is strongly related to the depth of the melt in the crucible and the flow structure inside the melt. Better uniformity of the axial oxygen concentration can be achieved by proper adjustment of the crucible rotation rate during the growth process.

  16. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    Science.gov (United States)

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  17. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  18. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  19. Comparison of domiciliary oxygen using liquid oxygen and concentrator in northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chien-Ling Su

    2014-01-01

    Conclusion: Patients in the LOG used oxygen for longer hours, went on more outings, and were more likely to travel with oxygen than patients in the OCG. Being ambulatory with liquid oxygen might enable patients with COPD to walk more effectively.

  20. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  1. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  2. Radiosensitivity of Hela cells in various O2 concentrations and consideration of oxygen effect in radiotherapy

    International Nuclear Information System (INIS)

    Kuroda, Yoshikazu; Nyunoya, Koichiro

    1979-01-01

    The aim of this paper is the study of the radiosensitivity of HeLa cells in vitro in various oxygen concentrations and the consideration of the utilization of oxygen effect in radiation therapy, based on the data of HeLa cells and tumor oxygen tension. Survival curves of HeLa cells are found to be exponential as a function of radiation dose and the radiosensitivity is dependent on oxygen tension of culture medium. Relative radiosensitivity decreases remarkably at low level of oxygen, especially under 9 mmHg pO 2 . The utilization of oxygen effect in radiation may be useful in hyperbaric oxygen inhalation and not useful under local tissue hypoxia induced by tourniquet application. Reoxygenation occurs with shrinkage of tumor after irradiation and this phenomenon will diminish the value of hyperbaric oxygen in radiation therapy. (author)

  3. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  4. Testing the fidelity of laminations as a proxy for oxygen concentration in the Bering Sea over millennial to orbital timescales

    Science.gov (United States)

    Black, A. E.; Baranow, N.; Amdur, S.; Cook, M. S.

    2017-12-01

    Ocean circulation and biological productivity play an important role in the climate system through their contribution to global heat transport and air-sea exchange of CO­2. Oceanic oxygen concentration provides insight to ocean circulation and biological productivity. Sediment laminations provide a valuable proxy for local oceanic oxygen concentration. Many sediment cores from the Pacific Ocean are laminated from the last deglaciation, but previous studies have not provided an in-depth examination of laminations over many glacial and interglacial (G/IG) cycles. Typically, studies to date that consider bioturbation as a proxy for oxygen concentration have only considered one sediment core from a site, leaving ambiguity as to whether laminations faithfully record local oxygen levels. With sediment cores from three different holes (A, C, D) on the northern Bering Slope from IODP site U1345 (1008m), we investigate how faithfully laminations record oxygen concentration. We assign a bioturbation index from 1 to 4 for 1-cm intervals for the cores from each of the three holes and align the holes based on physical properties data. We find that the bioturbation is relatively consistent (within one bioturbation unit) between holes, suggesting that laminations may be a faithful, if not perfect, proxy for local oxygen concentration. After examining laminations from a complete hole, representing over 500,000 years, there seems to be no consistent pattern of laminations during the past five glacial cycles, suggesting there is no consistent pattern to oxygen concentration during glacial periods in the northern Bering Slope. Thus, hypotheses on ocean circulation and productivity in the northern Bering Sea from the last deglaciation may not apply to previous G/IG cycles.

  5. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  6. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  7. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  8. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  9. Numerical modelling of pyrolysis in normal and reduced oxygen concentration

    International Nuclear Information System (INIS)

    Kacem, Ahmed

    2016-01-01

    The predictive capability of computational fluid dynamics (CFD) fire models depends on the accuracy with which the source term due to fuel pyrolysis can be determined. The pyrolysis rate is a key parameter controlling fire behavior, which in turn drives the heat feedback from the flame to the fuel surface. In the present study an in-depth pyrolysis model of a semi-transparent solid fuel (here, clear polymethyl methacrylate or PMMA) with spectrally-resolved radiation and a moving gas/solid interface was coupled with the CFD code ISIS of the IRSN which included turbulence, combustion and radiation for the gas phase. A combined genetic algorithm/pyrolysis model was used with Cone Calorimeter data from a pure pyrolysis experiment to estimate a unique set of kinetic parameters for PMMA pyrolysis. In order to validate the coupled model, ambient air flaming experiments were conducted on square slabs of PMMA with side lengths of 10, 20 and 40 cm. From measurements at the center of the slab, it was found that i) for any sample size, the experimental regression rate becomes almost constant with time, and ii) although the radiative and total heat transfers increase significantly with the sample size, the radiative contribution to the total heat flux remains almost constant (∼80%). Coupled model results show a fairly good agreement with the literature and with current measurements of the heat fluxes, gas temperature and regressing surface rate at the center of the slabs. Discrepancies between predicted and measured total pyrolysis rate are observed, which result from the underestimation of the flame heat flux feedback at the edges of the slab, as confirmed by the comparison between predicted and observed topography of burned samples. Predicted flame heights based on a threshold temperature criterion were found to be close to those deduced from the correlation of Heskestad. Finally, in order to predict the pyrolysis of PMMA under reduced ambient oxygen concentration, a two

  10. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise

    Directory of Open Access Journals (Sweden)

    Askew Christopher D

    2009-12-01

    Full Text Available Abstract Background It has been proposed that adenosine triphosphate (ATP released from red blood cells (RBCs may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC. Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

  11. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  12. Digitized Onondaga Lake Dissolved Oxygen Concentrations and Model Simulated Values using Bayesian Monte Carlo Methods

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset is lake dissolved oxygen concentrations obtained form plots published by Gelda et al. (1996) and lake reaeration model simulated values using Bayesian...

  13. Nonimaging light concentration using total internal reflection films.

    Science.gov (United States)

    Ouellette, G; Waltham, C E; Drees, R M; Poon, A; Schubank, R; Whitehead, L A

    1992-05-01

    We present a method of fabricating nonimaging light concentrators from total internal reflection film. A prototype has been made and tested and found to operate in agreement with predictions of ray-tracing codes. The performance of the prototype is comparable with that of concentrators made from specular reflecting materials.

  14. Influence of dissolved oxygen concentration on the toxicity of potassium cyanide to rainbow trout. [Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Downing, K M

    1954-01-01

    The present work was undertaken to see if similar results were obtained when fish were tested in a continuous flow of water in which the concentrations of oxygen and cyanide were kept constant. Periods of survival were measured this way to minimize distortion of results by accumulation of metabolic waste, depletion of oxygen or depletion of poison. Results are summarized as follows: rainbow trout survival in potassium cyanide increased with increase in dissolved oxygen; increase in survival times did not decline as oxygen saturation was approached; and medium survival times of 3.3 minutes or less were normally distributed while those of greater than 13 minutes were log normally distributed. 6 references, 1 figure.

  15. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Role of oxygen concentration distribution and microstructure in luminescent properties of laser-irradiated silicon

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Xiaohong; Li, Guoqiang; Xie, Changxin; Qiu, Rong; Li, Jiawen; Huang, Wenhao

    2015-01-01

    Graphical abstract: Photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses was studied. The visible blue luminescence is observed both from the deionized water and air. The position and shape of emission luminescence peaks in the visible range are same at 330 nm. The PL is confirmed to be not merely induced by the oxygen defects or quantum confinement effects, but is commonly decided by the concentration distribution of SiO x and the depth of the surface microstructure. The PL gets strongest only when depth of the surface microstructure is not deeper and the distribution of the shallow SiO x is more intensive. - Highlights: • Different morphologies and compositions of the surface microstructures are formed. • The SiO x concentration and surface microstructure depth commonly decide the PL. • The PL intensity can be controlled by changing the experimental conditions. - Abstract: We study the photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses in different environments (deionized water and air) and energy intensities. The fluorescence spectroscopy measurement results indicate that the visible blue luminescence is observed both from the silicon surfaces ablated in the deionized water and air. The more interesting phenomenon is that the position and shape of the emission luminescence peaks in the visible range are substantially the same at the same excitation wavelength 330 nm. Compared with the granular-like microstructure generated on the silicon surface in air, the smaller and stripe-like microstructure is formed in the deionized water as the field emission scanning electron microscope (FESEM) measures. The results of the energy dispersive spectroscopy (EDS) show that silicon and oxygen is the main elemental composition on laser-induced silicon surfaces, and the oxygen content on the sample surfaces formed in air is nearly four times more than that in the deionized water. The studies confirm

  17. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms.

    Science.gov (United States)

    Liu, Quan; Vo-Dinh, Tuan

    2009-10-01

    Hemoglobin concentration and oxygenation in tissue are important biomarkers that are useful in both research and clinical diagnostics of a wide variety of diseases such as cancer. The authors aim to develop simple ratiometric method based on the spectral filtering modulation (SFM) of fluorescence spectra to estimate the total hemoglobin concentration and oxygenation in tissue using only a single fluorescence emission spectrum, which will eliminate the need of diffuse reflectance measurements and prolonged data processing as required by most current methods, thus enabling rapid clinical measurements. The proposed method consists of two steps. In the first step, the total hemoglobin concentration is determined by comparing a ratio of fluorescence intensities at two emission wavelengths to a calibration curve. The second step is to estimate oxygen saturation by comparing a double ratio that involves three emission wavelengths to another calibration curve that is a function of oxygen saturation for known total hemoglobin concentration. Theoretical derivation shows that the ratio in the first step is linearly proportional to the total hemoglobin concentrations and the double ratio in the second step is related to both total hemoglobin concentration and hemoglobin oxygenation for the chosen fiber-optic probe geometry. Experiments on synthetic fluorescent tissue phantoms, which included hemoglobin with both constant and varying oxygenation as the absorber, polystyrene spheres as scatterers, and flavin adenine dinucleotide as the fluorophore, were carried out to validate the theoretical prediction. Tissue phantom experiments confirm that the ratio in the first step is linearly proportional to the total hemoglobin concentration and the double ratio in the second step is related to both total hemoglobin concentrations and hemoglobin oxygenation. Furthermore, the relations between the two ratios and the total hemoglobin concentration and hemoglobin oxygenation are insensitive

  18. Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element

    International Nuclear Information System (INIS)

    Shehata, N.; Meehan, K.; Hudait, M.; Jain, N.

    2012-01-01

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce +4 into Ce +3 and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  19. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  20. Impact of oxygen concentration on time to resolution of spontaneous pneumothorax in term infants: a population based cohort study

    Science.gov (United States)

    2014-01-01

    Background Little evidence exists regarding the optimal concentration of oxygen to use in the treatment of term neonates with spontaneous pneumothorax (SP). The practice of using high oxygen concentrations to promote “nitrogen washout” still exists at many centers. The aim of this study was to identify the time to clinical resolution of SP in term neonates treated with high oxygen concentrations (HO: FiO2 ≥ 60%), moderate oxygen concentrations (MO: FiO2 pneumothorax admitted to all neonatal intensive care units in Calgary, Alberta, Canada, within 72 hours of birth between 2006 and 2010. Newborns with congenital and chromosomal anomalies, meconium aspiration, respiratory distress syndrome, and transient tachypnea of newborn, pneumonia, tension pneumothorax requiring thoracocentesis or chest tube drainage or mechanical ventilation before the diagnosis of pneumothorax were excluded. The primary outcome was time to clinical resolution (hours) of SP. A Cox proportional hazards model was developed to assess differences in time to resolution of SP between treatment groups. Results Neonates were classified into three groups based on the treatment received: HO (n = 27), MO (n = 35) and RA (n = 30). There was no significant difference in time to resolution of SP between the three groups, median (range 25th-75th percentile) for HO = 12 hr (8–27), MO = 12 hr (5–24) and RA = 11 hr (4–24) (p = 0.50). A significant difference in time to resolution of SP was also not observed after adjusting for inhaled oxygen concentration [MO (a HR = 1.13, 95% CI 0.54-2.37); RA (a HR = 1.19, 95% CI 0.69-2.05)], gender (a HR = 0.87, 95% CI 0.53-1.43) and ACoRN respiratory score (a HR = 0.7, 95% CI 0.41-1.34). Conclusions Supplemental oxygen use or nitrogen washout was not associated with faster resolution of SP. Infants treated with room air remained stable and did not require supplemental oxygen at any point of their admission. PMID

  1. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    Science.gov (United States)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  2. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen

    International Nuclear Information System (INIS)

    Xia Xinghui; Li Gongchen; Yang Zhifeng; Chen Yumin; Huang, Gordon H.

    2009-01-01

    With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L -1 FAs, the contributions of ·OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin. - Influences of fulvic acid (FA) concentration on PAH photodegradation were more significant than FA origin, and active oxygen played an important role in PAH photodegradation

  3. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Science.gov (United States)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  4. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  5. Effect of different concentrations of oxygen on expression of sigma 1 receptor and superoxide dismutases in human colon adenocarcinoma cell lines.

    Science.gov (United States)

    Skrzycki, Michał; Czeczot, Hanna; Mielczarek-Puta, Magdalena; Otto-Ślusarczyk, Dagmara; Graboń, Wojciech

    2017-06-01

    Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen. Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines. SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco's modified Eagle's medium for 5 days, and next cultured in Hypoxic Chamber in 1% O 2 , 10% O 2 , 21% O 2 . Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software. We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line. Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.

  6. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Science.gov (United States)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4

  7. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  8. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    International Nuclear Information System (INIS)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO 2 ) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO 2 ) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO 2 and HHb, total haemoglobin concentration and SO 2 . The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l -1 (±58

  9. Impact of oxygen concentration on yields of DNA damages caused by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Václav; Davídková, Marie

    2008-01-01

    Roč. 101, 012015 (2008), s. 1-4 ISSN 1742-6588. [Radiation Damage in Biomolecular Systems, RADAM'07. Dublin, 19.06.2007-22.06.2007] R&D Projects: GA ČR(CZ) GD202/05/H031; GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation damage to DNA * oxygen concentration * theoretical modeling Subject RIV: BO - Biophysics

  10. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  11. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    Science.gov (United States)

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  12. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  13. A Solar Powered, Ceramic Oxygen Concentrator

    Data.gov (United States)

    National Aeronautics and Space Administration — Childhood pneumonia, which is treated with oxygen therapy, is a leading cause of death in children. Many children in developing countries lack access to medical...

  14. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  15. A hyperoxic lung injury model in premature rabbits: the influence of different gestational ages and oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Roberta Munhoz Manzano

    Full Text Available BACKGROUND: Many animal models have been developed to study bronchopulmonary dysplasia (BPD. The preterm rabbit is a low-cost, easy-to-handle model, but it has a high mortality rate in response to the high oxygen concentrations used to induce lung injury. The aim of this study was to compare the mortality rates of two models of hyperoxia-induced lung injury in preterm rabbits. METHODS: Pregnant New Zealand white rabbits were subjected to caesarean section on gestational day 28 or 29 (full term  = 31 days. The premature rabbits in the 28-day gestation group were exposed to room air or FiO₂ ≥95%, and the rabbits in the 29-day gestation group were exposed to room air or FiO₂  = 80% for 11 days. The mean linear intercept (Lm, internal surface area (ISA, number of alveoli, septal thickness and proportion of elastic and collagen fibers were quantified. RESULTS: The survival rates in the 29-day groups were improved compared with the 28-day groups. Hyperoxia impaired the normal development of the lung, as demonstrated by an increase in the Lm, the septal thickness and the proportion of elastic fibers. Hyperoxia also decreased the ISA, the number of alveoli and the proportion of collagen fibers in the 28-day oxygen-exposed group compared with the control 28-day group. A reduced number of alveoli was found in the 29-day oxygen exposed animals compared with the control 29-day group. CONCLUSIONS: The 29-day preterm rabbits had a reduced mortality rate compared with the 28-day preterm rabbits and maintained a reduction in the alveoli number, which is comparable to BPD in humans.

  16. About the 'enlightenment' of nonideal hydrogen-oxygen plasma at a electron concentration Ne19 cm-3

    International Nuclear Information System (INIS)

    Fedorovich, O.A.

    2013-01-01

    The results of experimental determination of the emissivity of the hydrogen-oxygen plasma pulsed discharge in water and their comparison with calculations. It is shown that when concentrations nonideal plasma N e >3 centre dot 10 18 cm -3 , is observed 'enlightenment' of plasma. The reduction of a emitting ability . can be more order in the N e =3 centre dot 10 19 cm -3 and increases with increasing electron concentration.

  17. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    Czech Academy of Sciences Publication Activity Database

    Fausser, A. C.; Dušek, Jiří; Čížková, Hana; Kazda, M.

    2016-01-01

    Roč. 8, JUL (2016), č. článku plw025. ISSN 2041-2851 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:86652079 Keywords : typha-latifolia l * internal gas-transport * phragmites-australis * convective throughflow * pressurized ventilation * angustifolia l * ex steud * roots * flow * respiration * Aeration * constructed wetland * in-situ field study * internal carbon dioxide * internal oxygen dynamics * Phragmites australis Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.238, year: 2016

  18. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  19. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses...... of some common, invasive and rare weed species to reduced light levels in greenhouse experiments. The seed germination response of some weed species, field crops, and vegetables to different oxygen concentrations was also quantified in the laboratory experiments. The effect of east-west (EW) and north...

  20. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  1. Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures

    Science.gov (United States)

    Tuyaerts, Romain; Poncelet, Olivier; Raskin, Jean-Pierre; Proost, Joris

    2017-10-01

    In this article, we propose ZnO thin films as a suitable material for piezoresistors in transparent and flexible electronics. ZnO thin films have been deposited by DC reactive magnetron sputtering at room temperature at various oxygen partial pressures. All the films have a wurtzite structure with a strong (0002) texture measured by XRD and are almost stoichiometric as measured by inductively coupled plasma optical emission spectroscopy. The effect of oxygen concentration on grain growth has been studied by in-situ multi-beam optical stress sensor, showing internal stress going from 350 MPa to -1.1 GPa. The transition between tensile and compressive stress corresponds to the transition between metallic and oxidized mode of reactive sputtering. This transition also induces a large variation in optical properties—from absorbent to transparent, and in the resistivity—from 4 × 10 - 2 Ω .cm to insulating. Finally, the piezoresistance of the thin film has been studied and showed a gauge factor (ΔR/R)/ɛ comprised between -5.8 and -8.5.

  2. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  3. Radiosensitization of CHO cells by the combination of glutathione depletion and low concentrations of oxygen: The effect of different levels of GSH depletion

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Zachgo, E.A.; Biaglow, J.E.

    1984-01-01

    Recently, the authors have examined the effect of GSH depletion by BSO on CHO cells equilibrated with oxygen at various concentrations (0.05-4.0%) and irradiated with 50 kVp x-rays. This is of interest because of the uncertain radiosensitizing effect GSH depletion may have on cells equilibrated with low oxygen concentrations. GSH depletion (0.1 mM BSO/24 hrs reduced [GSH] ≅ 10% of control) enhanced the radiosensitizing action of moderate (0.4-4.0%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by ≅ 2-3 fold. However, GSH depletion was much more effective as a rediosensitizer when cells were equilibrated with low (<0.4%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by 8-10 fold. Furthermore, while the addition of exogenous 5 mM GSH restored the ER to that observed when GSH was not depleted, the intracellular [GSH] was not increased. The results of these studies carried out at different levels of GSH depletion are presented

  4. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    and denitrification, were only partially described. In spite of the importance of aerobic respiration as a key process in the global carbon cycle, the available data are still few, and highly biased with respect to season, latitude and depth. The main aims of this Ph.D were to: i) develop and test a highly...... to pure cultures (Manuscript III), in order to assess the response of three species of NOB (Nitrospira defluvvi, N. moscoviensis and Nitrospina gracilis) to low O2 concentrations, and the oxygen regulation on the expression of the terminal oxidases genes in N.moscoviensis. The oxygen affinities...... of these pure cultures were lower than found for natural communities of NOB (apparent Km values~ 1- 4 µM), but higher than the ones from the well-studied opportunistic NOB Nitrobacter. The expression of high-affinity terminal oxidases in these NOB could, however, not be confirmed. Overall the results of this Ph...

  5. The oxygen effect and adaptive response of cells. Report 3. Simulation of respiratory oxygenation and oxygen permeability of cells

    International Nuclear Information System (INIS)

    Ehpshtejn, I.M.

    1978-01-01

    Variations in the oxygen concentration in extracellural [O 2 ] 0 and intracellular [Osub(2)]sub(i) media of cells small in size (d = 2 ] 0 - t-curves). It is shown that the Value of [Osub(2)]sub(i) may be expressed by four variants of its functional dependence: (a) on enzymic reaction of oxygen consumption, (b) on the order of reaction with respect to oxygen, (c) on physiological parameters of cells, and (d) on characteristic oxygen concentrations in the system. Items (c) and (d) are based on the postulated diffusion-kinetic model of oxygen consumption by an idealized cell of small size that consists of a drop of homogenous solution of the respiratory enzyme which is characterized by an equivalent Michaelis constant. The drop is enveloped in a uniform membrane that possesses a definite diffuse resistance to oxygen

  6. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  7. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  8. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  9. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  10. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)(y)MnO3 +/-delta

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2000-01-01

    model, based on delocalised electrons, electron holes and all B-ions being trivalent is given in Appendix A. The sequential mathematical method allows us to calculate the high temperature oxygen partial pressure dependent properties of (La1-xSrx)(y)MnO3+/-delta in a unified manner irrespective...... are calculated by the small polaron model containing only ionic species - the B-ion may be Mn-B' (Mn2+), Mn-B(x) (Mn3+), and Mn-B(Mn4+). The A/B-ratio = y greatly influences the oxygen stoichiometry, oxygen ion vacancy- and cation vacancy concentrations and the total conductivity. Calculations are given...

  11. Measurement of excited oxygen (O2:[sup 1][Delta]g) concentration by spontaneous emission. Hakko kyodo ni yoru reiki sanso ([sup 1][Delta]g) nodo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1993-11-25

    The concentration of excited oxygen ([sup 1][Delta]g), which was generated by microwave discharge in a pure oxygen flow, was measured from the intensity of spontaneous emission. The conversion factor to density was determined by spectroscopic analysis of the rotational structure and calibration of the emission intensity using a black-body furnace as light source. Consequently, a good agreement was found between the observed profiles and those calculated from spectroscopic data, and it was illustrated that the absolute concentration can be obtained by coupling band analysis and the calibration method. In addition, even when the concentration was low, it was shown that the excited oxygen concentration can be measured by considering the reflection at the cell wall. The excited oxygen concentration at the microwave discharge cavity was estimated to be around 1% under the pressure ranging from 0.5 torr to 2 torr. Furthermore, the comparison of the profiles calculated at different temperature provided that the band profile can be a good indicator of gas temperature when the signal-to-noise ratio is high. 9 refs., 10 figs., 2 tabs.

  12. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  13. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    Science.gov (United States)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  14. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    Science.gov (United States)

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  15. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    OpenAIRE

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and ...

  17. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  18. Thermodynamic Analysis of Oxygen-Enriched Direct Smelting of Jamesonite Concentrate

    Science.gov (United States)

    Zhang, Zhong-Tang; Dai, Xi; Zhang, Wen-Hai

    2017-12-01

    Thermodynamic analysis of oxygen-enriched direct smelting of jamesonite concentrate is reported in this article. First, the occurrence state of lead, antimony and other metallic elements in the smelting process was investigated theoretically. Then, the verification test was carried out. The results indicate that lead and antimony mainly exist in the alloy in the form of metallic lead and metallic antimony. Simultaneously, lead and antimony were also oxidized into the slag in the form of lead-antimony oxide. Iron and copper could be oxidized into the slag in the form of oxides in addition to combining with antimony in the alloy, while zinc was mainly oxidized into the slag in the form of zinc oxide. The verification test indicates that the main phases in the alloy contain metallic lead, metallic antimony and a small amount of Cu2Sb, FeSb2 intermetallic compounds, and the slag is mainly composed of kirschsteinite, fayalite and zinc oxide, in agreement with the thermodynamic analysis.

  19. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  20. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  1. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  2. MANAGEMENT PROCESS OF CULTIVATION OF MICROORGANISMS ON DYNAMICS OF TEMPERATURE OF A BIOMASS AND CONCENTRATION OF OXYGEN IN EXHAUST GASES

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2012-01-01

    Full Text Available On an example of industrial production of baking yeast the way of automatic control of process of cultivation of microorganisms is stated. The way provides management of aeration of a biomass on the set speed of change of its concentration and temperatures in view of speed of change of concentration of oxygen in the fulfilled gases.

  3. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  4. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  5. Radiosensitizers and the oxygen effects in mammalian cells

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Steele, J.J.

    1979-01-01

    The survival curves for Chinese Hamster cells irradiated under various oxygen tensions have been determined. The variation in OER with oxygen concentration shows two distinct components. Between 1.4 and 7.0 μM the OER is constant with a value of 1.9. Experiments with nitroaromatic radiosensitizers in combination with low concentrations of oxygen show that they can all mimic the 'low concentration' oxygen effect. Of the compounds tested only misonidazole can apparently mimic the 'high concentration' oxygen effect although the full OER cannot be obtained with the authors cell line because of toxicity by the sensitizer. (Auth.)

  6. On the Go with Oxygen

    Science.gov (United States)

    ... for both the patient and the oxygen supply company. There are two types of concentrators: Stationary concentrators plug into an electrical ... stationary unit. If your oxygen needs change, the type of system can ... supply company should explain and demonstrate whatever system you choose. ...

  7. Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation.

    Science.gov (United States)

    Tao, Jianxiong; Dykes, Stuart I; Kilmartin, Paul A

    2007-07-25

    A Merlot wine in 15 L research tanks was subjected to micro-oxygenation at 10 mL O2 per liter of wine per month over a 16 week period with additions of 0, 50, 100, and 200 mg/L SO2. A large decrease in monomeric anthocyanins and flavan-3-ols was seen in wines with a lower concentration of SO2, coupled with an increase in nonbleachable pigments; an increase in tannin, measured using precipitation with methyl cellulose; and a greater size and red coloration of a proanthocyanidin extract obtained using Sephadex LH-20. These changes were largely suppressed in wines initially treated with 200 mg/L SO2 and occurred more slowly in wines stored in bottles in the absence of O2. The concentration of SO2 is shown to regulate the polyphenol chemistry involved in the formation of polymeric pigments and changes in tannin structure affecting wine astringency.

  8. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  9. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study.

    Science.gov (United States)

    Schmidt, Matthieu; Stewart, Claire; Bailey, Michael; Nieszkowska, Ania; Kelly, Joshua; Murphy, Lorna; Pilcher, David; Cooper, D James; Scheinkestel, Carlos; Pellegrino, Vincent; Forrest, Paul; Combes, Alain; Hodgson, Carol

    2015-03-01

    To describe mechanical ventilation settings in adult patients treated for an acute respiratory distress syndrome with extracorporeal membrane oxygenation and assess the potential impact of mechanical ventilation settings on ICU mortality. Retrospective observational study. Three international high-volume extracorporeal membrane oxygenation centers. A total of 168 patients treated with extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from January 2007 to January 2013. We analyzed the association between mechanical ventilation settings (i.e. plateau pressure, tidal volume, and positive end-expiratory pressure) on ICU mortality using multivariable logistic regression model and Cox-proportional hazards model. We obtained detailed demographic, clinical, daily mechanical ventilation settings and ICU outcome data. One hundred sixty-eight patients (41 ± 14 years old; PaO2/FIO2 67 ± 19 mm Hg) fulfilled our inclusion criteria. Median duration of extracorporeal membrane oxygenation and ICU stay were 10 days (6-18 d) and 28 days (16-42 d), respectively. Lower positive end-expiratory pressure levels and significantly lower plateau pressures during extracorporeal membrane oxygenation were used in the French center than in both Australian centers (23.9 ± 1.4 vs 27.6 ± 3.7 and 27.8 ± 3.6; p Protective mechanical ventilation strategies were routinely used in high-volume extracorporeal membrane oxygenation centers. However, higher positive end-expiratory pressure levels during the first 3 days on extracorporeal membrane oxygenation support were independently associated with improved survival. Further prospective trials on the optimal mechanical ventilation strategy during extracorporeal membrane oxygenation support are warranted.

  10. Efficacy of a portable oxygen concentrator with pulsed delivery for treatment of hypoxemia during equine field anesthesia.

    Science.gov (United States)

    Coutu, Paige; Caulkett, Nigel; Pang, Daniel; Boysen, Søren

    2015-09-01

    Hypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air. Prospective clinical study. Fifteen yearling (250 - 400 kg) horses during field castration. Horses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05. Mean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003). These data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin. The portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  11. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles.

    Science.gov (United States)

    Lee, Amani L; Gee, Clifford T; Weegman, Bradley P; Einstein, Samuel A; Juelfs, Adam R; Ring, Hattie L; Hurley, Katie R; Egger, Sam M; Swindlehurst, Garrett; Garwood, Michael; Pomerantz, William C K; Haynes, Christy L

    2017-06-27

    Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging ( 19 F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19 F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm 3 g -1 ), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T 1 ) relaxation-based oxygen sensitivity of 0.0032 mmHg -1 s -1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.

  12. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  13. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Nissen, M.

    1998-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  14. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H; Nissen, M

    1999-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  15. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    Science.gov (United States)

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  16. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  17. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  18. Measurement of oxide-layer thickness of internal granules in high-purity aluminium

    International Nuclear Information System (INIS)

    Takacs, S.; Ditroi, F.; Mahunka, I.

    1989-01-01

    Charged-particle activation analysis was used for the determination of bulk oxygen concentration in aluminium. High-purity aluminium samples and mixtures containing different amounts of alumina were irradiated by 13 MeV 3 He particles. The aim of the investigation was to determine the oxide-layer thickness on the surface of internal aluminium granules. The measurement was carried out by determining the bulk oxygen concentration in the samples, and calculating the oxide-layer thickness, by using model conditions about the microstructure of the aluminium samples. (author) 5 refs

  19. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Science.gov (United States)

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  20. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Directory of Open Access Journals (Sweden)

    Fanny Ramel

    Full Text Available Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/oo3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox and double deletion (Δcoxbd mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97% but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining

  1. Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Mason, R.P.; Jayachandran, S.; Vudamala, K.; Armoury, K.; Sarkar, Arindam; Chakraborty, S.; Bardhan, P.; Naik, R.

    benthic flux of MeHg to the overlying water (Hollweg et al., 2010; Balcom et al., 2008). On the contrary, however, a study in the Gulf of Mexico did not find that MeHg in bottom waters correlated with the extent of hypoxia (Liu et al., 2015... in the sediments of the so-called “dead zone” in the Gulf of Mexico. Others (Mason et al., 2006; Emili et al., 2011) have shown that total Hg and MeHg fluxes from sediments are enhanced by low oxygen concentrations in the overlying waters. The aim of this study...

  2. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide.

    Science.gov (United States)

    Huang, Jingang; Chen, Jianjun; Xie, Zhengmiao; Xu, Xiaojun

    2015-01-01

    In this study, a coupled process of coagulation and aerated internal micro-electrolysis (IME) with the in situ addition of hydrogen peroxide (H2O2) was investigated for the treatment of nanofiltration (NF) concentrate from mature landfill leachate. The acceptable operating conditions were determined as follows: initial pH 4, polymeric aluminium chloride dosage of 525 mg-Al2O3/L in the coagulation process, H2O2 dosage of 0.75 mM and an hydraulic retention time of 2 h in an aerated IME reactor. As a result, the removal efficiencies for chemical oxygen demand (COD), total organic carbon, UV254 and colour were 79.2%, 79.6%, 81.8% and 90.8%, respectively. In addition, the ratio of biochemical oxygen demand (BOD5)/COD in the final effluent increased from 0.03 to 0.31, and that of E2/E4 from 12.4 to 38.5, respectively. The results indicate that the combined process is an effective and economical way to remove organic matters and to improve the biodegradability of the NF concentrate. Coagulation process reduces the adverse impact of high-molecular-weight organic matters such as humic acids, on the aerated IME process. A proper addition of H2O2 in the aerated IME can promote the corrosion of solid iron (Fe2+/Fe3+) and cause a likely domino effect in the enhancement of removal efficiencies.

  3. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study.

    Science.gov (United States)

    Saugstad, O D; Rootwelt, T; Aalen, O

    1998-07-01

    Birth asphyxia represents a serious problem worldwide, resulting in approximately 1 million deaths and an equal number of serious sequelae annually. It is therefore important to develop new and better ways to treat asphyxia. Resuscitation after birth asphyxia traditionally has been carried out with 100% oxygen, and most guidelines and textbooks recommend this; however, the scientific background for this has never been established. On the contrary, theoretic considerations indicate that resuscitation with high oxygen concentrations could have detrimental effects. We have performed a series of animal studies as well as one pilot study indicating that resuscitation can be performed with room air just as efficiently as with 100% oxygen. To test this more thoroughly, we organized a multicenter study and hypothesized that room air is superior to 100% oxygen when asphyxiated newborn infants are resuscitated. In a prospective, international, controlled multicenter study including 11 centers from six countries, asphyxiated newborn infants with birth weight >999 g were allocated to resuscitation with either room air or 100% oxygen. The study was not blinded, and the patients were allocated to one of the two treatment groups according to date of birth. Those born on even dates were resuscitated with room air and those born on odd dates with 100% oxygen. Informed consent was not obtained until after the initial resuscitation, an arrangement in agreement with the new proposal of the US Food and Drug Administration's rules governing investigational drugs and medical devices to permit clinical research on emergency care without the consent of subjects. The protocol was approved by the ethical committees at each participating center. Entry criterion was apnea or gasping with heart rate Apgar score at 5 minutes, heart rate at 90 seconds, time to first breath, time to first cry, duration of resuscitation, arterial blood gases and acid base status at 10 and 30 minutes of age, and

  4. Thermodynamic analysis of direct internal reforming of methane and butane in proton and oxygen conducting fuel cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Geerlings, J.J.C.

    2008-01-01

    We present results of a thermodynamic analysis of direct internal reforming fuel cells, based on either a proton conducting fuel cell (FC-H+) or an oxygen ion conducting fuel cell (FC-O2-). We analyze the option of methane as fuel as well as butane. The model self-consistently combines all chemical

  5. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  6. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  7. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  8. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  9. Method for calculating ionic and electronic defect concentrations in y-stabilised zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, F W [Risoe National Lab., Materials Research Dept., Roskilde (Denmark)

    1997-10-01

    A numerical (trial and error) method for calculation of concentration of ions, vacancies and ionic and electronic defects in solids (Brouwer-type diagrams) is presented. No approximations or truncations of the set of equations describing the chemistry for the various defect regions are used. Doped zirconia and doped thoria with simultaneous presence of protonic and electronic defects are taken as examples: 7 concentrations as function of oxygen partial pressure and/or water vapour partial pressure are determined. Realistic values for the equilibrium constants for equilibration with oxygen gas and water vapour, as well as for the internal equilibrium between holes and electrons were taken from the literature. The present mathematical method is versatile - it has also been employed by the author to treat more complex systems, such as perovskite structure oxides with over- and under-stoichiometry in oxygen, cation vacancies and simultaneous presence of protons. (au) 6 refs.

  10. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  11. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  12. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    Science.gov (United States)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  13. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    International Nuclear Information System (INIS)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-01-01

    Highlights: ► Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. ► How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. ► The SO 4 2− species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO 3 ) 2 –CoPcS–KOH (denoted as Cu–Co–KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 °S and 30% relative humidity with 1.0% oxygen is shown in Cu–Co–KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO 3 ) 2 –CoPcS–KOH appears to improve the COS removal capacity significantly, during which, SO 4 2− is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO 2 and COS are detected in the effluent gas generated from exhausted Cu–Co–KW (denoted Cu–Co–KWE). According to the current study results, the activated carbon impregnated with Cu(NO 3 ) 2 –CoPcS–KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  14. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xueqian, E-mail: wxqian3000@yahoo.com.cn [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. Black-Right-Pointing-Pointer How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. Black-Right-Pointing-Pointer The SO{sub 4}{sup 2-} species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO{sub 3}){sub 2}-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 Degree-Sign S and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO{sub 3}){sub 2}-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO{sub 4}{sup 2-} is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO{sub 2} and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO{sub 3}){sub 2}-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  15. Oxygen Transport: A Simple Model for Study and Examination.

    Science.gov (United States)

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  16. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    Science.gov (United States)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  17. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  18. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    International Nuclear Information System (INIS)

    Fujieda, S.; Fukamichi, K.; Suzuki, S.

    2014-01-01

    Highlights: • The aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe 0.88 Si 0.12 ) 13 becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe 0.88 Si 0.12 ) 13 in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration

  19. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  20. Alarm points for fixed oxygen monitors

    International Nuclear Information System (INIS)

    Miller, G.C.

    1987-05-01

    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment

  1. Oxygenation and cracking in melt-textured YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Kracunovska, S; Diko, P; Litzkendorf, D; Habisreuther, T; Bierlich, J; Gawalek, W

    2005-01-01

    Microstructural changes during the oxygenation of YBCO bulks were studied. It was shown that a lower temperature of oxygenation leads to the formation of a denser structure of a/b- and c-macrocracks and causes faster and more homogeneous oxygenation of the sample. The opening of created macrocracks is the way in which the macroscopic stresses induced by macroscopic 211 particle concentration inhomogeneity are released. This is very important, because it prevents the formation of fatal c-macrocracks, which divide the sample into more domains, during cooling from oxygenation temperature or during sample performance. Oxygenation with a multistage programme causes the oxygen concentration difference between the oxygenated layer and the tetragonal matrix to be smaller, and consequently fewer macrocracks are formed. This leads to the prolongation of oxygenation times for full oxygenation and to the insufficient release of macroscopic stresses. 211 low concentration regions and pores also enhance the oxygenation rate of YBCO bulks

  2. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  3. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  4. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  6. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  7. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  8. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  9. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  10. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  11. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    Science.gov (United States)

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  14. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  15. The effect of chlorine and oxygen concentrations on the removal of mercury at an FGD-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carolina Acuna-Caro; Kevin Brechtel; Guenter Scheffknecht; Manuel Brass [University of Stuttgart, Stuttgart (Germany). Institute of Process Engineering and Power Plant Technology (IVD)

    2009-12-15

    A series of laboratory scale experiments were conducted in an FGD-batch reactor. A synthetic flue gas was produced and directed through a CaCO{sub 3} suspension contained in a glass reactor vessel. The suspension temperature was set at 54{sup o}C through a water bath. In order to observe the distribution of mercury species in the system, solid, liquid and gaseous samples were taken and analysed. For gaseous mercury determination, continuous measurements were carried out, up and downstream the reactor. Furthermore, the concentration of chlorine in the scrubber solution of the system was varied from 0 to 62 g/l under different oxidative conditions. In a first approach, a concentration drop of elemental mercury coming out of the system was observed. The latter occurs only when high concentrations of Cl{sup -} are present, combined with a high O{sub 2} availability in the scrubber. It was also observed that mercury species distribution in the different phases varies, depending on the available chemical form of chlorine and oxygen concentration. 14 refs., 7 figs., 1 tab.

  16. Effects of the Oxygenation level on Formation of Different Reactive Oxygen Species During Photodynamic Therapy

    OpenAIRE

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilli...

  17. Internal oxygen dynamics in rhizomes of Phragmites australis and presence of methanotrophs in root biofilms in a constructed wetland for wastewater treatment

    Czech Academy of Sciences Publication Activity Database

    Faußer, A.; Dušek, Jiří; Čížková, Hana; Hoppert, M.; Walther, P.; Kazda, M.

    2013-01-01

    Roč. 51, 13-15 (2013), s. 3026-3031 ISSN 1944-3994. [3rd International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference. Skiathos Island, 19.06.2011-24.06.2011] Institutional support: RVO:67179843 Keywords : Aerenchyma * Macrophyte * Constructed wetland * Internal oxygen partial pressure * Methane-oxidising bacteria Subject RIV: EH - Ecology, Behaviour Impact factor: 0.988, year: 2013

  18. Modification of radiation sensitivity: the oxygen effect

    International Nuclear Information System (INIS)

    Quintiliani, M.

    1979-01-01

    Four fundamental aspects of the oxygen effect in radiobiology are reviewed, with emphasis on single cell systems: (1) Radiosensitivity in relation to oxygen concentration. In many biological systems, this relationship is remarkably well represented by the well-known Howard-Flanders/Alper formula. Often, however, the degree of uncertainty associated with the estimation of the value of K in the formula is fairly high. Recent data on V79-753B cells indicate a biphasic influence of oxygen concentration on radiosensitivity that cannot be described in terms of the Howard-Flanders/Alper model. (2) The oxygen effect in relation to survival level. The influence of very low oxygen concentrations on the shoulder of the survival curves of irradiated cells is still controversial. Also, the oxygen dependence of repair processes for sublethal and potentially lethal damage need to be better defined. (3) Time-scale of the oxygen effect. All the experimental data obtained with the use of fast techniques indicate that the time scale of the oxygen effect is consistent with that of free radical reactions. This appears to be compatible with the hypothesis that oxygen acts by fixation of a radiation-induced reversible damage. The existence of two types of damage with different rates of decay is suggested, both in bacterial and mammalian cells. (4) Molecular mechanisms of the oxygen effect. In spite of the very large literature on this subject, the identification of the detailed molecular mechanisms of the oxygen effect must still be considered goals for future research

  19. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  20. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  1. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  2. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances

    International Nuclear Information System (INIS)

    Guerra-Garcia, J.M.; Garcia-Gomez, J.C.

    2005-01-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the 'quantity' of species whereas pollutants control the 'quality' of them. - A high diversity of benthic animals was found in a polluted harbour where high oxygen levels occurred

  3. On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis.

    Science.gov (United States)

    Dremel, B A; Li, S Y; Schmid, R D

    1992-01-01

    A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).

  4. Oxygenation and hemodynamics in left and right cerebral hemispheres during induction of veno-arterial extracorporeal membrane oxygenation.

    NARCIS (Netherlands)

    Heyst, A.F.J. van; Liem, D.; Hopman, J.C.W.; Staak, F.H.J.M. van der; Sengers, R.C.A.

    2004-01-01

    OBJECTIVE: Oxygenation and hemodynamics in the left and right cerebral hemispheres were measured during induction of veno-arterial extracorporeal membrane oxygenation (VA-ECMO). STUDY DESIGN: Using near infrared spectrophotometry, effects of right common carotid artery (RCCA) and right internal

  5. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Investigation of the singlet delta oxygen and ozone yields from the pulsed radiolysis of oxygen and oxygen-noble gas mixtures

    International Nuclear Information System (INIS)

    Zediker, M.S.

    1984-01-01

    The experiments discussed herein were performed with a flowing gas apparatus coupled to the University of Illinois TRIGA reactor. The detectors (lambda = 1.27 μ 634 nm) were calibrated with a novel NO 2 titration scheme and the absorbed dose was estimated from the ozone concentrations measured in pure oxygen. The results of these experiments revealed an O 2 (a 1 Δ) production efficiency of 0.14% for direct nuclear pumping in an argon-oxygen mixture. Extensive modeling of the oxygen and argon-oxygen mixtures were benchmarked against these and other experiments. However, good agreement over a broad absorbed dose range was only possible if the O 4 + + O 4 - neutralization reaction was assumed to be nondissociative. In a second set of experiments with a nuclear sustained electrical discharge (low E/N), the O 2 (a 1 Δ) production efficiency was approx.0.40% for the electrical power densities examined. In addition, the O 2 (a 1 Δ) was observed to scale with the square root of the electrical power deposition but was independent of the oxygen concentration. A simple analytic model was developed which explains this behavior as a characteristic of an externally sustained discharge involving an electron attaching gas such as oxygen. The results of these experiments and the modeling of the chemical kinetics are discussed with an emphasis on optimizing the O 2 (a 1 Δ) and O 3 yields

  7. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  8. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna

    2005-01-01

    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  9. A Low-Power Medical Oxygen Generator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  10. A Low-Power Medical Oxygen Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  11. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  12. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  13. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    Science.gov (United States)

    2015-04-22

    Current COGs typically contain one or more of the following solid compounds: sodium chlorate , sodium perchlorate, potassium superoxide, or...produces heat. The COGs evaluated in this study are the O2PAK, TraumAid, and BOB. 3.2.1 O2PAK. The main ingredient in the O2PAK is sodium chlorate ...In 1902, the Lancet reported on Kamm’s oxygen generator invention for medical use. The device used chlorate cakes and manganese oxide and, when

  14. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    International Nuclear Information System (INIS)

    Steckel, G.L.

    1977-01-01

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO 2 /Y 2 O 3 electrolyte over the temperature ranges 700 to 1200 0 C (973 to 1473 K) for the binary system and 650 to 1150 0 C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  15. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    During non-monsoon months the estuaries were well mixed showing uniform oxygen concentrations from surface to bottom. However, during monsoon months both the estuaries showed stratified conditions with surface water showing high oxygen concentration...

  16. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient

    International Nuclear Information System (INIS)

    Rautio, Pasi; Huttunen, Satu

    2003-01-01

    Different methods should be used for foliar analyses of trees used as bioindicators of pollution, than those analyses used in nutritional studies of trees. - Analysis of foliar elements is a commonly used method for studying tree nutrition and for monitoring the impacts of air pollutants on forest ecosystems. Interpretations based on the results of foliar element analysis may, however, be different in nutrition vs. monitoring studies. We studied the impacts of severe sulphur and metal (mainly Cu and Ni) pollution on the element concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S and Zn) in Scots pine (Pinus sylvestris L.) foliage along an airborne sulphur and metal pollution gradient. Emphasis was put on determining the contribution of air-borne particles that have accumulated on needle surfaces to the total foliage concentrations. A comparison of two soil extraction methods was carried out in order to obtain a reliable estimate of plant-available element concentrations in the soil. Element concentrations in the soil showed only a weak relationship with internal foliar concentrations. There were no clear differences between the total and internal needle S concentrations along the gradient, whereas at the plot closest to the metal smelter complex the total Cu concentrations in the youngest needles were 1.3-fold and Ni concentrations over 1.6-fold higher than the internal needle concentrations. Chloroform-extracted surface wax was found to have Ni and Cu concentrations of as high as 3000 and 600 μg/g of wax, respectively. Our results suggest that bioindicator studies (e.g. monitoring studies) may require different foliar analysis techniques from those used in studies on the nutritional status of trees

  17. Oxygen enriched air using membrane for palm oil wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ramlah Mohd Tajuddin

    2002-11-01

    Full Text Available A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand (BOD, total suspended solids (TSS, pH, conductivity, turbidity, dissolved oxygen (DO, suspended solids (SS, and total dissolved solids (TDS before being subjected to two modes of aeration system, that is diffused air and oxygen enriched air. These water quality concentrations were tested for every 20 minutes for two-hour period during the aeration process. Results of BOD, TSS, pH, conductivity, DO, SS and TDS concentrations against time of samples from the two modes of aeration were then compared. It was found that DO concentration achieved in oxygen enriched air aeration was better than aeration using diffused air system. Aeration using OES improve the DO concentration in the wastewater and thus improve the BOD reduction and also influence other physical characteristics of wastewater. This phenomenon indicates the advantage of using air with higher oxygen concentration for wastewater aeration instead of diffused air system.

  18. Inhaled nitric oxide and high concentrations of oxygen in pediatrics patients with congenital cardiopathy and pulmonary hypertension: report of five cases

    Directory of Open Access Journals (Sweden)

    Werther Brunow de Carvalho

    Full Text Available Five patients with ages ranging from 6 months to 3 years were analyzed. All received inhaled nitric oxide (NO - 20 parts per million (ppm and oxygen (0(2 - at a concentration of 90-95% by means of an oxygen hood. Mean Pulmonary Artery Pressure (MPAP, Mean Aortic Pressure (MAoP, Pulmonary Vascular Resistance (PVR and Systemic Vascular Resistance (SVR were measured and the calculation of their relationship to pulmonary/systemic flow (Qp/Qs was performed by the catheterization' of the femoral artery vein. Three patients presented reduction in PVR and increase in Qp/Qs. There were no systemic alterations or any side effect from using NO.

  19. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  20. O mínimo de oxigênio na costa leste do Brasil entre 7-22ºS The minimum oxygen concentration in easthern Brasilian coast between 7-22ºS

    Directory of Open Access Journals (Sweden)

    Argeo Magliocca

    1978-01-01

    Full Text Available In the South Atlantic nearly the Brazilian coast, at low latitudes, the layer of minimum oxygen concentration shows distinct values between the Equatorial region (7ºS and the region limited by latitudes of 18-22ºS. In the vicinity of the Equator the minimum concentration is remarkably clear (2,0 ml/l at 7ºS and at 22ºS the minima values raise up to 4.0-4.5 ml/l. The minimum oxygen layer follows the isopynics surfaces (σt = 26.8-27.2 in depths of 300-400 m (7ºS and 600-800 m (22ºS . The oxygen concentration in this area results from a biochemical and physical processes, due to the presence of poor water Brazil Current southward and the rich one Intermediate Antartic water flowing northward.

  1. Blood oxygen and carbon dioxide transport in man

    OpenAIRE

    McElderry, Linda A.

    1981-01-01

    The effect of long term domiciliary oxygen therapy on the position and shape of the oxygen dissociation curve, together with other haematologic variables such as 2,3- diphosphoglycerate (2,3-DPG), haemoglobin concentration, packed cell volume, mean corpuscular haemoglobin concentration, and arterial blood gas and pH values, has been studied in patients with chronic bronchitis. Twenty-six patients were randomly allocated to receive either no oxygen therapy or 15 hours p...

  2. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  3. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  4. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  5. Time required for partial pressure of arterial oxygen equilibration during mechanical ventilation after a step change in fractional inspired oxygen concentration.

    Science.gov (United States)

    Cakar, N; Tuŏrul, M; Demirarslan, A; Nahum, A; Adams, A; Akýncý, O; Esen, F; Telci, L

    2001-04-01

    To determine the time required for the partial pressure of arterial oxygen (PaO2) to reach equilibrium after a 0.20 increment or decrement in fractional inspired oxygen concentration (FIO2) during mechanical ventilation. A multi-disciplinary ICU in a university hospital. Twenty-five adult, non-COPD patients with stable blood gas values (PaO2/FIO2 > or = 180 on the day of the study) on pressure-controlled ventilation (PCV). Following a baseline PaO2 (PaO2b) measurement at FIO2 = 0.35, the FIO2 was increased to 0.55 for 30 min and then decreased to 0.35 without any other change in ventilatory parameters. Sequential blood gas measurements were performed at 3, 5, 7, 9, 11, 15, 20, 25 and 30 min in both periods. The PaO2 values measured at the 30th min after a step change in FIO2 (FIO2 = 0.55, PaO2[55] and FIO2 = 0.35, PaO2[35]) were accepted as representative of the equilibrium values for PaO2. Each patient's rise and fall in PaO2 over time, PaO2(t), were fitted to the following respective exponential equations: PaO2b + (PaO2[55]-PaO2b)(1-e-kt) and PaO2[55] + (PaO2[35]-PaO2[55])(e-kt) where "t" refers to time, PaO2[55] and PaO2[35] are the final PaO2 values obtained at a new FIO2 of 0.55 and 0.35, after a 0.20 increment and decrement in FIO2, respectively. Time constant "k" was determined by a non-linear fitting curve and 90% oxygenation times were defined as the time required to reach 90% of the final equilibrated PaO2 calculated by using the non-linear fitting curves. Time constant values for the rise and fall periods were 1.01 +/- 0.71 min-1, 0.69 +/- 0.42 min-1, respectively, and 90% oxygenation times for rises and falls in PaO2 periods were 4.2 +/- 4.1 min-1 and 5.5 +/- 4.8 min-1, respectively. There was no significant difference between the rise and fall periods for the two parameters (p > 0.05). We conclude that in stable patients ventilated with PCV, after a step change in FIO2 of 0.20, 5-10 min will be adequate for obtaining a blood gas sample to measure a Pa

  6. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    Science.gov (United States)

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Major, Trace Element Concentration and Triple-Oxygen Isotope Compositions of G- and I-Type Spherules from the Sør Rondane Mountains, East Antarctica

    Science.gov (United States)

    Soens, B.; Goderis, S.; Greenwood, R. C.; McKibbin, S.; Van Ginneken, M.; Vanhaecke, F.; Debaille, V.; Franchi, I. A.; Claeys, Ph.

    2017-07-01

    We present new major, trace element concentration (LA-ICP-MS) and triple-oxygen isotope (LF-IRMS) data for G- and I-type cosmic spherules. This study suggests that both types of micrometeorites may originate from ordinary chondrite parent bodies.

  8. Sodium fire test at broad ranges of temperature and oxygen concentration. 4. Low temperature sodium spray fire tests

    International Nuclear Information System (INIS)

    Kawata, Koji; Miyahara, Shinya

    2005-08-01

    Sodium spray fire tests at the initial sodium temperature of 250degC were conducted under the atmospheric conditions of air and 3% oxygen containing nitrogen to determine the sodium burning rate and the aerosol release fraction and compare them with the test results at the initial sodium temperature of 500degC in air atmosphere. In the tests, sodium was supplied using a commercial spray nozzle into a stainless steel vessel of 100 m 3 volume (SOLFA-2). The sodium burning rate was calculated from two independent methods: the consumption rate of oxygen in the vessel and the enthalpy change of vessel components during the test. The aerosol release fraction was determined from the comparison between the measured aerosol concentrations and the calculated ones by the ABC-INTG code. The main conclusions were as follows, (1) In air atmosphere, a) sodium droplets ignited instantaneously and the spray fire was observed, and b) the sodium burning rate was about 440 g-Na/s and the fraction of supplied sodium was about 70%. (2) In 3% oxygen containing nitrogen, a) ignition of sodium droplets was not observed, and b) the sodium burning rate was about 44 g-Na/s and the fraction of supplied sodium was less than 10%. (author)

  9. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  10. Oxygen permeation modelling of perovskites

    NARCIS (Netherlands)

    van Hassel, Bart A.; van Hassel, B.A.; Kawada, Tatsuya; Sakai, Natsuko; Yokokawa, Harumi; Dokiya, Masayuki; Bouwmeester, Henricus J.M.

    1993-01-01

    A point defect model was used to describe the oxygen nonstoichiometry of the perovskites La0.75Sr0.25CrO3, La0.9Sr0.1FeO3, La0.9Sr0.1CoO3 and La0.8Sr0.2MnO3 as a function of the oxygen partial pressure. Form the oxygen vacancy concentration predicte by the point defect model, the ionic conductivity

  11. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    Science.gov (United States)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  12. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  13. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  14. Stress concentration factors for an internally pressurized circular vessel containing a radial U-notch

    International Nuclear Information System (INIS)

    Carvalho, E.A. de

    2005-01-01

    This paper evaluates the stress concentration factors for an internally pressurized cylinder containing a radial U-notch along its length. This work studies the cases where the external to internal radius ratio (Ψ) is equal to 1.26, 1.52, 2.00, and 3.00 and the notch radius to internal radius ratio (Φ) is fixed and equal to 0.026. The U-notch depth varies from 0.1 to 0.6 of the wall thickness. Results are also presented for a fixed size semi-circular notch. Hoop stresses at the external wall are presented, showing regions where the stress matches the nominal one and the favourable places to install strain sensors. The finite element method is used to determine the stress concentration factors (K t ) for the above described situations and for a special case where a varying semi-circular notch is present with Ψ=3.00. This notch depth varies from 0.013 to 0.3 of the wall thickness. It is pointed out that even relatively small notches introduce large stress concentrations and disrupt the hoop stress distribution all over the cross section. Results are also compared to an example found in the literature for semi-circular notches and K t curves for both cases present the same shape

  15. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31 P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31 P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500 0 C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750 0 C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750 0 C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200 0 C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750 0 C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750 0 C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  16. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  17. A model for oxidizing species concentrations in boiling water reactors

    International Nuclear Information System (INIS)

    Sun, B.; Chexal, B.; Pathania, R.; Chun, J.; Ballinger, R.; Abdollahian, D.

    1993-01-01

    To evaluate and control the intergranular stress corrosion cracking of boiling water reactor (BWR) vessel internal components requires knowledge of the concentration of oxidizing species that affects the electrochemical potentials in various regions of a BWR. In a BWR flow circuit, as water flows through the radiation field, the radiolysis process and chemical reactions lead to the production of species such as oxygen, hydrogen, and hydrogen peroxide. Since chemistry measurements are difficult inside BWRs, analytical tools have been developed by Ruiz and Lin, Ibe and Uchida and Chun and Ballinger for estimating the concentration of species that provide the necessary input for water chemistry control and material protection

  18. Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2017-08-01

    Full Text Available John Z Chen,1 Ira M Katz,2 Marine Pichelin,2 Kaixian Zhu,3 Georges Caillibotte,2 Michelle L Noga,4 Warren H Finlay,1 Andrew R Martin1 1Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, 3Centre Explor!, Air Liquide Healthcare, Gentilly, France; 4Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada Background: Portable oxygen concentrators (POCs typically include pulse flow (PF modes to conserve oxygen. The primary aims of this study were to develop a predictive in vitro model for inhaled oxygen delivery using a set of realistic airway replicas, and to compare PF for a commercial POC with steady flow (SF from a compressed oxygen cylinder. Methods: Experiments were carried out using a stationary compressed oxygen cylinder, a POC, and 15 adult nasal airway replicas based on airway geometries derived from medical images. Oxygen delivery via nasal cannula was tested at PF settings of 2.0 and 6.0, and SF rates of 2.0 and 6.0 L/min. A test lung simulated three breathing patterns representative of a chronic obstructive pulmonary disease patient at rest, during exercise, and while asleep. Volume-averaged fraction of inhaled oxygen (FiO2 was calculated by analyzing oxygen concentrations sampled at the exit of each replica and inhalation flow rates over time. POC pulse volumes were also measured using a commercial O2 conserver test system to attempt to predict FiO2 for PF. Results: Relative volume-averaged FiO2 using PF ranged from 68% to 94% of SF values, increasing with breathing frequency and tidal volume. Three of 15 replicas failed to trigger the POC when used with the sleep breathing pattern at the 2.0 setting, and four of 15 replicas failed to trigger at the 6.0 setting. FiO2 values estimated from POC pulse characteristics followed similar trends but were lower than those derived from

  19. A Compact Medical Oxygen Generator for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. Commercial medical oxygen generators are pressure...

  20. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  1. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  2. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  3. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    Science.gov (United States)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  4. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  5. Oxygen requirement of separated hybrid catfish eggs

    Science.gov (United States)

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  6. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  7. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  8. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments

    Science.gov (United States)

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-01

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.

  9. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  10. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  11. Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao

    2018-03-01

    Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.

  12. Oxygen 18 concentration profile measurements near the surface by 18O(p,α)15N resonance reaction

    International Nuclear Information System (INIS)

    Amsel, G.; David, D.

    1975-01-01

    The method of spectrum reduction in nuclear reaction microanalysis does not allow to obtain depth resolutions better than the order of 2000A. Resolutions of the order of 200A may be obtained by using the narrow resonance technique, when applied to thin films. The latter technique was extended to thick targets, with deep concentration profiles presenting a sharp gradient near the surface. This method is presented and illustrated by the study of 18 O profiles in oxygen diffusion measurements in growing ZrO 2 , using the 629keV resonance of the reaction 18 O(p,α) 15 N [fr

  13. Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations.

    Science.gov (United States)

    de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga

    2014-08-01

    One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.

  14. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    Science.gov (United States)

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  15. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  16. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  17. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  18. A biphasic radiation survival response of mammalian cells to molecular oxygen

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Steele, J.J.

    1979-01-01

    A study has been made of the responses of exponentially growing monolayers of Chinese hamster cells to γ-irradiation at low oxygen concentrations. Survival data showed progressively more sensitization with increasing oxygen concentration in the range 0.4 to 1.5 μM, but a constant amount of sensitization between 1.5 and 7.0 μM. Further sensitization was achieved at greater oxygen concentrations. The data imply that there are at least two components to the radiation inactivation of this cell line, and the full oxygen effect curve cannot be described in terms of a single competitive mechanism. (UK)

  19. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  20. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  1. Combined impact of water column oxygen and temperature on internal oxygen status and growth of Zostera marina seedlings and adult shoots

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens

    2013-01-01

    Eelgrass (Zostera marina L.) occasionally experiences severe die-offs during warm summer periods with variable water column oxygen partial pressures (pO). Eelgrass is known to be very intolerant to tissue anoxia with reduced growth and increasing mortality after ≤12h anoxia in the dark...... at temperatures of ≥25°C. In the present study we experimentally examine the impact of combined water column oxygen and temperature on oxygen dynamics in leaf meristems of seedlings and adult shoots to better understand how stressful environmental conditions affect eelgrass oxygen dynamics and subsequent growth...... and mortality. There was a strong interaction between water column oxygen and temperature on meristem pO implying that eelgrass is rather resistant to unfavorable oxygen conditions in winter but becomes increasingly vulnerable in summer, especially at high temperatures. At 25°C meristems became anoxic...

  2. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Science.gov (United States)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  3. Fast removal of oxygen from biological systems

    International Nuclear Information System (INIS)

    Dewey, D.L.; Michael, B.D.

    1975-01-01

    Reference is made to the fact that if radiation is given at a high enough dose rate, the biological effect of oxygen is less than at low dose rates. Examples are given of 'break-point' experiments showing the effect. It is stated that the rapid removal of a substance by radiation is not confined to oxygen: the only criterion required to demonstrate the effect is that the chemical causes a measurable sensitization or protection at a concentration small enough so that it can be depleted at a relatively low dose of radiation. Sufficient confidence is now placed in the effect that it can be used the other way round; that is, to measure the position of the break-point and from this measurement determine the oxygen concentration at the target site at the instant before irradiation. Examples are given of the use of the high dose rate technique for measuring the oxygen concentration inside mammalian cells (Chinese hamster cells). The effects of partial pressures of inert gases, and the effect of elevated gas pressures, are discussed. (U.K.)

  4. Microgradients of microbial oxygen consumption in a barley rhizosphere model system

    DEFF Research Database (Denmark)

    Højberg, Ole; Sorensen, J.

    1993-01-01

    A microelectrode technique was used to map the radial distribution of oxygen concentrations and oxygen consumption rates around single roots of 7- day-old barley seedlings. The seedlings were grown in gel-stabilized medium containing a nutrient solution, a soil extract, and an inert polymer. Oxygen...... consumption by microbial respiration in the rhizosphere (30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration...... was observed in the inner 0- to 3-mm-thick, concentric zone around the root (rhizosphere). The volume-specific oxygen consumption rate (specific activity) was thus 30 to 60 times higher in the innermost 0 to 0.01 mm (rhizoplane) than in the bulk medium. The oxygen consumption rate in the root tissue...

  5. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  6. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  7. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  8. Intraoperative transfusion threshold and tissue oxygenation

    DEFF Research Database (Denmark)

    Nielsen, K; Dahl, B; Johansson, P I

    2012-01-01

    Transfusion with allogeneic red blood cells (RBCs) may be needed to maintain oxygen delivery during major surgery, but the appropriate haemoglobin (Hb) concentration threshold has not been well established. We hypothesised that a higher level of Hb would be associated with improved subcutaneous...... oxygen tension during major spinal surgery....

  9. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  10. Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    OpenAIRE

    Johnson, M S; Zhulin, I B; Gapuzan, M E; Taylor, B L

    1997-01-01

    Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium classified as an obligate anaerobe, swam to a preferred oxygen concentration of 0.02 to 0.04% (0.24 to 0.48 microM), a level which also supported growth. Oxygen concentrations of 0.08% and higher arrested growth. We propose that in zones of transition from an oxic to an anoxic environment, D. vulgaris protects anoxic microenvironments from intrusion of oxygen.

  11. Comparative Effects Of Training In External And Internal Concentration On Two Counseling Behaviors

    Science.gov (United States)

    Leung, Paul

    1973-01-01

    A training procedure that appears to facilitate both empathic understanding and selective response to client statements is one built around the training of Zen Buddhist monks. Subjects trained in Zen techniques of external and internal concentration were found to increase their ability in these two counseling behaviors. (Author/LA)

  12. Water quality - Determination of tritium activity concentration - Liquid scintillation counting method (International Standard Publication ISO 9698:1989)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1999-01-01

    This International Standard specifies a method for the determination of tritiated water ([ 3 H]H 2 O) activity concentration in water by liquid scintillation counting. The method is applicable to all types of water including seawater with tritium activity concentrations of up to 10 6 Bq/m 3 when using 20 ml counting vials. Below tritium activity concentrations of about 5 x 10 4 Bq/m 3[ 8], a prior enrichment step and/or the measurement of larger sample volumes can significantly improve the accuracy of the determination and lower the limit of detection. Tritium activity concentrations higher than 10 6 Bq/m 3 may be determined after appropriate dilution with distilled water of proven low tritium content. An alternative method for the determination of these higher activities involves increasing the tritium activity concentrations of the internal standard solution. The method is not applicable to the analysis of organically bound tritium; its determination requires an oxidative digestion

  13. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Directory of Open Access Journals (Sweden)

    Aura Silva

    2014-01-01

    Full Text Available Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES or lactated Ringer’s (LR on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N=6 or LR (GRL; N=6. Bleeding caused a decrease of more than 50% in mean arterial pressure (P<0.01 and a decrease in cerebral oximetry (P=0.039, bispectral index, and electroencephalogram total power (P=0.04 and P<0.01, resp., while propofol plasma concentrations increased (P<0.01. Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P=0.03 and the cerebral oxygenation (P=0.008 decreased in the GLR and were significantly lower than in GHES (P=0.02. Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations.

  14. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  15. CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

    Science.gov (United States)

    Poulsen, Christopher J; Tabor, Clay; White, Joseph D

    2015-06-12

    The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time. Copyright © 2015, American Association for the Advancement of Science.

  16. Correlation analysis of Carbon Dioxide, Oxygen, Temperature and Humidity of Yadavaran Oil field in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Mohammad velayatzadeh

    2018-02-01

    Full Text Available Background & Objective:Emission of Carbon dioxide in the atmosphere has an important role in increasing temperatures and, its higher concentration can effect on human health. Due to this issue, this study is aimed to measure the amount of the released carbon dioxide into the atmosphere in different part of Yadavaran Oil field and compare with international standards in 2017. Material & Methods:The present investigation was accomplished in Yadavaran oil field of Khuzestan province of Iran in 2017. In this study measurement of parameters including carbon dioxide, carbon monoxide, oxygen, relative humidity and temperature was done in 64 stations with 3 replications using ALTAIR 4X and Trotec BZ30. Data was analyzed by one-way ANOVA and Kolmogorov–Smirnov tests. Moreover, Correlation analysis was performed using Pearson and Spearman coefficients. Results:The results showed that concentration range of carbon dioxide and oxygen was 490-590 and 19-208ppm respectively. Also, the highest and lowest levels of carbon dioxide were 584.56±6.36 and 453.94±77.7 ppm in wet water camp and S10 wells (P 0.05 in the same order. Conclusion:Pearson and Spearman coefficient analysis showed no significant correlation between temperature, humidity, oxygen and carbon dioxide. According to the results, the concentration of carbon dioxide in different areas of the oil field of Yadavaran was acceptable.

  17. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    Science.gov (United States)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  18. Determination of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre, M. de la; Lapena, J.; Galindo, F.; Couchoud, M.; Celis, B. de; Lopez-Araquistain, J.L.

    1976-01-01

    The behaviour is analysed of a device for 'in-line' sampling and vacuum distillation. With this procedure 95 results were obtained for the solubility of oxygen in liquid sodium at temperatures between 125 0 and 300 0 C. The correlation between the concentration of oxygen in a saturation state and the corresponding temperature is represented by: 1g C = 6,17 - 2398/T, where C expressed ppm of oxygen by weight and T is the saturation temperature in 0 K. Reference is also made to the first results obtained with the electrochemical oxygen meter and the system for taking and recording data. (author)

  19. Probabilistic reconstruction of internal exposure for nuclear power plant workers using air concentration measurements

    International Nuclear Information System (INIS)

    Linkov, I.; Burmistrov, D.

    2000-01-01

    Air surveys, whole-body counting, bioassays or combination of these measurements can be utilized for purposes or assessing internal doses to determine compliance with occupational dose equivalent limits. Air sampling with a little support provided by whole body counting and/or bioassays was often relied on in dose calculations. The utility of air sampling for internal dose reconstruction is addressed in this paper through the probabilistic analysis of environmental factors and their impact on dose estimates. In this paper we attempt to reconstruct an internal dose due to inhalation of beta + gamma emitting radionuclides for a contractual electrician, Mr. X. The data available for reconstruction of internal dose for Mr. X was found to be highly variable and uncertain. Uncertainty describes a lack of knowledge about a parameter, this lack of knowledge theoretically can be reduced, e.g., if more measurements were to be taken (for example, estimated activities for alpha-emitting radionuclides are uncertain due to the influence of naturally-occurring alpha-emitters). Variability describes the existence of different values that represent different environmental conditions (for example, the air concentrations of radionuclides may vary over time because of the different tasks performed by workers in the area). Variability can not be reduced by additional data collection because the varying values reflect the variable nature of the environment, not a lack of data. The high variability in measured air concentrations in the restricted areas of a LWR nuclear power plant where he worked do not allow adequate reconstruction of his individual internal dose using deterministic methods and therefore probabilistic methods are desirable. The guidance for probabilistic assessment developed by the United States Environmental Protection Agency as well as recommendations of the National Council of Radiation Protection provide an adequate framework for probabilistic reconstruction of

  20. Portable Cathode-Air-Vapor-Feed Electrochemical Medical Oxygen Concentrator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions present significant new challenges to crew health care capabilities, particularly in the efficient utilization of on-board oxygen...

  1. Net community production from autonomous oxygen observations in the Sargasso Sea

    Science.gov (United States)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  2. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    Science.gov (United States)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  3. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  4. Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation

    International Nuclear Information System (INIS)

    Chen Yu; Tailor, Dharmesh R; Intes, Xavier; Chance, Britton

    2003-01-01

    We measure the tissue oxygen and haemoglobin concentrations in the rat brain during modulation of inhaled oxygen concentration (FiO 2 ), using non-invasive frequency domain near-infrared oximetry. The rise in oxygenated haemoglobin concentration and the decline in deoxygenated haemoglobin concentration are demonstrated in correspondence with the modulation of FiO 2 , which is changed from 20% to 100% in increments of 20%. Furthermore, the tissue oxygenation saturation also shows the corresponding trend and changes ranging from approximately 70% to 90%. The relative changes in deoxygenated haemoglobin concentration are compared to the blood-oxygenation-level-dependent (BOLD) MRI signal recorded during a similar FiO 2 protocol. A linear relationship with high correlation coefficient between the relative changes in the BOLD MRI signal and the NIRS signal is observed

  5. Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States); Tailor, Dharmesh R [Department of Bioengineering, University of Pennsylvania, Philadelphia, PA (United States); Intes, Xavier [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States); Chance, Britton [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States)

    2003-02-21

    We measure the tissue oxygen and haemoglobin concentrations in the rat brain during modulation of inhaled oxygen concentration (FiO{sub 2}), using non-invasive frequency domain near-infrared oximetry. The rise in oxygenated haemoglobin concentration and the decline in deoxygenated haemoglobin concentration are demonstrated in correspondence with the modulation of FiO{sub 2}, which is changed from 20% to 100% in increments of 20%. Furthermore, the tissue oxygenation saturation also shows the corresponding trend and changes ranging from approximately 70% to 90%. The relative changes in deoxygenated haemoglobin concentration are compared to the blood-oxygenation-level-dependent (BOLD) MRI signal recorded during a similar FiO{sub 2} protocol. A linear relationship with high correlation coefficient between the relative changes in the BOLD MRI signal and the NIRS signal is observed.

  6. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  7. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  8. An international database of radionuclide concentration ratios for wildlife: development and uses

    International Nuclear Information System (INIS)

    Copplestone, D.; Beresford, N.A.; Brown, J.E.; Yankovich, T.

    2013-01-01

    A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data. -- Highlights: • An online database containing wildlife radionuclide transfer parameters is described. • Database underpins recent ICRP and IAEA data wildlife transfer compilations. • Database contains equilibrium based whole organism to media concentration ratios

  9. The role of oxygen in the uptake of deuterium in lithiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N.; Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Joint Institute of Computational Sciences, University of Tennessee, Knoxville, Tennessee 37998 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  10. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  11. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  12. [Recent technical advances in portable oxygen delivery systems].

    Science.gov (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T

    1992-08-01

    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Utilization of Renewable Oxygenates as Gasoline Blending Components

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  14. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  15. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Directory of Open Access Journals (Sweden)

    Jaime M Beecroft

    2006-01-01

    Full Text Available BACKGROUND: The OxyMask (Southmedic Inc, Canada is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA in patients with chronic hypoxemia.

  16. Radioprotection of mouse skin by WR-2721: the critical influence of oxygen tension

    International Nuclear Information System (INIS)

    Denekamp, J.; Michael, B.D.; Rojas, A.; Stewart, F.A.

    1982-01-01

    The epidermal clone assay has been used to study the radioprotective effect of WR-2721 on mouse skin under different conditions of oxygenation and under anoxia. The skin has shown a progressive decrease in sensitivity as the inspired gas has changed from 100% oxygen towards 0% oxygen. Compared with mice breathning 100% oxygen, those breathing air are partially protected. The inspired oxygen concentration to give half the full oxygen effect is 10-12%. The radioprotecton observed with 400 mg/kg WR-2721 is markedly dependent on the ambient oxygen concentration. The protection factor is 1.1 or less in mice breathing 5%, 1% or 0% oxygen. Protection is maximal (1.95) in air and in 50% oxygen and diminishes to 1.6 at higher oxygen tensions

  17. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    Science.gov (United States)

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P 0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  18. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  19. Sensing performances of ZnO nanostructures grown under different oxygen pressures to hydrogen

    International Nuclear Information System (INIS)

    Chu, Jin; Peng, Xiaoyan; Wang, Zhenbo; Feng, Peter

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Surface morphology depends on the oxygen pressure. ► Structural degradation was observed for the ZnO samples when oxygen pressure was overhigh. ► The sensitivity of the ZnO-based sensors increase with grown oxygen pressure. -- Abstract: For extensive use in an industrialized process of individual ZnO nanostructures applied in gas sensors, a simple, inexpensive, and safe synthesis process is required. Here, nanostructured ZnO films were grown by a pulsed laser deposition technique under different oxygen pressures. Scanning electron microscopy images show nanopores, nanotips, and nanoparticles are obtained and energy dispersive X-ray spectroscopy data indicate oxygen concentration of the synthesized samples increases monotonously with oxygen pressure. The sensor based on ZnO with high oxygen concentration has high sensitivity, rapid response (9 s) and recovery (80 s) behavior to 500 ppm hydrogen below 150 °C. Experimental data indicate that high oxygen concentration effectively improves the sensing properties of nanostructured ZnO.

  20. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  1. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  2. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  3. The relation between oxygen saturation level and retionopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Mohammad Gharavi Fard

    2016-03-01

    Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.

  4. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P

    2017-09-01

    An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.; Maidul Islam, A.K.M.; Alagarsamy, P.; Mukherjee, M.

    2011-01-01

    Co doped TiO 2 nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co 3 O 4 , which is the oxidation result of metallic Co or cobalt clusters present on the host TiO 2 . - Research highlights: → Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. → On air annealing the sample loses ferromagnetism giving rise to paramagnetism. → Saturation magnetization decreases at higher doping concentration. → Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  6. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  7. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    OpenAIRE

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  8. Oxigenoterapia en vuelos nacionales e internacionales en la Argentina Oxygen therapy during Argentine-based national and international flights

    Directory of Open Access Journals (Sweden)

    Alejandro Martínez Fraga

    2008-12-01

    Full Text Available No existe estudio que evalúe el estado de la oxigenoterapia en vuelo (OV en nuestro país. El objetivo de este estudio fue evaluar los requisitos, dificultades, sistemas y costos de la OV de las companías aéreas nacionales (N e internacionales (I que operan desde Buenos Aires. Se utilizó la misma encuesta telefónica y metodología que el estudio de Stoller y col.12. Los autores se comunicaron telefónicamente con 25 aerolíneas que operaban en los dos aeropuertos de Buenos Aires en julio de 2007, y se interrogó sobre los requisitos necesarios para viajar, sistemas y costos. Se usaron técnicas estadísticas convencionales siendo significativa pThere are no data about supplemental oxygen in flight in our country. The objective of our study was to evaluate arranging in-flight-oxygen required by a simulated traveler, system of administration and costs, and to compare the results between Argentine-based (A and international (I airlines. The questionnaire used was similar to that of Stoller et al12. Data collection consisted of telephone calls placed by one of the authors to all commercial air carriers listed in our two Buenos Aires City airports during July 2007. A structured interview with questions was addressed on issues that an oxygen-using air traveler would need to arrange in-flight oxygen. Of the 25 airlines, 6 were discarded because of lack of information (24%, three A -60%-and one I-16%-. All A allowed in-flightoxygen vs. 80% of I (p<0.05, 100% of A and 94% of I required a medical certificate (p=NS; 71% of A and 100% of I required previous notification (p<0.05; 50% of A and 87% of I provided patient interphases of oxygen administration (p=NS. Free of charge oxygen could be provided by 100% of A and 50% of I, with airline charge between 70 to 300 dollars. In conclusion, we observed different policies, rules, availability, and a pronounced lack of standardization of airline information. The cost of oxygen was very different between

  9. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  10. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  11. Oxygen effect on the electrical characteristics of pentacene transistors

    International Nuclear Information System (INIS)

    Hu Yan; Dong Guifang; Hu Yuanchuan; Wang Liduo; Qiu Yong

    2006-01-01

    The effect of oxygen on the electrical characteristics of organic thin film transistors with pentacene as the active layer has been investigated. The saturation currents and mobilities of the transistors increase as the ambient oxygen concentration decreases, which is ascribed to the formation of a charge transfer complex between pentacene and O 2 . The deposition rate of the pentacene layer affects this phenomenon. The transistor with the pentacene layer deposited at a rate of 15 nm min -1 shows higher sensitivity to oxygen concentration than the device with the pentacene layer deposited at 30 nm min -1 . We suggest that when deposited at a lower rate the pentacene film is less compact, leading to easier entrance of oxygen into the charge accumulation region

  12. Alveolar and serum concentrations of imipenem in two lung transplant recipients supported with extracorporeal membrane oxygenation.

    Science.gov (United States)

    Welsch, C; Augustin, P; Allyn, J; Massias, L; Montravers, P; Allou, N

    2015-02-01

    Venovenous extracorporeal membrane oxygenation (ECMO) is increasingly used in patients with respiratory failure who fail conventional treatment. Postoperative pneumonia is the most common infection after lung transplantation (40%). Imipenem is frequently used for empirical treatment of nosocomial pneumonia in the intensive care unit. Nevertheless, few data are available on the impact of ECMO on pharmacokinetics, and no data on imipenem dosing during ECMO. Currently, no guidelines exist for antibiotic dosing during ECMO support. We report the cases of 2 patients supported with venovenous ECMO for refractory acute respiratory distress syndrome following single lung transplantation for pulmonary fibrosis, treated empirically with 1 g of imipenem intravenously every 6 h. Enterobacter cloacae was isolated from the respiratory sample of Patient 1 and Klebsiella pneumoniae was isolated from the respiratory sample of Patient 2. Minimum inhibitory concentrations of the 2 isolated strains were 0.125 and 0.25 mg/L, respectively. Both patients were still alive on day 28. This is the first report, to our knowledge, of imipenem concentrations in lung transplantation patients supported with ECMO. This study confirms high variability in imipenem trough concentrations in patients on ECMO and with preserved renal function. An elevated dosing regimen (4 g/24 h) is more likely to optimize drug exposure, and therapeutic drug monitoring is recommended, where available. Population pharmacokinetic studies are indicated to develop evidence-based dosing guidelines for ECMO patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  14. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O{sub 2±x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato, E-mail: kato.masato@jaea.go.jp [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Watanabe, Masashi [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi [Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan)

    2017-04-15

    Oxygen potential of (U,Pu)O{sub 2±x} was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O{sub 2±x} was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described. - Highlights: •Brouwer’s diagrams for (U,Pu)O2 were constructed using the updated oxygen potential experimental data set. •Equilibrium constants of defect formation were determined as functions of Pu content and temperature. •Oxygen potential, oxygen diffusion coefficients, point defect concentration were described as functions of O/M ratio, Pu content and temperature.

  15. Oxygen concentration cell for the measurements of the standard molar Gibbs energy of formation of Nd6UO12(s)

    International Nuclear Information System (INIS)

    Sahu, Manjulata; Dash, Smruti

    2011-01-01

    The standard molar Gibbs energies of formation of Nd 6 UO 12 (s) have been measured using an oxygen concentration cell with yttria stabilized zirconia as solid electrolyte. Δ f G m o (T) for Nd 6 UO 12 (s) has been calculated using the measured and required thermodynamic data from the literature. The calculated Gibbs energy expression can be given as: Δ f G m o (Nd 6 UO 12 , s,T)/(± 2.3) kJmol -1 = -6660.1+1.0898 (T/K). (author)

  16. Internal oxidation of laminated ternary Ru–Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Lu, Tso-Shen

    2015-10-30

    Highlights: • Internal oxidation was observed in annealed and laminated Ru–Ta–Zr coatings. • The oxidized Ru–Ta–Zr coatings comprised three alternately stacked sublayers. • Correlated variations of O{sup 2-} and Zr{sup 4+} binding energies were verified in XPS spectra. - Abstract: Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru–Ta–Zr coatings were prepared with various stacking sequences during cosputtering. The Ru–Ta–Zr coatings were annealed at 600 °C in an atmosphere continuously purged with 1% O{sub 2}–99% Ar mixed gas for 30 min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta{sub 2}O{sub 5}-, and ZrO{sub 2}-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru–Ta–Zr coatings, increasing the surface hardness of the oxidized coatings.

  17. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  18. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  19. Rapid determination of oxygen saturation and vascularity for cancer detection.

    Directory of Open Access Journals (Sweden)

    Fangyao Hu

    Full Text Available A rapid heuristic ratiometric analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured tissue diffuse reflectance spectra is presented. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance at 584 nm and 545 nm to estimate the tissue hemoglobin concentration using a Monte Carlo-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, the oxygen saturation was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue oxygen saturation. Correlations coefficients of 0.89 (0.86, 0.77 (0.71 and 0.69 (0.43 were obtained for the tissue hemoglobin concentration (oxygen saturation values extracted using the full spectral Monte Carlo and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse Monte Carlo analysis for estimating tissue hemoglobin concentration and oxygen saturation in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin in real-time spectral imaging applications.

  20. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  1. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    Science.gov (United States)

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  2. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.

    Science.gov (United States)

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J

    2011-05-01

    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new

  3. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Internal Concentration and Time Are Important Modifiers of Toxicity: The Case of Chlorpyrifos on Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Lee, Hyun-Jeoung; Kwon, Jung-Hwan

    2016-09-06

    The internal concentration of chemicals in exposed organisms changes over time due to absorption, distribution, metabolism, and excretion processes since chemicals are taken up from the environment. Internal concentration and time are very important modifiers of toxicity when biomarkers are used to evaluate the potential hazards and risks of environmental pollutants. In this study, the responses of molecular biomarkers, and the fate of chemicals in the body, were comprehensively investigated to determine cause-and-effect relationships over time. Chlorpyrifos (CP) was selected as a model chemical, and Caenorhabditis elegans was exposed to CP for 4 h using the passive dosing method. Worms were then monitored in fresh medium during a 48-h recovery regime. The mRNA expression of genes related to CYP metabolism (cyp35a2 and cyp35a3) increased during the constant exposure phase. The body residue of CP decreased once it reached a peak level during the early stage of exposure, indicating that the initial uptake of CP rapidly induced biotransformation with the synthesis of new CYP metabolic proteins. The residual chlorpyrifos-oxon concentration, an acetylcholinesterase (AChE) inhibitor, continuously increased even after the recovery regime started. These delayed toxicokinetics seem to be important for the extension of AChE inhibition for up to 9 h after the start of the recovery regime. Comprehensive investigation into the molecular initiation events and changes in the internal concentrations of chemical species provide insight into response causality within the framework of an adverse outcome pathway.

  5. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  6. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    by a charge-coupled-device (ccd) camera mounted on a fluorescence microscope allowed a pixelwise estimation of the ratio function in a microscopic image. Use of a microsensor and oxygen-consuming bacteria in a sample chamber enabled the calibration of the system for quantification of absolute oxygen......Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular...... states of the fluorophore can be expressed by a three-state energy model. This leads to a set of differential equations which describe the photobleaching behavior of fluorescein. The numerical solution of these equations shows that in a conventional wide-field fluorescence microscope, the fluorescence...

  7. Determination Of Oxygen Isotope Ratio (18O-/16O) and Sulfur (34S-/32S) Value Of BaSO4 Din 5033 For Internal Standard

    International Nuclear Information System (INIS)

    Evarista Ristin, P.I.; Sidauruk, Paston; Wibagoyo; Djiono; Satrio

    2000-01-01

    It has been done an experiment to determine of oxygen( 18 O-/ 16 O) and Sulfur ( 34 S-/ 32 S) ) isotop value of BaSO 4 DIN 5033 (merck) for internal standard. The used technique for preparation of CO 2 gas to measure oxygen isotop ratio ratio (stated as deltaδ 18 O) is based on Rafter on Rafte method using graphite for reduction of BaSO 4 . Where the used technique for preparation of SO 2 gas to measure isotope sulphur ratio (started as δ 34 S) is based on Robinson - Kasakabe method using Cupro oxide to oxidize Ag 2 S. The result of this experiment is 11,48±0,41 0/00 and 5,00 plus minus ±0,33 o/oo for deltaδ 18 O and δ 34 S value respectively. Based on this experiment. BaSO 4 DIN 5033 can be used as internal standard because is values both oxygen and sulphur lie in the middle of range of its variation in nature. The result of interlab comparison shows that the value of this experiment is nearly similar to the value obtained from laboratorium of Pinstech-Pakistan. To acquire the result, it is necessary to carry out more interlab comparison

  8. Oxygen supplementation for critically ill patients

    DEFF Research Database (Denmark)

    Barbateskovic, M; Schjørring, O L; Jakobsen, J C

    2018-01-01

    . The objective of this systematic review is to critically assess the evidence of randomised clinical trials on the effects of higher versus lower inspiratory oxygen fractions or targets of arterial oxygenation in critically ill adult patients. METHODS: We will search for randomised clinical trials in major......BACKGROUND: In critically ill patients, hypoxaemia is a common clinical manifestation of inadequate gas exchange in the lungs. Supplemental oxygen is therefore given to all critically ill patients. This can result in hyperoxaemia, and some observational studies have identified harms with hyperoxia...... in international guidelines despite lack of robust evidence of its effectiveness. To our knowledge, no systematic review of randomised clinical trials has investigated the effects of oxygen supplementation in critically ill patients. This systematic review will provide reliable evidence to better inform future...

  9. Macroscopic results for a novel oxygenated silicon material

    International Nuclear Information System (INIS)

    Watts, S.J.; Da Via', C.; Karpenko, A.

    2002-01-01

    High-resistivity FZ silicon diodes have been processed in order to increase their oxygen dimer (O 2i ) concentration. Deep level transient spectroscopy measurements have been performed after proton irradiation showing that the formation of the VO centre is suppressed. The substrates had a starting resistivity of 2-4 kΩ cm, with an oxygen concentration of 10 15 and 10 17 cm -3 . Results for doping changes, leakage current and annealing behaviour after irradiation with 24 GeV/c protons are shown

  10. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Science.gov (United States)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  11. Reaction of oxygen with the respiratory chain in cells and tissues.

    Science.gov (United States)

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate

  12. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Directory of Open Access Journals (Sweden)

    L. Resplandy

    2012-12-01

    Full Text Available The expansion of OMZs (oxygen minimum zones due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

    Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that

  13. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2017-03-01

    Full Text Available Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP oxides (A2BO4 are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides.

  14. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    Science.gov (United States)

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased

  15. Asthma and hemoglobinopathy: when is supplemental oxygen required?

    Science.gov (United States)

    Joseph, Leon; Brickner-Braun, Inbal; Pinshow, Berry; Goldberg, Shmuel; Miskin, Hagit; Picard, Elie

    2013-10-01

    Asthma is the most common reason for referral to the emergency department in childhood. In severe attacks, supplemental O2 is given when oxygen saturation level is asthma attack. Simultaneously, P(a)O2 was normal. A diagnosis of abnormal hemoglobin with decreased oxygen affinity (hemoglobin Seattle) was made on hemoglobin electrophoresis and genetic analysis. To ascertain when supplemental oxygen was needed, an oxygen dissociation curve was plotted using the tonometer technique, and it was found that an S(p)O2 of 70% is parallel to a P(a)O2 of 60 mmHg. Plotting an oxygen dissociation curve is a simple reproducible method to determine when supplemental oxygen is required for a child with a hemoglobinopathy. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  16. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    Enzyme catalysts have the potential to improve both the process economics and the environ-mental profile of many oxidation reactions especially in the fine- and specialty-chemical industry, due to their exquisite ability to perform stereo-, regio- and chemo-selective oxida-tions at ambient...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... far below their potential maximum catalytic rate at industrially relevant oxygen concentrations. Detailed knowledge of the en-zyme kinetics are therefore required in order to determine the best operating conditions and design oxygen supply to minimize processing costs. This is enabled...

  17. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  18. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  19. Oxygen measurements in thin ribbon silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, S L; Ast, D G; Baghdadi, A

    1987-03-01

    The oxygen content of thin silicon ribbons grown by the dendritic web technique was measured using a modification of the ASTM method based on Fourier transform infrared spectroscopy. Web silicon was found to have a high oxygen content, ranging from 13 to 19 ppma, calculated from the absorption peak associated with interstitial oxygen and using the new ASTM conversion coefficient. The oxygen concentration changed by about 10% along the growth direction of the ribbon. In some samples, a shoulder was detected on the absorption peak. A similar shoulder in Czochralski grown material has been variously interpreted in the literature as due to a complex of silicon, oxygen, and vacancies, or to a phase of SiO/sub 2/ developed along dislocations in the material. In the case of web silicon, it is not clear which is the correct interpretation.

  20. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    DEFF Research Database (Denmark)

    Levi, Suzi; Hybel, Anne-Marie; Bjerg, Poul Løgstrup

    2014-01-01

    for the herbicides. In the presence of oxygen 14C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides....... The highest oxygen concentrations (corresponding to 4-11mgL-1) stimulated degradation (a 14-27% increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an experimental period of 200days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic...... conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2mgL-1). The sediment had substantial oxygen consumption (0.92-1.45O2g-1dw over 200days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due...

  1. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  2. USING OXYGEN-CONSUMING THERMOSET PLASTICS TO GENERATE HYPOXIC CONDITIONS IN MICROFLUIDIC DEVICES FOR POTENTIAL CELL CULTURE APPLICATIONS

    DEFF Research Database (Denmark)

    Sticker, Drago; Rothbauer, Mario; Ehgartner, Josef

    The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ-on-chip app......The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ...

  3. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  4. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  5. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    Science.gov (United States)

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  6. Tubing length for long-term oxygen therapy.

    Science.gov (United States)

    Aguiar, Carolina; Davidson, Josy; Carvalho, Andréa K; Iamonti, Vinícius C; Cortopassi, Felipe; Nascimento, Oliver A; Jardim, José R

    2015-02-01

    Most patients on long-term oxygen therapy use stationary oxygen delivery systems. It is not uncommon for guidelines to instruct patients to use tubing lengths no longer than 19.68 ft (6 m) when using an oxygen concentrator and 49.21 ft (15 m) when using cylinders. However, these concepts are not based on sufficient evidence. Thus, our objective was to evaluate whether a 98.42-ft (30-m) tubing length affects oxygen flow and FIO2 delivery from 1 cylinder and 2 oxygen concentrators. The 3 oxygen delivery systems were randomly selected, and 1, 3, and 5 L/min flows and FIO2 were measured 5 times at each flow at the proximal and distal outlets of the tubing by a gas-flow analyzer. Paired Student t test was used to analyze the difference between flows and FIO2 at proximal and distal outlets of tubing length. A total of 45 flows were measured between proximal and distal outlets of the 98.42-ft (30-m) tubing. Flows were similar for 1 and 3 L/min, but distal flow was higher than proximal flow at 5 L/min (5.57×5.14 L/min, Ptubing at flows 1, 3, and 5 L/min, but the mean difference between measurements was less than 1%. Tubing length of 98.42 ft (30 m) may be used by patients for home delivery oxygen with flows up to 5 L/min, as there were no important changes in flows or FIO2. Copyright © 2015 by Daedalus Enterprises.

  7. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones

    DEFF Research Database (Denmark)

    Larsen, Morten; Lehner, Philipp; Borisov, Sergey M.

    2016-01-01

    based on the palladium(II)-benzoporphyrin luminophore, immobilized in a perfluorinated matrix with high O2 permeability. The trace sensor has a detection limit of ∼5 nmol L−1 with a dynamic range extending up to ∼2 μmol L−1. The sensor demonstrates a response time ..., and fully reversible response to hydrostatic pressure and temperature. The sensor showed excellent stability for continuously measurements during depth profiling in Oxygen Minimum Zones (OMZ). The novel sensor was deployed in situ using a Trace Oxygen Profiler instrument (TOP) equipped with two additional O...

  8. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  9. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  10. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Emnéus, Jenny

    2010-01-01

    . The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used...... for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions....

  11. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Levi, S.; Hybel, A.-M.; Bjerg, P.L.; Albrechtsen, H.-J., E-mail: hana@env.dtu.dk

    2014-03-01

    In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen {sup 14}C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4–11 mg L{sup −1}) stimulated degradation (a 14–27% increase for mecoprop, 3–9% for dichlorprop and 15–20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L{sup −1}). The sediment had substantial oxygen consumption (0.92–1.45 O{sub 2} g{sup -1} dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe{sup 2+}, S{sup 2−} and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. - Highlights: • Addition of different oxygen concentrations stimulated degradation of

  12. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    International Nuclear Information System (INIS)

    Levi, S.; Hybel, A.-M.; Bjerg, P.L.; Albrechtsen, H.-J.

    2014-01-01

    In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen 14 C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4–11 mg L −1 ) stimulated degradation (a 14–27% increase for mecoprop, 3–9% for dichlorprop and 15–20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L −1 ). The sediment had substantial oxygen consumption (0.92–1.45 O 2 g -1 dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe 2+ , S 2− and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. - Highlights: • Addition of different oxygen concentrations stimulated degradation of herbicides in anaerobic aquifer sediment

  13. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  14. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  15. Macroscopic results for a novel oxygenated silicon material

    CERN Document Server

    Watts, S J; Karpenko, A

    2002-01-01

    High-resistivity FZ silicon diodes have been processed in order to increase their oxygen dimer (O sub 2 sub i) concentration. Deep level transient spectroscopy measurements have been performed after proton irradiation showing that the formation of the VO centre is suppressed. The substrates had a starting resistivity of 2-4 k OMEGA cm, with an oxygen concentration of 10 sup 1 sup 5 and 10 sup 1 sup 7 cm sup - sup 3. Results for doping changes, leakage current and annealing behaviour after irradiation with 24 GeV/c protons are shown.

  16. Rational use of oxygen in medical disease and anesthesia

    DEFF Research Database (Denmark)

    Meyhoff, Christian S; Staehr, Anne K; Rasmussen, Lars S

    2012-01-01

    Supplemental oxygen is often administered during anesthesia and in critical illness to treat hypoxia, but high oxygen concentrations are also given for a number of other reasons such as prevention of surgical site infection (SSI). The decision to use supplemental oxygen is, however, controversial......, because of large heterogeneity in the reported results and emerging reports of side-effects. The aim of this article is to review the recent findings regarding benefits and harms of oxygen therapy in anesthesia and acute medical conditions....

  17. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  18. Cerebral oxygen delivery is reduced in newborns with congenital heart disease.

    Science.gov (United States)

    Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike

    2016-10-01

    To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  19. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  20. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  1. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  2. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  3. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  4. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy

    International Nuclear Information System (INIS)

    Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C.A.

    1984-01-01

    The sensitivity of tumour cells to X rays has been shown to be about three times as great when irradiated in a well-oxygenated medium as under anoxic conditions. The manner in which sensitivity depends on oxygen tension closely resembles that found by other workers for plant and insect tissues. The sensitivity of the tumour cells to fast neutron radiation is only slightly affected by oxygen tension. Consideration is given to the supply of oxygen to tissues as a factor in radiotherapy, and it is concluded on the basis of existing knowledge that in certain circumstances the effectiveness of X-ray treatment might be increased if the patient were breathing oxygen at the time of irradiation

  5. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    Science.gov (United States)

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  6. An international database of radionuclide concentration ratios for wildlife: development and uses.

    Science.gov (United States)

    Copplestone, D; Beresford, N A; Brown, J E; Yankovich, T

    2013-12-01

    A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An equivalence study comparing nitrous oxide and oxygen with low-dose sevoflurane and oxygen as inhalation sedation agents in dentistry for adults.

    Science.gov (United States)

    Allen, M; Thompson, S

    2014-11-01

    The aim of this study was to examine whether sevoflurane in oxygen was equivalent to near equipotent concentrations of nitrous oxide in oxygen when used as an inhalation sedation agent in terms of patient and user acceptability. Forty anxious dental patients referred to the sedation suite at Cardiff University School of Dentistry received either nitrous oxide to a maximum concentration of 40% or sevoflurane to a maximum concentration of 0.3% for a routine maxillary plastic restoration with articaine infiltration local analgesia. The inhalation sedation agent to be administered was chosen by a random number allocator. Measurements of blood pressure, oxygen saturation, heart rate, respiratory rate and bispectral index were recorded every 5 minutes. At the end of the treatment episode the patient, the operator and an observer who was unaware of the agent used, recorded their impressions about the episode by completing questionnaires. In the doses used in this study, sevoflurane was found to be as effective as an inhalation sedation agent as the standard dose of nitrous oxide used in normal inhalation sedation in the treatment of adult anxious dental patients. Sevoflurane in low concentrations is equivalent in effect to near equipotent concentrations of nitrous oxide. This would suggest that further research, perhaps with slightly higher concentrations of sevoflurane, is needed. If sevoflurane was shown to be acceptable at slightly higher concentrations, there is scope to explore the development of equipment specifically designed to deliver sevoflurane as an inhalation sedation agent in future.

  8. Effect of ZnO nanoparticles in the oxygen uptake during aerobic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Avilés, Pabel; Brito, Elcia M. S. [University of Guanajuato, Engineering Division, Department of Civil Engineering & Environmental Engineering (Mexico); Duran, Robert [Université de Pau et des Pays de l’Adour, Equipe Environment et Microbiologie (France); Martínez, Arodí Bernal; Cuevas-Rodríguez, Germán, E-mail: german28@ugto.mx [University of Guanajuato, Engineering Division, Department of Civil Engineering & Environmental Engineering (Mexico)

    2016-07-15

    The increased use of ZnO nanoparticles (NPs) in everyday products indicates the importance of studying NPs release to the wastewater and its possible effect on biological process for wastewater treatment. Therefore, the aim of this work was to study the effect of the presence of ZnO NPs in aerobic wastewater treatment. The results indicated that the oxygen uptake rate of microorganisms is inhibited for concentrations higher than 473 mg L{sup −1} of ZnO NPs. The diversity of microorganisms involved in wastewater treatment was reduced in presence of ZnO NPs. Related to morphological interaction between ZnO NPs and suspended biomass, physical damage in flocs structure were observed in presence of ZnO NPs. However, the internalization of Zn compounds in microorganisms not presented mechanical damage in the membrane cell. These findings suggest that inhibition in oxygen uptake was caused for negative effect that ZnO NPs induces in aerobic microorganisms involved in wastewater treatment.

  9. International Space Station (ISS) Oxygen High Pressure Storage Management

    Science.gov (United States)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  10. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  11. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  12. Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering

    International Nuclear Information System (INIS)

    Kim, Youn J.; Jin, Su B.; Kim, Sung I.; Choi, Yoon S.; Choi, In S.; Han, Jeon G.

    2010-01-01

    Tin-doped indium oxide (ITO) thin films were deposited on glass substrates at various oxygen flow rates using a planar magnetron sputtering system with facing targets. In this system, the strong internal magnets inside the target holders confine the plasma between the targets. High resolution transmission electron microscopy revealed a combination of amorphous and crystalline phases on the glass substrate. X-ray photoelectron spectroscopy suggested that the decrease in carrier concentration and increase in mobility were caused by a decrease in the concentration of Sn 4+ states. The electrical and optical properties of the ITO films were examined by Hall measurements and UV-visible spectroscopy, which showed a film resistivity and transmittance of 4.26 x l0 -4 Ω cm, and > 80% in the visible region, respectively.

  13. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  15. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  16. [Issues in the use of medical oxygen generator with molecular sieve].

    Science.gov (United States)

    Xu, Junfeng; Yang, Xiaoling; Zhao, Xiaolei; Bai, Jiefang; Wang, Chaojie

    2014-07-01

    There are some existing problems in controlling the quality of oxygen. In order to improve quality, efficiency and safety in the use of oxygen, we presented some factors which may give rise to variations in concentration of oxygen and proposed some suggestions based on the investigation and analysis of such problems.

  17. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations

    International Nuclear Information System (INIS)

    Liu Fang; Zhao Chaocheng; Zhao Dongfeng; Liu Guohua

    2008-01-01

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH 4 + -N and total nitrogen (TN) in the effluent were 31, 2 and 8 mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78 m 3 /(m 2 h), the removal efficiencies of COD, NH 4 + -N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH 4 + -N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1 mg/L, the removal efficiencies of COD and NH 4 + -N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%

  18. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, Jeroen; Martens, D.E.; le Comte, EP; Kooy, F.K.; Tramper, J.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer

  19. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling

    NARCIS (Netherlands)

    Malda, J.; Rouwkema, J.; Martens, D.E.; Paul le Comte, E.; Kooy, F.K.; Tramper, J.; Blitterswijk, van C.A.; Riesle, J.

    2004-01-01

    The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE: cartilage polymer

  20. Oxygen: the two-faced elixir of life.

    Science.gov (United States)

    Biddle, Chuck

    2008-02-01

    Take a moment and consider our planet without oxygen. Imagine the earth some 2.5 billion years ago when oxygen first appeared as a waste product of early anaerobes. Oxygen, as we know it today, is essential for life. Abundant and relatively inexpensive to manufacture, oxygen has widespread use in industry and healthcare. Anesthesia providers routinely administer oxygen in concentrations exceeding that in ambient air to ensure clinical safety and to offset the predictable sequelae associated with patient, drug-related, and procedural factors. Understanding the history of this unique element is critical in evaluating the often contentious body of contemporary research that has illuminated its efficacy (as elixir) and its attendant complications (its "two-faced" nature). Of particular interest is its role in free radical formation as etiogenic in developing complications. Oxygen is a mainstay in the perioperative management of patients, but its administration should be guided by thoughtful and rational goal-directed outcomes to maximize efficacy and minimize complications associated with its use.

  1. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  2. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.; Melo, L.F. [University of Minho, Braga (Portugal). Dept. Bioengineering; Lazarova, V.; Manem, J. [Centre of International Research for Water and Environment (CIRSEE), Lyonnaise des Eaux, Le Pecq (France)

    1998-12-01

    The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5-2 gO{sub 2}/gN-NH{sub 4}{sup +} for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k{sub L}a) determined in the laboratory scale reactor was 0.017 s{sup -1} for a superficial air velocity of 0.02 m s{sup -1}, and the one determined in the pilot scale reactor was 0.040 s{sup -1} for a superficial air velocity of 0.031 m s{sup -1}. The k{sub L}a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm. (orig.) With 7 figs., 5 tabs., 24 refs.

  3. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  4. Hydrogen/oxygen injection stopping method for nuclear power plant and emergent hydrogen/oxygen injection device

    International Nuclear Information System (INIS)

    Ishida, Ryoichi; Ota, Masamoto; Takagi, Jun-ichi; Hirose, Yuki

    1998-01-01

    The present invention provides a device for suppressing increase of electroconductivity of reactor water during operation of a BWR type reactor, upon occurrence of reactor scram of the plant or upon stopping of hydrogen/oxygen injection due to emergent stoppage of an injection device so as not to deteriorate the integrity of a gas waste processing system upon occurrence of scram. Namely, when injection of hydrogen/oxygen is stopped during plant operation, the injection amount of hydrogen is reduced gradually. Subsequently, injection of hydrogen is stopped. With such procedures, the increase of electroconductivity of reactor water can be suppressed upon stoppage of hydrogen injection. When injection of hydrogen/oxygen is stopped upon shut down of the plant, the amount of hydrogen injection is changed depending on the change of the feedwater flow rate, and then the plant is shut down while keeping hydrogen concentration of feedwater to a predetermined value. With such procedures, increase of the reactor water electroconductivity can be suppressed upon stoppage of hydrogen injection. Upon emergent stoppage of the hydrogen/oxygen injection device, an emergent hydrogen/oxygen injection device is actuated to continue the injection of hydrogen/oxygen. With such procedures, elevation of reactor water electroconductivity can be suppressed. (I.S.)

  5. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  6. Investigation of oxygen distribution in HTSC-insulator in film structures on light ion beam

    International Nuclear Information System (INIS)

    Verbitskaya, E.M.; Grekhov, I.V.; Eremin, V.K.; Konnikov, S.G.; Linijchuk, I.A.; Razumov, S.V.; Semchinova, O.K.; Strokan, N.B.; Dyumin, A.N.; Lebedev, V.M.

    1992-01-01

    Use of nuclear reaction method on accelerated ions for profiling of oxygen concentration in thin-film HTSC structures is considered. Reaction on 16 O(d, α) 14 N deuterons, in course of which ∼ 2.6 MeV α-particles are generated, is used. Detected in experiment 2.0-2.6 MeV α-particle spectrum permits to recognstruct oxygen concentration profile in sample depth. Results obtained on YBa 2 Cu 3 O 7-δ and Y 2 BaCuO 5 film om MgO sunstrates, relating to the case of both uniform and nonuniform oxygen distribution, are presented. Resolution in the depth ∼ 200 A and accuracy of concentration measurement (relatively MgO substrate) of several percents are attained during oxygen profiling

  7. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases.

    Science.gov (United States)

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  8. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    Directory of Open Access Journals (Sweden)

    Kuan eZhang

    2011-04-01

    Full Text Available Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.01%- 1% and in adult brain (1.5%-7%, decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs in vitro cultures at different oxygen concentration (2%-20% and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (3%-10% is known can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, BMP and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  9. The effect of temperature and oxygen content on coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    K. Milenkova; A.G. Borrego; D. Alvarez; J. Xiberta; R. Menendez [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-07-01

    In this study chars from six coals differing in rank and maceral composition have been prepared at 1100 and 1300{sup o}C in a drop tube reactor using four oxygen concentrations (0, 2.5, 10 and 21% oxygen). Char burnout, reactivity, morphology and optical texture have been considered in an attempt to understand the effect of temperature and oxygen concentration in relation to coal characteristics. Temperature has shown to have a different effect on conversion depending on coal rank. The high volatile coals showed similar conversions at 1100 and 1300{sup o}C at the various atmospheres tested, whereas higher rank coals showed higher conversions at 1300 than at 1100{sup o}C. The presence of oxygen in the reacting gas appears to have two opposite effects on coal combustion. On the one hand it prevents swelling and devolatilisation and on the other it enhances combustion. The burnout will depend on which process dominates. In addition, this effect appears to be temperature dependant and the inhibiting effect of oxygen on coal devolatilisation has shown to be higher at higher temperature, since at low temperature it only affects the lowest ranked coals. The presence of oxygen also affects the structure of carbonaceous material since the lower the oxygen concentration the higher the anisotropy development. The difference in temperature separating the two series of experiments (1000 and 1300{sup o}C) did not have a positive effect on the conversion of coals yielding highly porous chars whereas for coals yielding more dense structures higher conversions were achieved at higher temperatures. 7 refs., 5 figs., 1 tab.

  10. Behaviour of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1975-01-01

    In this work, the vacuum distillation method has been used for the determination of oxygen concentration in liquid sodium. During this investigation, more than 800 analyses have been made and a fluctuation of between 15 and 20$ has been noted in the results. The performance of a cold trap to remove oxygen from sodium has been studied and the corresponding mass transfer coefficient evaluated. The value of this coefficient was in good agreement with those achieved by other workers. (Authors) 69 refs

  11. HYPERBARIC OXYGENATION AND AEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Irvine D. Prather

    2004-03-01

    Full Text Available The continuing desire to improve performance, particularly at the national and international levels, has led to the use of ergogenic aids. Ergogenic aids are defined as 'a procedure or agent that provides the athlete with a competitive edge beyond that obtained via normal training methods'. Random drug testing has been implemented in an effort to minimize an athlete's ability to gain an unfair advantage. However, other means of improving performance have been tried. Blood doping has been used to enhance endurance performance by improving oxygen delivery to working muscles. As oxygen is carried in combination with the hemoglobin, it seems logical that increasing the number of red blood cells (RBC's in the body would increase the oxygen carrying capacity to the tissues and result in improved performance. The first experiments of removing and then reinfusing blood showed a significant improvement in performance time

  12. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  13. ExtraCorporeal Membrane Oxygenation in Newborns. Implications for Brain and Lung.

    NARCIS (Netherlands)

    Heyst, A.F.J. van

    2004-01-01

    Extracorporeal membrane oxygenation (ECMO) is a rescue treatment for newborns with severe respiratory insufficiency. In veno-arterial ECMO, venous blood is drained from the right atrium, oxygenated in an artificial lung and reinfused in the aorta. For vascular access the right internal jugular vein

  14. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  15. Low oxygen eddies in the eastern tropical North Atlantic

    DEFF Research Database (Denmark)

    Grundle, D. S.; Löscher, C. R.; Krahmann, G.

    2017-01-01

    Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in th...

  16. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    International Nuclear Information System (INIS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-01-01

    Oxygen exchange reactions performed on PuO 2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO 2 . Previous CeO 2 surrogate studies exhibit similar behavior, confirming that CeO 2 is a good qualitative surrogate for PuO 2 , in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO 2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO 2 Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  17. Warming can boost denitrification disproportionately due to altered oxygen dynamics.

    Directory of Open Access Journals (Sweden)

    Annelies J Veraart

    Full Text Available BACKGROUND: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. CONCLUSIONS/SIGNIFICANCE: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes.

  18. An improved solution of first order kinetics for biochemical oxygen ...

    African Journals Online (AJOL)

    This paper evaluated selected Biochemical Oxygen Demand first order kinetics methods. Domesticinstitutional wastewaters were collected twice in a month for three months from the Obafemi Awolowo University, Ile-Ife waste stabilization ponds. Biochemical Oxygen Demand concentrations at different days were determined ...

  19. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  20. The oxycoal process with cryogenic oxygen supply.

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  1. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  2. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  3. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  4. Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity

    Directory of Open Access Journals (Sweden)

    Pedro González-Muniesa

    2016-01-01

    Full Text Available Several studies have shown a pathological oxygenation (hypoxia/hyperoxia on the adipose tissue in obese subjects. Additionally, the excess of body weight is often accompanied by a state of chronic low-degree inflammation. The inflammation phenomenon is a complex biological response mounted by tissues to combat injurious stimuli in order to maintain cell homeostasis. Furthermore, it is believed that the abnormal oxygen partial pressure occurring in adipose tissue is involved in triggering inflammatory processes. In this context, oxygen is used in modern medicine as a treatment for several diseases with inflammatory components. Thus, hyperbaric oxygenation has demonstrated beneficial effects, apart from improving local tissue oxygenation, on promoting angiogenesis, wound healing, providing neuroprotection, facilitating glucose uptake, appetite, and others. Nevertheless, an excessive hyperoxia exposure can lead to deleterious effects such as oxidative stress, pulmonary edema, and maybe inflammation. Interestingly, some of these favorable outcomes occur under high and low oxygen concentrations. Hereby, we review a potential therapeutic approach to the management of obesity as well as the oxygen-related inflammation accompanying expanded adipose tissue, based on elevated oxygen concentrations. To conclude, we highlight at the end of this review some areas that need further clarification.

  5. Characterization of hemodynamics and oxygenation in the renal cortex of rats

    Science.gov (United States)

    Grosenick, Dirk; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Arakelyan, Karen; Seeliger, Erdmann

    2015-03-01

    We have performed a pre-clinical study on 13 rats to investigate the potential of near-infrared spectroscopy for quantification of hemoglobin concentration and oxygen saturation of hemoglobin in the renal cortex of small animals. These measurements were combined with laser-Doppler fluxmetry and a fluorescence quenching technique for quantification of tissue oxygen tension. Hemoglobin concentration and oxygen saturation were determined from experimental data by a Monte Carlo model. The methods were applied to investigate and compare temporal changes during several types of interventions such as arterial and venous occlusions, as well as hyperoxia, hypoxia and hypercapnia induced by different mixtures of the inspired gas.

  6. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  7. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  8. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer

    KAUST Repository

    Wang, Kai Yu

    2010-05-19

    A scheme to fabricate forward osmosis membranes comprising a highly porous sublayer sandwiched between two selective skin layers via phase inversion was proposed. One severe deficiency of existing composite and asymmetric membranes used in forward osmosis is the presence of unfavorable internal concentration polarization within the porous support layer that hinders both (i) separation (salt flux) and (ii) the performance (water flux). The double skin layers of the tailored membrane may mitigate the internal concentration polarization by preventing the salt and other solutes in the draw solution from penetrating into the membrane porous support. The prototype double-skinned cellulose acetate membrane displayed a water flux of 48.2 L·m-2·h -1 and lower reverse salt transport of 6.5 g·m -2·h-1 using 5.0 M MgCl2 as the draw solution in a forward osmosis process performed at 22 °C. This can be attributed to the effective salt rejection by the double skin layers and the low water transport resistance within the porous support layer. The prospects of utilizing the double-selective layer membranes may have potential application in forward osmosis for desalination. This study may help pave the way to improve the membrane design for the forward osmosis process. © 2010 American Chemical Society.

  9. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer

    KAUST Repository

    Wang, Kai Yu; Ong, Rui Chin; Chung, Tai-Shung

    2010-01-01

    A scheme to fabricate forward osmosis membranes comprising a highly porous sublayer sandwiched between two selective skin layers via phase inversion was proposed. One severe deficiency of existing composite and asymmetric membranes used in forward osmosis is the presence of unfavorable internal concentration polarization within the porous support layer that hinders both (i) separation (salt flux) and (ii) the performance (water flux). The double skin layers of the tailored membrane may mitigate the internal concentration polarization by preventing the salt and other solutes in the draw solution from penetrating into the membrane porous support. The prototype double-skinned cellulose acetate membrane displayed a water flux of 48.2 L·m-2·h -1 and lower reverse salt transport of 6.5 g·m -2·h-1 using 5.0 M MgCl2 as the draw solution in a forward osmosis process performed at 22 °C. This can be attributed to the effective salt rejection by the double skin layers and the low water transport resistance within the porous support layer. The prospects of utilizing the double-selective layer membranes may have potential application in forward osmosis for desalination. This study may help pave the way to improve the membrane design for the forward osmosis process. © 2010 American Chemical Society.

  10. Optoacoustic monitoring of central and peripheral venous oxygenation during simulated hemorrhage

    Science.gov (United States)

    Petrov, Andrey; Kinsky, Michael; Prough, Donald S.; Petrov, Yuriy; Petrov, Irene Y.; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Khan, Muzna N.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock may be fatal unless promptly recognized and treated. The most commonly used indicators of shock (hypotension and tachycardia) lack sensitivity and specificity. In the initial stages of shock, the body compensates by reducing blood flow to the peripheral (skin, muscle, etc.) circulation in order to preserve vital organ (brain, heart, liver) perfusion. Characteristically, this can be observed by a greater reduction in peripheral venous oxygenation (for instance, the axillary vein) compared to central venous oxygenation (the internal jugular vein). While invasive measurements of oxygenation are accurate, they lack practicality and are not without complications. We have developed a novel optoacoustic system that noninvasively determines oxygenation in specific veins. In order to test this application, we used lower body negative pressure (LBNP) system, which simulates hemorrhage by exerting a variable amount of suction on the lower body, thereby reducing the volume of blood available for central circulation. Restoration of normal blood flow occurs promptly upon cessation of LBNP. Using two optoacoustic probes, guided by ultrasound imaging, we simultaneously monitored oxygenation in the axillary and internal jugular veins (IJV). LBNP began at -20 mmHg, thereafter was reduced in a step-wise fashion (up to 30 min). The optoacoustically measured axillary oxygenation decreased with LBNP, whereas IJV oxygenation remained relatively constant. These results indicate that our optoacoustic system may provide safe and rapid measurement of peripheral and central venous oxygenation and diagnosis of shock with high specificity and sensitivity.

  11. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  12. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  13. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  14. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method

    International Nuclear Information System (INIS)

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-01-01

    Highlights: ► Probably the most accurate method available for dissolved oxygen concentration measurement was developed. ► Careful analysis of uncertainty sources was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. ► This development enables more accurate calibration of dissolved oxygen sensors for routine analysis than has been possible before. - Abstract: A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012–0.018 mg dm −3 corresponding to the k = 2 expanded uncertainty in the range of 0.023–0.035 mg dm −3 (0.27–0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.

  15. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    Directory of Open Access Journals (Sweden)

    Kosuke Ebina

    Full Text Available Nanobubbles (<200 nm in diameter have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan. Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks and rainbow trout (for 6 weeks were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05, length of leaves (24.4 vs. 22.4 cm; P<0.01, and aerial fresh weight (27.3 vs. 20.3 g; P<0.01 of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01 and the length (17.0 vs. 16.1 cm; P<0.001 of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  16. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  17. Oxygen injection facility

    International Nuclear Information System (INIS)

    Ota, Masamoto; Hirose, Yuki

    1998-01-01

    A compressor introduces air as a starting material and sends it to a dust removing device, a dehumidifying device and an adsorption/separation system disposed downstream. The facility of the present invention is disposed in the vicinity of an injection point and installed in a turbine building of a BWR type reactor having a pipeline of a feedwater system to be injected. The adsorbing/separation system comprises an adsorbing vessel and an automatic valve, and the adsorbing vessel is filled with an adsorbent for selectively adsorbing nitrogen. Zeolite is used as the adsorbent. Nitrogen in the air passing through the adsorbing vessel is adsorbed and removed under a pressurized condition, and a highly concentrated oxygen gas is formed. The direction of the steam of the adsorbed nitrogen is changed by an opening/closing switching operation of an automatic valve and released to the atmosphere (the pressure is released). Generated oxygen gas is stored under pressure in a tank, and injected to the pipeline of the feedwater system by an oxygen injection conduit by way of a flow rate control valve. In the adsorbing vessel, steps of adsorption, separation and storage under pressure are repeated successively. (I.N.)

  18. Measurement and interpretation of low levels of dissolved oxygen in ground water

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Solbau, R.D.

    1990-01-01

    A Rhodazine-D colorimetric technique was adapted to measure low-level dissolved oxygen concentrations in ground water. Prepared samples containing between 0 and 8.0 ??moles L-1 dissolved oxygen in equilibrium with known gas mixtures produced linear spectrophotometric absorbance with a lower detection limit of 0.2 ??moles L-1. Excellent reproducibility was found for solutions ranging in composition from deionized water to sea water with chemical interferences detected only for easily reduced metal species such as ferric ion, cupric ion, and hexavalent chromium. Such effects were correctable based on parallel reaction stoichiometries relative to oxygen. The technique, coupled with a downhole wire line tool, permitted low-level monitoring of dissolved oxygen in wells at the selenium-contaminated Kesterson Reservoir in California. Results indicated a close association between low but measurable dissolved oxygen concentrations and mobility of oxidized forms of selenium. -from Authors

  19. Effects of drying methods on the low temperature reactivity of Victorian brown coal to oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Unal, S.; Wood, D.G.; Harris, I.J. (University of Marmara, Istanbul (Turkey). Ataturk Faculty of Education, Division of Science Education)

    1992-02-01

    The effects of air drying and thermal dewatering on the low temperature oxygen reactivity of Victorian brown coal have been investigated in the temperature range 35-55{degree}C and at 100 kPa oxygen pressure using coal samples ground to {lt} 100 mesh. An attempt has also been made to relate the low temperature oxygen reactivity of the coal to its free radical concentration as measured prior to oxidation. Two rate models, the Schmidt and Winmill models, have been adapted to include the initial free radical concentration of the coal samples as the drying method sensitivity parameter in lieu of the concentration of oxygen-reactive sites in the coal material. The experimental results show that air drying, which reduces the free radical concentration of the coal, causes a decline in its oxygen reactivity whereas thermal dewatering, which causes an increase in the free radical concentration of the coal, enhances its oxygen reactivity. Air drying does not affect the distribution of the consumed oxygen in the oxidation products. A difference is observed in the case of the thermally dewatered coal samples. The correlation of the two rate models adopted is considered equally satisfactory. However, only the values obtained for the two activation energies in the Winmill model reflect the changes caused by thermal dewatering in the oxidation pattern of the coal. The activation energy values obtained from the two models are within the range of those quoted in the literature for the abstraction of hydrogen from various arene structures by free radicals. 35 refs., 10 figs., 8 tabs.

  20. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  1. Apparatus for combining oxygen and hydrogen

    International Nuclear Information System (INIS)

    Betz, E.C.

    1977-01-01

    An apparatus is described for catalytically combining hydrogen and oxygen which includes two concentric catalyst chambers arranged so that the outer chamber surrounds the inner chamber and the gas stream passes radially through the outer catalyst chamber. 10 claims, 2 figures

  2. Physical and Instrumental Considerations in the Use of Lithium Phthalocyanine for Measurements of the Concentration of the Oxygen

    Science.gov (United States)

    Smirnov, A. I.; Norby, S. W.; Walczak, T.; Liu, K. J.; Swartz, H. M.

    The use of crystals of lithium phthalocyanine (LiPc) to measure the concentration of oxygen in vivo and in vitro by electron paramagnetic resonance leads to experimental constraints due to the very narrow EPR lines that may occur (as narrow as 11-13 mG in the absence of O 2), distortions induced by the automatic frequency control system, anisotropy in the spectra (orientation-dependent linewidth is 11-17 mG in the absence of O 2), microwave power saturation, and the effect of physiological motion. These constraints can be overcome if recognized. This article highlights the experimental and theoretical basis of these properties of the EPR signal of LiPc and suggests some technical solutions. It is most important to recognize that paramagnetic species such as LiPc present problems that are not commonly encountered in EPR spectroscopy.

  3. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  4. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  5. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  6. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  7. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  8. Concentration in the European electricity industry: The internal market as solution?

    International Nuclear Information System (INIS)

    Domanico, Fabio

    2007-01-01

    This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation

  9. Concentration in the European electricity industry: The internal market as solution?

    Energy Technology Data Exchange (ETDEWEB)

    Domanico, Fabio [Department of Economics, Luiss Guido Carli University, 1, Via O. Tommasini, 00162 Roma (Italy)

    2007-10-15

    This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation. (author)

  10. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  11. Influence of oxygen on the annealing of radioactive defects in germanium

    International Nuclear Information System (INIS)

    Gasimov, G.M.; Mustafayev, Yn.M.; Gasimova, V.G.

    2002-01-01

    The isochronal annealing were carried out in the wide temperature range, for the establishment of oxygen influence on the annealing of radioactive defects (Rd) in any radiated germanium samples, concentrated with oxygen up to concentration of 9.7·10 16 cm -3 . It is shown that the curves of isochronal annealing of one of the such samples 1, with primary current charge concentration of 9.0·10 cm 14 , radiated by integral electron flow of φ= 8.0·10 16 cm -3 , at 293 K and also the non-oxygen samples 2, with primary concentration of 1.7·10 cm -3 , radiated at above mentioned conditions. The sample 1 is converted by radiation to p-type, but the conversion not occur in samples 2. It is illustrated, that that there is two annealing stage at 340-430 K, for the samples 2, which in results takes place the complete annealing of the RD. At 300 K the annealing takes place in samples of 1, but at 340 K - the reverse annealing of RD. The sample was at compensated state in the temperature range of 360-400 K. An annealing of RD takes place again at 440 K and the sample re-converted its conductivity type. The reverse annealing at 480 K, and at about 510 K, the substantial annealing of the defects has been observed, which in results a sample restores it's primary parameters. The carried out experiments show that as in converted, and also in n-type be samples, Is observed the reverse annealing of RD, but the reverse annealing of current charge carriers in n-type samples is observed only at such conditions, of the integral flow of accelerated elections exceeds the primary concentration of current charge carriers about 4 time of magnitude (φ≥4n 0 ). Besides, the complete annealing of RD in germanium samples concentrated with oxygen, takes place at more high temperatures in comparison with the non-oxygen samples

  12. Expression of T helper cell-associated inflammatory mediator mRNAs in cells of bronchoalveolar lavage fluid samples and oxygen concentration in arterial blood samples from healthy horses exposed to hyperbaric oxygen.

    Science.gov (United States)

    Looijen, Maty G P; New, Dallas J; Fischer, Carrie D; Dardari, Rkia; Irwin, Karyn M; Berezowski, Christopher J; Bond, Stephanie L; Léguillette, Renaud

    2016-10-01

    OBJECTIVE To evaluate the mRNA expression of T helper (Th)1, Th2, and Th17 cell-associated inflammatory mediators in cells of bronchoalveolar lavage fluid samples collected from healthy horses exposed to hyperbaric oxygen (HBO) and to monitor blood oxygen concentration during and following HBO therapy. ANIMALS 8 healthy horses. PROCEDURES In a randomized controlled crossover design study, each horse was exposed (beginning day 1) to 100% oxygen at a maximum of 3 atmospheres absolute (304 kPa) daily for 10 days or ambient air at atmospheric pressure in the HBO chamber for an equivalent amount of time (control). Bronchoalveolar lavage fluid samples were collected on days 0 and 10. After validation of candidate reference genes, relative mRNA expressions of various innate inflammatory, Th1 cell-derived, Th2 cell-derived (including eotaxin-2), Th17 cell-derived, and regulatory cytokines were measured by quantitative PCR assays. For 3 horses, arterial blood samples were collected for blood gas analysis during a separate HBO session. RESULTS The optimal combination of reference genes was glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine ribosyltransferase, and ribosomal protein L32. Compared with day 0 findings, expression of eotaxin-2 mRNA was significantly lower (0.12-fold reduction) and the percentage of neutrophils in bronchoalveolar lavage fluid samples was significantly lower on day 10 when horses received HBO therapy. Values of Pao2 rapidly increased (> 800 mm Hg) but immediately decreased to pretreatment values when HBO sessions ended. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HBO therapy does not increase mRNA expression of inflammatory cytokines, but reduces eotaxin-2 mRNA transcription. The Pao2 increase was transient with no cumulative effects of HBO.

  13. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    International Nuclear Information System (INIS)

    Kalogridis, C.; Gros, V.; Sarda-Esteve, R.; Bonsang, B.; Bonnaire, N.; Boissard, C.; Baisnee, D.; Lathiere, J.

    2014-01-01

    The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2-16 ppbv inside and 2-5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mgm -2 h -1 . Net isoprene normalized flux (at 30 C, 1000 μmol quantam -2 s -1 ) was estimated at 7.4 mgm -2 h -1 . Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mgm -2 h -1 , whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit. The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings

  14. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  15. Oxygen vacancies dependent phase transition of Y{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengfei; Zhang, Kan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Huang, Hao [Titanium Alloys Lab. Beijing Institute of Aeronautical Materials, Beijing 81-15 100095 (China); Wen, Mao, E-mail: Wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Li, Quan; Zhang, Wei; Hu, Chaoquan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Automotive Simulation and Control and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China)

    2017-07-15

    Highlights: • Oxygen vacancies for Y{sub 2}O{sub 3} films increase monotonously with increasing T{sub s}. • Oxygen vacancies can promote the nucleation of monoclinic phase. • That monoclinic phase with oxygen deficiency is not thermodynamic stable at high temperature. • Phase transition from monoclinic to oxygen defective occurs at high concentrations of oxygen vacancies. • High hardness just appears in Y{sub 2}O{sub 3} films with mixed phase configurations. - Abstract: Y{sub 2}O{sub 3} films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y{sub 2}O{sub 3}) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y{sub 2}O{sub 3} thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (T{sub s}), in which oxygen vacancies increase monotonously with increasing T{sub s}. For as-deposited Y{sub 2}O{sub 3} films, oxygen vacancies present at high T{sub s} can promote the nucleation of monoclinic phase, meanwhile, high T{sub s} can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high T{sub s}. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and

  16. Natural Radionuclides and 137Cs Concentrations in Rice in Jepara Residence and Internal Dose Estimation Intake by the People

    International Nuclear Information System (INIS)

    Leli-Nirwani; Minarni; Buchari

    2001-01-01

    The measurement of natural radionuclides and 137 Cs concentration in rice in Jepara residence and internal dose estimation intake by people have been conducted. The aim of the research is to determine internal dose estimation of natural radionuclides and 137 Cs intake by people in Jepara residence. By knowing the natural radionuclides and 137 Cs concentrations in rice at Jepara residence, the dose coefficient for adult from ICRP No.72 and the annual intake consumption take from the Indonesian food balance published by BPS, the internal dose from natural radionuclides and 137 Cs intake from food can be calculate concentration of 228 Th, 226 Ra and 137 Cs were found in Bayuran, with the average value was (2.00±0.21) x 10 -5 Bq/kg, (0.09±0.25) x 10 -5 Bq/kg, (19.00±0.06) x 10 -5 Bq/kg respectively the highest 40 K concentration was found in Pandansili with the average was about (8.40 ± 0.34) x 10 -5 Bq/kg. The estimation of equivalent doses from intake of 228 Th, 226 Ra, 40 K, and 137 Cs in rice were the highest in Bayuran the value the average values, respectively, was 0.0039 x 10 -5 μ Sv/yr, 18.09 X 10 -5 μ Sv/yr, 1.63 x 10 -5 μ Sv/yr, 172.38 x 10 -5 μ Sv/yr. Result in this measurement lowest comparing by recommendation IAEA in Safety Series No. 115 in 1996. (author)

  17. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  18. Comparison of specific oxygen uptake rates of two beach-scale ...

    African Journals Online (AJOL)

    The determined values of oxygen uptake rate during the endogenous reaction phase (between 0.1054 and 0.3564 mgO2/L.minute) and concentrations of mixed liquor suspended solids (between 1183 and 1957 mgMLSS/L) are comparable to those reported elsewhere in literature. Results of specific oxygen uptake rate of ...

  19. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  20. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  1. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  2. Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas

    International Nuclear Information System (INIS)

    Becker, Axel; Stadler, Peter; Lavey, Robert S.; Haensgen, Gabriele; Kuhnt, Thomas; Lautenschlaeger, Christine; Feldmann, Horst Juergen; Molls, Michael; Dunst, Juergen

    2000-01-01

    Purpose: To investigate the relationship between tumor oxygenation and the blood hemoglobin (Hb) concentration in patients with squamous cell carcinoma of the head and neck (SCCHN). Methods and Materials: A total of 133 patients with SCCHN underwent pretreatment polarographic pO 2 measurements of their tumors. In 66 patients measurements were also made in sternocleidomastoid muscles. The patients were divided into three groups according to their Hb concentration--severe anemia (Hb 2 . Conclusion: Our data suggest that a low Hb concentration and cigarette smoking contribute to inadequate oxygenation of SCCHN and thus for increased radioresistance. Consequently, Hb correction and abstinence from smoking may significantly improve tumor oxygenation

  3. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi.

    1994-01-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V n O m (n,m=1,2, ···), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO m (m=2,3, ···) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O m , were introduced by annealing above 700degC. (author)

  4. Quantitative relations between chemical oxygen demand concentration and its influence factors in the sluice-controlled river reaches of Shaying River, China.

    Science.gov (United States)

    Dou, Ming; Li, Guiqiu; Li, Congying

    2015-01-01

    Recent research on the effects of dam and sluice construction on the water environment has attracted extensive attention from academia and governments alike. Because the operation of sluices greatly alters environmental factors such as water flow and sediment load, the water quality in sluice-controlled river reaches (SCRRs) undergoes complex changes compared with those in normal reaches. This work used river reaches near the Huaidian Sluice in Shaying River of China as a case study to analyse the effects of sluice operation on water quality evolution in SCRRs. The most influential factors affecting the rate of change in chemical oxygen demand (COD) concentration in SCRRs were identified through water quality monitoring experiments performed under various modes of sluice operation and by applying a statistical method 'partial correlation analysis'. Then, a hydrodynamic model incorporating sluice operation and a water quality transport and transform model incorporating the release of endogenous loads were developed. Using these two models, the processes of temporal and spatial change of COD concentrations in the SCRRs were simulated under various scenarios designed to represent the dominant factors of influence. Finally, the simulation results were used to develop empirical relationships between the rate of change in COD concentrations and the dominant factors of influence. The results reveal that three factors, i.e., water inflow concentration, gate opening size, and gate opening number, are the dominant factors of influence, and there are logarithmic relationships between the rate of change in COD concentration in the SCRRs and these factors.

  5. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  6. High Temperature Oxidation of Steel in an Oxygen-enriched Low NOX Furnace Environment

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, D.; Grandmaison, E.W. [Department of Chemical Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Matovic, M.D. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Barnes, K.R. [KB Technical Services, Inc (formerly) Stelco Inc, Research Manager, Stelco Inc., P.O. Box 2030, Hamilton, ON L8N 3T1 (Canada); Nelson, B.D. [Department of Chemical Engineering, Senior Researcher, Dofasco Inc., P.O. Box 2460, Hamilton, ON L8N 3J5 (Canada)

    2006-09-15

    Steel scaling tests have been performed in a research furnace utilizing an oxygen-enriched, low NOX, burner. This work was performed in conjunction with a study of the combustion characteristics for the Canadian Gas Research Institute (CGRI) low NOX burner. The furnace (a facility of the Centre for Advanced Gas Combustion Technology (CAGCT)) was fired with the burner mounted in a sidewall configuration similar to the geometry encountered in steel reheat furnaces. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations ({approx}0.8% - {approx}4.3%) and oxygen enrichment levels (0-90%) at 1100C. Steel grade had the largest effect on scaling properties examined in this work. Within the tests for each grade, stack oxygen concentration had the largest effect on the scaling properties while oxygen enrichment level had only a small effect.

  7. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  8. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    Science.gov (United States)

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  9. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  10. Oxygen in the Setting of Acute Myocardial Infarction: Is It Really a Breath of Fresh Air?

    Science.gov (United States)

    Loomba, Rohit S; Nijhawan, Karan; Aggarwal, Saurabh; Arora, Rohit R

    2016-03-01

    Supplemental oxygen has been used in the setting of acute myocardial infarction (AMI). Once an official recommendation in the guidelines for the management of acute ST-segment elevation myocardial infarction, it is now mentioned as an intervention to be considered. Data for the use of supplemental oxygen or AMI are limited, and some data have suggested associated harm. We performed a systematic review of the literature and a subsequent meta-analysis of the data to determine the effect of high concentration oxygen versus titrated oxygen or room air in the setting of AMI. The following end points were studied: in-hospital mortality, opiate use, percentage of infarcted myocardium by magnetic resonance imaging (MRI), and mass of infarcted myocardium by MRI. No significant difference was noted with end points when comparing those randomized to high-concentration oxygen versus those randomized to titrated oxygen or room air in the setting of AMI. No significant publication bias was identified although this could not be assessed for all end points. High-concentration oxygen may not offer any benefit when compared to titrated oxygen or room air. A large, randomized trial is warranted to further delineate these differences with respect to multiple end points. © The Author(s) 2015.

  11. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  12. Kinetics of the high temperature oxygen exchange reaction on {sup 238}PuO{sub 2} powder

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Christofer E., E-mail: chris.whiting@udri.udayton.edu [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States); Du, Miting; Felker, L. Kevin; Wham, Robert M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States)

    2015-12-15

    Oxygen exchange reactions performed on PuO{sub 2} suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO{sub 2}. Previous CeO{sub 2} surrogate studies exhibit similar behavior, confirming that CeO{sub 2} is a good qualitative surrogate for PuO{sub 2}, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO{sub 2} oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO{sub 2} Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  13. The Synergetic Effects of Hydrogen and Oxygen on the Strength and Ductility of Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    Chen Jiming(谌继明); Xu Ying(徐颖); Deng Ying(邓颖); Yang Ling(杨霖); Qiu Shaoyu(邱绍宇)

    2003-01-01

    A V4Ti alloy and several V4Cr4Ti alloys with different oxygen contents were studied on their tensile properties with the effect of hydrogen concentrations. The ductility of the alloys showed a successive decrease in a varied rate with an increased hydrogen concentration, while the ultimate tensile strength remained unchanged or even decreased for the high oxygen content alloy in spite of the occurrence of hardening in the low oxygen content alloy. Oxygen in the alloy causes grain boundary weakening, increasing the possibility of intergranular fractures and thus enhancing the hydrogen embrittlement. V4Ti showed a higher resistance to the hydrogen embrittlement as compared to the V4Cr4Ti alloys on a similar oxygen content level.

  14. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.; Tan, Xin; Schwingenschlö gl, Udo; Smith, Sean C.

    2016-01-01

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  15. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.

    2016-07-18

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  16. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO{sub 2} in the decomposition of high concentration ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yanhua; Zhang, Xiaolei [Shanghai Institute of Technology, Shanghai 200235 (China); Chen, Li [East China Normal University, Shanghai 200062 (China); Wang, Xiaorui [Shanghai Institute of Technology, Shanghai 200235 (China); Zhang, Na, E-mail: nzhang@sit.edu.cn [Shanghai Institute of Technology, Shanghai 200235 (China); Liu, Yufeng [Shanghai Institute of Technology, Shanghai 200235 (China); Fang, Yongzheng, E-mail: fyz1003@sina.com [Shanghai Institute of Technology, Shanghai 200235 (China)

    2017-06-15

    The catalytic decomposition of gaseous ozone (O{sub 3}) is investigated using anatase TiO{sub 2} (A-TiO{sub 2}) and Aluminum-reduced A-TiO{sub 2} (ARA-TiO{sub 2}) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO{sub 2}, the ARA-TiO{sub 2} sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy “capture” for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O{sub 3} without any light irradiation has been greatly improved from 4.8% on A-TiO{sub 2} to 100% on ARA-TiO{sub 2} under the RH=100% condition. The ozone conversion over T500/ARA-TiO{sub 2} catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m{sup 3} ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO{sub 2} possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti{sup 3+}/T{sup i4+}couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO{sub 2} in the thermal-catalytic field. - Graphical abstract: The anatase-TiO{sub 2} with various oxidation states and oxygen vacancies have been obtained by aluminum-reduction, and the decomposition efficiency of O{sub 3} has been greatly improved from 4.8% to 100% without irradiation under the RH=100% condition. - Highlights: • The decomposition of gaseous ozone over Al reduced TiO2 (ARA-TiO{sub 2}) is firstly reported. • The decomposition efficiency is up to 100% without any light irradiation on ARA-TiO{sub 2} under RH=100% condition. • The ozone conversion is maintained at 95% after a 72 h test, when C{sub inlet}=18.5 g/m{sup 3} and RH=90%.

  17. Low-head hydropower impacts on steam dissolved oxygen

    International Nuclear Information System (INIS)

    Thene, J.R.; Stefan, H.G.; Daniil, E.I.

    1989-01-01

    A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards

  18. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  20. Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION

    Science.gov (United States)

    Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.

    1973-01-01

    Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047

  1. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    Science.gov (United States)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  2. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO 2 + H 2 O right reversible H + + SHO 3 - . The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO 3 - ) and the other with the proton bonded to an oxygen (SO 3 H - ). (The symbol SHO 3 - in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO 3 H - , exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum

  3. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations.

    Science.gov (United States)

    Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia

    2017-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Kinetics of the oxygen effect in yeast irradiated in dry and wet conditions

    International Nuclear Information System (INIS)

    Kiefer, J.; Schoepfer, F.; Luggen-Hoelscher, J.

    1981-01-01

    There are indications that the radiobiological oxygen-effect consists of more than one component: in dry bacterial spores three different classes can be separated depending on exposure- and after-treatment conditions, the dependence of the oxygen-enhancement ratio (OER) on oxygen concentration shows breaks in various systems, and it has been suggested that type O and type N damage are localized in different parts of the cells. These questions were studied in the simple eucaryote Saccharomyces cerevisiae using two approaches: the dependence of OER on oxygen tension was determined both for survivial and mutation induction. Since a forward mutation was used a haploid strain had to be employed in this case. In order to assess whether also in yeast cells more than one component may exist, the techniques originally developed for bacterial spores were adapted for dried diploid yeast cells. The results show that the dependence on oxygen concentration is the same for survival and mutation within error limits, implicating DNA as the main target and that also in our system three classes of oxygen dependent damage exist

  5. Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide

    International Nuclear Information System (INIS)

    Koirala, Sandhaya; Naka, Nobuko; Tanaka, Koichiro

    2013-01-01

    We have studied transients of luminescence due to free excitons and excitons trapped at oxygen vacancies in cuprous oxide. We find that both trapped and free paraexcitons have lifetime dependent on temperature and on the oxygen concentration. By using samples containing much less copper vacancies relative to oxygen vacancies, we find out the direct correlation between the free paraexciton lifetime and trapped exciton lifetime. - Highlights: ► We have investigated trapping of free excitons at oxygen vacancies in cuprous oxide. ► Lifetimes of free and trapped excitons exhibit correlative temperature dependence. ► Four-level model with the activation energy of 33 meV well explains the observation. ► Comparison is made using the four samples with different vacancy concentrations. ► We clarified the crucial role of the oxygen vacancy in shortening the lifetimes.

  6. Long-term oxygen therapy for COPD. Improving longevity and quality of life in hypoxemic patients.

    Science.gov (United States)

    Weg, J G; Haas, C F

    1998-04-01

    Long-term oxygen therapy can increase life expectancy in hypoxemic patients with COPD. Accurate identification of hypoxemia requires arterial blood gas measurements. Pulse oximetry can be used to measure trends in oxygenation, oxygen needs, and oxygen requirements during exercise and sleep. A detailed oxygen prescription indicates: (1) the oxygen dose (L/min), (2) the number of hours per day that oxygen therapy is required, (3) the dose required during exercise, (4) the oxygen supply system: concentrator, compressed gas cylinder, or liquid oxygen reservoir, and (5) the delivery device: nasal cannula, demand-flow device, reservoir cannula, or transtracheal oxygen catheter.

  7. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points for each cell division and blastocyst stages were registered until 120 hours after oocyte retrieval. Only 2PN embryos completing the first cleavage were evaluated. The groups were compared using one-way ANOVA or Kruskall-Wallis test. Estimates are reported as medians with 95% confidence intervals. Time......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2...

  8. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  9. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    Science.gov (United States)

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  10. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Science.gov (United States)

    Planavsky, Noah J.; Asael, Dan; Hofmann, Axel; Reinhard, Christopher T.; Lalonde, Stefan V.; Knudsen, Andrew; Wang, Xiangli; Ossa Ossa, Frantz; Pecoits, Ernesto; Smith, Albertus J. B.; Beukes, Nicolas J.; Bekker, Andrey; Johnson, Thomas M.; Konhauser, Kurt O.; Lyons, Timothy W.; Rouxel, Olivier J.

    2014-04-01

    The early Earth was characterized by the absence of oxygen in the ocean-atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5-2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen.

  11. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C[sub 6]0 are used, and it succeeds in the measurement. Kotai hyomen no sanso nodo, C[sub 60] mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C[sub 6]0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition's reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn't need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  12. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C{sub 6}0 are used, and it succeeds in the measurement; Kotai hyomen no sanso nodo, C{sub 60} mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C{sub 6}0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition`s reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn`t need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  13. Direct measurement of oxygen in brown coals and carbochemical products by means of fast neutron analysis

    International Nuclear Information System (INIS)

    Raeppel, P.; Foerster, H.

    1990-01-01

    Analyses of elemental oxygen by means of fast neutron activation permit high-accuracy measurements of oxygen concentrations in East German brown coal; this applies to run-of-mine brown coal as well as to demineralized brown coal. The relative error was 4% in the first case and 2% in the latter case. Pre-washing with 1n ammonium acetate solution permits direct analyses of the oxygen bonded to the coal minerals. The method is applicable to other carbonaceous materials, e.g. coal ashes, solid hydrogenation residues, cokes, coal extracts, asphaltenes, oils, etc., at oxygen concentrations of 1-50%. (orig.) [de

  14. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  15. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    Science.gov (United States)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  16. The effect of dissolved oxygen on water radiolysis behaviour

    International Nuclear Information System (INIS)

    Yakabuskie, P.A.; Joseph, J.M.; Wren, J.C.; Stuart, C.R.

    2012-09-01

    A quantitative understanding of the chemical or redox environments generated in water by ionizing radiation is important for material selection, development of maintenance programs, and safety assessments for water-cooled nuclear power reactors. The highly reactive radicals (·OH, ·H, ·e aq - , ·HO 2 , and ·O 2 - ) and molecular species (H 2 and H 2 O 2 ) generated by water radiolysis can compete in reactions with other dissolved compounds and impose changes to the system chemistry by altering the steady-state concentrations of water radiolysis products, which could impact the degradation of materials in contact with the aqueous phase. Understanding in detail how a given chemical additive changes the long-term radiolysis kinetics can help us to determine what chemistry control steps may be required to return the system to an optimal redox condition, and in turn, enhance the lifetime of reactor components. This study outlines the effect of dissolved oxygen gas, which could be introduced due to air ingress, on long-term water radiolysis behaviour. The effects of solution pH and initial dissolved O 2 concentration on the radiolytic production of molecular H 2 and H 2 O 2 have been investigated by performing experiments with three different O 2 concentrations at pH 6.0 and 10.6 under steady-state radiolysis conditions. The aqueous and gas phase analyses were performed using UV-Vis spectrophotometry and gas-chromatography equipped with electron capture and thermal conductivity detectors. The experimental results were compared with kinetic model calculations of steady-state radiolysis and were found to be in good agreement. The concentrations of water radiolysis products, H 2 O 2 and H 2 , were found to increase in the presence of dissolved oxygen, but the degree of increase was shown to depend on the solution pH. Furthermore, the steady-state concentration of H 2 did not increase as greatly as that of H 2 O 2 at either pH studied. The kinetic analyses have shown

  17. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation.

    Science.gov (United States)

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-09-07

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from (12)C (4.44 MeV) and (16)O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10(7) oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from (16)O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring (16)O PG emission.

  18. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi

    1994-08-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V{sub n}O{sub m} (n,m=1,2, {center_dot}{center_dot}{center_dot}), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO{sub m}(m=2,3, {center_dot}{center_dot}{center_dot}) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O{sub m}, were introduced by annealing above 700degC. (author).

  19. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  20. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.