WorldWideScience

Sample records for internal friction

  1. Internal friction in zirconium

    International Nuclear Information System (INIS)

    Miyada-Naborikawa, L.T.; De Batist, R.; Eersels, L.

    1981-01-01

    The effect of type (bending, tension or torsion) and temperature (100 K, 300 K) of deformation on the internal friction spectrum of well-annealed polycrystalline zirconium has been investigated at frequencies of about 1 Hz and about 100 Hz. The result of ageing at temperatures not higher than 300 K on both the modulus and the internal friction is also described. The observed peaks are discussed in terms of either dislocation relaxation or dislocation point defect interaction effects and combined with literature data to obtain better defined values for the relaxation parameters

  2. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  3. Internal friction in enzyme reactions.

    Science.gov (United States)

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  4. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  5. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  6. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  7. Internal Friction And Instabilities Of Rotors

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  8. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  9. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  10. PREFACE: The International Conference on Science of Friction

    Science.gov (United States)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.: Superlubricity and friction Electronic and phononic contributions to friction Friction on the atomic and molecular scales van der Waals friction and Casimir force Molecular motor and friction Friction and adhesion in soft matter systems Wear and crack on the nanoscale Theoretical studies on the atomic scale friction and energy dissipation Friction and chaos Mechanical properties of nanoscale contacts Friction of powder The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  11. Internal friction in hydrited Zircaloy 4

    International Nuclear Information System (INIS)

    Piquin, R.; Ghilarducci, Ada A.; Salva, Horacio R.

    2007-01-01

    The aim of this work is to investigate the microscopic basis of inelastic effects on standard Zry4 alloy, after plastic deformation and hydriding. Polycrystalline samples with cylindrical geometry were taken with dimension 1.62mm in diameter and 40 mm in length. In order to obtain the internal friction and elastic modulus spectra at low frequencies (0.01 to 10Hz), a sub resonant forced pendulum was used, with resonance at about 130Hz. The results are peaks between 150 and 350K. They are analysed on the basis of their response at frequency changes, amplitude of measurement, grade of plastic deformation 'in situ' and cathodical hydriding (650 H wt ppm). The peaks are interpreted as follows: the 250K peak corresponds to the interaction between dislocations and Cottrel cloud of solute atoms surrounding the dislocation cores. After hydruration, the spectrum is dominated by the 220K peak, which is attributed to the hydrogen atoms in solid solution trapped by the dislocation cores. The anelastic parameters allow to evaluate the H concentration segregated on dislocations, in this case it is 300 wt ppm H. (author) [es

  12. Friction

    Science.gov (United States)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to

  13. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  14. Internal friction and microplasticity of ice Isub(h)

    International Nuclear Information System (INIS)

    Perez, J.; Mai, C.; Tatibouet, J.; Vassoille, R.

    1976-01-01

    This study is concerned with internal-friction measurements made at low frequency (torsion pendulum) on specimens of ice Isub(h). In the case of a single crystal, the spectrum of internal friction vs. temperature exhibits the classical relaxation peak. This peak is followed by an increase of damping above 260 K. Furthermore, in this temperature range, the internal friction delta is shown to be amplitude dependent: delta increases with shear strain γ as long as the temperature T is high. These features are strongly modified by plastic deformation of ice in particular i) high-temperature internal friction is increased as long as the plastic defomation ratio is important, ii) high-temperature internal friction becomes more amplitude dependent. In the high-temperature range the mobility of dislocations in ice increase quickly. During the internal-friction measurements the cyclic stress causes movement of linear defects and, hence, damping phenomena. Then, the theoretical analysis of the dynamic behaviour of dislocations in ice has been used to interpret the preceding results. This interpretation allows us to connect our damping data with the microplastic behaviour of ice

  15. Internal frictions of austenitic stainless steels at low temperature

    Science.gov (United States)

    Tsubono, K.; Owa, S.; Mio, N.; Akasaka, N.; Hirakawa, H.

    Internal frictions were measured for three types of austenitic stainless steel, AISI 304, 310S and 316, in the temperature range 4-300 K. The intrinsic friction is presented in terms of the quality factor of a 20 kHz eigenmode vibration of discs made from each material. Temperature dependence is also given for the resonant frequency of each disc. These mechanical properties show some peculiarities at low temperature.

  16. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  17. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  18. Internal friction and elastic softening in polycrystalline Nb3Sn

    International Nuclear Information System (INIS)

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Welch, D.O.

    1981-01-01

    The vibrating-reed technique was used to measure internal friction and Young's modulus of polycrystalline Nb 3 Sn in the form of composite Nb/Nb 3 Sn tapes from 6 to 300 K. In tapes with only small residual strain in the A15 layers, a dramatic increase in internal friction with decreasing temperature is observed with an abrupt onset at approx.48 K. The internal friction Q -1 between 6 and 48 K is believed to be associated with stress-induced motion of martensitic-domain walls. In this temperature range, Q -1 is approximately proportional to the square of the tetragonal strain of the martensitic phase; Q -1 α (c/a-1) 2 . With residual compressive strains of approx.0.2%, the internal friction associated with domain-wall motion is considerably reduced. This is attributed to a biasing of domain-wall orientation with residual stress, which reduces wall motion induced by the (much smaller) applied stress. The transformation temperature, however, is unchanged (within +- 1 K) by residual strains of up to 0.2%. Young's modulus exhibits substantial softening on cooling from 300 to 6 K. This softening, is substantially reduced in the presence of small residual compressive strains, indicating a highly nonlinear stress-strain relationship as previously reported for V 3 Si

  19. Internal friction of Niobium alloys with zirconia precipitated

    International Nuclear Information System (INIS)

    Florencio, O.

    1986-01-01

    Internal friction measurements have been carried out in Nb-Zr (∼ 0,1%-wt Zr) single crystals with different annealing and internal oxidation treatments. Relaxation peaks associated with the interactions of oxygen with the Nb matrix and the substitutional solute have been observed in the oxidated alloys and the oxygen contents in solid have been estimated according to the intensity y of the anelastic absorption peaks. (Author) [pt

  20. Mechanical spectroscopy, internal friction and ultrasonic attenuation: Collection of works

    International Nuclear Information System (INIS)

    Magalas, L.B.

    2009-01-01

    An extensive collection of recommended books and proceedings from numerous conferences on internal friction, mechanical spectroscopy, and ultrasonic attenuation is provided. Reflecting the complicated history of the 20th century, books published in English and in Russian are presented in two separate sections. International and national conferences organized in various countries are listed. Supplementary lists referring to conferences held in the People's Republic of China, Poland, Russia, the Soviet Union, and Ukraine are also provided. The interesting evolution of mechanical spectroscopy from internal friction and ultrasonic attenuation in solids is clearly demonstrated, and a choice list of retrospective papers illustrates the evolution of the field. A brief review of mechanical spectroscopy, therefore, is included. Numerous research areas investigated by internal friction and mechanical spectroscopy are addressed, including point defect relaxations, electronic and phonon relaxations, dislocation relaxations, grain boundary relaxations, domain induced relaxations (magnetic, ferroelectric), magnetomechanical relaxations, phase transformations, glass transitions, interface effects as well as a wide array of applications specific to physics and materials science. For many years now, there has been a definite need to provide a thorough list of references that might cover major national conferences and books published in English and other languages. This work strives to achieve this goal.

  1. Nonlinear internal friction, chaos, fractal and musical instruments

    International Nuclear Information System (INIS)

    Sun, Z.Q.; Lung, C.W.

    1995-08-01

    Nonlinear and structure sensitive internal friction phenomena in materials are used for characterizing musical instruments. It may be one of the most important factors influencing timbre of instruments. As a nonlinear dissipated system, chaos and fractals are fundamental peculiarities of sound spectra. It is shown that the concept of multi range fractals can be used to decompose the frequency spectra of melody. New approaches are suggested to improve the fabrication, property characterization and physical understanding of instruments. (author). 18 refs, 4 figs

  2. High temperature internal friction in α-zirconium

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungman, K.W.

    1981-03-01

    The high temperature internal friction spectrum of α-Zr is resolved into five peaks, P 0 to P 4 , in addition to a background, B, that increases exponentially with the temperature. P 0 is attributed to the thermally assisted unpinning of dislocations from oxygen interstitial pinning points. P 1 is caused by the longitudinal redistribution of the same pinning points in the dislocation core, while P 2 is caused by the transverse core diffusion of these pinning points. Both P 0 and P 1 give rise to characteristic peaks of internal friction as a function of strain amplitude. The ratio of the modulus defect to the internal friction at the peak position is 0.5 in the case of unpinning, and significantly greater than 0.5 in the case of longitudinal core diffusion. A behavioural phase diagram or map is constructed to interpret the complex non-linear behaviour occurring in the temperature-strain amplitude plane in the regions where P 0 , P 1 and P 2 overlap. (author)

  3. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  4. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  5. Internal friction and linear expansion coefficient in zirconium and cobalt within the range of phase transitions

    International Nuclear Information System (INIS)

    Boyarskij, S.V.

    1986-01-01

    Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point

  6. Contribution to the study of internal friction in graphites

    International Nuclear Information System (INIS)

    Merlin, J.

    1969-03-01

    A study has been made of the internal friction in different graphites between -180 C and +500 C using a torsion pendulum; the graphites had been previously treated thermo-mechanically, by neutron irradiation and subjected to partial annealings. It has been shown that there occurs: a hysteretic type dissipation of energy, connected with interactions between dislocations and other defects in the matrix; a dissipation having a partially hysteretic character which can be interpreted by a Granato-Luke type formalism and which is connected with the presence of an 'ultra-micro porosity'; a dissipation by a relaxation mechanism after a small dose of irradiation; this is attributed to the reorientation of bi-interstitials; a dissipation having the characteristics of a solid state transformation, this during an annealing after irradiation. It is attributed to the reorganization of interstitial defects. Some information has thus been obtained concerning graphites, in particular: their behaviour at low mechanical stresses, the nature of irradiation defects and their behaviour during annealing, the structural changes occurring during graphitization, the relationship between internal friction and macroscopic mechanical properties. (author) [fr

  7. Internal friction of rocks and volatiles on the moon

    Science.gov (United States)

    Tittmann, B. R.; Housley, R. M.; Cirlin, E. H.

    1973-01-01

    Internal friction quality factors Q up to 2200 have been observed in a strongly outgassed terrestrial analog of lunar basalt. This was accomplished by successively cycling a bar shaped sample vibrating in its fundamental longitudinal mode at 15 kHz to higher and higher temperatures in a vacuum between 100 and 10 nanotorr. After each cycle, Q measured at room temperature in the vacuum was observed to decrease with time suggesting that gas reabsorption was taking place even at these low pressures. A study of the effect of exposing a sample to a variety of gases and vapors showed that of the volatiles most likely to be present in the lunar environment H2O was by far the most effective in lowering Q.

  8. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models

    Science.gov (United States)

    Cheng, Ryan R.; Hawk, Alexander T.; Makarov, Dmitrii E.

    2013-02-01

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  9. PREFACE The International Conference on Science of Friction 2010 (ICSF2010)

    Science.gov (United States)

    Miura, Kouji; Matsukawa, Hiroshi

    2010-11-01

    The second international conference on science of friction in Japan was held at Ise-Shima, Mie on 13-18 September 2010. The conference focused on the elementary process of friction phenomena from atomic and molecular scale view. Topics covered at the conference were: Superlubricity and friction Electronic and phononic contributions to friction Friction on the atomic and molecular scales van der Waals friction and Casimir force Molecular motor and friction Friction and adhesion in soft matter system Wear and crack on the nanocsale Theoretical studies on the atomic scale friction and energy dissipatin Friction and Chaos Mechanical properties of nanoscale contacts Friction of powder The number of participants in the conference was approximately 85, registered from 8 countries. 40 oral and 16 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 19 papers devoted to the topics of friction. The successful organization of the conference was made possible by the contribution of the members of the organizing Committee. The conference was made possible thanks to the financial support from Aichi University of Education, and moreover thanks to the approval societies of The Physical Society of Japan, The surface Science Society of Japan and The Japanese Society of Tribologists. The details of the conference are available on http://www.science-of-friction.com/2010/. Finally we would like to thank the speakers for the high quality of their talks and all participants for coming to Ise-Shima, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  10. Internal friction in Al alloys after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Takamura, S.; Kobiyama, M.

    1985-01-01

    Internal friction and elastic modulus of dilute Al alloys have been measured after fast neutron irradiation at about 5 K. The internal friction spectra in Al-Pb, Al-Si, Al-Zn, Al-Ag, Al-Sn and Al-In are very similar. This result suggests that the configuration of the interstitial-solute atom complex in these alloys is very similar. In Al-Mg, the main complexes have the configuration with nearly symmetry, but its internal friction spectrum is different from that of the above-mentioned alloys. The internal friction spectra and their annealing behavior in Al-Be, Al-Mn, Al-Fe and Al-Cu demonstrate that the configuration of their interstitial-solute atom complex seems to be different from each other and the main complex in these alloys is immobile until stage III. (author)

  11. Comparison of internal friction in high Tc superconductors and CuO

    International Nuclear Information System (INIS)

    Gzowski, O.; Davoli, I.; Stizza, S.; Mancini, G.; Kusz, B.; Barczynski, R.; Gazda, M.; Sadowski, W.; Murawski, L.

    1990-01-01

    This paper reports on the internal friction and shielding effect in CuO, superconducting yttrium and bismuth ceramics and yttrium monocrystal that have been measured. Several features, some of them common for all specimens, have been found

  12. On the nature of low temperature internal friction peaks in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khonik, V.A. [State Pedagogical Univ., Voronezh (Russian Federation); Spivak, L.V. [State Univ., Perm (Russian Federation)

    1996-01-01

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.

  13. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  14. Study about internal friction in deformed - and irradiated pure titanium

    International Nuclear Information System (INIS)

    Miyada, L.T.

    1979-01-01

    Internal friction and modulus are measured in pure Ti at low temperature using an inverted torsion-pendulum at about 1 Hz. The presence of four relaxation peaks P' sub(d)(-140 0 C), P sub(d)(-101 0 C), P' sub(α)(-75 0 C) and P sub(α)(-50 0 C) has been found, and effects of plastic deformation, heat treatment and neutron irradiation on these peaks are investigated in detail. Activation energies and frequency factors of P sub(d) and Pα peaks are consistent with the data in higher frequency range reproted by other workers. The P sub(d) and P' sub(d) peaks grow after deformation and tend to decay after annealing at high temperatures or after neutron irradiation. Both peaks are resonably interpreted in terms of dislocation relaxation mechanisms (Bordoni type) arising from thermally activated motion of dislocations in different slip planes of h.c.f. structure. Peierls stress of dislocations giving rise to each peak have calculated based on Seeger's theory, and found to be consistent with that of f.c.c. metals. On the other hand, P sub(α) and P' sub(α) peaks grow significantly at the expense of P sub(d) and P' sub(d) peaks after neutron irradiation in deformed samples. The behaviour of these peaks as a function of irradiation dose and annealing temperatures strongly indicated that they are due to relaxations resulting from dislocations-point defects interactions (Hasiguti type). It is tentatively suggested that P sub(α) and P' sub(α) peaks are related with interactions of dislocations with divacancies and single vacancies, respectively. Application of Schiller's model showed a consistent result with regard to the P' sub(α) peak experimentally observed. (Author) [pt

  15. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  16. Internal friction in an intrinsically disordered protein—Comparing Rouse-like models with experiments

    Science.gov (United States)

    Soranno, Andrea; Zosel, Franziska; Hofmann, Hagen

    2018-03-01

    Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.

  17. Influence of electron irradiation on internal friction and structure evolution of polymer composites

    International Nuclear Information System (INIS)

    Ismailova, G.A.

    2007-01-01

    Full text: Important qualitative information on structural evolution and radiation alterations in polymer materials under the action of ionizing radiation can be obtained from the analysis of the temperature dependences of internal friction. Changing of internal friction parameters of relax maxima during irradiation is qualitative degree parameter of radiation scission-cross linking of the polymer molecules. In this work, the general phenomenological approach is realized by introduction of the effective 'observed' parameters into the simple kinetic equations. The applicability of such approach is justified by the fact that kinetics of both internal friction and scission-cross linking processes can be characterized by the same effective parameters. Temperature dependences of internal friction are experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses (D=3 MGy, 6 MGy and 9 MGy). Time dependences of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking are analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the arbitrary effective order of radical recombination. It is shown that in the range of doses and dose rates under study radiation-induced scission predominates during polymer irradiation but in a certain period of time after irradiation scission changes to cross-linking. Characteristics of the kinetic curves obtained essentially depend on the dose

  18. Internal friction of metallic glass Ni74P16B6Al4 near T/sub x/

    International Nuclear Information System (INIS)

    Li Xiao-Guang; He Yizhen

    1986-01-01

    The internal friction of metallic glass Ni 74 P 16 B 6 Al 4 near the crystallization temperature T/sub x/ is investigated using a conventional torsion pendulum. Two internal friction peaks, P 1 and P 2 , are observed and the dependence of the peak positions on heating rate is described by the Kissinger equation. Pre-crystallization reduces the height of the peaks (P 1 and P 2 ) and shifts the positions of these peaks but in opposite directions. A formula showing the dependence of apparent internal friction on volume fraction transformed is derived. The variation of internal friction with annealing corresponds to the variation of the fraction transformed. (author)

  19. Internal friction and shear modulus in Al-Ga alloys (80-320 K)

    International Nuclear Information System (INIS)

    Chountas, K.; Andronikos, P.; Papathanassopoulos, K.

    1977-01-01

    The internal friction and shear modulus of polycrystalline Al + (0.2, 0.7, 2 and 4) at.% Ga was measured as a function of temperature, using measurements of logarithmic decrement and frequency of free sample vibration. The internal friction curves for the smaller solute concentrations went through a maximum (peak) at 230 K. The height of the peak increased initially with solute concentration, then disappeared at higher concentrations. This peak is probably due to the interaction of solute atoms with dislocations. The continuous increase in internal friction at higher temperatures, reported in pure Al, was not found in these alloys. This absence is probably due to the pinning of dislocations by Ga atoms. (author)

  20. On the nature of low temperature internal friction peaks in metallic glasses

    International Nuclear Information System (INIS)

    Khonik, V.A.; Spivak, L.V.

    1996-01-01

    Low temperature (30 60 Nb 40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin

  1. Effect of pulse electron beam characteristics on internal friction and structural alterations in epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Zaikin, Yu.A. [Al Farabi Kazakh National University, Almaty (Kazakhstan)]. E-mail: drzaykin@mail.ru; Ismailova, G.A. [Al Farabi Kazakh National University, Almaty (Kazakhstan); Al-Sheikhly, M. [University of Maryland, College Park (United States)

    2007-08-15

    Temperature dependence of internal friction is experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses. Time dependence of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking is analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the pulse irradiation mode and an arbitrary effective order of radical recombination.

  2. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite

    International Nuclear Information System (INIS)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-01-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs

  3. Internal friction study of neutron-irradiation effects on an amorphous Cu40Ti60 alloy

    International Nuclear Information System (INIS)

    Dong, Y.; Wu, G.; Xiao, K.; Li, X.; He, Y.

    1988-01-01

    Effects of neutron irradiation on the structure of an amorphous Cu 40 Ti 60 alloy have been studied by internal friction measurements. After irradiation, the position of the first internal friction peak remains almost unchanged and the shoulder position shifts towards a higher temperature by about 5 K, which indicates that the Cu 40 Ti 60 glass becomes more stable. These results are finally discussed based on the concept of changes of chemical short-range ordering and geometrical short-range ordering due to radiation damage

  4. Instrumentation, computer software and experimental techniques used in low-frequency internal friction studies at WNRE

    International Nuclear Information System (INIS)

    Sprugmann, K.W.; Ritchie, I.G.

    1980-04-01

    A detailed and comprehensive account of the equipment, computer programs and experimental methods developed at the Whiteshell Nuclear Research Estalbishment for the study of low-frequency internal friction is presented. Part 1 describes the mechanical apparatus, electronic instrumentation and computer software, while Part II describes in detail the laboratory techniques and various types of experiments performed together with data reduction and analysis. Experimental procedures for the study of internal friction as a function of temperature, strain amplitude or time are described. Computer control of these experiments using the free-decay technique is outlined. In addition, a pendulum constant-amplitude drive system is described. (auth)

  5. Effect of pulse electron beam characteristics on internal friction and structural alterations in epoxy

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Ismailova, G.A.; Al-Sheikhly, M.

    2007-01-01

    Temperature dependence of internal friction is experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses. Time dependence of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking is analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the pulse irradiation mode and an arbitrary effective order of radical recombination

  6. Methods of preparing internal combustion engine cylinder bore surfaces for frictional improvement

    Directory of Open Access Journals (Sweden)

    Chung Hwa Kong

    2017-01-01

    Full Text Available Frictional losses piston to cylinder bore contact is a major sources of mechanical losses in an internal combustion engine (ICE. Traditional plateau honing produces a relatively rough cylinder bore surface with many valleys for oil retention and plateau surfaces that are usually has micro roughness's that causes mechanical friction to act as a bearing surface. A smooth polished dimpled surface is more ideal to achieve low friction and wear in an ICE. Alternative methods to create a smooth dimpled surface on a hypereutectic aluminum ADC12 substrate for frictional improvements are evaluated in this study using an oscillating wear tester (OWT. The methods include casting in the dimples in the aluminum matrix, sandblasting as well as embossing the pits. The texture samples are evaluated by examining the surface properties, measuring frictional coefficient as well as wear characteristics. It was found that the samples embossed with #320 grit sandpaper and sandblasted with #240 sieve sand samples had a reduced coefficient of friction (μ of 23% at low sliding speeds before hydrodynamic lubrication mode and 6.9% in the fully hydrodynamic lubrication region.

  7. Phenomenological description of internal friction spectra in glass-forming and glassy systems

    International Nuclear Information System (INIS)

    Lomovskij, V.A.

    1999-01-01

    Dissipative events in different by chemical nature glass-forming systems, including B 2 O 3 , are studied. It is established from the spectra of internal friction of these systems that the maxima of the energy dissipation of the external power impact are positioned both in the area of viscous flow metastable structural liquid state and in the area of solid elastic state

  8. On the nature of low temperature internal friction peaks in metallic glasses

    NARCIS (Netherlands)

    Khonik, VA; Spivak, LV

    Low temperature (30 internal friction in a metallic glass Ni60Nb40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar

  9. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  10. Measuring internal friction at sonic and ultrasonic frequencies in high temperature superconductors

    International Nuclear Information System (INIS)

    Anderson, A.R.; Russell, G.J.

    1996-01-01

    Internal friction measurements provide a sensitive means for probing some structural properties of materials. Defect relaxation processes and phase changes are frequently reflected in internal friction measurements as a function of temperature. Relaxation processes associated with oxygen content have been observed in YBCO and BSCCO (2212). By measuring the internal friction at different frequencies activation energies associated with relaxation processes can be determined. Structural changes are temperature dependent and independent of frequency. The composite bar technique developed employs a piezoelectric quartz bar (with lengths of 2 cm or 3 cm and resonant frequencies of approximately 85 kHz or 120 kHz) with a resonant bar of HTSC attached to one end. The quartz bar is suspended at its nodal points and the system excited electrically using a regenerative feedback system. The composite bar method can also be used at low kilohertz frequencies by attaching the HTSC specimen used in the previous technique to the end of a much longer (e g 30 cm) fused silica rod which has very low damping. The resulting composite bar can be excited electrostatically or electromagnetically at frequencies below 10 kHz. The internal friction can be measured by scanning through the resonant frequency and measuring the bandwidth or by observing the decay of free oscillation in the bar. The advantage of using the two composite bar techniques is that the measurements can be made on the same specimen at different frequencies

  11. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a) 2 from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V 2 Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy β/m wall motion relative to the easy m/m motion of the A15's. For the V 2 Zr, a peak in delta is observed, qualitatively in agreement with expected β/m wall motion

  12. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the <100> directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a)/sup 2/ from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V/sub 2/Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy ..beta../m wall motion relative to the easy m/m motion of the A15's. For the V/sub 2/Zr, a peak in delta is observed, qualitatively in agreement with expected ..beta../m wall motion.

  13. Amplitude Dependent Internal Friction in a Mg-Al-Zn Alloy Studied after Thermal and Mechanical Treatment

    Directory of Open Access Journals (Sweden)

    Zuzanka Trojanová

    2017-10-01

    Full Text Available The amplitude-dependent internal friction of continuously-cast and rolled AZ31 magnesium alloy was measured in this study. Samples were annealed and quenched step by step; immediately after the treatment, the amplitude dependence of the logarithmic decrement was measured. Changes in the microstructure due to thermomechanical treatment were reflected in changes in the damping. Internal friction is influenced by the dislocation substructure and its modification due to solute atoms migration, microplastic deformation, and twins’ formation. Internal friction in the rolled sheets is affected by the rolling texture.

  14. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  15. Internal friction around Tc connected with superconductivity in high Tc superconductors

    International Nuclear Information System (INIS)

    Wang Yening

    1993-01-01

    Internal friction and ultrasonic measurements show that there always exists a phase-like transition (PLT) characterized by the jump of lattice parameters at tens degrees above Tc in superconducting YBaCuO, BiSrCaCuO and TlBaCaCuO. Ferroelastic loops and shape memory effect associated with elastic softening invariably occur at the PLT temperature, showing the characteristics of thermoelastic martensitic transition. Internal frictions in KHz of Bi(Pb)SrCaCuO reveal a static hysteretic plateau (Qp -1 ) above Tc that drops linearly with temperature below Tc. The Qp -1 of YBaCuO decreases with decreasing oxygen content. The origin of the hysteretic Qp -1 is attributed to the lattice distortions around the carriers. (orig.)

  16. Design and assembly of a torsion pendulum for the measurement of internal friction at low temperatures

    International Nuclear Information System (INIS)

    San Juan, J. M.; Gallego, I.; No, M. L.

    2001-01-01

    In this work we describe the assembly, operation and specifications of an inverted torsion pendulum designed to measure internal friction at low temperatures (from 4.2 K to 500 K). The high precision mechanics allow us to obtain internal friction spectra with low levels of noise from amplitudes as small as 2x10''7. The inertia components of the pendulum have been built with specific materials, so that the resonance frequency of the pendulum can be changed within two orders of magnitude (0.1-10Hz). In addition, the sample can be in situ deformed at any temperature and can be inserted into the pendulum at liquid nitrogen temperature. The operation of the pendulum, all the control p recesses and data acquisition are completely automated. (Author) 4 refs

  17. An ultrasonic internal friction study of ultrafine-grained AZ31magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Koller, M.; Sedlák, Petr; Seiner, Hanuš; Ševčík, Martin; Landa, Michal; Stráská, J.; Janeček, M.

    2015-01-01

    Roč. 50, č. 2 (2015), s. 808-818 ISSN 0022-2461 R&D Projects: GA ČR GA13-13616S Institutional support: RVO:61388998 Keywords : AZ31 * internal friction * resonant ultrasound spectroscopy * grain boundary sliding Subject RIV: BI - Acoustics Impact factor: 2.302, year: 2015 http://link.springer.com/article/10.1007/s10853-014-8641-1

  18. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  19. Low-Frequency Internal Friction Study on the Structural Changes in Polymer Melts

    International Nuclear Information System (INIS)

    Xue-Bang, Wu; Qiao-Ling, Xu; Shu-Ying, Shang; Jia-Peng, Shui; Chang-Song, Liu; Zhen-Gang, Zhu

    2008-01-01

    With the help of the low-frequency internal friction method, we investigate the structural properties of polymer melts, such as amorphous polystyrene (PS), poly(methyl methacrylate) (PMMA), and semi-crystalline poly(ethylene oxide) (PEO). An obvious peak of relaxation type is found in each of the internal friction curves. The peak temperature T p follows the relation T p ≈ (1.15 – 1.18) T g for PS and PMMA melts, while it follows T p ≈ 1.22T m for PEO melt, with T g being the glass transition temperature and T m the melting temperature. Based on the analysis of the features of this peak, it is found that this peak is related to the liquid-liquid transition temperature T u of polymer melts. Mechanism of the liquid-liquid transition is suggested to be thermally-activated collective relaxation through cooperation. This finding may be helpful to understand the structural changes in polymer melts. In addition, the internal friction technique proves to be effective in studying dynamics in polymer melts

  20. A molecular dynamics analysis of internal friction effects on the plasticity of Zr65Cu35 metallic glass

    International Nuclear Information System (INIS)

    Feng, Shidong; Qi, Li; Zhao, Fengli; Pan, Shaopeng; Li, Gong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Highlights: • Effects of internal friction on plasticity is investigated at the atomic level. • The simulations allow reproduction of images of internal friction evolution. • The simulation results are in good agreement with experiments and theories. • This simulation can predict the deformation mode with different internal friction. - Abstract: The effects of internal friction (IF) on Zr 65 Cu 35 metallic glass plasticity are investigated through molecular dynamics simulations. Results show that the Voronoi polyhedron 〈0, 3, 6, 3〉 increases as IF increases, thereby effectively inhibiting localized deformation and improving metallic glass plasticity. The simulations allow reproduction of images of IF evolution in metallic glasses subjected to isothermal annealing at 730 K and 850 K respectively, which can help explain the experimental observations. IF could be adjusted by selecting suitable annealing temperatures and cooling rates. The results of this work provide a strong foundation for future metallic glass designs

  1. Internal friction in cold-rolled metallic glasses Cu50Ti50 and Ni78Si8B14

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Khonik, V.A.; Ryabtseva, T.N.; Belyavskii, V.I.

    1989-01-01

    The influence of cold rolling on the low temperature (30 to 300 K) internal friction of metallic glasses Cu 50 Ti 50 and Ni 78 Si 8 B 14 is investigated. It is shown that cold rolling of both metallic glasses up to 2 to 6% results in the appearance of a high relaxation damping peak around 260 to 280 K. The internal friction background below the peak shows a strong amplitude dependence. In highly predeformed specimens (∼ 16%) the internal friction peak is absent. Electron irradiation (2 MeV, 10 19 cm -2 ) leads to the suppression of the deformation-induced internal friction peak. The results are interpreted in the framework of the dislocation models of plastic flow of metallic glasses. (author)

  2. Glass and crystallization like transitions at low temperature in Zr-Cu based glasses by internal friction measurements

    Directory of Open Access Journals (Sweden)

    Aboki A.T.

    2011-05-01

    Full Text Available Low temperature β internal friction peak evolution upon thermal cycles shows two peculiar peaks similar to high temperature internal friction peak. The modulus softening associated to these peaks suggest a phase transformation phenomenon and the relaxation time τo in order of 10-23–10-35s, close to that observed in grains boundary sliding are due to interface motions in the amorphous structure under combined thermal and mechanical energies.

  3. Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2013-12-01

    Full Text Available Application of a curved vibrating wire method (CVM to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4.

  4. A review of literature from the First International Conference on Friction Stir Welding

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    2000-06-01

    The papers from the first international conference on Friction Stir Welding (FSW) have been reviewed. Taken together the papers provide a very optimistic picture for the development and application of friction stir welding in general and to the case of the copper canister in particular. Whilst a considerable development effort is in progress the process has been industrialised for joining of aluminium sheet and it is accepted by Lloyds register for this purpose. Development of procedures and equipment to weld thicker materials and a wider range of materials is progressing ahead of the research activity to aid the understanding of the process at this stage. Nevertheless, well-established weld assessment procedures are being applied to experimental welds with very encouraging results. Summaries of the key papers are presented in an appendix

  5. Investigation on frictional pressure drop of steam-water two-phase flow in an internally ribbed tube

    International Nuclear Information System (INIS)

    Li Yongxing; Chen Tingkuan; Li Huixiong

    2005-01-01

    Within the range of pressures from 9 to 22 MPa, mass velocities from G 600 to 1200 kg/(m 2 ·s), and heat fluxes from x 0 to 1.0, experiments had performed to investigate the frictional pressure drop of the steam-water two-phase flow in a six-head internally ribbed tube with the outer diameter of 38.1 mm and the thickness of 7.5 mm. The test section was thermally insulated as horizontal direction. Based on the experimental results, it was found that pressure had a noticeable effect on the frictional pressure drop of the mental results, and that pressure had a noticeable effect on the frictional pressure drop of the steam-water two-phase flow, and the frictional pressure drop factor of the steam-water two-phase flow decreased with an increase in pressure. The frictional pressure drop factor of the steam-water two-phase flow tends to one near the critical pressure. As steam quality increased, the frictional pressure drop factor of the steam-water two-phase flow first increased, and then it had a decreasing tendency. With an increase in mass velocity, the frictional pressure drop factor of the steam-water two-phase flow decreased. Correlations of the frictional pressure drop factor of the steam-water two-phase flow had been provided. (authors)

  6. Characterization of Martian near-subsurface materials by determination of cohesion and angle of internal friction

    Science.gov (United States)

    Sullivan, R. J.

    1992-12-01

    Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.

  7. Internal Friction in L.A.S. Type Glass and Glass-Ceramics

    OpenAIRE

    Arnault , L.; RiviÈre , A.

    1996-01-01

    Internal friction measurements have been performed on glass and glass-ceramics of the Li2O-Al2O3-SiO2 type by isothermal mechanical spectroscopy. Experiments were carried out over a large frequency range (10-4Hz - 31.6 Hz) for various temperatures between 260K and 850K. For the glass, a relaxation peak is observed at low temperature (276K for 1Hz). This peak does not appear in the glass-ceramics ; however, for each of them, two other peaks were observed : the first one at about 343K (1Hz) and...

  8. Discovery of an internal-friction peak in the metallic glass Nb3Ge

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.; Tsuei, C.C.

    1978-01-01

    A well-defined internal-friction peak has been observed near 260 K in amorphous rf-sputtered films of Nb 3 Ge, studied at audio frequencies by a vibrating-reed technique. The characteristics of the peak are consistent with a stress-induced ordering mechanism involving a presently unidentified center which undergoes reorientation by an atomic jump with a sharply defined activation energy of 0.52 eV. The peak appears to be the first example of its type found in a metallic glass

  9. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  10. Proposed apparatus for measuring internal friction in rocks at high temperatures and pressures: a design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.P.

    1977-10-03

    An apparatus is described that measures internal friction in rocks at high temperatures (approximately 800/sup 0/C) and pressures (approximately 1.0 GPa). Steady oscillations (approximately 1.0 Hz) are induced in a jacketed sample while coaxial capacitive transducers monitor the resulting radial strain. Sample strains are continuously compared to the deformation of a low-loss standard, which acts as a stress transducer. The stress state produced is uniaxial stress. We use the theory of viscoelasticity to partition the loss into components depending on pure shear and dilatation. The theoretical results emphasize the importance of ultimately measuring each loss independently.

  11. Internal friction and mechanical properties of Zr - 2.5% Nb alloy after programme loading

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Okovit, V.S.; Netesov, V.M.

    1984-01-01

    Temperature dependence of internal friction in the range 20-600 deg C of the alloy Zr-2.5% Nb in the initial state after programmed loading up to 0.1% of residual elongation and static deformation to the same deformation degree has been studied. It is shown, that the programmed loading promotes the decrease in relaxation rate at 20 and 200 deg C and the increase of strength characteristics of the alloy without the decrease in plasticity margin to fracture in the range 20-400 deg C

  12. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  13. Low temperature internal friction in La75Al20Si5 metallic glass

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.

    1991-01-01

    Results of investigation of temperature dependence of internal friction (IF) in amorphous alloy La 75 Al 20 Si 5 are presented. The amorphous state was atteined by quenching from liquid melt at a rate of 10 5 -10 6 K/s. Two IF maxima at Q -1 (T) dependence are observed at the temperatures of 185 and 230 K. Increase in the frequency of mechanical vibrations results in the shift of IF maxima to the side of high temperatures, which indicates their relaxation origin. The first peak of IF in the studied alloy La 75 Al 20 Si 5 is in all probability related to reorientation of chemical bonds La-La and La-Al. The maximum at T∼230 K is related to the switching of La-Si chemical bonds

  14. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  15. Mechanism of high-temperature background of internal friction in metals

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Arzhavitin, V.M.

    1988-01-01

    Data of theoretical and experimental studies on energy dissipation in vibrating metal at small amplitudes and elevated temperatures (high temperature background of internal friction) are generalized and systematized. Evolution of knowledge of the background as a phenomenon influenced mainly by crystal structure defects - their form, quantity, mobility and interaction is followed. Considered is a wide range of investigated metal states and measurement conditions, and interrelations with other characteristics, for instance, strength ones. On the basis of the data obtained by authors and other investigations a concept of an additional third stage of the background increase with the temperature - the stage of deviation from exponential dependence at premelting point, is introduced. 107 refs.; 32 figs.; 3 tabs

  16. INTERNAL FRICTION USE IN MONITORING THE DEGRADATION PROCESSES IN A MATERIAL

    Directory of Open Access Journals (Sweden)

    Peter Palček

    2011-10-01

    Full Text Available During the measurement of the fatigue life of material, the specimen undergoes large number of stress cycles. While the observed number of cycles before failure is considered to be the most important result (often the only one, more knowledge can be obtained. Measuring energy consumption of specimen during the cycling, the changes of microstructure of material (especially dislocation structure and crack initialization can be traced. The evolution of dynamic modulus can be watched on the same equipment. These information becomes very important, especially in the research of gigacycle fatigue strength and fatigue limit below which the continued loading does not lead to structural failure. In this article some remarks on microstructural changes in materials, which can be monitored by nondestructive measurement of internal friction are presented.

  17. Aging phenomena in high-Si steels studied by internal friction

    International Nuclear Information System (INIS)

    Ruiz, D.; Rivera-Tovar, J.L.; Segers, D.; Vandenberghe, R.E.; Houbaert, Y.

    2006-01-01

    Si-steels with various Si-contents (1.9-5.6 wt.%) have been analyzed by internal friction and compared with an ultra-low carbon steel. Measurements have been carried out immediately after different thermomechanical treatments to study a believed aging phenomenon. Adding Si lowers the Snoek peak of carbon and produces a new peak associated to the formation of Si-C pairs. For Si contents higher than 4.6 wt.%, another peak appears at very low frequencies, which can be attributed to a Zener relaxation of Si-atom pairs. A room-temperature aging effect has been detected in the Si-steels, but not in the ultra-low carbon steel. This aging is caused by the migration of C atoms to the structural defects and by formation of short-range order in the Fe-Si solution

  18. Recovery of amplitude dependent internal friction in plastically deformed LiF single crystals

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1977-01-01

    The internal friction due to is studied interactions between point defects and dislocations produced in pure LiF single crystais by plastic deformation. The recovery of amplitude dependent damping is investigated in these crystais in the low frequency range. The logarithmic decrement is measured as a function of strain amplitude at several different temperatures in the range 8C - 35C in order to observe thermal breakaway. The results were interpred according to the theory developed by Granato and Lucke. Systematic measurements are also been carried out to determine the logarithmic decrement as a function of time at different temperatures, after driving the specimens at high strains amplitudes, yelding the following results: I) there is a recovery of the amplitude dependent damping upon removal of the high strain excitations, and II) the Kinetic of the recovery follows initially a t sup(2/3) ageing law, changing to tsup(1/3) afterwards [pt

  19. Two new methods to determine the adhesion by means of internal friction in materials covered with films

    International Nuclear Information System (INIS)

    Colorado, H. A.; Ghilarducci, A. A.; Salva, H. R.

    2006-01-01

    Two new models are proposed to determine the adhesion energy be means of the internal friction technique (IF) in thin films layered materials. for the first method is necessary to determine enthalpy by means of the IF technique, for which the adhesion work has been determined with experimental data. In the second method are necessary to perform IF tests at constant temperature. (Author)

  20. Financial frictions and substitution between internal and external funds in publicly traded Brazilian companies

    Directory of Open Access Journals (Sweden)

    Márcio Telles Portal

    2012-04-01

    Full Text Available The present study aimed to document the effects of financial constraints on the negative relationship between cash flow and external funds, a phenomenon associated with the Pecking Order Theory. This theory suggests that companies subject to more expensive external funds (financially constrained firms should demonstrate a stronger negative relationship with cash flow than companies subject to minor financial frictions (financially unconstrained firms. The results indicate that the external funds of constrained firms consistently present less negative sensitivity to cash flow compared with those of unconstrained companies. Additionally, the internal funds of constrained companies demonstrate a positive sensitivity to cash flow, whereas those of unconstrained companies do not show any such significant behavior. These results are in accordance with the findings of Almeida and Campello (2010, who suggest the following: first, because of the endogenous nature of investment decisions in constrained companies, the complementary relationship between internal and external funds prevails over the substitutive effects suggested by the Pecking Order Theory; and second, the negative relationship between cash flow and external funds cannot be interpreted as evidence of costly external funds and therefore does not corroborate the Pecking Order Theory.

  1. Damping Characteristics of Inherent and Intrinsic Internal Friction of Cu-Zn-Al Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Shyi-Kaan Wu

    2017-09-01

    Full Text Available Damping properties of the inherent and intrinsic internal friction peaks (IFPT + IFI of Cu-xZn-11Al (x = 7.0, 7.5, 8.0, 8.5, and 9.0 wt. % shape memory alloys (SMAs were investigated by using dynamic mechanical analysis. The Cu-7.5Zn-11Al, Cu-8.0Zn-11Al, and Cu-8.5Zn-11Al SMAs with ( IF PT + IF I β 3 ( L 2 1 → γ 3 ′ ( 2 H peaks exhibit higher damping capacity than the Cu-7.0Zn-11Al SMA with a ( IF PT + IF I β 3 ( L 2 1 → γ 3 ′ ( 2 H peak, because the γ 3 ′ martensite phase possesses a 2H type structure with abundant movable twin boundaries, while the β 3 ′ phase possesses an 18R structure with stacking faults. The Cu-9.0Zn-11Al SMA also possesses a ( IF PT + IF I β 3 ( L 2 1 → γ 3 ′ ( 2 H peak but exhibits low damping capacity because the formation of γ phase precipitates inhibits martensitic transformation. The Cu-8.0Zn-11Al SMA was found to be a promising candidate for practical high-damping applications because of its high (IFPT + IFI peak with tan δ > 0.05 around room temperature.

  2. Internal friction and Young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Pan, Z.-L.

    1992-01-01

    The presence of hydrides is an important factor in assessing the potential for delayed hydride cracking in Zr-2.5Nb alloys, and consequently, the terminal solid solubility (TSS) of hydrogen in the material is an important parameter. In pure zirconium doped with hydrogen, the TSS is marked by a dissolution peak of internal friction on heating and a truncated precipitation peak associated with hydride nucleation on cooling. These phenomena occur only at low frequencies and are accompanied in torsion pendulum studies by autotwisting of the sample (or zero-point drift) that stops abruptly at the TSS. Neither the dissolution/precipitation peaks nor the autotwisting phenomena are observed in Zr-2.5Nb. However, the TSS is also marked by an abrupt change in the slope of Young's modulus as a function of temperature. This phenomenon is observed regardless of the frequency (in the range 1 Hz to 120 kHz) and in both pure zirconium and Zr-2.5Nb alloys. The reasons for the absence of the dissolution/precipitation peak in Zr-2.5Nb alloys are discussed and the use of Young's modulus changes to investigate the TSS of hydrogen and the hysteresis between heat-up and cool-down TSS curves is demonstrated. (author)

  3. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  4. Study on phase transformations in superconducting Ti-50%Nb alloy using temperature-dependent internal friction method

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Tikhinskij, G.F.; Somov, A.I.; Chernyj, O.V.; Rudycheva, T.Yu.; Andrievskaya, N.F.

    1980-01-01

    The internal friction method is used to study phase transformations in the Ti-50%Nb alloy parallel with other methods. The effect of annealing temperature and time, as well as the content of interstitial impurities in the alloy and its thermomechanical treatment (TMT) is studied. In the 250-300 deg C temperature range the complex maximum of internal friction caused by extraction of secondary phases is observed. The latter is confirmed by the measurement data of mechanical properties and electron microscopic analysis. The maximum consists of three overlapping peaks that reflects stepped form of the decomposition process of the metastable solid solution. The preliminary thermo-mechanical alloy treatment consisting of equidirectional plastic deformation with the following recrystallization annealing leads to peak increase. This fact testifies to the stimulating effect of thermo-mechanical treatment on the degree of solid solution decomposition and reveals in the increase of the critical current density of a wire made of the ingot. The increase of the interstitial impurity content in the alloy has the analogous effect. The reduction of the internal friction level during isothermal stand-up at temperatures higher than the third peak temperature proceeds in two stages [ru

  5. Internal Friction on AISI 304 Stainless Steels with Low Tensile Deformations at Temperatures between −50 and 20C

    Directory of Open Access Journals (Sweden)

    T. F. A. Santos

    2010-01-01

    Full Text Available Austenitic stainless steels specimens were deformed by tension in temperatures in the range of −50C to 20 C and 0.03 to 0.12 true strain, in order to obtain different volumetric fractions of ε (hexagonal close packed and α′ (body centered cubic strain induced martensites. The morphology, distribution and volumetric fractions of the martensites were characterized by metallography and dilatometry analysis and quantified by ferrite detector measurements. The damping behavior of specimens with different volumetric fractions of martensites was studied in an inverted torsion pendulum in the 40C to 400C range. The ε- and α′-martensites reversion was observed in the temperature range of 50C–200C and 500C–800C, respectively, by dilatometry. Internal friction curves in function of temperature of the deformed samples presented internal friction peaks. The first internal friction peak is related to sum of the amount of ε- and α′-martensites. For low deformations it aligns around 130C and it is related only to the ε→γ reverse transformation. The peak situated around 350C increases with the specimen degree of deformation and is, probably, related to the presence of α′/γ interfaces, and deformed austenite.

  6. Study on frictional pressure drop of steam-water two phase flow in optimized four-head internal-ribbed tube

    International Nuclear Information System (INIS)

    Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing

    2012-01-01

    The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)

  7. Internal friction measurements of Mo after low-temperature proton irradiation

    International Nuclear Information System (INIS)

    Tanimoto, H.; Mizubayashi, H.; Masuda, R.; Okuda, S.; Tagishi, Y.

    1992-01-01

    Internal friction measurements are performed in Mo after 20 MeV proton irradiation in order to clarify the behavior of self-interstitial atoms (SIA's) in Mo. In the low dose range, strong dislocation pinning suggesting the free migration of defects is observed at about 40 K and weak pinning at about 25 K. The features are very similar to those reported after neutron irradiation except that the 25 K pinning is much smaller after proton irradiation. The result suggests that the migration of free SIA's is responsible for the 40 K pinning and that of SIA-defect clusters, probably di-SIA's, formed during irradiation for the 25 K pinning. In the high dose range, the relaxation peaks are observed at about 13 and 41 K, where the close similarities are found between the present peaks and the corresponding peaks reported after neutron irradiation except that the peak height of the 41 K peak per unit concentration of Frenkel pairs (FP) tends to increase strongly with decreasing dose here. The latter fact suggests the strong interaction between SIA's. Then the smallness of the 41 K peak reported after electron irradiation with very high dose could be explained by an increased interaction between SIA's, but not by the two-dimensional migration of SIA's as proposed by Jacques and Robrock. Deformation given prior to irradiation causes a drastic decrease in the modulus defects associated with FP's (so-called bulk effect) and in the 13 K peak height. After neutron irradiation, no such effect of deformation was reported. A possible origin for this difference is discussed. (orig.)

  8. Temperature dependence of Young's modulus and internal friction of G-10CR and G-11CR epoxy resins

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Maerz, G.

    1980-01-01

    The Young's moduli of the epoxy-resin matrix material used in NEMA-designation G-10CR and G-11CR fiberglass-cloth-reinforced composites were measured dynamically and semicontinuously between ambient and liquid-nitrogen temperatures. Both materials exhibit regular temperature behavior, showing large Young's-modulus changes, about 125 and 50%, respectively. Internal friction decreased about 80% during cooling to liquid-nitrogen temperature (76 0 K). The different thermoelastic coefficients of the two materials indicate a different internal structure

  9. Internal friction behaviours in Zr57Al10Ni12.4Cu15.6Nb5 bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang Bo; Zu Fangqiu; Zhen Kang; Shui Jiapeng; Wen Ping

    2002-01-01

    The internal friction patterns of Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 bulk metallic glass (BMG) were investigated with different frequencies and heating rates. An internal friction peak with extremely large magnitude is observed in the internal friction curves as a function of temperature (Q -1 -T curves). The internal friction peak was fitted by an equation Q -1 =AX(T)/η, where A is a constant, X(T) is the fraction of the glass/supercooled liquid and the viscosity η obeys the Vogel-Fulcher-Tammann relation. We confirm that the internal friction peak originates from both of the glass transition and crystallization. The anomalous behaviours of the peak suggest that Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 BMG has a wide supercooled liquid region and the magnitude of the peak can be used to judge the glass forming ability (GFA) of the glass forming alloys. In addition, the internal friction technique proved to be a new powerful tool for studying structural relaxation and phase transition as well as the GFA of BMG. (author)

  10. Microplasticity and dislocation mobility in copper-nickel single crystals evaluated from strain-amplitude-dependent internal friction. [CuNi

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Y.; Okada, Y.; Asano, S. (Dept. of Materials Science and Engineering, Nagoya Inst. of Tech. (Japan))

    1992-02-16

    Internal friction in copper-0.4 to 7.6 at% nickel single crystals is measured as a function of strain amplitude at various temperatures. Analysis of the data on the amplitude-dependent internal friction yields the relation of effective stress and microplastic strain of the order of 10{sup -9}. The stress-strain responses thus obtained exhibit that the microplastic flow stress increases more rapidly on alloying than the macroscopic yield stress. The mean dislocation velocity is also evaluated from the internal-friction data, which corresponds well to the etch-pit data. It is shown that the dislocation motion is impeded by friction due to dispersed solute atoms. (orig.).

  11. Dose rate effect on internal friction and structural transformations in electron-irradiated carbon-armored composites

    Energy Technology Data Exchange (ETDEWEB)

    Zaikin, Yu.A. [Al Farabi Kazakh National University, 96a Tole bi, 480012 Almaty (Kazakhstan)]. E-mail: DrZaykin@mail.ru; Aimuratov, D.B. [Al Farabi Kazakh National University, 96a Tole bi, 480012 Almaty (Kazakhstan); Al-Sheikhly, M. [University of Maryland, College Park (United States)

    2007-08-15

    Temperature dependence of internal friction and specific electric resistance of multi-layer carbon-armored epoxy-based composites is experimentally studied in the temperature range of 20-300 deg. C before and after irradiation with 2 MeV electrons. It is shown that carbon penetration into the polymer matrix causes intense polymer cross-linking in the basic layers of the composite even at low irradiation doses. The strong effect of dose rate on radiation-induced structural transformations was observed.

  12. Dislocation-defect interactions in nuclear reactor pressure-vessel steels investigated by means of internal friction

    Energy Technology Data Exchange (ETDEWEB)

    Van Ouytsel, K. [CEN, Mol (Belgium). Nucl. Res. Centre SCK; De Batist, R. [University of Antwerp RUCA, Middelheimlaan 1, 2020, Antwerp (Belgium); Schaller, R. [Institut de Genie Atomique, Ecole Polytechnique Federale de Lausanne, PHB Ecublens, CH-1015, Lausanne (Switzerland)

    2000-09-28

    A study of pressure-vessel steel embrittlement mechanisms by means of temperature-dependent and amplitude-dependent internal friction has been carried out within the framework of commercial surveillance of nuclear reactor components. An inverted torsion pendulum operating at {proportional_to}1 Hz has been employed to study a wide variety of pressure-vessel steels and an IAEA reference material in various conditions. This contribution will discuss the results for the JRQ reference material only and serve as a basis on which to interpret the data from real pressure-vessel steels. The temperature-dependent experiments evidence a reduction in the dislocation mobility as a result of neutron irradiation and prove that the technique is sensitive to thermal ageing involving changes in the dislocation mobility and type of dislocation-defect interaction. Amplitude-dependent internal friction provides a means to determine the yield strength of the material. The importance of the influence of dislocation dragging on the yield stress is highlighted. (orig.)

  13. Dislocation-defect interactions in nuclear reactor pressure-vessel steels investigated by means of internal friction

    International Nuclear Information System (INIS)

    Van Ouytsel, K.; Fabry, A.; Schaller, R.

    1999-01-01

    Full text: A study of pressure-vessel steel embrittlement by means of temperature-dependent and amplitude-dependent internal friction has been carried out within the framework of commercial surveillance of nuclear reactor components. An inverted torsion pendulum operating at approximately 1 Hz has been employed to study JRQ, Doel-I-II and Doel IV pressure-vessel steels in unirradiated, thermally aged, neutron-irradiated, and annealed conditions. The temperature-dependent experiments evidence a reduction in the dislocation mobility as a result of neutron irradiation and prove that the technique is sensitive to thermal ageing and annealing involving changes in the dislocation mobility and type of dislocation-defect interaction. Amplitude-dependent results reveal a critical amplitude which can be related to the yield stress of the material in tension and corresponds well to a two-component model of the yield stress encompassing contributions of a short-range nature, such as the Peierls barrier to dislocation movement, and of long-range character, such as copper-rich precipitation and grain boundary segregation. The applicability of the non-destructive internal-friction technique to commercial steel programmes is highlighted. (author)

  14. Application of resonant ultrasound spectroscopy to determine elastic constants of plasma-sprayed coatings with high internal friction

    Czech Academy of Sciences Publication Activity Database

    Sedmák, P.; Seiner, Hanuš; Sedlák, Petr; Landa, Michal; Mušálek, Radek; Matějíček, Jiří

    2013-01-01

    Roč. 232, October (2013), s. 747-757 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GA13-13616S; GA ČR(CZ) GPP108/12/P552; GA ČR(CZ) GAP108/12/1872 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761203 Program:M Institutional support: RVO:61388998 ; RVO:61389021 Keywords : plasma-sprayed coatings * elastic constants * resonant ultrasound spectroscopy * internal friction * anisotropy Subject RIV: BI - Acoustics; BI - Acoustics (UFP-V) Impact factor: 2.199, year: 2013 http://www.sciencedirect.com/science/article/pii/S0257897213006063

  15. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Xie, Linjun

    2017-01-01

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  16. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Linjun [Zhejiang Univ. of Technology, Hangzhou (China). College of Mechanical Engineering; Xue, Guohong; Zhang, Ming [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China)

    2017-11-15

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  17. Internal friction behaviors of Ni-Mn-In magnetic shape memory alloy with two-step structural transformation

    Directory of Open Access Journals (Sweden)

    Zhen-ni Zhou

    2017-06-01

    Full Text Available The internal friction (IF behaviors of dual-phase Ni52Mn32In16 alloy with two-step structural transformation were investigated by dynamic mechanical analyzer. The IF peak for the martensite transformation (MT is an asymmetric shoulder rather than those sharp peaks for other shape memory alloys. The intermartensitic transformation (IMT peak has the maximum IF value. As the heating rate increases, the height of the IMT peak increases and its position is shifted to higher temperatures. In comparison with the IMT peak, the MT peak is independent on the heating rate. The starting temperatures of the IMT peak are strongly dependent on frequency, while the MT peak is weakly dependent. Meanwhile, the heights of both the MT and IMT peak rapidly decrease with increasing the frequency. This work also throws new light on their structural transformation mechanisms.

  18. Low frequency internal friction study on the ferroelectric perovskite Na0.5Bi0.5TiO3

    Directory of Open Access Journals (Sweden)

    W. G. Wang

    2015-10-01

    Full Text Available Lead-free piezoelectric ceramic Na0.5Bi0.5TiO3 was investigated by the internal friction method. The internal friction of the Na0.5Bi0.5TiO3 ceramic at low frequency (0.5 ∼ 4Hz was measured in the temperature range from room temperature to 900 K. Three prominent internal friction peaks were observed. The P1 peak is composed of three internal friction peaks. The lower temperature peaks (P1L1 and (P1L2 may be caused by the stress-induced motion of domain walls pinned by the oxygen vacancies and the oxygen ion diffusion in Na0.5Bi0.5TiO3 sample, respectively. The higher temperature peak (P1H may be related with the phase transition between the ferroelectric and anti-ferroelectric phase. The broader P2 peak shows that the phase transition between rhombohedral and tetragonal phase is a gradually changing process. The asymmetry of the P3 peak includes the two subpeaks (P3L and P3H peak. The two subpeaks are caused by the light Na ions diffusion by vacancies in NBT sample and the phase transition between the tetrahedral phase and the cubic phase, respectively. These results are helpful to understand the phase transition process and improve the ferroelectric and piezoelectric performance of Na0.5Bi0.5TiO3-based materials.

  19. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    Science.gov (United States)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  20. Thermally-activated internal friction peaks in amorphous films of Nb3Ge and Nb3Si

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.

    1978-01-01

    A large number of the thermally-activated internal friction peaks observed in crystalline solids are associated with the general mechanism of stress-induced directional short-range ordering. These peaks are an indirect but nevertheless valuable structural probe, and provide an important means of obtaining quantitative information on the kinetics of local atomic movements. This paper deals with what are thought to be the first-known examples of such peaks in the field of metallic glasses. The peaks have been observed in amorphous films of Nb 3 Ge and Nb 3 Si which are both superconductors with transition temperatures Tsub(c) near 3.6K. Although Tsub(c) is thus well below the record values of approximately equal to 23K reported for crystalline films of Nb 3 Ge, Tsuei has found the amorphous films to be much superior mechanically to their crystalline counterparts. Consequently, the amorphous films have technological interest as an easily-handled source from which the brittle high-Tsub(c) phase may be obtained by a final in-situ anneal. (author)

  1. The impact of microgeometry pistons with a stepped bearing surface for the friction loss of the internal combustion engine

    Directory of Open Access Journals (Sweden)

    Wroblewski Emil

    2017-01-01

    Full Text Available This paper present the results of experimental piston friction losses on stepped bearing surface microgeometry obtained on the test rig. This test rig is equipped with special temperature control system, which provides better stability to temperature than in standard systems. The results of station tests was discussed. Tests was analyzed depending the moment caused by the friction on the oil temperature in the oil sump. Specified conclusions allow to assess the impact of the stepped profile of the pistons bearing surface microgeometry for different values of engine speed and the oil temperature at the friction losses in the main kinematic engine node which is piston-cylinder.

  2. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method

    International Nuclear Information System (INIS)

    Li, Shaohong; Min, Na; Li, Junwan; Wu, Xiaochun; Li, Chenhui; Tang, Leilei

    2013-01-01

    This work presents an internal frictional behavior of cold work tool steel subjected to different heat treatment schedules to get insight related to segregation of carbon and refinement of carbide particles due to deep cryogenic treatment. The temperature dependence of internal friction was used to describe the variation of carbon concentration in solid solution of the martensite matrix in successive tempering steps. The results indicate that the carbon atoms segregated to nearby defects forming atomic clusters producing strong interactions, including interstitial carbon atoms themselves and between the interstitial carbon atoms with time-dependent strain field of dislocations because of lattice shrinking and thermodynamic instability of martensite during the deep cryogenic treatment. The clusters act as and grow into nuclei for the formation of fine carbide particle on subsequent tempering that was verified by analyses of TEM micrographs

  3. Studies on Dynamic Elastic and Internal Friction Properties of Cu-Cr-Zr-Ti Alloy Between 25 and 650 °C

    Science.gov (United States)

    Saravanan, K.; Sharma, V. M. J.; Asraff, A. K.; Ramesh Narayanan, P.; Sharma, S. C.; George, Koshy M.

    2015-12-01

    In the present study, dynamic elastic constants namely Young's modulus, shear modulus, Poisson's ratio, and internal friction properties for polycrystalline Cu-0.68Cr-0.04Zr-0.03Ti-0.015Fe (wt.%) alloy have been evaluated from 25 to 650 °C temperature in argon environment. These properties were determined using resonance-based high-temperature impulse excitation technique. The temperature-dependent elastic constants are very vital for the thermo-structural analysis to predict the performance of the component/structure. The test results revealed that, the alloy exhibits linear reduction in Young's modulus and shear modulus with increasing temperature. On the other hand, the calculated Poisson's ratio showed minor increase with temperature. It was shown that, the variation in the internal friction is attributed to in situ aging in the temperature range studied. Overaging beyond 500 °C has led to drastic increase of internal friction. This has been supported by hardness measurement, tensile test, differential scanning calorimetry test, and transmission electron microscopy examination.

  4. Effect of grain size on amplitude-dependent internal friction in polycrystalline copper. Do takessho no naibu masatsu no shinpuku izon sei ni oyobosu kessho ryukei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H.; Nishino, Y.; Asano, S. (Nagoya Inst. of Technology, Nagoya (Japan))

    1991-08-20

    In this research, amplitude-dependency of internal friction was measured on various polycrystalline copper of varying grain size. Furthermore, the measurement data of amplitude-dependency of internal friction were analyzed from the phenomenological standpoint and microplastic strain was calculated as a function of stress. The obtained correlation between microplastic strain and stress corresponded to the stress-strain curve obtainable from normal tensile tests. Hence, comparing with the Hall-Petch relation, the relationship between flow stress and grain size in the microplastiic zone was discussed. The obtained results are summarized as follows: When grains were refined, amplitude dependency of internal friction was inhibited. As a result of the analysis of the data obtained, it was found that the flow stress in the microplastic zone increased following refining of grains. This agreed qualitatively with the macro deformation obtained from normal tensile tests. The grain size dependency of flow stress in the microplastic zone did not follow the normal Hall-Pitch relation, but the plastic strain increased, the dependency moved towards it. 16 refs., 4 figs.

  5. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    International Nuclear Information System (INIS)

    Linjun, Xie; Guohong, Xue; Ming, Zhang

    2016-01-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k f of the HDS is obtained. So, the

  6. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Linjun, Xie, E-mail: linjunx@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Guohong, Xue; Ming, Zhang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2016-08-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k{sub f} of the HDS is obtained. So, the

  7. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  8. Earthquake friction

    Science.gov (United States)

    Mulargia, Francesco; Bizzarri, Andrea

    2016-12-01

    Laboratory friction slip experiments on rocks provide firm evidence that the static friction coefficient μ has values ∼0.7. This would imply large amounts of heat produced by seismically active faults, but no heat flow anomaly is observed, and mineralogic evidence of frictional heating is virtually absent. This stands for lower μ values ∼0.2, as also required by the observed orientation of faults with respect to the maximum compressive stress. We show that accounting for the thermal and mechanical energy balance of the system removes this inconsistence, implying a multi-stage strain release process. The first stage consists of a small and slow aseismic slip at high friction on pre-existent stress concentrators within the fault volume but angled with the main fault as Riedel cracks. This introduces a second stage dominated by frictional temperature increase inducing local pressurization of pore fluids around the slip patches, which is in turn followed by a third stage in which thermal diffusion extends the frictionally heated zones making them coalesce into a connected pressurized region oriented as the fault plane. Then, the system enters a state of equivalent low static friction in which it can undergo the fast elastic radiation slip prescribed by dislocation earthquake models.

  9. Internal friction evidence of intrinsic inhomogeneity in the paramagnetic region of La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Ma, Y.Q.; Song, W.H.; Zhao, B.C.; Zhang, R.L.; Yang, J.; Lu, W.J.; Du, J.J.; Sun, Y.P.

    2005-01-01

    We have investigated the optimally doped manganite La 0.67 Ca 0.33 MnO 3 by measurements of the resistivity ρ, magnetization M, Young's modulus E and internal friction Q - 1 . A remarkable peak in the Q - 1 curve is observed in the paramagnetic (PM) region, and it is attributed to the formation of magnetic clusters. Furthermore, this peak is characteristic of thermally activated relaxation. Our observation is discussed combined with the analysis of the electrical transport and magnetic properties in PM region

  10. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  11. Peculiarities of high-amplitude dislocation internal friction in molybdenum single crystals of high purity in the temperature range 5.9 to 300 K

    International Nuclear Information System (INIS)

    Kaufmann, H.J.; Pal-Val, P.P.

    1982-01-01

    Amplitude dependences of internal friction in molybdenum single crystals of the orientations , , , are studied. The residual resistance ratio of the samples is (1 to 2) x 10 5 . The measurements are carried out at the frequency of 88 kHz in the temperature range 5.9 to 300 K. At low temperatures (<= 90 K) a maximum is found in the decrement amplitude dependences the height of which decreases rapidly with decreasing temperature. In this case the maximum position in the amplitude deformation axis does not change. In the same amplitude range a saturation region appears in the modulus defect amplitude dependences the magnitude of which also decreases rapidly with decreasing temperature. The observed behaviour of amplitude-dependent internal friction testifies to the fact that while decreasing temperature the losses connected with dislocation unpinning from the pinning centres decrease sharply. In molybdenum single crystals of lower purity or deformed at room temperature a maximum in the decrement amplitude dependences measured in the same amplitude range is absent. The peculiarities described cannot be explained in the framework of the theories presented. (author)

  12. General theory of frictional heating with application to rubber friction

    Science.gov (United States)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  13. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  14. Internal friction of very high purity lead (99,9999%) at medium temperatures; Friccion interna en plomo de muy alta pureza (99,9999%) a temperaturas medias

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, I.; Gutierrez-Urrutia, I.; San Juan, J. M.; No, M. L.

    2001-07-01

    Internal friction spectra of high purity lead (99,9999%) at medium temperatures exhibit a main relaxation peak at 230 K (P{sub 1}) which depends strongly on the dislocation arrangement. The mechanisms associated to P{sub 1} relaxation has an activation area between 500b2 and 2000b 2 and its activation energy is 0.65{+-}0.05 eV 863{+-}5KJ/mol, which is only 0.6 times the auto diffusion energy of lead. The behaviour of P{sub 1} peak and its dependence on thermomechanical treatments has allowed us to conclude that it is associated to the sliding of dislocations controlled by the climbing of jogs by diffusion of vacancies along the dislocation lines. At a slightly higher temperature, another relaxation (P{sub 1}) turns up in the spectra, which can be associated to different mechanisms. (Author) 12 refs.

  15. Correlation between microstructure and internal friction in a Zr41.2-Ti13.8-Cu12.5-Ni8- Be22.5-Fe2 bulk metallic glass

    International Nuclear Information System (INIS)

    Wang, Q.; Pelletier, J.M.; Da Dong, Y.; Ji, Y.F.; Xiu, H.

    2004-01-01

    The microstructural evolution in a Zr-Ti-Cu-Ni-Be-Fe bulk metallic glass (BMG) has been investigated by measurements of dynamical shear modulus and internal friction combined with other analytical methods such as differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). When heated from room temperature up to 873 K, the as-received BMG exhibits an exponential increase in internal friction accompanying the strong decrease of storage modulus and the presence of the first loss modulus peak during the dynamic glass transition, which can be well described using quasi-point defect model. The correlative changes of the mechanical response at higher temperature are associated with the crystallisation process of the supercooled liquid phase, which occurs in four different stages. It is shown that the main crystallisation process is completed in the first two stages. With further increasing temperature, the remaining amorphous phases crystallise and/or the metastable crystalline phases are transformed into the stable ones. Isothermal annealing were also performed at temperatures in the supercooled liquid region far below the onset temperature of the crystallisation process (T x ). Their influence on microstucture and internal friction behaviour of the BMG is also presented in this paper. The most striking result is that the internal friction is very sensitive to the local atomic short range ordering induced by the preheating treatment

  16. Two new methods to determine the adhesion by means of internal friction in materials covered with films; Dos nuevos metodos para determinar la adhesion mediante friccion interna en materiales recubiertos con peliculas

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H. A.; Ghilarducci, A. A.; Salva, H. R.

    2006-07-01

    Two new models are proposed to determine the adhesion energy be means of the internal friction technique (IF) in thin films layered materials. for the first method is necessary to determine enthalpy by means of the IF technique, for which the adhesion work has been determined with experimental data. In the second method are necessary to perform IF tests at constant temperature. (Author)

  17. 3D Simulation of a Loss of Vacuum Accident (LOVA in ITER (International Thermonuclear Experimental Reactor: Evaluation of Static Pressure, Mach Number, and Friction Velocity

    Directory of Open Access Journals (Sweden)

    Jean-François Ciparisse

    2018-04-01

    Full Text Available ITER (International Thermonuclear Experimental Reactor is a magnetically confined plasma nuclear reactor. Inside it, due to plasma disruptions, the formation of neutron-activated powders, which are essentially made out of tungsten and beryllium, occurs. As many windows for diagnostics are present on the reactor, which operates at very low pressure, a LOVA (Loss of Vacuum Accident could be possible and may lead to dust mobilisation and a toxic and radioactive fallout inside the plant. This study is aimed at reproducing numerically the first seconds of a LOVA in ITER, in order to get information about the dust resuspension risk. This work has been carried out by means of a CFD (Computational Fluid Dynamics simulation of the beginning of the pressurisation transient inside the whole Tokamak. It has been found that the pressurization transient is extremely slow, and that the friction speed on the walls is very high, and therefore a high mobilization risk of the dust is expected on the entire internal surface of the reactor. It has been observed that a LOVA in a real-scale reactor is more severe than the one reproduced in reduced-scale facilities, as STARDUST-U, because the speeds are higher, and the dust resuspension capacity of the flow is greater.

  18. Elastomeric friction

    Science.gov (United States)

    Vorvolakos, Katherine

    This dissertation examines the tribology of PDMS (polydimethylsiloxane) elastomers from a practical and a fundamental perspective. We examine the adhesive, energetic, and tribological properties of several commercial biofouling release coatings, and show that adhesive (and bioadhesive) release from an elastomer depends on the friction of its surface. Having shown that friction is an obstacle to release, we lubricate a model PDMS network by incorporating linear unreactive PDMS oils varying in molecular weight (0.8--423 kg/mol). Surface segregation upon curing depends on molecular weight and mass percentage. Atomic Force Microscopy (AFM) is used to detect the thickness of the lubricant layer. Surprisingly, high-viscosity oils lubricate better than low-viscosity oils, indicating a non-hydrodynamic lubrication. Applying this technology to a commercial elastomer, we see an improvement in bioadhesive release capabilities, as evidenced by a reduced tenacity of mussel adhesive protein. In comparing entangled polymer melts to crosslinked elastomers, we encountered an opportunity to study the tribology of the latter. We studied the effects of molecular weight, velocity, and temperature on the friction of crosslinked PDMS elastomers sliding against two model surfaces: a self-assembled monolayer (SAM) of n-hexadecylsilane, and a thin (˜100mum) film of polystyrene (PS). The change from smooth to stick-slip (unstable) interfacial sliding occurs at a distinct velocity on each surface, implying that it's not necessarily attributable to a bulk glass transition of the PDMS, as popularly believed. The peak shear stress attained immediately before stick-slip sliding is found to be linear with the shear modulus raised to an exponent n of ¾, in contrast with the predictions of Chernyak and Leonov ( n = 1). Low-velocity behavior differs greatly between the SAM and the PS, implying a mechanistic difference. Whereas on the SAM, sliding likely proceeds purely by stochastic adsorption and

  19. Cross-Cultural "Distance", "Friction" and "Flow": Exploring the Experiences of Pre-Service Teachers on International Practicum

    Science.gov (United States)

    Uusimaki, Liisa; Swirski, Teresa

    2016-01-01

    The focus of this paper is to illustrate Australian regional pre-service teachers' perceptions of an international practicum: their cross-cultural understanding, notions of privilege and teacher/professional identity development. Findings indicate that there were three overlapping dimensions of cross-cultural understanding for pre-service…

  20. Study of excitation of low energy for the low-temperature internal friction in the metallic glass Co35Y65

    International Nuclear Information System (INIS)

    Jin, Z.; Zou, X.; Liu, F.

    1990-01-01

    Based on the unified theory of low-frequency fluctuation, dissipation, and relaxation processes, we studied the broad and asymmetric low-temperature internal friction peak of the metallic glass Co 35 Y 65 . This theory, which differs from that of distributed relaxation times, involves only a single relaxation time τ P . By this theory, the calculated infrared-divergence exponent n=0.62, characteristic relaxation time τ ∞ =2x10 -14 s, actual activation energy E A =0.2 eV, and apparent activation energy E * A =0.52 eV. They are in agreement with available experimental results (τ ∞ =2.2x10 -14 s, E A =0.25 eV, and E * A =0.56 eV). Since the composition is very close to that of the intermetallics CoY 2 , the chemical short range order exists partly in the metallic glass Co 35 Y 65 . We notice from the behavior of this peak that it is not caused by the motion of gas atoms dissolved in the sample. From the much smaller radius of a Co atom compared with that of Y, we suggest this peak results from migration of Co atoms to neighboring vacancy with infrared divergence

  1. Measurement of the Indentation Modulus and the Local Internal Friction in Amorphous SiO2 Using Atomic Force Acoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Zhang B.

    2016-03-01

    Full Text Available For the past two decades, atomic force acoustic microscopy (AFAM, an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.

  2. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    Science.gov (United States)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  3. Design and assembly of a torsion pendulum for the measurement of internal friction at low temperatures; Construccion de un pendulo de torsion para la medida de la friccion interna a baja temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J. M.; Gallego, I.; No, M. L.

    2001-07-01

    In this work we describe the assembly, operation and specifications of an inverted torsion pendulum designed to measure internal friction at low temperatures (from 4.2 K to 500 K). The high precision mechanics allow us to obtain internal friction spectra with low levels of noise from amplitudes as small as 2x10''7. The inertia components of the pendulum have been built with specific materials, so that the resonance frequency of the pendulum can be changed within two orders of magnitude (0.1-10Hz). In addition, the sample can be in situ deformed at any temperature and can be inserted into the pendulum at liquid nitrogen temperature. The operation of the pendulum, all the control p recesses and data acquisition are completely automated. (Author) 4 refs.

  4. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  5. Early Life And In Service Friction Characteristics Of Runway Surface

    OpenAIRE

    Widyatmoko, I.; Fergusson, C.

    2012-01-01

    This paper presents friction data gathered from seven regional and major international airports in the UK, covering different surface courses, from the time of installation to in service. The wet friction monitoring at these airports was carried out by using Continuous Friction Measurement Equipments (CFME) over 4 years in service. Some materials showed reduction in the wet friction values during a few days after installation but then followed by a steady increase in the values, even without ...

  6. Sliding Friction of Copper

    National Research Council Canada - National Science Library

    Liu, Tung

    1963-01-01

    .... With less clean surfaces, the coefficient of friction obtained was about 0.4. Since the degree of cleanliness cannot be controlled quantitatively, the friction - load curve of sliding copper pairs in air exhibits a bifurcation characteristic...

  7. A study by internal friction of defects produced in iron and nickel irradiated at very low temperatures; Etude au moyen du frottement interne des defauts crees par irradiation a tres basse temperature dans le fer et le nickel

    Energy Technology Data Exchange (ETDEWEB)

    Keating-Hart, G. de [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This work represents a contribution to the study of point defects in metals. After a brief review of the theory of internal friction we will discuss some technical innovations aimed at increasing the flexibility of the apparatus at our disposal. These innovations have allowed us to extend our range of measurements down to 20 deg. K. We will then discuss our experimental results. Firstly, we describe preliminary experiments on electron irradiated iron and the evidence for a laminar structure. Secondly, we present and account of the first measurements on nickel after neutron irradiation at 27 deg. K. We will compare the results with those obtained by other methods in this laboratory. Essentially we have observed transitory peaks at low temperature due to close Frenkel pairs and we have noticed the absence of a peak which would correspond to the magnetic after effect band of stage I{sub E}. An attempt is made to explain the disappearance of the observed peaks upon the application of an internal saturating magnetic field. (author) [French] Ce memoire constitue une contribution a l'etude des defauts ponctuels dans les metaux. Apres un bref apercu theorique sur le frottement interne, nous presenterons quelques realisations techniques destinees a accroitre les possibilites des instruments qui nous ont ete confies. Ces dernieres nous ont permis d'etendre la gamme des mesures jusqu'a 20 deg. K. Nous parlerons ensuite de nos resultats experimentaux. En premier lieu, ceux obtenus au cours de premieres experiences, sur le fer irradie aux electrons mettent en evidence des structures de laminage. En second lieu, nous exposerons les premieres mesures realisees sur du nickel irradie aux neutrons; nous comparerons ces resultats avec ceux obtenus par d'autres moyens experimentaux dans le laboratoire. Nous avons observe essentiellement des pics fugitifs a basse temperature dus aux paires proches de Frenckel et nous avons constate l'absence d'un pic

  8. Proximity friction reexamined

    International Nuclear Information System (INIS)

    Krappe, H.J.

    1989-01-01

    The contribution of inelastic excitations to radial and tangential friction form-factors in heavy-ion collisions is investigated in the frame-work of perturbation theory. The dependence of the form factors on the essential geometrical and level-density parameters of the scattering system is exhibited in a rather closed form. The conditions for the existence of time-local friction coefficients are discussed. Results are compared to form factors from other models, in particular the transfer-related proximity friction. For the radial friction coefficient the inelastic excitation mechanism seems to be the dominant contribution in peripheral collisions. (orig.)

  9. Friction Compensation in Energy-Based Bilateral Telemanipulation

    NARCIS (Netherlands)

    Franken, M.C.J.; Misra, Sarthak; Stramigioli, Stefano

    2010-01-01

    In bilateral telemanipulation algorithms based on time-domain passivity, internal friction in the devices poses an additional energy drain. Based on a model of the friction, the dissipated energy can be estimated and reclaimed inside the energy balance of the control algorithm. As long as the

  10. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  11. Investigation of internal friction in fused quartz, steel, Plexiglass, and Westerly granite from 0.01 to 1.00 Hertz at 10- 8 to 10-7 strain amplitude.

    Science.gov (United States)

    Hsi-Ping, Liu; Peselnick, L.

    1983-01-01

    A detailed evaluation on the method of internal friction measurement by the stress-strain hysteresis loop method from 0.01 to 1 Hz at 10-8-10-7 strain amplitude and 23.9oC is presented. Significant systematic errors in relative phase measurement can result from convex end surfaces of the sample and stress sensor and from end surface irregularities such as nicks and asperities. Preparation of concave end surfaces polished to optical smoothness having a radius of curvature >3.6X104 cm reduces the systematic error in relative phase measurements to <(5.5+ or -2.2)X10-4 radians. -from Authors

  12. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  13. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  14. Skin tribology: Science friction?

    OpenAIRE

    Heide, E. van der; Zeng, X.; Masen, M.A.

    2013-01-01

    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is frequently one of the interacting surfaces in relative motion. People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch....

  15. Topological complexity of frictional interfaces: friction networks

    Directory of Open Access Journals (Sweden)

    H. O. Ghaffari

    2012-03-01

    Full Text Available Through research conducted in this study, a network approach to the correlation patterns of void spaces in rough fractures (crack type II was developed. We characterized friction networks with several networks characteristics. The correlation among network properties with the fracture permeability is the result of friction networks. The revealed hubs in the complex aperture networks confirmed the importance of highly correlated groups to conduct the highlighted features of the dynamical aperture field. We found that there is a universal power law between the nodes' degree and motifs frequency (for triangles it reads T(kkβ (β ≈ 2 ± 0.3. The investigation of localization effects on eigenvectors shows a remarkable difference in parallel and perpendicular aperture patches. Furthermore, we estimate the rate of stored energy in asperities so that we found that the rate of radiated energy is higher in parallel friction networks than it is in transverse directions. The final part of our research highlights 4 point sub-graph distribution and its correlation with fluid flow. For shear rupture, we observed a similar trend in sub-graph distribution, resulting from parallel and transversal aperture profiles (a superfamily phenomenon.

  16. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  17. Laboratory evaluation of friction loss and compactability of asphalt mixtures.

    Science.gov (United States)

    2012-04-01

    This study aimed to develop prediction models for friction loss and laboratory compaction of asphalt : mixtures. In addition, the study evaluated the effect of compaction level and compaction method of skid : resistance and the internal structure of ...

  18. Ratchet due to broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...

  19. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    The comparison of estimated frictional coefficient from numerical output is in agreement with vis-à-vis corresponding similar computed from the virtual braking system model in the Simulink. The results indicated that highest frictional coefficient of 0.7 was obtained on the piston side of the rotor disc and active friction radius is ...

  20. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  1. Student figures in friction

    DEFF Research Database (Denmark)

    Nielsen, Gritt B.

    , students' room for participation in their own learning, influenced by demands for efficiency, flexibility and student-centred education. The thesis recasts the anthropological endeavour as one of ‘figuration work'. That is, ‘frictional events' are explored as moments when conflicting figures...

  2. Skin tribology: Science friction?

    NARCIS (Netherlands)

    Heide, E. van der; Zeng, X.; Masen, M.A.

    2013-01-01

    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is

  3. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2016-01-01

    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  4. Collets and friction

    Science.gov (United States)

    McIlraith, A. H.

    2005-07-01

    Conical sleeves, known as collets, have long been used for clamping sliding bodies to cylindrical columns in any desired position. Quantitative expressions for their properties are presented. Of particular interest is the ability of a collet to hold a shaft stationary against axial forces in either direction, and yet be able to release its grip with a minimum of additional force. This treatment relates the firmness of grip, the ease of release and the interface stresses to the cone angle, the coefficients of friction and the applied axial forces. The central part played by hysteresis is revealed. Experiments employing a test model give good support to the theoretical conclusions. They show that, up to the interface pressures reached, about 250 MPa, the friction between lubricated hardened steel and mild steel surfaces is independent of pressure. The strong dependence of friction on surface roughness is demonstrated. The possible adaptation of the collet test equipment to the measurement of friction at high interface pressures is touched upon. It could be a complementary alternative to the more flexible pin-on-disc method. With much larger working areas, it should have the advantages of better defined areas of contact, reduced ploughing effects and less leakage of lubricant.

  5. Micromechanics of pseudo-single-asperity friction: Effects of nanometer-scale roughness

    Science.gov (United States)

    Li, Qunyang

    Nanometer-scale roughness on a solid surface has significant effects on friction, since inter-surface forces operate predominantly within a nanometer-scale gap distance in frictional contact. This thesis presents two novel atomic force microscope friction experiments, each using a gold surface sliding against a flat mica surface as the representative friction system. A diamagnetic lateral force calibrator (D-LFC) was invented to enable the accurate quantitative force measurements. In one of the experiment, a disk-shaped single nano-asperity of gold was used to measure the molecular level frictional behavior. The adhesive friction stress was measured to be 264 MPa and the molecular friction factor 0.0108 for a direct gold-mica contact in 30% humid air. The capillary force from the condensed water meniscuses was found to play an important role in magnifying the contact pressure to plastically deform the nano-asperities leading to the dramatic evolution of frictional responses. In the second experiment, the frictional response of a micrometer-scale asperity with nanometer-scale roughness exhibited a pseudo-single-asperity frictional behavior. However, the apparent friction stress, 40.5 MPa, fell well below the Hurtado-Kim model prediction for a smooth-single-asperity friction, exhibiting an apparent size-scale dependence of the friction stress. An interfacial roughness (IR) layer model was then developed to investigate the effects of roughness on pseudo-single-asperity friction. The model calculation shows that the nanometer-scale surface roughness is the major mechanism that explains the apparent size-scale dependence of the friction observed in the experiments. Furthermore, the analysis shows that the apparent friction stress as well as the apparent pressure-dependent fiction factor relies on the surface roughness. Both experimental and theoretical results suggest that the evolution status of surface roughness is one of the important internal variables for the

  6. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  7. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  8. Internal friction study on fcc/hcp martensitic transformations in thermomechanically treated Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass%) alloys

    International Nuclear Information System (INIS)

    Dong, Z.; Sawaguchi, T.; Kikuchi, T.; Yin, F.; Ogawa, K.; Sahu, P.; Kajiwara, S.

    2006-01-01

    We have studied the temperature dependence of the internal friction and Young's modulus of the Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass%) alloys with or without NbC precipitates produced by three thermomechanical treatments: (i) solution treatment, (ii) rolling at 870 K and subsequent aging at 1070 K, and (iii) rolling at 1070 K, in the vicinity of the forward (M s ) and the reverse (A s ) martensitic transformation temperatures using a dynamic mechanical analyzer (DMA). The specimen subjected to rolling at 870 K and subsequent aging showed the highest M s temperature and the largest amount of the hcp martensite. The solution treated specimen showed the lowest M s temperature and the minimum amount of the martensite. The magnetic susceptibility measurements made by means of a superconducting quantum interference device (SQUID) revealed that the martensitic transformation is hindered by the preceding magnetic transition from the paramagnetic (cubic) phase to the antiferromagnetic (tetragonal) phase

  9. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    Energy Technology Data Exchange (ETDEWEB)

    Moritsugu, Kei [Yokohama City Univ., Yokohama (Japan); Kidera, Akinori [Yokohama City Univ., Yokohama (Japan); Smith, Jeremy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  10. Empirical analysis of skin friction under variations of temperature

    International Nuclear Information System (INIS)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-01-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  11. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  12. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  13. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  14. FRICTION BUFFER STOP DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Guziur

    2017-08-01

    Full Text Available Friction buffer stops are the favoured construction of buffer stop, mainly due to its high resistance and variety of layout. Last but not least is its manner of deceleration induced upon impact and during the braking what makes it smart solution in railway transport safety. The general approach of designing buffer stops is via usage of the kinetic energy and its conversion into work. Paper describes input parameters such as train velocity or buffer stop vicinity which is expressed by the safety coefficient implanted within the calculation. Furthermore, the paper shows the principle of calculation the friction buffer stop work, or to be more precise, the work of its braking jaws and optionally the work of additional braking jaws located behind the buffer stop. Last section of the paper is focused on the examples of designing friction buffer stops, points out the main complications and shows the charts of relation amongst braking distance, kinetic energy and braking force and the charts of relation between deceleration rate and braking distance.

  15. Bioinspired orientation-dependent friction.

    Science.gov (United States)

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  16. Experimental study of snow friction

    Science.gov (United States)

    Cohen, Caroline; Canale, Luca; Siria, Alessandro; Quere, David; Bocquet, Lyderic; Clanet, Christophe

    2017-11-01

    Snow friction results from the interplay of different physical processes: solid friction of granular material, phase change and lubrication, heat transport, capillarity, elasticity and plasticity. The multiple conditions of temperature, humidity and density of the snow result in different regimes of friction. In particular, there is an optimal amount of melted water to lubricate the contact between the ski sole and the snow grains. The thickness of the water layer depends on temperature, speed... A huge variety of waxes have been empirically developed to adapt the amount of water to the conditions of skiing, but remain mysterious. In these study, we investigate experimentally the mechanisms of snow friction at different scales: first, the friction of a ski on snow is measured on a test bench, depending on the snow characteristics and for different waxes. Then microscopic experiments are led in order to understand the friction at the ice crystals scale.

  17. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  18. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  19. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  20. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  1. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  2. Experimental research on friction coefficient between grain bulk and bamboo clappers

    Science.gov (United States)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  3. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  4. Brachistochrone with Coulomb friction

    Science.gov (United States)

    Hayen, J.

    2005-10-01

    The classical brachistochrone is considered with the inclusion of a resistant force, which is due to Coulomb friction, in addition to the uniform gravitational force that is present. The solution to this problem is expressed in terms of standard functions, and it is developed in two separate ways by means of constrained variational calculus methods. These ways involve formulations of the problem in terms of temporal and spatial independent variables, respectively. The equations of motion that result in both cases are non-linear and coupled. The utilization of path variables is a central feature of the developments provided.

  5. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  6. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  7. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  8. Friction Testing of Thermoplastic Composites

    NARCIS (Netherlands)

    Sachs, Ulrich; Haanappel, Sebastiaan; Rietman, Bert; Akkerman, Remko; Erath, Mark A.

    2011-01-01

    Friction phenomena play a major role in thermoplastic composite forming processes. In order to make use of the large potential these materials have, accurate CAE tools are needed that as a consequence incorporate temperature, pressure and velocity dependent friction behavior. To obtain a sound

  9. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  10. Friction of atomically stepped surfaces

    NARCIS (Netherlands)

    Dikken, R.J.; Thijsse, B.J.; Nicola, L.

    2017-01-01

    The friction behavior of atomically stepped metal surfaces under contact loading is studied using molecular dynamics simulations. While real rough metal surfaces involve roughness at multiple length scales, the focus of this paper is on understanding friction of the smallest scale of roughness:

  11. Blades Couple Dry Friction Connection

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2015-01-01

    Roč. 9, č. 1 (2015), s. 31-40 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : stick-slip dry friction * 3D friction characteristic * tangential contact stiffness * hysterezis loop * response curves Subject RIV: BI - Acoustics

  12. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  13. Nanoscale friction and wear maps.

    Science.gov (United States)

    Tambe, Nikhil S; Bhushan, Bharat

    2008-04-28

    Friction and wear are part and parcel of all walks of life, and for interfaces that are in close or near contact, tribology and mechanics are supremely important. They can critically influence the efficient functioning of devices and components. Nanoscale friction force follows a complex nonlinear dependence on multiple, often interdependent, interfacial and material properties. Various studies indicate that nanoscale devices may behave in ways that cannot be predicted from their larger counterparts. Nanoscale friction and wear mapping can help identify some 'sweet spots' that would give ultralow friction and near-zero wear. Mapping nanoscale friction and wear as a function of operating conditions and interface properties is a valuable tool and has the potential to impact the very way in which we design and select materials for nanotechnology applications.

  14. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Eliminating friction with friction: 2D Janssen effect in a friction-driven system.

    Science.gov (United States)

    Karim, M Yasinul; Corwin, Eric I

    2014-05-09

    The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system.

  16. Rheology of confined granular flows: scale invariance, glass transition, and friction weakening.

    Science.gov (United States)

    Richard, P; Valance, A; Métayer, J-F; Sanchez, P; Crassous, J; Louge, M; Delannay, R

    2008-12-12

    We study fully developed, steady granular flows confined between parallel flat frictional sidewalls using numerical simulations and experiments. Above a critical rate, sidewall friction stabilizes the underlying heap at an inclination larger than the angle of repose. The shear rate is constant and independent of inclination over much of the flowing layer. In the direction normal to the free surface, the solid volume fraction increases on a scale equal to half the flowing layer depth. Beneath a critical depth at which internal friction is invariant, grains exhibit creeping and intermittent cage motion similar to that in glasses, causing gradual weakening of friction at the walls.

  17. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  18. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  19. Labor Supply and Optimization Frictions

    DEFF Research Database (Denmark)

    Søgaard, Jakob Egholt

    In this paper I investigate the nature of optimization frictions by studying the labor market of Danish students. This particular labor market is an interesting case study as it features a range of special institutional settings that affect students’ incentive to earn income and comparing outcomes...... across these setting effectively allow you to distinguish between different types of frictions. I find that the considered labor market is significantly affected by optimizations frictions, which masks the bunching at kink points normally associated with a positive labor supply elasticity under standard...

  20. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  1. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  2. Showing Area Matters: A Work of Friction

    Science.gov (United States)

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  3. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  4. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  5. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  6. KINEMATICS FRICTION PAIR FOR EXAMPLE NEEDLE BEARINGS

    OpenAIRE

    Jerzy NACHIMOWICZ; Robert KORBUT

    2014-01-01

    The present study concerns certain phenomena that take place in the needle roller bearing. The friction that generates the anti-torque of a friction pair is the major factor that influences the needle bearing’s wear. In the needle bearing there occur two predominant types of friction: the rolling friction and the sliding friction, and both are subject to examination. The study presents recordings and analysis of the movements of all needle bearing’s rolling elements. The examination was carri...

  7. The evaluation of skin friction using a frictional feel analyzer.

    Science.gov (United States)

    Egawa, Mariko; Oguri, Motoki; Hirao, Tetsuji; Takahashi, Motoji; Miyakawa, Michio

    2002-02-01

    Sensory evaluation is an important factor for cosmetic products. Several devices for the measurement of sensory properties have been developed in recent years. The objective here is to measure skin surface friction using these devices and examine the correlation with other physiological parameters in order to evaluate the potential of physical measurement of tactile sensation. A KES-SE Frictional Analyzer, a commercial device for measurement of surface frictional characteristics, was used in this study. An arm holder was added to this device for measurement on the human forearm. The frictional coefficient (MIU) and its mean deviation (MMD) were used as the parameter to indicate surface friction. The moisture content in the stratum corneum was measured with a Corneometer CM825, the transepidermal water loss with a Tewameter TM210, the viscoelastic properties of the skin with a Cutometer SEM575 and the skin surface pattern by observing the negative replica using silicon rubber. The MIU was not influenced by load; however, it was increased due to water application on the skin. The relationship between MIU and the moisture content in the stratum comeum, between MMD and skin surface pattern and between MMD and viscosity of both normal human forearm skin and SDS (sodium dodecyl sulfate)-induced dry skin were confirmed by statistical analysis in a test on human subjects. There was also a correlation between either MIU or MMD and sensory evaluation in the morning after the application of moisturizing products. Human skin surface friction was measured by using a KES-SE Frictional Analyzer. Judging from the correlation between either MIU or MMD and sensory evaluation, we considered this instrumental analysis to be useful for evaluating the tactile impression of human skin.

  8. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  9. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  10. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  11. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  12. External models of frictional interaction dynamics

    Science.gov (United States)

    Tyurin, A. E.; Ismailov, G. M.; Ikonnikova, K. V.; Sarkisov, Y. S.

    2017-10-01

    This investigation suggests a method used to determine the evolution of metallic wear and friction by sliding. The friction of steel moving over brass was taken as an example. The problem of external dynamics friction is investigated through the definition of the dynamic characteristics such as damping factor and natural frequency. Some certain automatic control methods were applied for sliding friction contact, including parametric identification, ARX simulation and Newton’s dynamic equation. The suggested approach allows using amplitude-frequency characteristics to assess the dynamic factors (coefficients) under friction interaction. The research findings indicate that the proposed method allows monitoring the evolution of metallic wear and friction.

  13. The Reality of Casimir Friction

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2016-04-01

    Full Text Available For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with observations, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here, we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  14. Skin friction blistering: computer model.

    Science.gov (United States)

    Xing, Malcolm; Pan, Ning; Zhong, Wen; Maibach, Howard

    2007-08-01

    Friction blisters, a common injury in sports and military operations, can adversely effect or even halt performance. Given its frequency and hazardous nature, recent research efforts appear limited. Blistering can be treated as a delamination phenomenon; similar issues in materials science have been extensively investigated in theory and experiment. An obstacle in studying blistering is the difficulty of conducting experiment on humans and animals. Computer modeling thus becomes a preferred tool. This paper used a dynamic non-linear finite-element model with a blister-characterized structure and contact algorithm for outer materials and blister roof to investigate the effects on deformation and stress of an existing blister by changing the friction coefficient and elastic modulus of the material in contact with the blister. Through the dynamics mode and harmonic frequency approach, we demonstrated that the loading frequency leads to dramatic changes of displacement and stress in spite of otherwise similar loading. Our simulations show that an increased friction coefficient does not necessarily result in an increase in either the stress on the hot spot or blister deformation; local maximum friction stress and Von Mises stress exist for some friction coefficients over the wide range examined here. In addition, the stiffness of contact material on blistering is also investigated, and no significant effects on deformation and Von Mises stress are found, again at the range used. The model and method provided here may be useful for evaluating loading environments and contact materials in reducing blistering incidents. The coupling finite-element model can predict the effects of friction coefficient and contacting materials&apos stiffness on blister deformation and hot spot stress.

  15. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  16. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  17. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  18. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  19. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  20. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150

  1. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to ...

  2. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    Depending on the sliding direction the coefficient of friction varies between maximum and minimum for textured surfaces. For random surfaces without any texture the friction coefficient becomes independent of the sliding direction. This paper proposes the concept of a friction tensor analogous to the heat conduction tensor ...

  3. Information frictions and monetary policy

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    2012-01-01

    Roč. 6, č. 1 (2012), s. 7-24 ISSN 1802-792X Institutional support: RVO:67985998 Keywords : nominal rigidity * information frictions * monetary economics Subject RIV: AH - Economics http://www.vsfs.cz/periodika/acta-2012-01.pdf

  4. What do Information Frictions Do?

    NARCIS (Netherlands)

    Bhattacharya, J.; Chankraborty, S.

    2003-01-01

    Numerous researchers have incorporated labor or credit market frictions within simple neoclassical models to (i) facilitate quick departures from the Arrow-Debreu world, thereby opening up the role for institutions, (ii) inject some realism into their models, and (iii) explain cross country

  5. Frictional heating of tribological contacts

    NARCIS (Netherlands)

    Bos, Johannes

    1995-01-01

    Wherever friction occurs, mechanical energy is transformed into heat. The tem­ perature rise associated with this heating can have an important influence on the tribological behaviour of the contacting components. Apart from determining per­ formance, thermal phenomena affect reliability and may

  6. Preface: Friction at the nanoscale

    Science.gov (United States)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  7. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  8. KINEMATICS FRICTION PAIR FOR EXAMPLE NEEDLE BEARINGS

    Directory of Open Access Journals (Sweden)

    Jerzy NACHIMOWICZ

    2014-06-01

    Full Text Available The present study concerns certain phenomena that take place in the needle roller bearing. The friction that generates the anti-torque of a friction pair is the major factor that influences the needle bearing’s wear. In the needle bearing there occur two predominant types of friction: the rolling friction and the sliding friction, and both are subject to examination. The study presents recordings and analysis of the movements of all needle bearing’s rolling elements. The examination was carried out on a special examination stand that precisely emulates the real conditions of the needle bearing’s work. Carefully prepared examination methods enable recording and analyzing frictions in the bearing, estimating a sphere within which the load is shifted, and calculating the coefficient of friction.

  9. Non-linear friction in a single crystal of zirconium

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Atrens, A.; Sprungmann, K.W.

    1980-04-01

    Non-linear internal friction phenomena in a single crystal of zirconium are investigated. Both the interactions between dislocations and immobile obstacles and between dislocations and mobile pinning points are involved. It is shown that vibration conditioning and programmed vibration annealing can be used to separate the time-dependent and strain-amplitude-dependent components of the internal friction. An impurity peaking effect has been generated by altering the effective concentration of obstacles by step changes in strain amplitude and vibration conditioning. Repeated thermal cycling at low strain amplitudes, through the terminal solid solubility boundary for hydrogen in zirconium, does not lead to the cumulative increase in dislocation density observed when polycrystalline samples are treated similarly. (auth)

  10. Brazil x China Trade Frictions: Overview and a brief case analysis

    OpenAIRE

    Omar Rodrigo Ribeiro Silva; Zheng Yueming

    2014-01-01

    The present article aims to describe the current market and economical reality regarding international trade and its imperfections (frictions) confronting China, specially those originated in one of its largest commercial partners, Brazil. Through an empirical research, this paper displays, under a brief descriptive perspective, the historical constructs that formed today's economical reality of both countries and, in a quantitative manner, the existing frictions between the former. Key-Wo...

  11. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  12. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  13. Nano-friction behavior of phosphorene

    Science.gov (United States)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  14. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer

    2016-03-01

    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  15. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  16. Friction and Wear in Timing Belt Drives

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2010-09-01

    Full Text Available Timing belt tooth goes into contact with a drive pulley, stretched to the maximum, because of the previous tension. When the contact begins the peak of the belt tooth makes the contact with the outer surface of the pulley teeth. The process of the teeth entering into the contact zone is accompanied with the relative sliding of their side surfaces and appropriate friction force. The normal force value is changing with the parabolic function, which also leads to the changes of the friction force. The biggest value of the normal force and of the friction force is at the tooth root. Hollow between teeth and the tip of the pulley teeth are also in contact. Occasionally, the face surface of the belt and the flange are also in contact. The friction occurs in those tribomechanical systems, also. Values of these friction forces are lower compared with the friction force, which occurs at the teeth root.

  17. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  18. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support.

    Science.gov (United States)

    Cooper, B G; Lawson, T B; Snyder, B D; Grinstaff, M W

    2017-07-01

    Osteoarthritis (OA) is associated with increased articular cartilage hydraulic permeability and decreased maintenance of high interstitial fluid load support (IFLS) during articulation, resulting in increased friction on the cartilage solid matrix. This study assesses frictional response following in situ synthesis of an interpenetrating polymer network (IPN) designed to mimic glycosaminoglycans (GAGs) depleted during OA. Cylindrical osteochondral explants containing various interpenetrating polymer concentrations were subjected to a torsional friction test under unconfined creep compression. Time-varying coefficient of friction, compressive engineering strain, and normalized strain values (ε/ε eq ) were calculated and analyzed. The polymer network reduced friction coefficient over the duration of the friction test, with statistically significantly reduced friction coefficients (95% confidence interval 14-34% reduced) at equilibrium compressive strain upon completion of the test (P = 0.015). A positive trend was observed relating polymer network concentration with magnitude of friction reduction compared to non-treated tissue. The cartilage-interpenetrating polymer treatment improves lubrication by augmenting the biphasic tissue's interstitial fluid phase, and additionally improves the friction dissipation of the tissue's solid matrix. This technique demonstrates potential as a therapy to augment tribological function of articular cartilage. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  20. Effect of grafted oligopeptides on friction.

    Science.gov (United States)

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  1. Friction & Wear Under Very High Electromagnetic Stress

    National Research Council Canada - National Science Library

    Cowan, Richard S; Danyluk, Steven; Moon, Francis; Ford, J. C; Brenner, Donald W

    2004-01-01

    This document summarizes initial progress toward advancing the fundamental understanding of the friction, wear and mechanics of interfaces subjected to extreme electromagnetic stress, high relative...

  2. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  3. Characterization of friction and wear behavior of friction modifiers used in wheel-rail contacts

    NARCIS (Netherlands)

    Oomen, M. A.; Bosman, R.; Lugt, P. M.

    2017-01-01

    Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different

  4. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  5. Quantum Friction in Different Regimes

    Science.gov (United States)

    Klatt, Juliane; Buhmann, Stefan

    2015-03-01

    Quantum friction is the velocity-dependent force between two polarizable objects in relative motion, resulting from field-fluctuation mediated transfer of energy and momentum between them. Due to its short-ranged nature it has proven difficult to observe experimentally. Theoretical attempts to determine the precise velocity-dependence of the quantum drag experienced by a polarizable atom moving parallel to a surface arrive at contradicting results. Scheel and Barton predict a force linear in relative velocity v - the former using the quantum regression theorem and the latter employing time-dependent perturbation theory. Intravaia, however, predicts a v3 power-law starting from a non-equilibrium fluctuation-dissipation theorem. In order to learn where exactly the above approaches part, we set out to perform all three calculations within one and the same framework: macroscopic QED. In addition, we include contributions to quantum friction from Doppler shift and Röntgen interaction, which play a role for perpendicular motion and retarded distances, respectively, and consider non-stationary states of atom and field. DFG Emmy-Noether Program.

  6. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  7. Kozai Cycles and Tidal Friction

    Energy Technology Data Exchange (ETDEWEB)

    L, K; P.P., E

    2009-07-17

    Several studies in the last three years indicate that close binaries, i.e. those with periods of {approx}< 3 d, are very commonly found to have a third body in attendance. We argue that this proves that the third body is necessary in order to make the inner period so short, and further argue that the only reasonable explanation is that the third body causes shrinkage of the inner period, from perhaps a week or more to the current short period, by means of the combination of Kozai cycles and tidal friction (KCTF). In addition, once KCTF has produced a rather close binary, magnetic braking also combined with tidal friction (MBTF) can decrease the inner orbit further, to the formation of a contact binary or even a merged single star. Some of the products of KCTF that have been suggested, either by others or by us, are W UMa binaries, Blue Stragglers, X-ray active BY Dra stars, and short-period Algols. We also argue that some components of wide binaries are actually merged remnants of former close inner pairs. This may include such objects as rapidly rotating dwarfs (AB Dor, BO Mic) and some (but not all) Be stars.

  8. Low-friction nanojoint prototype

    Science.gov (United States)

    Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris

    2018-05-01

    High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

  9. Gimbaled-shoulder friction stir welding tool

    Science.gov (United States)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  10. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  11. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    This paper proposes the concept of a friction tensor analogous to the heat conduc- tion tensor in anisotropic media. This implies that there exists two principal friction coefficients μ1,2 analogous to the principal conductivities k1,2. For symmetrically textured surfaces the principal directions are orthogonal with atleast one ...

  12. Friction in textile thermoplastic composites forming

    NARCIS (Netherlands)

    Akkerman, Remko; ten Thije, R.H.W.; Sachs, Ulrich; de Rooij, Matthias B.; Binetruy, C.; Boussu, F.

    2010-01-01

    A previously developed mesoscopic friction model for glass/PP textile composite laminates during forming is evaluated for glass and carbon/PPS laminates, at higher temperatures and lower viscosities than before. Experiments were performed for tool/ply and ply/ply configurations in a new friction

  13. The role of friction in tow mechanics

    NARCIS (Netherlands)

    Cornelissen, Bo

    2013-01-01

    Friction plays and important role in the processing of fibrous materials: during production of tow materials, during textile manufacturing and during preforming operations for composite moulding processes. One of the poorly understood phenomena in these processes is the dynamic frictional behaviour

  14. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  15. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  16. Position-dependent friction in quantum mechanics

    International Nuclear Information System (INIS)

    Srokowski, T.

    1985-01-01

    The quantum description of motion of a particle subjected to position-dependent frictional forces is presented. The two cases are taken into account: a motion without external forces and in the harmonic oscillator field. As an example, a frictional barrier penetration is considered. 16 refs. (author)

  17. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  18. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    friction coefficients of Mg and Al-Mg alloy pins sliding over EN8 steel flats. The sliding angle was varied between 0 and 90 degrees and morphology of ... has explained friction based on energy dissipation mechanisms initiated in the early history of tribology by Rabinowicz (1951). Despite the spatio-temporal complexity in ...

  19. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  20. Novel friction law for the static friction force based on local precursor slipping.

    Science.gov (United States)

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  1. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  2. Skin Friction Measurements Using Luminescent Oil Films

    Science.gov (United States)

    Husen, Nicholas M.

    As aircraft are designed to a greater extent on computers, the need for accurate and fast CFD algorithms has never been greater. The development of CFD algorithms requires experimental data against which CFD output can be validated and from which insight about flow physics can be acquired. Skin friction, in particular, is an important quantity to predict with CFD, and experimental skin friction data sets aid not only with the validation of the CFD predictions, but also in tuning the CFD models to predict specific flow fields. However, a practical experimental technique for collecting spatially and temporally resolved skin friction data on complex models does not yet exist. This dissertation develops and demonstrates a new luminescent oil film skin friction meter which can produce spatially-resolved quantitative steady and unsteady skin friction data on models with complex curvature. The skin friction acting on the surface of a thin film of oil can be approximated by the expression tauw =mu ouh/h, where mu o is the dynamic viscosity of the oil, uh is the velocity of the surface of the oil film, and h is the thickness of the oil film. The new skin friction meter determines skin friction by measuring h and uh. The oil film thickness h is determined by ratioing the intensity of the fluorescent emissions from the oil film with the intensity of the incident light which is scattered from the surface of the model. When properly calibrated, that ratio provides an absolute oil film thickness value. This oil film thickness meter is therefore referred as the Ratioed-Image Film-Thickness (RIFT) Meter. The oil film velocity uh is determined by monitoring the evolution of tagged molecules within the oil film: Photochromic molecules are dissolved into the fluorescent oil and a pattern is written into the oil film using an ultraviolet laser. The evolution of the pattern is recorded, and standard cross-correlation techniques are applied to the resulting sequence of images. This

  3. Frictional properties of jointed welded tuff

    International Nuclear Information System (INIS)

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking

  4. On the geometric phenomenology of static friction

    Science.gov (United States)

    Ghosh, Shankar; Merin, A. P.; Nitsure, Nitin

    2017-09-01

    In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

  5. On the geometric phenomenology of static friction.

    Science.gov (United States)

    Ghosh, Shankar; Merin, A P; Nitsure, Nitin

    2017-09-06

    In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

  6. FRICTION-BOON OR BANE IN ORTHODONTICS

    Directory of Open Access Journals (Sweden)

    Sameer

    2015-11-01

    Full Text Available OBJECTIVE: Most fixed appliance techniques involve some degree of sliding between brackets and arch wires. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance to the clinician. The present study was performed to evaluate and compare the frictional resistance and characteristics between self-ligating brackets and pre-adjusted edgewise brackets with different types of ligation. MATERIALS AND METHODS: Tidy's frictional test design was used to simulate retraction of tooth along with artificial saliva to simulate wet conditions in oral cavity. The jig with this assembly was mounted on the Instron machine with the cross head moving upwards at a speed of 5mm/min. The movable bracket was suspended from the load cell of the testing machine, while the jig was mounted on cross head of machine and the load cell readings were recorded on digital display. Following wires are used 0.016 HANT, 0.019X 0.025HANT, 0.019X 0.025 SS, 0.021X 0.025 SS wires are used. The brackets used were 0.022 slot Damon, 0.022 Smart clip and 0.022 slot MBT system. RESULTS: Self ligating brackets were shown to produce lesser friction when compared to the conventional brackets used with modules, and stainless steel ligatures. Damon self-ligating brackets produce a least friction of all the brackets used in the study. Stainless steel ligatures produced the least friction compared to elastomeric. CONCLUSION: Self ligation brackets produce lesser friction than the conventional brackets ligated with elastomeric modules and stainless steel ligature. Damon self-ligating brackets produce a least friction of all the brackets used in the study width of the bracket was also found to be directly proportional to the friction produced 0.0016HANT with elastomeric modules produce more friction due increase in flexibility of wire.

  7. Anticipating the friction coefficient of friction materials used in automobiles by means of machine learning without using a test instrument

    OpenAIRE

    TİMUR, Mustafa; AYDIN, Fatih

    2013-01-01

    The most important factor for designs in which friction materials are used is the coefficient of friction. The coefficient of friction has been determined taking such variants as velocity, temperature, and pressure into account, which arise from various factors in friction materials, and by analyzing the effects of these variants on friction materials. Many test instruments have been produced in order to determine the coefficient of friction. In this article, a study about the use ...

  8. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  9. Coordination Frictions and Job Heterogeneity

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Christian Daniel

    This paper develops and extends a dynamic, discrete time, job to worker matching model in which jobs are heterogeneous in equilibrium. The key assumptions of this economic environment are (i) matching is directed and (ii) coordination frictions lead to heterogeneous local labor markets. We de- rive...... a number of new theoretical results, which are essential for the empirical application of this type of model to matched employer-employee microdata. First, we o¤er a robust equilibrium concept in which there is a continu- ous dispersion of job productivities and wages. Second, we show that our model can...... be readily solved with continuous exogenous worker heterogene- ity, where high type workers (high outside options and productivity) earn higher wages in high type jobs and are hired at least as frequently to the better job types as low type workers (low outside options and productivity). Third, we...

  10. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  11. Frictional and elastic energy in gecko adhesive detachment.

    Science.gov (United States)

    Gravish, Nick; Wilkinson, Matt; Autumn, Kellar

    2008-03-06

    Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1 m s(-1). Climbing presents a significant challenge for an adhesive since it requires both strong attachment and easy, rapid removal. Conventional pressure-sensitive adhesives are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). We discovered that the energy required to detach adhering tokay gecko setae (W(d)) is modulated by the angle (theta) of a linear path of detachment. Gecko setae resist detachment when dragged towards the animal during detachment (theta = 30 degrees ) requiring W(d) = 5.0+/-0.86(s.e.) J m(-2) to detach, largely due to frictional losses. This external frictional loss is analogous to viscous internal frictional losses during detachment of pressure-sensitive adhesives. We found that, remarkably, setae possess a built-in release mechanism. Setae acted as springs when loaded in tension during attachment and returned elastic energy when detached along the optimal path (theta=130 degrees ), resulting in W(d) = -0.8+/-0.12 J m(-2). The release of elastic energy from the setal shaft probably causes spontaneous release, suggesting that curved shafts may enable easy detachment in natural, and synthetic, gecko adhesives.

  12. A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Günter Offner

    2015-06-01

    Full Text Available The investigation of component dynamics is one of the main tasks of internal combustion engine (ICE simulation. This prediction is important in order to understand complex loading conditions, which happen in a running ICE. Due to the need for fuel saving, mechanical friction, in particular in radial slider bearings, is one important investigation target. A generic friction modeling approach for radial slider bearings, which can be applied to lubricated contact regimes, will be presented in this paper. Besides viscous friction, the approach considers in particular boundary friction. The parameterization of the friction model is done using surface material and surface roughness measurement data. Furthermore, fluid properties depending on the applied oil additives are being considered. The application of the model will be demonstrated for a typical engineering task of a connecting rod big end study to outline the effects of contact surface texture. AlSn-based and polymer coated bearing shells will be analyzed and compared with respect to friction reduction effects, running-in behavior and thermal load capabilities.

  13. Multiscale physics of rubber-ice friction

    Science.gov (United States)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  14. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  15. Surface Friction of Polyacrylamide Hydrogel Particles

    Science.gov (United States)

    Cuccia, Nicholas; Burton, Justin

    Polyacrylamide hydrogel particles have recently become a popular system for modeling low-friction, granular materials near the jamming transition. Because a gel consists of a polymer network filled with solvent, its frictional behavior is often explained using a combination of hydrodynamic lubrication and polymer-surface interactions. As a result, the frictional coefficient can vary between 0.001 and 0.03 depending on several factors such as contact area, sliding velocity, normal force, and the gel surface chemistry. Most tribological measurements of hydrogels utilize two flat surfaces, where the contact area is not well-defined. We have built a custom, low-force tribometer to measure the single-contact frictional properties of spherical hydrogel particles on flat hydrogel surfaces under a variety of measurement conditions. At high velocities (> 1 cm/s), the friction coefficient depends linearly on velocity, but does not tend to zero at zero velocity. We also compare our measurements to solid particles (steel, glass, etc.) on hydrogel surfaces, which exhibit larger frictional forces, and show less dependence on velocity. A physical model for the friction which includes the lubrication layer between the deformed surfaces will be discussed. National Science Foundation Grant No. 1506446.

  16. Amontonian frictional behaviour of nanostructured surfaces.

    Science.gov (United States)

    Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Fuge, Gareth M; Fox, Oliver J L; Ashfold, Michael N R; Leese, Hannah; Mattia, Davide; Briscoe, Wuge H

    2011-05-28

    With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ(0) + μ(g), with the intrinsic friction coefficient μ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient μ(g) for the presence of nanotextures. We have found a possible correlation between μ(g) and the average local slope of the surface nanotextures. This journal is © the Owner Societies 2011

  17. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  18. On the nature of the static friction, kinetic friction and creep

    DEFF Research Database (Denmark)

    Persson, B. N. J.; Albohr, O.; Mancosu, F.

    2003-01-01

    In this paper, we discuss the nature of the static and kinetic friction, and of (thermally activated) creep.We focus on boundary lubrication at high confining pressure (∼1GPa), as is typical for hard solids, where one or at most two layers of confined molecules separates the sliding surfaces. We......, the system exhibits a very small static friction, and a (low velocity) kinetic friction which increases with increasing sliding velocity. On the other hand, if the springs are soft enough, strong elastic instabilities occur during sliding, resulting in a large static friction force Fs, and a kinetic friction...... force Fk equal to the static friction force at low sliding velocities. In this case rapid slip events occur at the interface, characterized by velocities much higher and independent of the drive velocity v. In the MD simulations we observe that, for incommensurate systems (at low temperature), only when...

  19. Shear jamming in granular experiments without basal friction

    NARCIS (Netherlands)

    Zheng, H.; Dijksman, J.A.; Behringer, R.P.

    2014-01-01

    Jammed states of frictional granular systems can be induced by shear strain at densities below the isostatic jamming density $(\\\\phi_c)$ . It remains unclear, however, how much friction affects this so-called shear jamming. Friction appears in two ways in this type of experiment: friction between

  20. Friction and wear characteristics of carbon steels in vacuum

    Science.gov (United States)

    Verkin, B. I.; Lyubarskiy, I. M.; Udovenko, V. F.; Guslyakov, A. A.

    1974-01-01

    The nature of carbon steel friction and wear under vacuum conditions is described within the framework of general friction and wear theory. Friction is considered a dynamic process and wear is considered to be the result of a continuous sequence of transitions of the friction surface material from one state into another.

  1. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.

    Science.gov (United States)

    Leung, Lap Yin; Mao, Chen; Srivastava, Ishan; Du, Ping; Yang, Chia-Yi

    2017-07-01

    The purpose of this study was to demonstrate that the flow function (FFc) of pharmaceutical powders, as measured by rotational shear cell, is predominantly governed by cohesion but not friction coefficients. Driven by an earlier report showing an inverse correlation between FFc and the cohesion divided by the corresponding pre-consolidation stress (Wang et al. 2016. Powder Tech. 294:105-112), we performed analysis on a large data set containing 1130 measurements from a ring shear tester and identified a near-perfect inverse correlation between the FFc and cohesion. Conversely, no correlation was found between FFc and friction angles. We also conducted theoretical analysis and estimated such correlations based on Mohr-Coulomb failure model. We discovered that the correlation between FFc and cohesion can sustain as long as the angle of internal friction at incipient flow is not significantly larger than the angle of internal friction at steady-state flow, a condition covering almost all pharmaceutical powders. The outcome of this study bears significance in pharmaceutical development. Because the cohesion value is strongly influenced by the interparticle cohesive forces, this study effectively shows that it is more efficient to improve the pharmaceutical powder flow by lowering the interparticle cohesive forces than by lowering the interparticle frictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. A review of dynamics modelling of friction wedge suspensions

    Science.gov (United States)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  3. [Determination of a Friction Coefficient for THA Bearing Couples].

    Science.gov (United States)

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is

  4. Empirical analysis of skin friction under variations of temperature; Variacion de la resistencia al corte con temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-07-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  5. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  6. Velocity dependence of friction of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2009-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional...... shear stress for both cases. In our simulations, the polymer films are very thin (approx. 3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  7. Experimental studies of the magnetized friction force

    International Nuclear Information System (INIS)

    Fedotov, A. V.; Litvinenko, V. N.; Gaalnander, B.; Lofnes, T.; Ziemann, V.; Sidorin, A.; Smirnov, A.

    2006-01-01

    High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented

  8. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  9. Cluster synchronization of dry friction oscillators

    Directory of Open Access Journals (Sweden)

    Marszal Michał

    2018-01-01

    Full Text Available Synchronization is a well known phenomenon in non-linear dynamics and is treated as correlation in time of at least two different processes. In scope of this article, we focus on complete and cluster synchronization in the systems of coupled dry friction oscillators, coupled by linear springs. The building block of the system is the classic stick-slip oscillator, which consists of mass, spring and belt-mass friction interface. The Stribeck friction itself is modelled using Stribeck friction model with exponential non-linearity. The oscillators in the systems are connected in nearest neighbour fashion, both in open and closed ring topology. We perform a numerical study of the properties of the dynamics of the systems in question, in two-parameter space (coupling coefficient vs. angular excitation frequency and explore the possible configurations of cluster synchronization.

  10. Suppression of friction by mechanical vibrations.

    Science.gov (United States)

    Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano

    2009-08-21

    Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.

  11. The coefficient of friction, particularly of ice

    International Nuclear Information System (INIS)

    Mills, Allan

    2008-01-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04–0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found

  12. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  13. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    OpenAIRE

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µ M, which is considered to be a constant. Here, we conduct experiments demonstrating that the static fricti...

  14. Coefficient of Friction of a Brake Disc-Brake Pad Friction Couple

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2016-12-01

    Full Text Available The paper concerns evaluation of the coefficient of friction characterising a friction couple comprising a commercial brake disc cast of flake graphite grey iron and a typical brake pad for passenger motor car. For the applied interaction conditions, the brake pressure of 0.53 MPa and the linear velocity measured on the pad-disc trace axis equalling 15 km/h, evolution of the friction coefficient μ values were observed. It turned out that after a period of 50 minutes, temperature reached the value 270°C and got stabilised. After this time interval, the friction coefficient value also got stabilised on the level of μ = 0.38. In case of a block in its original state, stabilisation of the friction coefficient value occurred after a stage in the course of which a continuous growth of its value was observed up to the level μ = 0.41 and then a decrease to the value μ = 0.38. It can be assumed that occurrence of this stage was an effect of an initial running-in of the friction couple. In consecutive abrasion tests on the same friction couple, the friction coefficient value stabilisation occurred after the stage of a steady increase of its value. It can be stated that the stage corresponded to a secondary running-in of the friction couple. The observed stages lasted for similar periods of time and ended with reaching the stabile level of temperature of the disc-pad contact surface.

  15. Linearization of friction effects in vibration of two rotating blades

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2013-06-01

    Full Text Available This paper is aimed at modelling of friction effects in blade shrouding which are realized by means of friction elements placed between blades. In order to develop a methodology of modelling, two blades with one friction element in between are considered only. Flexible blades fixed to a rotating disc are discretized by FEM using 1D Rayleigh beam elements derived in rotating space as well as the friction element modelled as a rigid body. The blades and the friction element are connected through two concurrent friction planes, where the friction forces arise on the basis of centrifugal force acting on the friction element. The linearization of friction is performed using the harmonic balance method to determine equivalent damping coefficients in dependence on the amplitudes of relative slip motion between the blades and the friction element. The methodology is applied to a model of two real blades and will be extended for the whole bladed disc with shrouding.

  16. Comparisons of friction models in bulk metal forming

    DEFF Research Database (Denmark)

    Tan, Xincai

    2002-01-01

    A friction model is one of the key input boundary conditions in finite element simulations. It is said that the friction model plays an important role in controlling the accuracy of necessary output results predicted. Among the various friction models, which one is of higher accuracy is still...... unknown and controversial. In this paper, finite element analyses applying five different friction models to experiments of upsetting of AA 6082 lubricated with four lubricants are presented. Frictional parameter values are determined by fitness of data of friction area ratio from finite element analysis...... to experimental results. It is found that calibration curves of the friction area ratio for all of the five chosen friction models used in the finite element simulation do fit the experimental results. Usually, calbration curves of the friction area ratio are more sensitive to friction at the tool...

  17. The Frictional effects in serial harmonic circuit

    Directory of Open Access Journals (Sweden)

    C Bal

    2016-09-01

    Full Text Available In the paper we make the friction effect in the serial sonic system were the sonic flow are influence by the friction. This effect makes the growing of the temperature in the sonic resistance, same the caloric effect of the alternative current. This paper is the base of departure for the future research about the caloric effects of the sonicity theory in the practice.

  18. Asset Bubbles, Endogenous Growth, and Financial Frictions

    OpenAIRE

    Hirano, Tomohiro; Yanagawa, Noriyuki

    2016-01-01

    This paper analyzes the effects of bubbles in an infinitely-lived agent model of endogenous growth with financial frictions and heterogeneous agents. We provide a complete characterization on the relationship between financial frictions and the existence of bubbles. Our model predicts that if the degree of pledgeability is sufficiently high or sufficiently low, bubbles can not exist. They can only arise at an intermediate degree. This suggests that improving the financial market condition mig...

  19. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  20. Transmission problem for waves with frictional damping

    Directory of Open Access Journals (Sweden)

    Waldemar D. Bastos

    2007-04-01

    Full Text Available In this paper we consider the transmission problem, in one space dimension, for linear dissipative waves with frictional damping. We study the wave propagation in a medium with a component with attrition and another simply elastic. We show that for this type of material, the dissipation produced by the frictional part is strong enough to produce exponential decay of the solution, no matter how small is its size.

  1. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  2. A study on kinetic friction: the Timoshenko oscillator

    OpenAIRE

    Henaff, Robin; Doudic, Gabriel Le; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2017-01-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction \\mu_k between the plate and the supports. Our...

  3. FRICTIONAL AND TACTILE COMPRESSION OF SOME POLYMERIC FABRICS

    Directory of Open Access Journals (Sweden)

    D ALIOUCHE

    2000-12-01

    The frictional behavior of some polymeric fabrics was analyzed using a structural model and experimental method which provided reproducible results of frictional values. The friction parameters used in this study were the average coefficient of friction µ, and the friction indices a and n. The structural model applied is based on the estimation of the true area of contact from the generalized pressure-area curve of the asperities when tests were performed on samples of various types of structures.

  4. Coesão e atrito interno associados aos teores de carbono orgânico e de água de um solo franco arenoso Cohesion and angle of internal friction associated with soil organic carbon and water content in Hapludult

    Directory of Open Access Journals (Sweden)

    João Alfredo Braida

    2007-12-01

    Full Text Available Alterações na densidade, na estrutura e no teor de carbono orgânico do solo, produzidas pelo sistema de manejo, afetam os parâmetros da resistência ao cisalhamento. O presente estudo foi proposto com o objetivo de avaliar os efeitos do acúmulo de carbono orgânico (CO sobre a resistência ao cisalhamento de um Argissolo Vermelho Amarelo arênico. Amostras da camada superficial (0-0,02m do solo, com teor de CO variando entre 6,5 e 18,8g kg-1 e umidade equilibrada nas tensões de 6, 100 e 500kPa, foram submetidas ao ensaio de cisalhamento direto, empregando-se tensões normais variando de 13,6 a 443,0kPa, determinando-se os valores de coesão e do ângulo de atrito interno. Além dos teores de CO, determinaram-se também a umidade gravimétrica, o grau de saturação de água e a densidade do solo das amostras. O ângulo de atrito interno médio do solo foi de 32,5, 34,9 e 35,4 graus, enquanto que a coesão foi de 0,00, 1,06 e 7,95kPa, respectivamente, para amostras com umidade equilibrada nas tensões de 6, 100 e 500kPa. Nas amostras mais secas (500kPa, o ângulo de atrito interno decresceu com o aumento do conteúdo de CO do solo. A coesão determinada pelo ensaio de cisalhamento direto mostrou-se independente do teor de carbono orgânico e decresceu com o aumento do teor de água do solo.Changes in soil structure, bulk density and organic carbon content, caused by tillage systems, affect shear strength parameters. The present study was proposed with the objective of evaluating the effects of increased in soil organic carbon (SOC content on the shear strength of an Hapludult (Argissolo Vermelho Amarelo arênico, Brazil System. Soil surface samples (0-0.02 m, with SOC content varying from 6.5 to 18.8g kg-1 and soil moisture equilibrated at tensions of 6, 100 and 500kPa, were submitted to the direct shear tests with normal tensions varying from 13.6 to 443.0kPa. Cohesion and angle of internal friction values were determined. Besides SOC

  5. Friction testing of a new ligature

    Science.gov (United States)

    Mantel, Alison R.

    Objective. To determine if American Orthodontics' (AO) new, experimental ligature demonstrates less friction in vitro when compared to four other ligatures on the market. Methods. Four brackets were mounted on a custom metal fixture allowing an 0.018-in stainless steel wire attached to an opposite fixture with one bracket to be passively centered in the bracket slot. The wire was ligated to the bracket using one of five types of ligatures including the low friction test ligatures (AO), conventional ligatures (AO), Sili-Ties(TM) Silicone Infused Ties (GAC), SynergyRTM Low-Friction Ligatures (RMO), and SuperSlick ligatures (TP Orthodontics). Resistance to sliding was measured over a 7 mm sliding distance using a universal testing machine (Instron) with a 50 Newton load cell and a crosshead speed of 5 mm/min. The initial resistance to sliding (static) was determined by the peak force needed to initiate movement and the kinetic resistance to sliding was taken as the force at 5 mm of wire/bracket sliding. Fifteen unique tests were run for each ligature group in both dry and wet (saliva soaked for 24 hours with one drop prior to testing) conditions. Results. In the dry state, the SuperSlick ligature demonstrated more static friction than all of the other ligatures, while SuperSlick and Sili-Ties demonstrated more kinetic friction than the AO conventional, AO experimental and Synergy ligatures. In the wet condition, SuperSlick and the AO experimental ligature demonstrated the least static friction, followed by the AO conventional and Sili-Ties. The most static friction was observed with the Synergy ligatures. In the wet condition, the SuperSlick, AO experimental and AO conventional exhibited less kinetic friction than the Sili-Ties and Synergy ligatures. Conclusions. AO's experimental ligature exhibits less friction in the wet state than conventional ligatures, Sili-Ties and Synergy and is comparable to the SuperSlick ligature. These preliminary results suggest that the

  6. METHODS TO MEASURE, PREDICT AND RELATE FRICTION, WEAR AND FUEL ECONOMY

    Energy Technology Data Exchange (ETDEWEB)

    Gravante, Steve [Ricardo, Inc.; Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States); Demas, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Erck, Robert [Argonne National Lab. (ANL), Argonne, IL (United States)

    2018-03-19

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAK and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110 °C. Ricardo's objective is to use this data along with advanced CAE methods to develop empirical characterizations of friction and wear mechanisms in internal combustion engines such that the impact of such mechanisms of engine fuel consumption and/or vehicle fuel economy can be estimated. The value of such predictive schemes is that if one knows how a particular friction reduction technology changes oil viscosity and/or the friction coefficient then the fuel consumption or fuel economy impacts can be estimated without the excessive cost of motored or fired engine tests by utilizing cost effective lab scale tests and in combination with advanced analytical methods. One accomplishment made during this work was the development and validation of a novel technique for quantifying wear using data from WLI through the use of

  7. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  8. Superplastic Forming of Aluminum Multisheet Structures Fabricated Using Friction Stir Welding and Refill Friction Stir Spot Welding

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Herling, Darrell R.; Arbegast, William J.; Allen, Casey D.; Degen, Cassandra M.

    2006-12-20

    Superplastically-formed structural panels are growing in their applications in aerospace, aircraft, automotive, and other industries. Generally, monolithic sheets are employed, limiting the size and complexity of the final part. However, more complex and larger final geometries are possible if individual sheet materials can be joined together through an appropriate joining technology, then SPF formed to final shape. The primary challenge in this type of SPF fabrication has been making a joint between the sheets that will survive the SPF forming event and display the correct amount of elongation in the joint relative to the base materials being formed. Friction Stir Welding is an ideal joining technology for SPF applications because the forming response of the weld metal at SPF conditions is adjustable by selecting different weld process parameters during initial joining. This allows the SPF deformation in the weld metal to be “tuned” to the deformation of the parent sheet to prevent early failure from occurring in either the weld metal or the parent sheet due to mismatched SPF flow stresses. Industrial application of the concept of matching flow stresses is currently being pursued on a program at the Pacific Northwest National Laboratory on room temperature formed friction stir welded tailor welded blanks for heavy truck applications. Flow stress matching and process parameter “tuning” is also important in the fabrication of SPF multisheet structural panels. These panels are fabricated by joining three sheets together with alternating welds top and bottom, so that each weld penetrates only two of the three sheets. This sheet pack is then sealed with a weld seam around the outside and hot gas is introduced between the sheets through a welded tube. Under SPF conditions the sheet pack inflates to produce an internally supported structure. In this paper we presents results on an investigation into using FSW and Refill Friction Stir Spot Welding to fabricated

  9. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    OpenAIRE

    Senai YALCINKAYA

    2017-01-01

    Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the s...

  10. A computational chemistry study on friction of h-MoS₂. Part II. Friction anisotropy.

    Science.gov (United States)

    Onodera, Tasuku; Morita, Yusuke; Nagumo, Ryo; Miura, Ryuji; Suzuki, Ai; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Dassenoy, Fabrice; Minfray, Clotilde; Joly-Pottuz, Lucile; Kubo, Momoji; Martin, Jean-Michel; Miyamoto, Akira

    2010-12-09

    In this work, the friction anisotropy of hexagonal MoS(2) (a well-known lamellar compound) was theoretically investigated. A molecular dynamics method was adopted to study the dynamical friction of two-layered MoS(2) sheets at atomistic level. Rotational disorder was depicted by rotating one layer and was changed from 0° to 60°, in 5° intervals. The superimposed structures with misfit angle of 0° and 60° are commensurate, and others are incommensurate. Friction dynamics was simulated by applying an external pressure and a sliding speed to the model. During friction simulation, the incommensurate structures showed extremely low friction due to cancellation of the atomic force in the sliding direction, leading to smooth motion. On the other hand, in commensurate situations, all the atoms in the sliding part were overcoming the atoms in counterpart at the same time while the atomic forces were acted in the same direction, leading to 100 times larger friction than incommensurate situation. Thus, lubrication by MoS(2) strongly depended on its interlayer contacts in the atomic scale. According to part I of this paper [Onodera, T., et al. J. Phys. Chem. B 2009, 113, 16526-16536], interlayer sliding was source of friction reduction by MoS(2) and was originally derived by its material property (interlayer Coulombic interaction). In addition to this interlayer sliding, the rotational disorder was also important to achieve low friction state.

  11. Measurement of friction forces between stainless steel wires and "reduced-friction" self-ligating brackets.

    Science.gov (United States)

    Reznikov, Natalie; Har-Zion, Gilad; Barkana, Idit; Abed, Yossi; Redlich, Meir

    2010-09-01

    In this study, we assessed the friction forces between various self-ligating brackets and stainless steel orthodontic wires, subjected to different shear and bending forces in the buccolingual plane. Three kinds of self-ligating brackets and 2 kinds of ligated controls were tested in a newly developed in-vitro system. Friction was tested with stainless steel orthodontic wire in 3 deflection states. The Bonferroni multiple comparisons test was applied to evaluate intergroup differences (P friction resistance in response to wire deflection. In nonzero buccolingual deflections, passive self-ligating brackets developed higher friction forces, comparable with those in the conventional elastic ligation control group. The control brackets with reduced friction ligature had considerably lower friction forces than any other group. The active self-ligating bracket ranked between the self-ligating brackets and the reduced friction ligature group. A tribologic survey showed substantial surface alterations among wire samples coupled with passive self-ligating brackets. In contrast to manufacturers' claims, this study illustrates that, in certain clinical situations, a firm passive bracket clip can have a negative influence on the wire-bracket frictional characteristics. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Elsworth, Derek [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Department of Geosciences, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Wang, Chaoyi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Ishibashi, Takuya [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, Koriyama Japan; Fitts, Jeffrey P. [Department of Civil and Environmental Engineering, Princeton University, Princeton New Jersey USA

    2017-01-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  13. Gimballed Shoulders for Friction Stir Welding

    Science.gov (United States)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  14. Status of Stellite 6 friction testing

    International Nuclear Information System (INIS)

    Watkins, J.C.; DeWall, K.G.

    1998-01-01

    For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, have been investigating the performance of motor-operated valves subjected to design basis flow and pressure loads. Part of this research addresses the friction that occurs at the interface between the valve disc and the valve body seats during operation of a gate valve. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. Analytical methods exist for predicting the thrust needed to operate these valves at specific pressure conditions. To produce accurate valve thrust predictions, the analyst must have a reasonably accurate, though conservative, estimate of the coefficient of friction at the disc-to-seat interface. One of the questions that remains to be answered is whether, and to what extent, aging of the disc and seat surfaces effects the disc-to-seat coefficient of friction. Specifically, does the environment in a nuclear plants piping system cause the accumulation of an oxide film on these surfaces that increases the coefficient of friction; and if so, how great is the increase? This paper presents results of specimen tests addressing this issue, with emphasis on the following: (1) the characteristics and thickness of the oxide film that develops on Stellite 6 as it ages; (2) the change in the friction coefficient of Stellite 6 as it ages, including the question of whether the friction coefficient eventually reaches a plateau; and (3) the effect in-service cycling has on the characteristics and thickness of the oxide film and on the friction coefficient

  15. Thermal effects in static friction: thermolubricity.

    Science.gov (United States)

    Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M

    2008-10-01

    We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.

  16. New design and the manufacturing techniques of the main friction pair of frictional dampers

    Directory of Open Access Journals (Sweden)

    Aleksander GOLUBENKO

    2007-01-01

    Full Text Available The design of the main friction pair of the frictional oscillations damper of passenger car axle box stage suspension and its manufacturing techniques are described. The difference of the design of the main friction pair consists in replacement of a conicalcontact surface of the shpinton sleeve by a pyramidal surface as well as a cylindrical surface of the frictional slide block by a flat surface of the rectangular form. Technological ways of increase of strength and wear resistance were developed that allowed quantitatively to estimate a reserve of increase of strength and thermal wear resistance by methods of plastic deforming. With the purpose of increase of wear resistance and resource saving the new technology of producing the shpinton sleeve blank is offered by a method of cold die forging, and a frictional slide block – by hot dieforging.

  17. Energy Criterion of Oil Film Failure during Friction

    Directory of Open Access Journals (Sweden)

    S.V. Fedorov

    2014-12-01

    Full Text Available The concepts developed by the thermodynamic theory of solid body strength and fracture are used to examine the conditions of lubricant film failure. We obtain a quantitative criterion that defines the lubricant film "defectness" - the critical value (constant for a given mineral oil of the internal (thermal energy density in the volume of the lubricant film. We propose analytic relations for evaluating scuffing in friction with lubrication and verify them experimentally on a full-scale stand for testing actual sliding bearings. We show the constancy of the critical value of the internal (thermal energy density in the volume of the oil film at the moment of scuffing for an inactive mineral oil.

  18. Understanding and Observing Subglacial Friction Using Seismology

    Science.gov (United States)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  19. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Gillspie T.D. 1965.Fundamentals of Vehicle Dyanamics.Society of Automotive Engineers. 294 p. Han S., Guo, Rui, Cai Y., Tian X., 2014.Disc Break equal analysis of Car. International Conference on Computer,. Communications and Information Technology, China North China institute of Aerospace Engineering, China.

  20. Similarity solutions for granular avalanches of finite mass with variable bed friction

    Science.gov (United States)

    Nohguchi, Y.; Hutter, K.; Savage, S. B.

    1989-12-01

    This paper continues a series of studies on the plane flow of a pile of cohesionless granular material down a rough inclined plane. Internal and basal friction laws are assumed to obey the Mohr-Coulomb yield criterion but in contrast to previous investigations the angle of friction at the bottom of the pile is considered to depend on the position or on the velocity or on both. Similarity, i.e. shape preserving solutions are constructed. The depth of the pile and the profile of the total minus the centre of mass velocity are determined analytically, but the total length and the position of the centre of mass are calculated numerically. If the basal friction angle is constant, the centre of mass moves with constant acceleration and the length of the pile extends monotonically. These motions change, when the angle of friction varies along the pile — the length of the pile may extend, contract or remain stationary and the centre of mass motion may decelerate or even reach steady state. Eight special cases are exhibited which demonstrate the influence of the friction law on the speed and spread of the pile.

  1. Velocity Dependence of Friction of Confined Hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence of the f......We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence...... of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (∼3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  2. Numerical investigations in mixed friction systems

    Directory of Open Access Journals (Sweden)

    A Albers

    2016-09-01

    Full Text Available A numerical approach is here selected to investigate mixed friction phenomena where testing rigs cannot be used or need complex adaptations to deliver reliable measurements. The following work focuses on the numerical investigations of mixed friction systems combining fluid-solid and solid-solid interactions at the micro scale. Goal is to improve the accuracy of future macro models by applying them more precise boundary conditions derived from micro models. A three dimensional model is built in a Finite Elements (FE software composed of one fluid lubricating two sliding rough surfaces. Both surfaces are generated according to a statistical method making use of measured technical surfaces. To model the interactions between the fluid and the solid structure, the Arbitrary-Lagrangian-Eulerian remeshing process is used. A model is built, based on an axial floating bearing on which the adhesion effects are the most present. Global friction coefficient between both lubricated solids is established using the FE solver and solid-solid friction can be separated from the fluid-solid friction with further post-processing operations.

  3. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  4. Are there reliable constitutive laws for dynamic friction?

    Science.gov (United States)

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  5. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  6. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Lee, Mi Jung; Park, Bae Ho; Lee, Changgu; Yoon, Duhee; Cheong, Hyeonsik; Lee, Ki Ho; Son, Young-Woo; Park, Jeong Young; Salmeron, Miquel

    2011-07-29

    Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.

  7. Frictional Ignition Testing of Composite Materials

    Science.gov (United States)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  8. Ratchet device with broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is in ac......An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which...... is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one simple dynamic equation. This kind of motion is a result of the interplay of friction and inertia....

  9. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2005-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used

  10. Frictional strength of wet and dry montmorillonite

    Science.gov (United States)

    Morrow, C. A.; Moore, D. E.; Lockner, D. A.

    2017-05-01

    Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a - b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.

  11. Sensitivity to friction for primary explosives.

    Science.gov (United States)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-04-30

    The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Friction welded closures of waste canisters

    International Nuclear Information System (INIS)

    Klein, R.F.

    1987-01-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it into a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive-seal weld, the properties and thickness of which must be at least equal to those of the canister material. All studies and tests performed in the work discussed in this paper have the inertia friction welding concept to be highly feasible in this application. This paper describes the decision to investigate the inertia friction welding process, the inertia friction welding process itself, and a proposed equipment design concept. This system would provide a positive, reliable, inspectable, and full-thickness seal weld while utilizing easily maintainable equipment. This high-quality weld can be achieved even in highly contaminated hot cell

  13. Friction Stir Welding of Steel Alloys

    Science.gov (United States)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  14. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2004-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)

  15. Hyperstaticity and loops in frictional granular packings

    Science.gov (United States)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  16. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  17. Interfacial friction damping properties in magnetorheological elastomers

    International Nuclear Information System (INIS)

    Fan, Yanceng; Gong, Xinglong; Xuan, Shouhu; Zhang, Wei; Zheng, Jian; Jiang, Wanquan

    2011-01-01

    In this study, the interfacial friction damping properties of magnetorheological elastomers (MREs) were investigated experimentally. Two kinds of carbonyl iron particles, with sizes of 1.1 µm and 9.0 µm, were used to fabricate four MRE samples, whose particle weight fractions were 10%, 30%, 60% and 80%, respectively. Their microstructures were observed using an environmental scanning electron microscope (SEM). The dynamic performances of these samples, including shear storage modulus and loss factor were measured with a modified dynamic mechanical analyzer (DMA). The experimental results indicate that MRE samples fabricated with 1.1 µm carbonyl iron particles have obvious particle agglomeration, which results in the fluctuation of loss factor compared with other MRE samples fabricated with large particle sizes. The analysis implies that the interfacial friction damping mainly comes from the frictional sliding at the interfaces between the free rubber and the particles

  18. Friction enhancement in concertina locomotion of snakes

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  19. Frictional lubricity enhanced by quantum mechanics.

    Science.gov (United States)

    Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio

    2018-03-19

    The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.

  20. Passive Shock Isolation Utilising Dry Friction

    Directory of Open Access Journals (Sweden)

    Mohd Ikmal Ismail

    2017-01-01

    Full Text Available A novel shock isolation strategy for base excited system is presented by introducing a two-degree-of-freedom model with passive friction, where the friction is applied to an attached mass instead of directly to the primary isolated mass. The model is evaluated against the benchmark case of single-degree-of-freedom system with friction applied directly to the primary isolated mass. The performances of the models are compared in terms of the maximum displacement response and the acceleration during the application of the shock input for the case when the shock input duration is approximately equal to the natural period of the system (amplification region. From the results, the two-degree-of-freedom model can produce both maximum displacement reduction and smoother acceleration at the point of motion transition. An experimental rig was built to validate the theoretical results against the experimental results; it is found that the experimental results closely match the theoretical predictions.

  1. Static frictional resistance with the slide low-friction elastomeric ligature system.

    Science.gov (United States)

    Jones, Steven P; Ben Bihi, Saida

    2009-11-01

    This ex-vivo study compared the static frictional resistance of a low-friction ligation system against a conventional elastomeric module, and studied the effect of storage in a simulated oral environment on the static frictional resistance of both ligation systems. Eighty stainless steel brackets were tested by sliding along straight lengths of 0.018 inch round and 0.019 x 0.025 inch rectangular stainless steel wires ligated with either conventional elastomerics or the Slide system (Leone, Florence, Italy). During the tests the brackets and wires were lubricated with artificial saliva. A specially constructed jig assembly was used to hold the bracket and archwire securely. The jig was clamped in an Instron universal load testing machine. Crosshead speed was controlled via a microcomputer connected to the Instron machine. The static frictional forces at 0 degree bracket/wire angulation were measured for both systems, fresh from the pack and after storage in artificial saliva at 37 degrees C for 24 hours. The results of this investigation demonstrated that the Slide ligatures produced significantly lower static frictional resistance than conventional elastomeric modules in the fresh condition and after 24 hours of storage in a simulated oral environment (p static frictional resistance of conventional elastomeric modules and the Slide system (p = 0.525). The claim by the manufacturer that the Slide system produces lower frictional resistance than conventional elastomeric modules is upheld.

  2. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    Science.gov (United States)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  3. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool......-in piezoelectric torque transducer. This technique results in a very sensitive measurement of friction, which furthermore enables recording of lubricant film breakdown as function of drawing distance. The proposed test is validated in an experimental investigation of the influence of lubricant viscosity...

  4. Friction measurements of steel on refractory bricks

    International Nuclear Information System (INIS)

    Eiselstein, L.E.

    1981-08-01

    During startup or shutdown of a pool-type LMFBR, substantial shear stresses may arise between the base of the steel reactor vessel and the refractory brick support base. The magnitude of these stresses, which result from differences in thermal expansion, can be estimated if the friction coefficient is known. This report describes experiments to determine friction coefficients between 2 1/4 Cr-1Mo steel and several refractory materials and to examine effects to contact pressure, temperature, sliding velocity, lubricants, and surface condition

  5. Friction coefficient determination by electrical resistance measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  6. Change in Frictional Behavior during Olivine Serpentinization

    Science.gov (United States)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but

  7. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    This paper estimates matching functions to measure search frictions in the Japanese labor market and presents determinants of search duration to explain the effect of unemployment benefits on a job seeker’s behavior. We employ administrative micro data that track the job search process of individ......This paper estimates matching functions to measure search frictions in the Japanese labor market and presents determinants of search duration to explain the effect of unemployment benefits on a job seeker’s behavior. We employ administrative micro data that track the job search process...

  8. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task...... has, however, been extended to include a number of new developed process tests: 3. forward rod extrusion test, 4. special ring test at low normal pressure, 5. spike test (especially developed for warm and hot forging). Validation of the measured friction values in cold forming from sub-task 3.1 has...

  9. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    Science.gov (United States)

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  10. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    International Nuclear Information System (INIS)

    Haus, E.; Bambusi, D.

    2015-01-01

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group

  11. Symmetric-Galerkin BEM simulation of fracture with frictional contact

    CSIR Research Space (South Africa)

    Phan, AV

    2003-06-14

    Full Text Available A symmetric-Galerkin boundary element framework for fracture analysis with frictional contact (crack friction) on the crack surfaces is presented. The algorithm employs a continuous interpolation on the crack surface (utilizing quadratic boundary...

  12. Kwik Bond Polymers(R) high friction surface treatment.

    Science.gov (United States)

    2015-12-01

    High friction surface treatment (HFST) was applied to two on-ramps in the Seattle urban area to improve : friction resistance. The ramps were high accident locations. The system applied was polyester resin binder and : calcined bauxite aggregate. Tes...

  13. Friction management on Kansas Department of Transportation highways.

    Science.gov (United States)

    2017-04-01

    The Federal Highway Administration (FHWA) estimates that about 70% of wet pavement crashes can be : prevented or minimized by improving pavement friction. High Friction Surface Treatment (HFST), a speciallydesigned : thin surface application of hard ...

  14. Micromechanisms of friction and wear introduction to relativistic tribology

    CERN Document Server

    Lyubimov, Dmitrij; Pinchuk, Leonid

    2013-01-01

    The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction – triboplasma – was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.

  15. Systematic investigation of the fatigue performance of a friction stir welded low alloy steel

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Molter, Lars; Polezhayeva, Helena

    2015-01-01

    Highlights: • The fatigue behaviour of a friction stir welded low alloy steel has been assessed. • The welds’ fatigue lives outperform the International Institute of Welding’s recommendations for fusion welds. • The slow weld exhibits the best fatigue performance of the investigated welds. • Fracture surface analysis shows that minor embedded flaws do not offer crack initiation sites. • Process-related surface breaking flaws have a significant effect on the fatigue life. - Abstract: A comprehensive fatigue performance assessment of friction stir welded DH36 steel has been undertaken to address the relevant knowledge gap for this process on low alloy steel. A detailed set of experimental procedures specific to friction stir welding has been put forward, and the consequent study extensively examined the weld microstructure and hardness in support of the tensile and fatigue testing. The effect of varying welding parameters was also investigated. Microstructural observations have been correlated to the weldments’ fatigue behaviour. The typical fatigue performance of friction stir welded steel plates has been established, exhibiting fatigue lives well above the weld detail class of the International Institute of Welding even for tests at 90% of yield strength, irrespective of minor instances of surface breaking flaws which have been identified. An understanding of the manner in which these flaws impact on the fatigue performance has been established, concluding that surface breaking irregularities such as these produced by the tool shoulder’s features on the weld top surface can be the dominant factor for crack initiation under fatigue loading

  16. Friction Compensation in the Upsetting of Cylindrical Test Specimens

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf

    2016-01-01

    This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...

  17. FRICTION WELDING OF DISSIMILAR AISI 304 AND AISI 8640 STEELS

    OpenAIRE

    BATI, Serkan; KILIÇ, Musa; KIRIK, İhsan

    2016-01-01

    This study investigates the joinability of AISI 8640 heat treatable steel and AISI 304 austenitic stainless steel combined with friction welding. These steels have completely different properties and widely used in industrial applications. Welding is applied on steels with the parameters of 1800 rev/min turning speed, 50 MPa friction pressure and 2, 4, 6, 8 and 10 sec friction time by using continuously driven friction welding machine. After the welding process, tensile and hardness testing a...

  18. Simulations of the Static Friction Due to Adsorbed Molecules

    OpenAIRE

    He, Gang; Robbins, Mark O.

    2001-01-01

    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potenti...

  19. Vibration damping in bolted friction beam-columns

    OpenAIRE

    Bournine, H.; Wagg, D.J.; Neild, S.A.

    2011-01-01

    In this paper we examine the use of dynamic friction within a bolted structure to improve damping properties of the structure. The structure considered for this paper consists of two steel beam-columns bolted together allowing dynamic friction to occur at the interface. This paper presents an analysis of the behaviour of the structure and the effect of friction on its dynamics. It also presents an analysis of the energy dissipation in the structure by means of friction and the optimization of...

  20. Modelling of contact and friction in deep drawing processes

    NARCIS (Netherlands)

    Westeneng, J.D.

    2001-01-01

    In Sheet Metal Forming (SMF) processes, such as deep drawing, friction plays an important role. Together with the deformation of the sheet, the friction determines the required punch force and the blankholder force. Consequently, the friction in uences the energy which is needed to deform a sheet

  1. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai

    2006-01-01

    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative

  2. A Novel Time-Varying Friction Compensation Method for Servomechanism

    Directory of Open Access Journals (Sweden)

    Bin Feng

    2015-01-01

    Full Text Available Friction is an inevitable nonlinear phenomenon existing in servomechanisms. Friction errors often affect their motion and contour accuracies during the reverse motion. To reduce friction errors, a novel time-varying friction compensation method is proposed to solve the problem that the traditional friction compensation methods hardly deal with. This problem leads to an unsatisfactory friction compensation performance and the motion and contour accuracies cannot be maintained effectively. In this method, a trapezoidal compensation pulse is adopted to compensate for the friction errors. A generalized regression neural network algorithm is used to generate the optimal pulse amplitude function. The optimal pulse duration function and the pulse amplitude function can be established by the pulse characteristic parameter learning and then the optimal friction compensation pulse can be generated. The feasibility of friction compensation method was verified on a high-precision X-Y worktable. The experimental results indicated that the motion and contour accuracies were improved greatly with reduction of the friction errors, in different working conditions. Moreover, the overall friction compensation performance indicators were decreased by more than 54% and this friction compensation method can be implemented easily on most of servomechanisms in industry.

  3. Intrinsic structure and friction properties of graphene and graphene ...

    Indian Academy of Sciences (India)

    Furthermore, friction properties of the graphene and GO nanosheets were studied by frictional force microscopy (FFM). ... changes the surface condition, which also caused the frictional property variations of the samples. Keywords. Graphene .... tance of 0·80nm, which was identical with those reported in literature (Wang et ...

  4. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  5. Friction dependence of shallow granular flows from discrete particle simulations

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Luding, Stefan; Bokhove, Onno

    2011-01-01

    A shallow-layer model for granular flows is completed with a closure relation for the macroscopic bed friction or basal roughness obtained from micro-scale discrete particle simulations of steady flows. We systematically vary the bed friction by changing the contact friction coefficient between

  6. Investigation of Friction-induced Damage to the Pig Cornea

    NARCIS (Netherlands)

    da Cruz Barros, Raquel; Van Kooten, Theo G.; Veeregowda, Deepak Halenahally

    2015-01-01

    Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve

  7. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  8. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  9. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  10. Surface Imaging Skin Friction Instrument and Method

    Science.gov (United States)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  11. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    WINTEC

    Bull. Mater. Sci., Vol. 31, No. 1, February 2008, pp. 19–22. © Indian Academy of Sciences. 19. Asbestos free friction composition for brake linings. ARNAB GANGULY and RAJI GEORGE*. M.S. Ramaiah Institute of Technology, ... linings (Gopal et al 1994, 1996; Dharani et al 1995). Alternate reinforcing materials are being ...

  12. Cohesive frictional powders: Contact models for tension.

    NARCIS (Netherlands)

    Luding, Stefan

    2008-01-01

    The contacts between cohesive, frictional particles with sizes in the range 0.1–10 μm are the subject of this study. Discrete element model (DEM) simulations rely on realistic contact force models—however, too much details make both implementation and interpretation prohibitively difficult. A rather

  13. Design of Piston Ring Friction Tester Apparatus

    DEFF Research Database (Denmark)

    Klit, Peder

    2006-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing the frictio......One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing...... the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount...... available is reflected in the friction absorbed in the bearing. The following properties will be measured: Oil fillm thickness - along liner (axial variation), oil film thickness - along piston ring (circumferential variation), piston tilt, temperature of piston rings and liner, pressure at piston lands...

  14. Sensitivity to friction for primary explosives

    International Nuclear Information System (INIS)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-01-01

    Highlights: ► The friction sensitivity of 14 samples of primary explosives was determined. ► The same apparatus (small scale BAM) and the same method (probit analysis) was used. ► The crystal shapes and sizes were documented with microscopy. ► Almost all samples are less sensitive than lead azide, which is commercially used. ► The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  15. Modelling and Testing of Friction in Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2007-01-01

    Knowledge about friction is still limited in forging. The theoretical models applied presently for process analysis are not satisfactory compared to the advanced and detailed studies possible to carry out by plastic FEM analyses and more refined models have to be based on experimental testing....... The paper presents an overview of tests reported in literature and gives examples on the authors own test results....

  16. Friction coefficients of PTFE bearing liner

    Science.gov (United States)

    Daniels, C. M.

    1979-01-01

    Data discusses frictional characteristics of PTFE (polytetrafluoroethylene) under temperature extremes and in vacuum environment. Tests were also run on reduced scale hardware to determine effects of vacuum. Data is used as reference by designers of aircraft-control system rod-end bearings and for bearings used in polar regions.

  17. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  18. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    WINTEC

    particles are added to increase flexibility and increase braking power. Cashew dust at levels of up to 20 volume percent of the resin content have been added to minimize cracking of the composite. Cashew nut resin is known to increase friction properties of the base thermoset resin which otherwise has a hard smooth finish ...

  19. Sensitivity to friction for primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert, E-mail: robert.matyas@upce.cz [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic); Selesovsky, Jakub; Musil, Tomas [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The friction sensitivity of 14 samples of primary explosives was determined. Black-Right-Pointing-Pointer The same apparatus (small scale BAM) and the same method (probit analysis) was used. Black-Right-Pointing-Pointer The crystal shapes and sizes were documented with microscopy. Black-Right-Pointing-Pointer Almost all samples are less sensitive than lead azide, which is commercially used. Black-Right-Pointing-Pointer The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  20. Remarks on the brachistochrone with viscous friction

    Science.gov (United States)

    Jones, S. E.; Antanackovic, T. M.; Dehn, M.

    1988-08-01

    The classical brachistochrone with viscous friction is discussed within the context of some recent observations. It is pointed out that in certain instances the end-point conditions cannot be used directly to find the constants of integration. Additional formulae are provided which account for these exceptional cases.

  1. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  2. [Penis friction edema: not a venereal disease

    NARCIS (Netherlands)

    Erceg, A.; Verlind, J.; Berretty, P.J.

    2003-01-01

    A 35-year-old man presented with a local swelling of the penis, which increased until the entire penis was thick and swollen. After infectious and obstructive causes had been eliminated, a diagnosis of 'penis friction oedema' was made. The swelling disappeared during several weeks of abstinence from

  3. Clutches using engineering ceramics as friction material

    Energy Technology Data Exchange (ETDEWEB)

    Albers, A.; Arslan, A.; Mitariu, M. [Universitaet Karlsruhe (T.H.), IPEK - Institut fuer Produktentwicklung, Kaiserstr. 10, 76131 Karlsruhe (Germany)

    2005-03-01

    The experimental and constructive results illustrate that engineering ceramic materials have a high potential in the field of dry running friction systems. According to first estimations, it is possible to build the vehicle clutch 53 % smaller or to transmit up to 180 % higher torque with the same size by an appropriate selection of the system friction pairing and an adequate ceramic design [1, 2]. The friction coefficient characteristic (decreasing friction coefficient above sliding speed) is unfavourable with regard to comfort (self-induced grab oscillations [3]) of the vehicle clutch. Furthermore, it is important to select the test procedure of the experimental analyses to be as close to the system as possible in order to obtain exact information concerning the target system. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Die experimentellen und konstruktiven Ergebnisse haben gezeigt, dass ingenieurkeramische Werkstoffe ein hohes Potenzial im Bereich der trockenlaufenden Friktionssysteme haben. Durch geeignete Wahl der Systemreibpaarung und eine keramikgerechte Konstruktion ist es nach ersten Abschaetzungen moeglich, die Kfz-Kupplung um 53 % kleiner zu bauen bzw. bei gleicher Groesse bis zu 180 % hoehere Drehmomente zu uebertragen [1, 2]. Die Reibungszahlcharakteristik (fallende Reibungszahl ueber Gleitgeschwindigkeit) ist im Hinblick auf Komfort (selbsterregte Rupfschwingungen [3]) fuer die Kraftfahrzeugkupplung unguenstig. Des Weiteren ist es wichtig, die Versuchsfuehrung der experimentellen Untersuchungen so systemnah wie moeglich zu waehlen, um genauere Aussagen auf das Zielsystem zu erhalten. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. Tribology: Friction, lubrication, and wear technology

    Science.gov (United States)

    Blau, Peter J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: introduction and definitions of terms; friction concepts; lubrication technology concepts; wear technology concepts; and tribological transitions. This document is designed for educators who seek to teach these concepts to their students.

  5. Frictional Dermatosis in a Courier Driver

    OpenAIRE

    Wollina, Uwe; Tchernev, Georgi; Lotti, Torello

    2017-01-01

    Frictional hypermelanosis is an uncommon finding in Caucasians. We report the unusual case of 56-year-old male courier driver who developed linear and patchy hypermelanosis of the back caused by the driver's seat. Histology has included other pathologies. Treatment of the asymptomatic hyper pigmentation was not warranted.

  6. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  7. Multiscaling behavior of atomic-scale friction.

    Science.gov (United States)

    Jannesar, M; Jamali, T; Sadeghi, A; Movahed, S M S; Fesler, G; Meyer, E; Khoshnevisan, B; Jafari, G R

    2017-06-01

    The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H=0.61±0.02 at a 1σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h(q), on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.

  8. Sliding Friction on Liquid-Infused Surfaces

    Science.gov (United States)

    Rashed, Ziad; Habibi, Mohammad; Boreyko, Jonathan

    2017-11-01

    Slippery porous liquid-infused surfaces (SLIPS) are well-known for their ability to stably minimize the hysteresis of a wide variety of liquids. However, whether SLIPS could also reduce the sliding friction of solid objects has not been given much consideration. Here, we measure the friction force associated with dragging an aluminum cube across an array of ordered silicon micropillars impregnated with silicone oil. The solid fraction of the micropillars was either 0.025 or 0.25, while the viscosity of the silicone oil was 10, 100, or 1,000 cSt. Non-intuitively, it was observed that the sliding friction decreased with increasing lubricant viscosity or increasing solid fraction. These findings suggest that the key parameter is therefore the hydraulic resistance of the alleys between the micropillars, which should be as large as possible to minimize lateral oil drainage from underneath the sliding body. This would indicate that scaling down to nano-roughness would be optimal for minimizing the sliding friction, which was confirmed by additional experiments on a disordered nanostructured substrate.

  9. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    2013-01-01

    This paper estimates individual-level matching functions to measure search frictions in the Japanese labour market and presents the determinants of search duration. We employ administrative microdata that track the job search process of job seekers who left or lost their job in August 2005...

  10. Effects of Mixing the Steel and Carbon Fibers on the Friction and Wear Properties of a PMC Friction Material

    Science.gov (United States)

    Bagheri Kazem Abadi, Sedigheh; Khavandi, Alireza; Kharazi, Yosouf

    2010-04-01

    Friction, fade and wear characteristics of a PMC friction material containing phenolic resin, short carbon fiber, graphite, quartz, barite and steel fiber were investigated through using a small-scale friction testing machine. Four different friction materials with different relative amounts of the carbon fiber and steel fiber were manufactured and tested. Comparing with our previous work which contained only steel fiber as reinforcement, friction characteristics such as fade and recovery and wear resistance were improved significantly by adding a small amount of carbon fiber. For the mixing of carbon and steel fiber, the best frictional and wear behavior was observed with sample containing 4 weight percentage carbon fiber. Worn surface of this specimen was observed by optical microscopy. Results showed that carbon fibers played a significant role in the formation of friction film, which was closely related to the friction performance. The brake pad with Steel fibers in our previous work, showed low friction coefficient and high wear rate. In addition, a friction film was formed on the surface with a relatively poor quality. In contrast, the samples with mixing the steel and carbon fiber generated a stable friction film on the pad surface, which provided excellent friction stability with less wear.

  11. Effect of friction on the motion of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Madsen, Jens; Naulin, Volker

    is influenced by the collisional friction with the neutral gas fluid. In magnetically confined plasmas, the motion of filamentary structures in the edge region can be influenced by parallel dynamics in a manner that resembles an effective friction. In the presence of strong ballooning, such a frictional...... an effective friction, is investigated. In the inertial regime the radial filament velocity scales as the square root of its size. In the limit of strong friction regime the velocity scales as the inverse of the structure size. A discussion of these results will be given in the context of irregularities...

  12. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  13. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  14. Dynamic contact with Signorini's condition and slip rate dependent friction

    Directory of Open Access Journals (Sweden)

    Kenneth Kuttler

    2004-06-01

    Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.

  15. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  16. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  17. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Long, Fei; Yasaei, Poya; Yao, Wentao; Salehi-Khojin, Amin; Shahbazian-Yassar, Reza

    2017-06-21

    Wrinkle structures are commonly seen on graphene grown by the chemical vapor deposition (CVD) method due to the different thermal expansion coefficient between graphene and its substrate. Despite the intensive investigations focusing on the electrical properties, the nanotribological properties of wrinkles and the influence of wrinkle structures on the wrinkle-free graphene remain less understood. Here, we report the observation of anisotropic nanoscale frictional characteristics depending on the orientation of wrinkles in CVD-grown graphene. Using friction force microscopy, we found that the coefficient of friction perpendicular to the wrinkle direction was ∼194% compare to that of the parallel direction. Our systematic investigation shows that the ripples and "puckering" mechanism, which dominates the friction of exfoliated graphene, plays even a more significant role in the friction of wrinkled graphene grown by CVD. The anisotropic friction of wrinkled graphene suggests a new way to tune the graphene friction property by nano/microstructure engineering such as introducing wrinkles.

  18. Friction characteristics for density of micro dimples using photolithography

    International Nuclear Information System (INIS)

    Chae, Young Jun; Kim, Seock Sam

    2005-01-01

    Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple

  19. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  20. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature....... The results show, that friction is strongly influenced by normal pressure and tool/work piece interface temperature, whereas the other process parameters investigated show minor influence on friction. Based on the experimental results a mathematical model has been established for friction as a function...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  1. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    Energy Technology Data Exchange (ETDEWEB)

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  2. Coefficient of friction and wear of sputtered a-C thin coatings containing Mo

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Musil, Jindřich; Čerstvý, R.; Jäger, Aleš

    2010-01-01

    Roč. 205, č. 5 (2010), s. 1486-1490 ISSN 0257-8972. [International Conference on Metallurgical Coatings and Thin Films /37./. San Diego, CA, 26.04.2010-30.04.2010] Institutional research plan: CEZ:AV0Z10100520 Keywords : Mo-C coating * mechanical properties * friction * wear * magnetron sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.135, year: 2010

  3. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    Science.gov (United States)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  4. Decrease of superficial serine and lactate in the stratum corneum due to repetitive frictional trauma.

    Science.gov (United States)

    Wong, Lai San; Otsuka, Atsushi; Tanizaki, Hideaki; Nonomura, Yumi; Nakashima, Chisa; Yamamoto, Yosuke; Yen, Yu Ta; Rerknimitr, Pawinee; Honda, Tetsuya; Kabashima, Kenji

    2018-03-01

    Repetitive frictional trauma can be induced in daily and occupational activities, such as daily ablutions with washcloths. The influence of frictional trauma on the skin barrier function, especially in the perspective of the components of stratum corneum (SC), has not yet been studied in detail. Raman spectroscopy is a noninvasive optical technique based on inelastic light scattering that is capable of measuring several components in the skin. In this study, we used Raman spectroscopy to investigate the change in natural moisturizing factor (NMF) components in the SC following repetitive physical friction. Six healthy volunteers, who were included in the study after obtaining an informed consent, performed repetitive washing with soap using nylon towels on the forearm twice a day for 2 weeks and used Raman spectroscopy to investigate the change in NMF components in the SC. Compared with the control, which was washed with soap at the same frequency on the opposite forearm, a significant increase in the transepidermal water loss (TEWL) and a decrease in NMF, serine, and total lactate, responsible for maintenance the SC hydration and structuring and maintaining the epidermal barrier function, in the SC were found. Increased TEWL and decreased NMF are considered as an etiology of atopic dermatitis (AD); therefore, our findings provide evidence that daily activities with repetitive frictional trauma may be related to the predisposition of AD. © 2017 The International Society of Dermatology.

  5. Nonlinear Vibration Characteristics of a Flexible Blade with Friction Damping due to Tip-Rub

    Directory of Open Access Journals (Sweden)

    Dengqing Cao

    2011-01-01

    Full Text Available An approximate approach is proposed in this paper for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces due to tip-rub. The dynamical equation of motion for a rotational cantilever blade in a centrifugal force field is established. Flow-induced distributed periodic forces and the internal material damping in the blade are accounted for in the governing equation of motion. The Galerkin method is employed to obtain a three-degree-of-freedom oscillator with friction damping due to tip-rub. The combined motion of impact and friction due to tip-rub produced a piecewise linear vibration which is actually nonlinear. Thus, a complete vibration cycle is divided into successive intervals. The system possesses linear vibration characteristic during each of these intervals, which can be determined using analytical solution forms. Numerical simulation shows that the parameters such as gap of the tip and the rotational speed of the blades have significant effects on the dynamical responses of the system. Finally, the nonlinear vibration characteristics of the blade are investigated in terms of the Poincare graph, and the frequency spectrum of the responses and the amplitude-frequency curves.

  6. Analysis of the Journal Bearing Friction Losses in a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Christoph Knauder

    2015-04-01

    Full Text Available Internal combustion engines (ICE for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction in the ICE. Through a combination of measurements and validated simulation methods the journal bearing friction losses of a state-of-the-art heavy-duty Diesel engine are investigated for a large range of real world operating conditions. To this task recently developed and extensively validated simulation methods are used together with realistic lubricant models that consider the Non-Newtonian behaviour as well as the piezoviscous effect. In addition, the potential for further friction reduction with the use of ultra-low viscosity lubricants is explored. The results reveal a potential of about 8% friction reduction in the journal bearings using a 0W20 ultra-low viscosity oil with an HTHS-viscosity (The HTHS-viscosity is defined as the dynamic viscosity of the lubricant measured at 150 °C and at a shear rate of 106 s

  7. Control of friction at the nanoscale

    Science.gov (United States)

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  8. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied....... Kinetic friction is observed to be caused by atomic-scale Stick and slip which occurs by nucleation and subsequent motion of dislocations preferably between close-packed {111} planes. Stick and slip seems ro occur in different situations. For single crystalline contacts without grain boundaries...... at the interface the stick and slip process is clearly observed for a large number of contact areas, normal loads, and sliding velocities. If the tip and substrate crystal orientations are different so that a mismatch exists in the interface, the stick and slip process is more fragile. It is then caused by local...

  9. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  10. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  11. Friction Experiments for Dynamical Coefficient Measurement

    Directory of Open Access Journals (Sweden)

    J. J. Arnoux

    2011-01-01

    Full Text Available An experimental study, including three experimental devices, is presented in order to investigate dry friction phenomena in a wide range of sliding speeds for the steel on steel contact. A ballistic setup, with an air gun launch, allows to estimate the friction coefficient between 20 m/s and 80 m/s. Tests are completed by an adaptation of the sensor on a hydraulic tensile machine (0.01 m/s to 3 m/s and a pin-on-disk tribometer mounted on a CNC lathe (1 to 30 m/s. The interactions at the asperity scale are characterized by a white light interferometer surface analysis.

  12. The Temperature Dependence of Macroscopic Sliding Friction

    Science.gov (United States)

    Burton, J. C.; Taborek, P.; Rutledge, J. E.

    2006-03-01

    We present measurements of the static and kinetic coefficients of friction of gold-plated copper on gold-plated copper and sapphire on sapphire as a function of temperature from 10K to 400K. The measurements were done by sliding a block down a controllable incline plane and using high-speed video to extract the acceleration. The large size of our optical cryostat allowed linear motion of 7.5 cm over which to measure the acceleration. Surfaces were baked under high vacuum at 400K, and data was taken as they cooled. Preliminary results indicate that the coefficient of friction for gold plated copper surfaces change by 10 percent from room temperature to 10K.

  13. Nanodiamond stability with friction and heat

    International Nuclear Information System (INIS)

    Butterworth, J; Briston, K; Claeyssens, F; Inkson, B J

    2015-01-01

    The structural stability of nanodiamonds (ND) has been investigated as a function of abrasion/friction and thermal annealing. Nanodiamonds examined before and after abrasion by transmission electron microscopy (TEM) are found to have modified surface characteristics. Frictional rubbing generates smaller, non-spherical particles with rougher, cleaner surfaces, and debris consisting of compacted ND+amorphous carbons. Annealing of ND and abraded ND at 1000°C demonstrates that abrasive pre-treatment increases proportion of transformation to onion-like-carbon (OLC) structures with generation of 3-30nm diameter OLC. The OLC achieved are of similar dimensions to those grown from ND annealed with a Ni catalyst but with more defective microstructures. (paper)

  14. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  15. Friction- and wear-reducing coating

    Science.gov (United States)

    Zhu, Dong [Farmington Hills, MI; Milner, Robert [Warren, MI; Elmoursi, Alaa AbdelAzim [Troy, MI

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  16. Rubber friction: comparison of theory with experiment.

    Science.gov (United States)

    Lorenz, B; Persson, B N J; Dieluweit, S; Tada, T

    2011-12-01

    We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from -10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σ(f) in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σ(f) to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.

  17. Modal Coupling in Presence of Dry Friction

    Directory of Open Access Journals (Sweden)

    Marco Claudio De Simone

    2018-02-01

    Full Text Available In this paper, we analyze the behavior of a single pad system in the presence of dry friction. The goal is to investigate the path that leads a stable mechanical system to unstable behavior. In doing so, we studied the behavior of a discrete three DOF model, a continuous model and a finite element model of the pad. The numerical results are consistent with the experimental investigation conducted on a brake disk for railway application.

  18. Development of a Constitutive Friction Law based on the Frictional Interaction of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    F. Beyer

    2015-12-01

    Full Text Available Friction has a considerable impact in metal forming. This is in particular true for sheet-bulk metal-forming (SBMF in which local highly varying contact loads occur. A constitutive friction law suited to the needs of SBMF is necessary, if numerical investigations in SBMF are performed. The identification of the friction due to adhesion and ploughing is carried out with an elasto-plastic half-space model. The normal contact is verified for a broad range of normal loads. In addition, the model is used for the characterization of the occurring shear stress. Ploughing is determined by the work which is necessary to plastically deform the surface asperities of the new area that gets into contact during sliding. Furthermore, the surface patches of common half-space models are aligned orthogonally to the direction in which the surfaces approach when normal contact occurs. For a better reflection of the original surfaces, the element patches become inclined. This leads to a geometric share of lateral forces which also contribute to friction. Based on these effects, a friction law is derived which is able to predict the contact conditions especially for SBMF.

  19. Theory of friction based on brittle fracture

    Science.gov (United States)

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  20. Drop friction on liquid-infused surfaces

    Science.gov (United States)

    Gas, Armelle; Keiser, Ludovic; Clanet, Christophe; Quere, David

    2017-11-01

    Trapping a thin liquid film in the roughness of a textured material creates a surface that is partially solid and partially liquid, referred to as a lubricant-impregnated surface. Those surfaces have recently raised a great interest for their promising industrial applications. Indeed, they proved to drastically reduce adhesion of a broad range of liquids, leading to enhanced mobility, and strong anti-biofouling, anti-icing and anti-fogging properties. In our talk we discuss the nature of the friction generated as a drop glides on a textured material infused by another liquid. Different regimes are observed, depending on the viscosities of both liquids. While a viscous drop is simply opposed by a Stokes-type friction, the force opposing a drop moving on a viscous substrate becomes non-linear in velocity. A liquid on an infused material is surrounded by a meniscus, and this specific feature is proposed to be responsible for the special observed frictions, on both adhesive and nonadhesive substrates.

  1. Friction-induced nanofabrication on monocrystalline silicon

    International Nuclear Information System (INIS)

    Yu Bingjun; Qian Linmao; Yu Jiaxin; Zhou Zhongrong; Dong Hanshan; Chen Yunfei

    2009-01-01

    Fabrication of nanostructures has become a major concern as the scaling of device dimensions continues. In this paper, a friction-induced nanofabrication method is proposed to fabricate protrusive nanostructures on silicon. Without applying any voltage, the nanofabrication is completed by sliding an AFM diamond tip on a sample surface under a given normal load. Nanostructured patterns, such as linear nanostructures, nanodots or nanowords, can be fabricated on the target surface. The height of these nanostructures increases rapidly at first and then levels off with the increasing normal load or number of scratching cycles. TEM analyses suggest that the friction-induced hillock is composed of silicon oxide, amorphous silicon and deformed silicon structures. Compared to the tribochemical reaction, the amorphization and crystal defects induced by the mechanical interaction may have played a dominating role in the formation of the hillocks. Similar to other proximal probe methods, the proposed method enables fabrication at specified locations and facilitates measuring the dimensions of nanostructures with high precision. It is highlighted that the fabrication can also be realized on electrical insulators or oxide surfaces, such as quartz and glass. Therefore, the friction-induced method points out a new route in fabricating nanostructures on demand.

  2. Friction law and hysteresis in granular materials

    Science.gov (United States)

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  3. Frictional response of fatty acids on steel.

    Science.gov (United States)

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  4. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  5. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  6. Friction between silicon and diamond at the nanoscale

    International Nuclear Information System (INIS)

    Bai, Lichun; Srikanth, Narasimalu; Sha, Zhen-Dong; Pei, Qing-Xiang; Wang, Xu; Srolovitz, David J; Zhou, Kun

    2015-01-01

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region. (paper)

  7. Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Outrata, Jiří; Haslinger, Jaroslav; Pathó, R.

    2014-01-01

    Roč. 52, č. 5 (2014), s. 3371-3400 ISSN 0363-0129 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:GA MŠK(CZ) CZ.1.05/1.1.00/02.0070; GA MŠK(CZ) CZ.1.07/2.3.00/20.0070 Institutional support: RVO:67985556 ; RVO:68145535 Keywords : shape optimization * contact problems * Coulomb friction * solution-dependent coefficient of friction * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.463, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf

  8. Friction mediated by redox-active supramolecular connector molecules.

    Science.gov (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-06

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  9. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  10. Benchmarking of direct and indirect friction tests in micro forming

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Calaon, Matteo; Arentoft, M.

    2012-01-01

    to qualify the tribological performance of the particular forming scenario. In this work the application of a simulative sliding friction test at micro scale is studied. The test setup makes it possible to measure the coefficient of friction as a function of the sliding motion. The results confirm a sizeable...... increase in the coefficient of friction when the work piece size is scaled down. © (2012) Trans Tech Publications.......The sizeable increase in metal forming friction at micro scale, due to the existence of size effects, constitutes a barrier to the realization of industrial micro forming processes. In the quest for improved frictional conditions in micro scale forming operations, friction tests are applied...

  11. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  12. Estimating Fault Friction From Seismic Signals in the Laboratory

    Science.gov (United States)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  13. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  14. Friction related size-effect in microforming – a review

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2014-01-01

    Full Text Available This paper presents a thorough literature review of the size effects of friction in microforming. During miniaturization, the size effects of friction occur clearly. The paper first introduces experimental research progress on size effects of friction in both micro bulk and sheet forming. The effects of several parameters are discussed. Based on the experimental results, several approaches have been performed to develop a model or functions to analyse the mechanism of size effects of friction, and simulate the micro deep drawing process by integrating them into an FE program. Following this, surface modification, e.g. a DLC film and a micro structure/textured surface, as a method to reduce friction are presented. Finally, the outlook for the size effect of friction in the future is assessed, based on the understanding of the current research progress.

  15. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun

    2014-01-01

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models

  16. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    Directory of Open Access Journals (Sweden)

    Senai YALCINKAYA

    2017-05-01

    Full Text Available Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the shear rate in step 3 on the friction force was investigated. At the last stage, the experimental study of the effect of the material selection on the friction force was made and it was seen that the aluminum / brass surface pair had the smallest friction coefficient as a result of the opening. The greatest coefficient of friction is found in the pair of glass / felt objects.

  17. Methods and devices used to measure friction in rolling

    DEFF Research Database (Denmark)

    Jeswiet, J.; Arentoft, Mogens; Henningsen, Poul

    2006-01-01

    Friction at the workpiece-die boundary, in both bulk forming and sheet forming is, arguably, the single most important physical parameter influencing the processing of metals; yet it remains the least understood. Hence there is a need for basic research into metal-die interface mechanisms. To gai...... to measure friction in rolling in the past and discusses some of the recent sensor designs that can now be used to measure friction both in production situations and for research purposes....

  18. Structure formation of 5083 alloy during friction stir welding

    Science.gov (United States)

    Zaikina, A. A.; Kolubaev, A. V.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2017-12-01

    This paper provides a comparative study of structures obtained by friction stir welding and sliding friction of 5083 Al alloy. Optical and electron microscopy reveals identical fine-grained structures with a grain size of ˜5 µm both in the weld nugget zone and subsurface layer in friction independently of the initial grain size of the alloy. It has been suggested that the grain boundary sliding is responsible for the specific material flow pattern in both techniques considered.

  19. Static and kinetic friction of granite at high normal stress

    Science.gov (United States)

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  20. Multi-scale friction modeling for sheet metal forming: the boundary lubrication regime

    NARCIS (Netherlands)

    Hol, J.D.; Meinders, Vincent T.; de Rooij, Matthias B.; van den Boogaard, Antonius H.

    2015-01-01

    A physical based friction model is presented to describe friction in full-scale forming simulations. The advanced friction model accounts for the change in surface topography and the evolution of friction in the boundary lubrication regime. The implementation of the friction model in FE software

  1. Multi-scale friction modeling for sheet metal forming: the mixed lubrication regime

    NARCIS (Netherlands)

    Hol, J.; Meinders, Vincent T.; Geijselaers, Hubertus J.M.; van den Boogaard, Antonius H.

    2015-01-01

    A mixed lubrication friction model is presented to accurately account for friction in sheet metal forming FE sim-ulations. The advanced friction model comprises a coupling between a hydrodynamic friction model and a boundary lubrication friction model, based on the lubricant film thickness. Mixed

  2. Friction Stir Processing of Cast Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  3. Controlling friction in a manganite surface by resistive switching

    OpenAIRE

    Schmidt, Hendrik; Krisponeit, Jon-Olaf; Samwer, Konrad; Volkert, Cynthia A.

    2016-01-01

    We report a significant change in friction of a $\\rm La_{0.55}Ca_{0.45}MnO_3$ thin film measured as a function of the materials resistive state under ultrahigh vacuum conditions at room temperature by friction force microscopy. While friction is high in the insulating state, it clearly changes to lower values if the probed local region is switched to the conducting state via nanoscale resistance switching. Thus we demonstrate active control of friction without having to change the temperature...

  4. Influences of PAN Fiber on Performance of Automobile Friction Materials

    Directory of Open Access Journals (Sweden)

    LIU Bo-wei

    2017-10-01

    Full Text Available The PAN (Polyacrylonitrile fiber enhanced friction materials were prepared by hot-press method based on a low metal formula, and the influences of PAN fiber content on the physical performance mechanical property, friction and wear properties and brake noise of the friction materials were investigated. The results show that as the PAN fiber content increase, the density decrease, and the porosity, shear strength and compress deflection of the friction material increase firstly then decrease; adding PAN fiber to the friction material has little influence on the nominal friction coefficient, but will reduce the anti-high temperature wear performance, and as the content increases, the friction coefficient increases; however, adding PAN fiber will improve the friction and wear rate of materials, but with the PAN fiber content increasing, friction and wear rate exhibits the tendency of decreasing firstly and then slightly increasing; adding adequate PAN fiber is conducive to the suppression of noise generation, when the PAN fiber content is about 3%-5%, the noise performance is the best.

  5. Fingerprints are unlikely to increase the friction of primate fingerpads.

    Science.gov (United States)

    Warman, Peter H; Ennos, A Roland

    2009-07-01

    It is generally assumed that fingerprints improve the grip of primates, but the efficiency of their ridging will depend on the type of frictional behaviour the skin exhibits. Ridges would be effective at increasing friction for hard materials, but in a rubbery material they would reduce friction because they would reduce contact area. In this study we investigated the frictional performance of human fingertips on dry acrylic glass using a modified universal mechanical testing machine, measuring friction at a range of normal loads while also measuring the contact area. Tests were carried out on different fingers, fingers at different angles and against different widths of acrylic sheet to separate the effects of normal force and contact area. The results showed that fingertips behaved more like rubbers than hard solids; their coefficients of friction fell at higher normal forces and friction was higher when fingers were held flatter against wider sheets and hence when contact area was greater. The shear stress was greater at higher pressures, suggesting the presence of a biofilm between the skin and the surface. Fingerprints reduced contact area by a factor of one-third compared with flat skin, however, which would have reduced the friction; this casts severe doubt on their supposed frictional function.

  6. Skin friction related behaviour of artificial turf systems.

    Science.gov (United States)

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  7. Micro- and macroscale coefficients of friction of cementitious materials

    International Nuclear Information System (INIS)

    Lomboy, Gilson; Sundararajan, Sriram; Wang, Kejin

    2013-01-01

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses on bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF

  8. Friction Properties of Inkjet and Flexographic Prints on Different Papers

    Directory of Open Access Journals (Sweden)

    Simona Grigaliūnienė

    2015-03-01

    Full Text Available Friction between different papers, inkjet and flexographic prints has been experimentally investigated. Flexographic prints have been made using an anilox roller, and inkjet prints have been produced covering paper with one and four toner layers. Static (SCOF and kinetic (KCOF friction coefficients between paper and paper, paper and prints, prints and prints have been determined. Friction properties have been discovered to be different in flexographic and laser prints. The dependence of SCOF and KCOF on pressure (both decrease together with roughness measurements enables to conclude that the friction of prints is mainly governed by adhesion forces.

  9. Friction of different monolayer lubricants in MEMs interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D. (University of Wisconsin, Madison, WI); Ashurst, William Robert (Auburn University, Auburn, AL); Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  10. Friction and wear life properties of polyimide thin films

    Science.gov (United States)

    Fusaro, R. L.

    1972-01-01

    A transition in the friction coefficient and wear life properties of Pyralin polyimide (PI) thin films was found to exist at a temperature between 25 deg and 100 deg C. Above this transition, PI thin films gave long wear lives and low friction coefficients. The presence of H2O in air improved the friction and wear life properties at 25 deg C; but at 100 deg C, H2O had a detrimental effect. At 100 deg C and above, a dry argon atmosphere gave lower friction coefficients and longer wear lives than did a dry air atmosphere.

  11. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  12. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  13. Physical and Frictional Properties of NERICA

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Some physical and frictional properties of the seeds and husks of New Rice for Africa (NERICA were studied at varying moisture contents of 13%, 17%, and 20% (w.b. In the study, four varieties of NERICA namely; FARO 44, FARO 51, FARO 52 and FARO 57 were selected to represent the different size ranges common to NERICA. The physical properties of NERICA such as shape, size, volume, moisture contents, density, weights, surface area, aspect ratio and sphericity were obtained through physical measurement of the grains samples of each of the four varieties. Results of the physical measurements indicate that the size ranges for the varieties are as follows: FARO 44; 3.653mm to 3.858mm, FARO 51; 3.685mm to 3.916mm, FARO 52; 3.674mm to 3.863mm and FARO 57; 3.924mm to 4.019mm. Results of the frictional properties, shows that plywood material has the highest value of 28.4(1.36 = 33.0(1.41, 29.9(1.38 = 35.2(1.45 and 30.4(1.28 = 37.6(1.51 at 13%, 17% and 20% (w.b respectively, while plastic material has the lowest coefficient of friction value of 20.8(1.21 = 17.7(1.14, 19.4(1.17 = 21.8(1.24 and 21.3(1.24 = 22.9(1.26 at 13%, 17% and 20% (w.b respectively.

  14. Swimming in a granular frictional fluid

    Science.gov (United States)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that

  15. Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction.

    Science.gov (United States)

    Lakin, B A; Grasso, D J; Shah, S S; Stewart, R C; Bansal, P N; Freedman, J D; Grinstaff, M W; Snyder, B D

    2013-01-01

    The aim of this study is to evaluate whether contrast-enhanced computed tomography (CECT) attenuation, using a cationic contrast agent (CA4+), correlates with the equilibrium compressive modulus (E) and coefficient of friction (μ) of ex vivo bovine articular cartilage. Correlations between CECT attenuation and E (Group 1, n = 12) and μ (Group 2, n = 10) were determined using 7 mm diameter bovine osteochondral plugs from the stifle joints of six freshly slaughtered, skeletally mature cows. The equilibrium compressive modulus was measured using a four-step, unconfined, compressive stress-relaxation test, and the coefficients of friction were determined from a torsional friction test. Following mechanical testing, samples were immersed in CA4+, imaged using μCT, rinsed, and analyzed for glycosaminoglycan (GAG) content using the 1,9-dimethylmethylene blue (DMMB) assay. The CECT attenuation was positively correlated with the GAG content of bovine cartilage (R(2) = 0.87, P coefficients of friction: CECT vs μ(static) (R(2) = 0.71, P = 0.002), CECT vs μ(static_equilibrium) (R(2) = 0.79, P coefficient of friction. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations.

    Science.gov (United States)

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Ricciardi, Andrea; Scribante, Andrea; Klersy, Catherine; Auricchio, Ferdinando

    2003-10-01

    This study measured and compared the level of frictional resistance generated between stainless steel self-ligating brackets (Damon SL II, SDS Ormco, Glendora, Calif), polycarbonate self-ligating brackets (Oyster, Gestenco International, Göthenburg, Sweden), and conventional stainless steel brackets (Victory Series, 3M Unitek, Monrovia, Calif), and 3 different orthodontic wire alloys: stainless steel (Stainless Steel, SDS Ormco), nickel-titanium (Ni-Ti, SDS Ormco), and beta-titanium (TMA, SDS Ormco). All brackets had a.022-in slot, whereas the orthodontic wire alloys were tested in 3 different sections:.016,.017 x.025, and.019 x 0.025 in. Each of the 27 bracket and archwire combinations was tested 10 times, and each test was performed with a new bracket-wire sample. Both static and kinetic friction were measured on a custom-designed apparatus. All data were statistically analyzed (Kruskal-Wallis and Mann Whitney U tests). Stainless steel self-ligating brackets generated significantly lower static and kinetic frictional forces than both conventional stainless steel and polycarbonate self-ligating brackets, which showed no significant differences between them. Beta-titanium archwires had higher frictional resistances than stainless steel and nickel-titanium archwires. No significant differences were found between stainless steel and nickel-titanium archwires. All brackets showed higher static and kinetic frictional forces as the wire size increased.

  17. Ground Simulator Studies of the Effects of Valve Friction, Stick Friction, Flexibility, and Backwash on Power Control System Quality

    Science.gov (United States)

    Brown, B Porter

    1958-01-01

    Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.

  18. Deep transverse friction massage for treating tendinitis.

    Science.gov (United States)

    Brosseau, L; Casimiro, L; Milne, S; Robinson, V; Shea, B; Tugwell, P; Wells, G

    2002-01-01

    Deep transverse friction massage (DTFM) is one of several physiotherapy interventions suggested for the management of pain due to iliotibial band friction syndrome (ITBFS). To assess the effectiveness of DTFM for treating ITBFS observed in runners. We searched the Medline, Embase, Healthstar, Sports Discus, CINAHL, the Cochrane Controlled Trials Register, PEDro, the specialized registry of the Cochrane musculoskeletal group and the Cochrane field of Physical and Related Therapies up to the end of December 2000, using the sensitive search strategy developed by the Cochrane Collaboration. The search was complemented with bibliography searching of the reference list of the trials retrieved from the electronic search. Key experts in the area were contacted for further published and unpublished articles. All randomized controlled trials (RCTs) and controlled clinical trials (CCTs) comparing therapeutic ultrasound against placebo or another active intervention in patients with patellofemoral pain syndrome were selected. Two reviewers determined the studies to be included based on inclusion and exclusion criteria (LB, VR). Data were independently abstracted by two reviewers (VR, LB), and checked by a third reviewer (BS) using a pre-developed form of the Cochrane Musculoskeletal Group. The same two reviewers, using a validated scale, assessed the methodological quality of the RCTs and CCTs independently. Iliotibial band friction syndrome outcome measures were extracted from the publications. The pooled analysis was performed using weighted mean differences (WMDs) for pain relief as described as 1) daily pain; 2) pain while running and 3) percentage of maximum pain when running. A chi-square test was used to assess heterogeneity among trials. Fixed effects models were used throughout and random effects for outcomes showing heterogeneity. One RCT, including 17 patients with ITBFS was included. The experimental group (DTFM combined to rest, stretching exercises, cryotherapy

  19. Inductively Modeling Parallel, Normal, and Frictional Forces

    Science.gov (United States)

    Wyrembeck, Edward P.

    2005-02-01

    This year, instead of resolving the weight mg of an object resting on an incline into force components parallel and perpendicular to the surface of the incline, I asked my students to actually measure these forces at various angles of inclination and graph the data. I wanted my students to inductively discover mg sin θ and mg cos θ, and to use these graphs to confront the passive nature of the static frictional force. I believe the graphs themselves are very powerful conceptual tools that are often never discovered and used by students who only learn to use equations at specific angles to solve specific quantitative problems.

  20. Rolling friction on a granular medium

    Science.gov (United States)

    de Blasio, Fabio Vittorio; Saeter, May-Britt

    2009-02-01

    We present experimental results for the rolling of spheres on a granular bed. We use two sets of glass and steel spheres with varying diameters and a high-speed camera to follow the motion of the spheres. Despite the complex phenomena occurring during the rolling, the results show a friction coefficient nearly independent of the velocity (0.45-0.5 for glass and 0.6-0.65 for steel). It is found that for a given sphere density, the large spheres reach a longer distance, a result that may also help explain the rock sorting along natural stone accumulations at the foot of mountain slopes.

  1. Bioeconomy, Moral Friction and Symbolic Law

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2016-01-01

    several competing agendas are at play and to understand the effects, we therefore need to investigate empirically what emerges through this friction between competing governmental ambitions. My discussion is based on studies of tissue exchange in Europe and seeks to integrate theories of symbolic law...... ‘symbolic’, treaties aimed at protecting the body are symbols with great impact. Similarly, the material preparation of body parts as tradable grafts involves symbolic work and this symbolism is an essential part of making a ‘market’. I argue that instances of ‘symbolic law’ can reflect situations in which...

  2. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... to new crystal orientations, producing new grain boundaries in the process. These refined grains develop a {112}. texture closer to the tool. Large conventionally recrystallised grains sometimes form in the outer regions of the refined grain structure, but become ever more deformed as they approach...

  3. Frictional behavior of carbon fiber tows: a contact mechanics model of tow–tow friction

    NARCIS (Netherlands)

    Cornelissen, Bo; de Rooij, Matthias B.; Rietman, Bert; Akkerman, Remko

    2014-01-01

    Composite-forming processes involve mechanical interactions at the ply, tow, and filament level. The deformations that occur during forming processes are governed by friction between the contacting tows on the mesoscopic level and consequently between filaments on the microscopic level. A thorough

  4. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  5. A CLINICO-HISTOPATHOLOGICAL STUDY OF FRICTIONAL MELANOSIS

    Directory of Open Access Journals (Sweden)

    Keerthi Jampani

    2016-06-01

    Full Text Available OBJECTIVE The aim of the present study was to analyse different clinical patterns of frictional melanosis and to evaluate whether sun exposure is a causative or contributing factor for frictional melanosis. Furthermore, histopathology with haematoxylin and eosin along with special stains for amyloid like Congo red was done. METHODS 50 patients with clinical diagnosis of frictional melanosis participated in this study. INCLUSION CRITERIA Patients of all ages and both sexes with classical clinical features suggestive of frictional melanosis are included. EXCLUSION CRITERIA Patients having pigmentation over areas where the frictional melanosis presents classically but have been using chemicals, hair dyes and other agents which can cause photocontact dermatitis have been excluded from the study. A detailed history regarding duration of illness, progression and precipitating factors along with detailed clinical examination regarding the location of the lesions and type of lesions was done and patients were subjected to skin biopsy after obtaining a written consent. RESULTS Out of 50 cases, 39 (78% were confirmed with histopathology as frictional melanosis and 11(22% as macular amyloidosis. Among patients of frictional melanosis, 56.41% had only skin lesions. In macular amyloidosis 63.63% patients had itching along with skin lesions. In Frictional melanosis the most frequently involved site was extensor aspect of arm (78.48%. The most frequently involved site in macular amyloidosis was extensor aspect of forearm (93.34%. CONCLUSION In this study a total number of 50 patients with clinical presentation of frictional melanosis were analysed with female preponderance. Amyloid deposition is seen in those skin biopsy specimens taken from area of friction with sun exposure, which suggests that sun exposure could be one of the predisposing factors for macular amyloidosis. Thus, these findings confirm that frictional melanosis is a variant of macular

  6. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  7. Frictional Characteristics of Active and Passive Self-Ligation Bracket Systems: An in vitro Study

    Directory of Open Access Journals (Sweden)

    K M Shahul Hameed Faizee

    2011-01-01

    Conclusion : Self-ligating brackets offered less frictional resistance than conventional brackets. Passive bracket systems offered less frictional resistance than active self-ligating bracket systems and Damon 3 brackets offered the least frictional resistance among all the brackets studied.

  8. Gravity Induced Ordering of Frictional Fingers

    Science.gov (United States)

    Eriksen, Jon; Sandnes, Bjørnar; Toussaint, Renaud; Jørgen Måløy, Knut; Flekkøy, Eirik

    2014-05-01

    Experiments on confined two-phase flow systems, involving air and a dense suspension, have revealed highly non-trivial flow morphologies. As the air displaces the suspension, the grains that make up the suspension tend to accumulate along the interface, and can build up force chains that jam the accumulated region. This dynamics will generate "frictional fingers" of air coated by a region of densely packed grains. The fingers have a characteristic width that balances surface tension and frictional forces of the densely packed grains. When these fingers grow under the influence of gravity, they can align either horizontally or vertically, or grow in a random isotropic fashion. The transition between the different modes of finger growth depends on the density of grains, and the gravitational force component. We present an analytic model to account for the transitions between the modes. We further present a numerical scheme that enables us to simulate the dynamics of the process. The numerical and analytic results are in good agreements with the experimental findings. Finally we show how this process could explain patterns that emerge naturally in early stages of dyke formation. These patterns are formed when hot fluid displaces partly molten rocks and packs the hard mineral grains composing it together, thereby forming finger structures that remain frozen in the dyke walls.

  9. Topological friction strongly affects viral DNA ejection.

    Science.gov (United States)

    Marenduzzo, Davide; Micheletti, Cristian; Orlandini, Enzo; Sumners, De Witt

    2013-12-10

    Bacteriophages initiate infection by releasing their double-stranded DNA into the cytosol of their bacterial host. However, what controls and sets the timescales of DNA ejection? Here we provide evidence from stochastic simulations which shows that the topology and organization of DNA packed inside the capsid plays a key role in determining these properties. Even with similar osmotic pressure pushing out the DNA, we find that spatially ordered DNA spools have a much lower effective friction than disordered entangled states. Such spools are only found when the tendency of nearby DNA strands to align locally is accounted for. This topological or conformational friction also depends on DNA knot type in the packing geometry and slows down or arrests the ejection of twist knots and very complex knots. We also find that the family of (2, 2k+1) torus knots unravel gradually by simplifying their topology in a stepwise fashion. Finally, an analysis of DNA trajectories inside the capsid shows that the knots formed throughout the ejection process mirror those found in gel electrophoresis experiments for viral DNA molecules extracted from the capsids.

  10. Science friction: data, metadata, and collaboration.

    Science.gov (United States)

    Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L

    2011-10-01

    When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.

  11. Language friction and partner selection in cross-border R&D alliance formation

    OpenAIRE

    Amol M Joshi; Nandini Lahiri

    2015-01-01

    How does language friction affect alliance formation? Language friction is a form of cultural friction arising from structural differences in the respective languages used by potential partners to reason and solve problems together. A little language friction may prompt partners to rethink solutions, thereby enhancing collaboration, but excessive friction may impede collaboration. We develop a Language Friction Index (LFI) to quantify relative differences in linguistic structure for any langu...

  12. Friction stress effects on mode I crack growth predictions

    NARCIS (Netherlands)

    Chen, Q.; Deshpande, V.S.; Giessen, E. van der; Needleman, A.

    2003-01-01

    The effect of a lattice friction stress on the monotonic growth of a plane strain mode I crack under small-scale yielding conditions is analyzed using discrete dislocation plasticity. When the friction stress is increased from zero to half the dislocation nucleation stress, the crack tip stress

  13. Experimental study of mechanical properties of friction welded AISI ...

    Indian Academy of Sciences (India)

    Amit Handa and Vikas Chawla. Heating Phase. Figure 4. Photograph showing heating phase of the friction welding process. Forge Phase. Figure 5. Photograph showing forge phase of the friction welding process. ... pared samples. The reading was directly taken from C scale on of the meter of hardness testing machine. 4.

  14. Frictional characteristics of the newer orthodontic elastomeric ligatures

    Directory of Open Access Journals (Sweden)

    A V Arun

    2011-01-01

    Full Text Available Introduction: Elastomeric ligatures reduce chairside time but increase friction. Polymeric coatings and 45° angulations have been introduced to the ligature modules to combat its disadvantages and reduce friction. This in vitro study compared the frictional characteristics of six different types of the most commonly used elastomeric modules. Materials and Methods: Thecoefficient of friction for six ligation methods: the non-coated Mini Stix† and coated Super Slick Mini Stix™ (TP Orthodontics, 45° angulated but non-coated Alastik Easy-To-Tie™ (3M Unitek elastomerics and non-angulated non-coated Alastik QuiK-StiK FNx01 , 0.110′- and 0.120′-diameter elastomerics™ (Reliance Orthodontics were measured in dry conditions utilizing a jig according to the protocol of Tidy. Results: A significant difference was observed between the various types of elastomeric ligatures (P<.01. Among the six types of elastomeric ligatures, the 45° angulated elastomeric ligatures produced the least friction, followed by the coated Super Slick† elastomers. No difference in the friction was noted when the diameter of the elastomeric ligatures was varied. Conclusions: Polymeric surface coatings and introduction of angulations into elastomeric ligatures reduce the friction during sliding; however, the diameter of the ligature made no difference to sliding friction.

  15. Low temperature enhanced ductility of friction stir processed 5083 ...

    Indian Academy of Sciences (India)

    Administrator

    forming loads. The occurrence of a relatively high value of strain rate sensitivity, m of 0⋅45 for a grain size of. 0⋅95 μm, suggests the operation of superplastic deformation under these present experimental conditions. Keywords. AA5083; friction stir processing; ductility; superplasticity. 1. Introduction. Friction stir processing ...

  16. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...

  17. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  18. Experimental study of mechanical properties of friction welded AISI ...

    Indian Academy of Sciences (India)

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards ...

  19. Friction reduction using discrete surface textures: principle and design

    Science.gov (United States)

    Hsu, Stephen M.; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-08-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed.

  20. Frictional properties of single crystals HMX, RDX and PETN explosives.

    Science.gov (United States)

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  2. Friction reduction using discrete surface textures: principle and design

    International Nuclear Information System (INIS)

    Hsu, Stephen M; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-01-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed. (paper)

  3. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  4. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    Friction at the interface of the rock samples was developed by increasing shear strain at a con- stant rate by applying constant velocity using the tribometer. For shaly sandstone, state para- meters (a and b) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of b ...

  5. Predicting vibration-induced displacement for a resonant friction slider

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2001-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider, sandwiched between friction layers with different coefficients of friction, and equipped with an imbedded resonator that oscillates at high frequency and small amplitude. This model is highly nonlinear, involving non...

  6. Using Plasticine (TM) to Measure the Rolling Friction Coefficient.

    Science.gov (United States)

    Castellvi, Francesc; And Others

    1995-01-01

    Presents an experiment that makes manifest the energy lost to friction of an iron ball moving along an inclined iron rail, which allows students to compute the rolling friction coefficient. Uses a method based on measurement of deformation produced in a piece of Plasticine by an inelastic collision with the ball and combines mechanical concepts…

  7. A Simple Measurement of the Sliding Friction Coefficient

    Science.gov (United States)

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  8. Load dependency of the coefficient of friction of oral mucosa

    NARCIS (Netherlands)

    Prinz, J.F.; Wijk, de R.A.; Huntjens, L.

    2007-01-01

    Frictional conditions in the mouth are thought by food scientists to be critical to the perception of important food attributes such as astringency, smoothness, roughness, slipperiness, etc. This ability to detect friction probably evolved to avoid foods that could wear the teeth excessively. In

  9. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of  ...

  10. Isotropic compression of cohesive-frictional particles with rolling resistance

    NARCIS (Netherlands)

    Luding, Stefan; Benz, Thomas; Nordal, Steinar

    2010-01-01

    Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according

  11. External Coulomb-Friction Damping For Hydrostatic Bearings

    Science.gov (United States)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  12. Dynamics and locomotion of flexible foils in a frictional environment

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  13. Frictional Forces Required for unrestrained locomotion in dairy cattle

    NARCIS (Netherlands)

    Tol, van der P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.

    2005-01-01

    Most free-stall housing systems in the Netherlands are equipped with slatted or solid concrete floors with manure scrapers. A slipping incident occurs when the required coefficient of friction (RCOF) exceeds the coefficient of friction (COF) at the claw–floor interface. An experiment was conducted

  14. Performance evaluation for darcy friction factor formulae using ...

    African Journals Online (AJOL)

    (2008) an overview and performance evaluation of these formulae is presented using statistical methods (model of selection criterion and statistical errors). Darcy Friction factor formulae were obtained from archive. These formulae were used to estimate friction factors in pipes at various Reynolds number and relative ...

  15. Effect of friction on the performance of inertial slider

    Indian Academy of Sciences (India)

    coefficient of friction is achieved by using different contact pairs (steel surface against steel balls and alumina plate against sapphire balls) and also by lubrication (vacuum grease, Shell. 2T). The co-efficient of friction of these surfaces is determined using a strain gauge based force sensor. An exponential ramp with sudden ...

  16. Current status of Joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.

    1989-01-01

    Tests with specially instrumented NASA B-737 and FAA B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft Ground Vehicle Runway Friction Program aimed at obaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions. The current status of the runway friction program is summarized and future test plans are identified.

  17. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  18. Static friction in elastic adhesion contacts in MEMS

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2003-01-01

    Static friction in a shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesion contact is analyzed. The effect of adhesion is included using Maugis' expansion of the Greenwood and

  19. The Static Ladder Problem with Two Sources of Friction

    Science.gov (United States)

    Bennett, Jonathan; Mauney, Alex

    2011-01-01

    The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…

  20. Static friction in elastic adhesive MEMS contacts, models and experiment

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2000-01-01

    Static friction in shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesive contact is analyzed. Special attention is paid to low loading conditions, in which the number of contact

  1. Review of friction modeling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, C.V.; Bay, N.

    2018-01-01

    Abstract In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several res...

  2. Overview of friction modelling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several research gro...

  3. PROVIDING STABLE FRICTION PROPERTIES OF DISC BRAKES FOR RAILWAY VEHICLES

    Directory of Open Access Journals (Sweden)

    Yuri Y. OSENIN

    2017-04-01

    Full Text Available A new approach is developed to ensure the stability of the coefficient of friction at different braking modes for the entire speed range of braking high-speed ground transport. The new approach is a combination of friction materials with individual effort effects on the brake disc. A brake pad design and its performance are confirmed experimentally.

  4. Quasi-equilibrium melting of quartzite upon extreme friction

    Science.gov (United States)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  5. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter... mechanisms that recalibrate the overtravel devices and position indicators. ...

  6. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip... synchronizing mechanisms that recalibrate the overtravel devices and position indicators. ...

  7. Accurate solutions of Colebrook-White's friction factor formulae ...

    African Journals Online (AJOL)

    Estimations of friction factor (Ff) in pipeline systems and fluid transport are essential ingredients in engineering fields and processes. In this paper explicit friction factor formulae (Fff) were proposed and evaluated with an aim of developing error free Fff. General Fff that relate Ff, Reynolds number (Re) and relative roughness ...

  8. A study of kinetic friction: The Timoshenko oscillator

    Science.gov (United States)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  9. Parameter-free dissipation in simulated sliding friction

    Science.gov (United States)

    Benassi, A.; Vanossi, A.; Santoro, G. E.; Tosatti, E.

    2010-08-01

    Nonequilibrium molecular-dynamics simulations, of crucial importance in sliding friction, are hampered by arbitrariness and uncertainties in the way Joule heat is removed. We implement in a realistic frictional simulation a parameter-free, non-Markovian, stochastic dynamics, which, as expected from theory, absorbs Joule heat precisely as a semi-infinite harmonic substrate would. Simulating stick-slip friction of a slider over a two-dimensional Lennard-Jones solid, we compare our virtually exact frictional results with approximate ones from commonly adopted empirical dissipation schemes. While the latter are generally in serious error, we show that the exact results can be closely reproduced by a viscous Langevin dissipation at the boundary layer, once the backreflected frictional energy is variationally optimized.

  10. Influence of bio-lubricants on the orthodontic friction.

    Science.gov (United States)

    Dridi, A; Bensalah, W; Mezlini, S; Tobji, S; Zidi, M

    2016-07-01

    The Friction force of Stainless Steel (SS) and Nickel-Titanium (Ni-Ti) rectangular archwires against stainless steel brackets was investigated. Two types of brackets were used namely: Self-ligating brackets (SLB) and conventional brackets (CB). The friction tests were conducted on an adequate developed device under dry and lubricated conditions. Human saliva, olive oil, Aloe Vera oil, sesame oil and sunflower oil were used as bio-lubricants. The friction force was examined as a function of the ligation method and oil temperature. It is found that under oil lubrication, the friction behavior in the archwire/bracket assembly were the best. The SLB ligation was better than the conventional ligation system. The enhancement of the frictional behavior with natural oils was linked to their main components: fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  12. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    CERN Document Server

    Graham, J C H

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives su...

  13. Analytical prediction of turbulent friction factor for a rod bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Park, Joo Hwan

    2011-01-01

    An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.

  14. Frictional forces between cohesive powder particles studied by AFM

    International Nuclear Information System (INIS)

    Jones, Robert; Pollock, Hubert M; Geldart, Derek; Verlinden-Luts, Ann

    2004-01-01

    A range of commercially important powders (hydrated alumina, limestone, titania and zeolite) and glass ballotini were attached to atomic force microscope cantilevers, and inter-particle friction forces studied in air using lateral force microscopy (LFM). The in situ calibration procedure for friction forces is described. LF images, line profiles, LF histograms, surface roughness, pull-off forces, and the load dependence of friction in the range 0-25 nN were studied for both particle-particle and particle-wall (steel) contacts. The single-particle friction results are discussed in terms of contact mechanics theory. Particle-particle contacts showed load-dependent friction, involving single asperity contacts (non-linear behaviour) or multi-asperity contacts (linear behaviour). Particle-wall contacts usually showed little load dependence and were more adhesive. The results are also related to shear stress-normal stress data (yield loci) for the same materials from bulk shear testers

  15. Viscosity Prediction of Natural Gas Using the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...

  16. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  17. Controllable friction of dark solitons in Bose-Fermi mixtures

    Science.gov (United States)

    Hurst, Hilary; Efimkin, Dmitry; Galitski, Victor

    We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose gas and a non-interacting, degenerate Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton by treating it as a particle with negative mass, and calculate its friction coefficient. Surprisingly, the amount of friction depends on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We compare our results to experimental regimes and conclude that tunable friction has measurable physical consquences in experiments with Bose-Fermi mixtures.

  18. Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    2012-01-01

    Full Text Available The integral model of dry friction components is built with assumption of classical Coulomb friction law and with specially developed model of normal stress distribution coupled with rolling resistance for elliptic contact shape. In order to avoid a necessity of numerical integration over the contact area at each the numerical simulation step, few versions of approximate model are developed and then tested numerically. In the numerical experiments the simulation results of the Celtic stone with the friction forces modelled by the use of approximants of different complexity (from no coupling between friction force and torque to the second order Padé approximation are compared to results obtained from model with friction approximated in the form of piecewise polynomial functions (based on the Taylor series with hertzian stress distribution. The coefficients of the corresponding approximate models are found by the use of optimization methods, like as in identification process using the real experiment data.

  19. Tribological properties of dry, fluid, and boundary friction

    Science.gov (United States)

    Lyashenko, I. A.

    2011-05-01

    A friction pair is studied under lubricant-free dry friction, hydrodynamic, and boundary lubricant conditions. It is shown that, in dry friction, the number of harmonics in the time dependence of the coordinate of the lower rubbing block decreases with increasing frequency of an applied periodic action until the interacting surfaces stick when a critical frequency is exceeded. The surfaces then move together. The behavior of a friction pair with a lubricant made of a Newtonian fluid, pseudoplastic fluid, or dilatant non-Newtonian fluid is analyzed in the hydrodynamic case. It is found that a pseudoplastic fluid or a boundary lubricant leads a intermittent (stick-slip) friction mode, which is one of the main causes of fracture of rubbing parts, over a wide parametric range.

  20. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    Science.gov (United States)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.