WorldWideScience

Sample records for intermolecular cu-cu interactions

  1. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.

    Science.gov (United States)

    Glaria, Arnaud; Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Turrin, Cédric-Olivier; Chaudret, Bruno; Fau, Pierre

    2015-01-12

    The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Wei-Dong [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Huang, Shu-Ping [Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (United States); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  3. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    Science.gov (United States)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  4. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    Science.gov (United States)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  5. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    Science.gov (United States)

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  6. INTERSITE INTERACTIONS IN CU L-EDGE XPS, XAS, AND XES OF DOPED AND UNDOPED CU COMPOUNDS

    NARCIS (Netherlands)

    VANVEENENDAAL, MA; SAWATZKY, GA

    1994-01-01

    The effect of interaction between different Cu atoms is studied by calculations on clusters with more Cu atoms for various kinds of spectroscopy, using a multiband Hubbard Hamiltonian. It is found that the inclusion of more Cu sites often leads to final states lower in energy than those that would

  7. The interaction between dietary Fe, Cu and stress in Cu-67 retention and serum ceruloplasmin (Cp) activity in rats

    International Nuclear Information System (INIS)

    Pellett, L.; Kattelmann, K.; Zinn, K.; Trokey, D.; Forrester, I.; Gordon, D.T.

    1991-01-01

    The objectives of the study were to determine the effects of dietary Fe and stress on Cu-67 retention and serum Cp activity in the rat. A 2 x 2 x 2 factorial arrangement of treatments was utilized. Male Sprague Dawley weanling rats were fed AIN-76 diets ad lib containing 0.8 ppm Cu (CuD) or 5.7 ppm Cu (CuA) with 22.5 ppm Fe (FeA) or 280 ppm Fe (FeE). After 19 days, one-half of the animals of each treatment were stressed by an intramuscular injection of 0.1 ml turpentine/100 gm body weight. Forty-eight hours later, animals were gavaged with Cu-67 and counted over a 7 day period in a whole body high resolution gamma counter. Cu-67 retention was 20% higher in CuD rats compared to CuA rats. There were no significant effects caused by Fe or stress or the interaction between these variables on Cu-67 retention. In rats fed FeE-CuA diets, serum Cp activity was significantly depressed compared to rats fed FeA-CuA diets. These reductions in the acute phase protein Cp, were 85% and 70% in nonstressed and stressed rats, respectively. The results of this study suggest that the negative interaction effects of excess Fe on Cu utilization does not occur at the site of Cu absorption, but within the body and specifically in the liver

  8. DFT Study of Azole Corrosion Inhibitors on Cu2O Model of Oxidized Copper Surfaces: II. Lateral Interactions and Thermodynamic Stability

    Directory of Open Access Journals (Sweden)

    Dunja Gustinčič

    2018-05-01

    Full Text Available The adsorption of imidazole, triazole, and tetrazole—used as simple models of azole corrosion inhibitors—on various Cu 2 O(111- and Cu 2 O(110-type surfaces was characterized using density functional theory (DFT calculations with the focus on lateral intermolecular interactions and the thermodynamic stability of various adsorption structures. To this end, an ab initio thermodynamics approach was used to construct two-dimensional phase diagrams for all three molecules. The impact of van der Waals dispersion interactions on molecular adsorption bonding was also addressed. Lateral intermolecular interactions were found to be the most repulsive for imidazole and the least for tetrazole, for which they are usually even slightly attractive. Both non-dissociative and dissociative adsorption modes were considered and although dissociated molecules bind to surfaces more strongly, none of the considered structures that involve dissociated molecules appear on the phase diagrams. Our results show that the three azole molecules display a strong tendency to preferentially adsorb at reactive coordinatively unsaturated (CUS Cu surface sites and stabilize them. According to the calculated phase diagrams for Cu 2 O(111-type surfaces, the three azole molecules adsorb to specific CUS sites, designated as Cu CUS , under all conditions at which molecular adsorption is stable. This tentatively suggests that their corrosion inhibition capability may stem, at least in part, from their ability to passivate reactive surface sites. We further comment on a specific drawback due to neglect of configurational entropy that is usually utilized within the ab initio thermodynamics approach. We analyze the issue for Langmuir and Frumkin adsorption models and show that when configurational entropy is neglected, the ab initio thermodynamics approach is too hasty to predict phase-transition like behavior.

  9. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    Science.gov (United States)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  10. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.

    Science.gov (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong

    2017-05-04

    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  11. Copper interactions in TlCu7S4 and TlCu7Se4

    International Nuclear Information System (INIS)

    Noren, L.; Delaplane, R.G.; Berger, R.

    1999-01-01

    Complete text of publication follows. The copper chalcogenides ACu 7 S 4 (A=NH 4 + , Tl + , Rb + ) are quasi-one-dimensional metals at ambient and higher temperatures which is due to the high mobility of copper in these structures. TlCu 7 S 4 and TlCu 7 Se 4 are isostructural compounds, space group I4/m, which can be described on the basis of a TlX 8 cube with two different Cu sites, Cu(1) and Cu(2). Cu(2)-Cu(2) zigzag chains run along the c axis with only 3/4 occupation of the Cu(2) sites. However, these two compounds differ in behaviour on cooling. The sulphide shows a polymorphic first-order transition to the CsAg 7 S 4 type (P4/n) owing to ordering of the vacancies in the Cu(2)-Cu(2) chains. In order to study the nature of the Cu(2) order/disorder in the two title compounds, a series of neutron diffraction measurements (both Bragg and diffuse scattering) were made at several temperatures from 40 to 713 K on the instrument SLAD at Studsvik. The structure at each temperature was modelled using RMC techniques. The resulting configuration show that as the temperature increases, there is a marked increase in the mobility of the Cu atoms in the Cu(2)-Cu(2) chains for TlCu 7 S 4 but not for TlCu 7 Se 4 . This is due to the initial difference in the Cu(2)-Cu(2) distances, only 2.2A for the thiocuprate, but 2.7A in the selenocuprate which explains the relative ease for Cu(2) ordering in the latter case. (author)

  12. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  13. Synthesis, structural characterization and photoluminescent properties of 2D multilayer Cu+ coordination polymers via Csbnd H⋯π and π⋯π interactions

    Science.gov (United States)

    Huang, Ting-Hong; Zhu, Sheng-Lan; Xiong, Xian-Lian; Li, Jia-Dong; Yang, Hu; Huang, Xin; Huang, Xue-Ren; Zhang, Kunming

    2017-09-01

    Two Cu(I) coordination polymers, {[Cu(pmbb)0.5(4,4'-bipy)0.5(PPh3)](BF4) (H2O)2}n (1) and {[Cu(pmbb)0.5(bpe)0.5(PPh3)](BF4)(DMF)}n (2) (pmbb = N, N'-bis(pyridin-2-ylmethylene)biphenyl -4,4'-diamine, 4,4'-bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene), PPh3 = triphenyl phosphine), have been synthesized and characterized by IR, 1H NMR, 13C NMR, 31P NMR, 19F NMR, 11B-NMR, TG and X-ray crystal structure analysis. The structural analysis shows that complexes 1 and 2 contain diverse and interesting 2D supramolecular networks based on inter-chain interactions. Complex 1 displays a 1D zig-zag chain and a 1D+1D→2D supramolecular network formed by intermolecular Csbnd H···π interaction. For 2, each 1D zig-zag chain interacts with neighboring ones via intermolecular Csbnd H···π and π···π stacking interactions, leading to the formation of a 2D-stacking network. Furthermore, solid-state UV-Vis absorption spectra of complexes 1 and 2 indicate the existence of MLCT absorption. Complexes 1 and 2 show efficient luminescent emission peaks at 435 and 452 nm assigned to MLCT excited states, and the emission decay lifetimes are 20.82 μs for 1 and 20.72 μs for 2, displaying strong room-temperature solid-state photoluminescence. Moreover, thermogravimetric analysis shows that the heat stability of polymers is 1>2.

  14. Suppression of antiferromagnetic interactions through Cu vacancies in Mn-substituted CuInSe2 chalcopyrites

    International Nuclear Information System (INIS)

    Yao Jinlei; Brunetta, Carl D; Aitken, Jennifer A

    2012-01-01

    Stoichiometric and Cu-poor Cu 0.95-x Mn 0.05 InSe 2 (x = 0-0.20) compounds were synthesized by high-temperature, solid-state reactions. The presence of copper vacancies is revealed by Rietveld refinements of combined neutron and x-ray powder diffraction data. The antiferromagnetic interaction is depressed by the copper deficiency, which may be explained as the competition between the antiferromagnetic Mn-Se-eMn superexchange interaction and the hole-mediated ferromagnetic exchange induced by the copper vacancy. The introduction of copper vacancies is proposed to be a viable route to impart carrier-mediated ferromagnetic exchange in the chalcopyrite-based dilute magnetic semiconductors. (paper)

  15. Imaging molecular interaction of NO on Cu(110) with a scanning tunneling microscope.

    Science.gov (United States)

    Okuyama, Hiroshi

    2014-10-01

    Molecular interaction on metal surfaces is one of the central issues of surface science for the microscopic understanding of heterogeneous catalysis. In this Personal Account, I review the recent studies on NO/Cu(110) employing a scanning tunneling microscope (STM) to probe and control the molecule-molecule interaction on the surface. An individual NO molecule was observed as a characteristic dumbbell-shaped protrusion, visualizing the 2π* orbital. By manipulating the intermolecular distance with the STM, the overlap of the 2π* orbital between two NO molecules was controlled. The interaction causes the formation of the bonding and antibonding orbitals below and above the Fermi level, respectively, as a function of the intermolecular distance. The 2π* orbital also plays a role in the reaction of NO with water molecules. A water molecule donates a H-bond to NO, giving rise to the down-shift of the 2π* level below the Fermi level. This causes electron transfer from the substrate to NO, weakening, and eventually rupturing, the N-O bond. The facile bond cleavage by water molecules has implications for the catalytic reduction of NO under ambient conditions. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CO interaction with Cu(I)-MCM-22 zeolite: density function theory investigation

    International Nuclear Information System (INIS)

    Viet Thang Ho; Petr Nachtigall

    2014-01-01

    MCM-22 zeolite has been widely used in many applications for catalysis and adsorption. Especially, this material exchanged with Cu + cation (Cu(I)-MCM-22) is an active catalyst in green chemical reaction, such as decomposition of NO and N 2 O. The local geometry of Cu + in vicinity of Al (III) replacement in six different Si (IV) sites and CO interaction with the most stable Cu + in each Al site were explored using periodic density functional theory (DFT) method. Th CO stretching frequencies were computed applying the ω/r scaling method in which frequencies were determined at high quantum level (couple cluster) and CO bond length calculated at DFT level. The results showed that Cu + cation located in the channel wall position and intersection position coordinated with 3 or 2 framework oxygen atoms, respectively, before CO adsorption and Cu + cation coordinated with 2 framework oxygen atoms after CO adsorption. The interaction energies between CO and Cu + cation were in range -148 to -195 kJ/mol -1 and CO frequencies exhibit two peak at 2151 and 2159 cm -1 in good agreement with experimental data. This investigation allows to understand the Cu + location in MCM-22 and CO adsorption in Cu(I)-MCM-22 zeolite. (author)

  17. Operations and Performance of RHIC as a Cu-Cu Collider

    CERN Document Server

    Pilat, Fulvia Caterina; Bai, Mei; Barton, Donald; Beebe-Wang, Joanne; Blaskiewicz, Michael; Brennan, Joseph M; Bruno, Donald; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Harvey, Margaret; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; Luo, Yun; MacKay, William W; Marr, Gregory J; Marusic, Al; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oerter, Brian; Ptitsyn, Vadim; Roser, Thomas; Russo, Thomas; Sandberg, Jon; Satogata, Todd; Schultheiss, Carl; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Zaltsman, Alex; Zeno, Keith; Zhang, S Y; Zhang, Wu

    2005-01-01

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

  18. Interaction of RBa sub 2 Cu sub 3 O sub x (R = Y or Nd) coatings with alumina and zirconia substrates. [YBaCuO; NdBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Champagne, B; Dallaire, S [National Research Council of Canada, Industrial Materials Research Inst., Boucherville, PQ (Canada)

    1989-12-10

    As-deposited YBa{sub 2}Cu{sub 3}O{sub x} coatings by plasma spraying are not superconducting because of their inadequate crystalline structure and low oxygen content. A post-deposition heat treatment in oxygen is required to restore the appropriate superconducting YBa{sub 2}Cu{sub 3}O{sub x} structure. During heat treatment, deterimental reactions between coatings and substrates may occur and lead to the degradation or destruction of the coating superconducting properties. In the present paper, interactions of RBa{sub 2}Cu{sub 3}O{sub x} (R = Y, Nd) coatings with alumina and zirconia substrates are examined. The modifications of the coating electrical properties and microstructure are studied using X-ray diffraction, energy dispersive X-ray analysis and resistivity measurements. Coating degradation is shown to occur by diffusion of the barium atoms out of the coating leading to the formation of Y{sub 2}BaCuO{sub 5} and CuO in yttrium-based coatings, and to the formation of nonstoichiometric Nd{sub 1+y}Ba{sub 2-y}Cu{sub 3}O{sub x} and CuO in neodymium-based coatings. The coating degradation is more important on alumina substrates that on zirconia substrates for both yttrium- and neodymium-based coatings. (orig.).

  19. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  20. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios

    DEFF Research Database (Denmark)

    Giordanino, Filippo; Vennestrøm, Peter N. R.; Lundegaard, Lars Fahl

    2013-01-01

    concentration of reduced copper centres, i.e. isolated Cu+ ions located in different environments, able to form Cu+(N2), Cu+(CO)n (n = 1, 2, 3), and Cu+(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples...... an intense and finely structured d–d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22 700 cm−1 band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from...

  1. Species dependence of [64Cu]Cu-Bis(thiosemicarbazone) radiopharmaceutical binding to serum albumins

    International Nuclear Information System (INIS)

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction: Interactions of three copper(II) bis(thiosemicarbazone) positron emission tomography radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods: 64 Cu-labeled diacetyl bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-PTSM) and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat and mouse serum. Results: The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/ml, '% free' (non-albumin-bound) levels of radiopharmaceutical were 4.0±0.1%, 5.3±0.2% and 38.6±0.8% for Cu-PTSM, Cu-ATSM and Cu-ETS, respectively. Conclusions: Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans

  2. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    Bodnar', I.V.

    2003-01-01

    The results of studies on the chemical interaction in the CuGaTe 2 -CuAlTe 2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe 2 -CuAlTe 2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity [ru

  3. Sb interactions with TaC precipitates and Cu in ion-implanted α-Fe

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Myers, S.M.

    1980-01-01

    The interactions of Sb with the other species implanted into Fe to form Fe-Ta-C-Sb and Fe-Cu-Sb alloys have been examined with transmission electron microscopy and Rutherford backscattering following annealing at 873 0 K. Trapping of Sb at TaC precipitates is observed in the former alloy just as was previously observed in Fe-Ti-C-Sb. In Fe-Cu-Sb, Sb interactions are governed by the atomic ratio of Sb to Cu. For ratios between 0.2 to 0.4, the compound β-Cu 3 Sb was observed to form. For Sb to Cu ratios approx.< 0.1, fcc Cu precipitates were observed. In addition to the expected Sb dissolution in Cu, Sb trapping by Cu precipitates is also observed. The binding enthalpy of Sb at both TaC and Cu precipitates with respect to a solution site in the bcc Fe is the same as observed for TiC, approx. 0.4 eV. The constancy of the binding enthalpy at such chemically dissimilar precipitates supports the hypothesis that the trapping is due to the structural discontinuity of the precipitate-host interface. The observed Sb trapping at precipitates is of potential significance for the control of temper embrittlement in bcc steels

  4. Species dependence of [{sup 64}Cu]Cu-Bis(thiosemicarbazone) radiopharmaceutical binding to serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Basken, Nathan E. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: nbasken@purdue.edu; Mathias, Carla J. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Lipka, Alexander E. [Department of Statistics, Purdue University, West Lafayette, IN 47907 (United States); Green, Mark A. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: magreen@purdue.edu

    2008-04-15

    Introduction: Interactions of three copper(II) bis(thiosemicarbazone) positron emission tomography radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods: {sup 64}Cu-labeled diacetyl bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-PTSM) and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat and mouse serum. Results: The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/ml, '% free' (non-albumin-bound) levels of radiopharmaceutical were 4.0{+-}0.1%, 5.3{+-}0.2% and 38.6{+-}0.8% for Cu-PTSM, Cu-ATSM and Cu-ETS, respectively. Conclusions: Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans.

  5. Oxidation of Cu(II) aminopolycarboxylates by carbonate radical. A flash photolysis study

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.

    1999-01-01

    Reactions of carbonate radical (CO 3 -. ) generated by photolysis or by radiolysis of a carbonate solution, with Cu(II) complexes of aminopolycarboxylic acids viz., Cu(II)ethylenediamine tetraacetate [Cu II EDTA] 2- and Cu(II)-iminodiacetate [Cu II IDA] were studied at pH 10.5 and ionic strength 0.2 mol x dm -3 . Time-resolved spectroscopy and kinetics for the transients were studied using flash photolysis and stable products arising from the ligand degradation of the complex were ascertained by steady-state radiolysis experiments. From the kinetic data it is observed that CO 3 -. radical reacts initially with Cu II -complex to form a transient intermediate having maximum absorption at 335 nm and 430 nm. From the subsequent reactions of this intermediate it was assigned to be Cu III .species. This Cu(III) species undergoes intermolecular electron transfer with the Cu II -complex to give a radical intermediate which again slowly reacts with Cu II -complex to give a long lived species containing Cu-C bond. This long lived species, however, slowly decomposed to give glyoxalic reaction between Cu III -complex and a suitable donor, the one electron reduction potential for [Cu III EDTA] 1- /[Cu II EDTA] 2- and [Cu III IDA] +1 /Cu II IDA was determined. (author)

  6. Crystal Structure of Cu/Zn Superoxide Dismutase from Taenia Solium Reveals Metal-mediated Self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    A Hernandez-Santoyo; A Landa; E Gonzalez-Mondragon; M Pedraza-Escalona; R Parra-Unda; A Rodriguez-Romero

    2011-12-31

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the {beta}2 strand, establishes a metal-mediated intermolecular {beta}-{beta} interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  7. Interface interaction and wetting of Sc2O3 exposed to Cu-Al and Cu-Ti melts

    International Nuclear Information System (INIS)

    Barzilai, S.; Nagar, H.; Froumin, N.; Frage, N.; Aizenshtein, M.

    2009-01-01

    Scandia is a thermodynamically stable oxide and could be used as a structural material for a crucible in order to avoid a melt contamination. In the present study wetting experiments of Cu-Al and Cu-Ti melts on Scandia substrate were preformed at 1423 K by a sessile drop method. It was established that Al and Ti additions lead to the improved wetting and that the final contact angle decreases with increasing the additives concentration. For Al containing melts, the contact angle changes gradually with time, and a relatively thick interaction layer, which consists of Al 2 O 3 , Sc 2 O 3 , and metallic channels, was formed at the Sc 2 O 3 /Cu-Al interface. For Ti containing melts, the final contact angle is achieved already during heating, and an extremely thin layer based on a Ti-Sc-O compound was detected by AES at the Sc 2 O 3 /Cu-Ti interface. The results of a thermodynamic analysis, which takes into account the formation free energy of the oxides, involved in the systems, and the thermodynamic properties of the liquid solutions are in a good agreement with the experimental observations. (orig.)

  8. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  9. An Interaction of Rhamnolipids with Cu2+ Ions

    Directory of Open Access Journals (Sweden)

    Jolanta Cieśla

    2018-02-01

    Full Text Available This study was focused on the description of interaction between Cu2+ ions and the 1:1 mono- and dirhamnolipid mixtures in the premicellar and aggregated state in water and 20 mM KCl solution at pH 5.5 and 6.0. The critical micelle concentration of biosurfactants was determined conductometrically and by the pH measurements. Hydrodynamic diameter and electrophoretic mobility were determined in micellar solutions using dynamic light scattering and laser Doppler electrophoresis, respectively. The copper immobilization by rhamnolipids, methylglycinediacetic acid (MGDA, and ethylenediaminetetraacetic acid (EDTA was estimated potentiometrically for the Cu2+ to chelating agent molar ratio from 16:100 to 200:100. The degree of ion binding and the complex stability constant were calculated at a 1:1 metal to chelant molar ratio. The aggregates of rhamnolipids (diameter of 43–89 nm were negatively charged. Biosurfactants revealed the best chelating activities in premicellar solutions. For all chelants studied the degree of metal binding decreased with the increasing concentration of the systems. The presence of K+ lowered Cu2+ binding by rhamnolipids, but did not modify the complex stability significantly. Immobilization of Cu2+ by biosurfactants did not cause such an increase of acidification as that observed in MGDA and EDTA solutions. Rhamnolipids, even in the aggregated form, can be an alternative for the classic chelating agents.

  10. Electron spin resonance and electron spin echo modulation studies of Cu(II) ions in the aluminosilicate chabazite: A comparison of Cu(II) cation location and adsorbate interaction with isostructural silicoaluminophosphate-34

    International Nuclear Information System (INIS)

    Zamadics, M.; Kevan, L.

    1992-01-01

    This study focuses on Cu(II) ions exchanged in the aluminosilicate zeolite chabazite. The various Cu(II) species formed after dehydration, rehydration, and exposure to adsorbates are characterized by electron spin resonance and electron spin echo modulation spectroscopies. These results are interpreted in terms of Cu(II) ion location and adsorbate interaction. The results of this study are compared to the results found earlier for SAPO-34, chabazite's structural analog from the silicoaluminophosphate group. In a hydrated sample of chabazite the Cu(II) ions are found to be in a near octahedral environment coordinated to three nonequivalent water molecules and three framework oxygens. The most probable location of the Cu(II) ion in a hydrated sample is above the plane of the six-membered ring slightly displaced into the ellipsoidal cavity. A somewhat similar location and coordination is found for Cu(II) ions in H-SAPO-34. A feature common to both CuH-chabazite and CuH-SAPO-34 is the generation of two distinct Cu(II) species upon dehydration. It is found that Cu(II) cations in chabazite interact with the various adsorbate molecules in a similar manner as Cu(II) cation in H-chabazite and three molecules of ethanol and three propanol molecules. Only the Cu(II) ions located in the hexagonal rings after dehydration were found to complex with ethylene. The differences observed in the interaction of the Cu(II) in with water, propanol, and ehtylene between SAPO-34 and chabazite can be related to the differing cation densities of these two materials. 32 refs., 7 figs., 21 tabs

  11. Deuterium transport in Cu, CuCrZr, and Cu/Be

    Science.gov (United States)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  12. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  13. First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy

    Institute of Scientific and Technical Information of China (English)

    Min Tang; Hengbo Li; Wentao Yuan; Shihui Zou; Chenghua Sun; Yong Wang

    2017-01-01

    PdCu catalysts play a key role in several hydrogen-involved processes. Among these reactions, the interaction of hydrogen with PdCu essentially determines the catalytic performance. However, the response of PdCu to surrounding hydrogen has been poorly investigated, especially for specific facets of PdCu at different environment.In this work, taking temperature and hydrogen pressure into account, we studied the hydrogen-surface interactions for four low-index surfaces of PdCu through first-principles calculations. It was found that H-PdCu adsorption strong relies on the facets, hydrogen coverage, and reaction environment (temperature and H-pressure).Our work highlights the importance of the environment on the nature of catalyst surfaces and reactions and offers a plausible way to investigate the interactions between gas and the surfaces of nanocatalysts in real reactions.

  14. First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy

    Directory of Open Access Journals (Sweden)

    Min Tang

    2017-12-01

    Full Text Available PdCu catalysts play a key role in several hydrogen-involved processes. Among these reactions, the interaction of hydrogen with PdCu essentially determines the catalytic performance. However, the response of PdCu to surrounding hydrogen has been poorly investigated, especially for specific facets of PdCu at different environment. In this work, taking temperature and hydrogen pressure into account, we studied the hydrogen-surface interactions for four low-index surfaces of PdCu through first-principles calculations. It was found that H-PdCu adsorption strong relies on the facets, hydrogen coverage, and reaction environment (temperature and H-pressure. Our work highlights the importance of the environment on the nature of catalyst surfaces and reactions and offers a plausible way to investigate the interactions between gas and the surfaces of nanocatalysts in real reactions.

  15. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  16. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  17. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  18. Theoretical study of band gap in CuAlO2: Pressure dependence and self-interaction correction

    International Nuclear Information System (INIS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-01-01

    By using first-principles calculations, we studied the energy gaps of delafossite CuAlO 2 : (1) pressure dependence and (2) self-interaction correction (SIC). Our simulation shows that CuAlO 2 transforms from a delafossite structure to a leaning delafossite structure at 60 GPa. The energy gap of CuAlO 2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO 2 . The energy gap calculated within the SIC is close to experimental data while one calculated without the SIC is about 1 eV smaller than the experimental data.

  19. Coalescence of 3-phenyl-propynenitrile on Cu(111) into interlocking pinwheel chains

    Science.gov (United States)

    Luo, Miaomiao; Lu, Wenhao; Kim, Daeho; Chu, Eric; Wyrick, Jon; Holzke, Connor; Salib, Daniel; Cohen, Kamelia D.; Cheng, Zhihai; Sun, Dezheng; Zhu, Yeming; Einstein, T. L.; Bartels, Ludwig

    2011-10-01

    3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

  20. Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface.

    Science.gov (United States)

    Cruguel, Hervé; Méthivier, Christophe; Pradier, Claire-Marie; Humblot, Vincent

    2015-07-01

    The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. © 2015 Wiley Periodicals, Inc.

  1. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity

    Science.gov (United States)

    Yu, Cuiping; Cui, Jiewu; Wang, Yan; Zheng, Hongmei; Zhang, Jianfang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2018-05-01

    Self-supported CuO/Cu2O@CuO/Cu2O core-shell nanowire arrays (NWAs) are successfully fabricated by a simple and efficient method in this paper. Anodized Cu(OH)2 NWAs could in-situ convert to HKUST-1 at room temperature easily. Cu(OH)2 NWAs cores and HKUST-1 shells transform into CuO/Cu2O simultaneously after calcinations and form CuO/Cu2O@CuO/Cu2O core-shell NWAs. This smart configuration of the core-shell structure not only avoids the agglomeration of the traditional MOF-derived materials in particle-shape, but also facilitates the ion diffusion and increases the active sites. This novel structure is employed as substrate to construct nonenzymatic glucose sensors. The results indicate that glucose sensor based on CuO/Cu2O@CuO/Cu2O core-shell NWAs presents ultrahigh sensitivity (10,090 μA mM-1 cm-2), low detection limit (0.48 μM) and wide linear range (0.99-1,330 μM). In addition, it also shows excellent anti-interference ability toward uric acid, ascorbic acid and L-Cysteine co-existing with glucose, good reproducibility and superior ability of real sample analysis.

  2. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  3. Crystal structure and characterization of a novel layered copper-lithium phosphonate with antiferromagnetic intrachain Cu(II)···Cu(II) interactions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelbaky, Mohammed S.M. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain); Amghouz, Zakariae [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); Department of Materials Science and Metallurgical Engineering, University of Oviedo, Campus Universitario, 33203 Gijón (Spain); Blanco, David Martínez [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago; García, José R. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain)

    2017-04-15

    Novel metal phosphonate [CuLi(PPA)] [H{sub 3}PPA=3-phosphonopropionic acid] was synthesized hydrothermally and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. It crystallizes in the space group C2/c, with cell parameters a=21.617(2) Å, b=4.9269(2) Å, c=14.342(1) Å, β=132.3(2)°, and Z=8. Its framework is built up from a main trimer, acting as a secondary building unit (SBU), which is formed by vertex-shared between two (LiO{sub 4}) and one (Cu(1)O{sub 4}) polyhedra. These units repeat along b-axis forming infinite inorganic chains, these chains are in turn cross-linked by corner sharing with (Cu(2)O{sub 4}) polyhedra to produce inorganic layers lying in the bc-plane. The neighboring layers are connected through the PPA ligand, leading to a 3D pillared-layered structure. The topological analysis reveals that the compound exhibits 3,4,10-c net. Finally, magnetic susceptibility measurement of this compound over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic intrachain interactions. - Graphical abstract: Hydrothermal synthesis and structural characterization of a novel lithium-copper phosphonate, formulated as [CuLi(PPA)] (H{sub 3}PPA=3-phosphonopropionic acid), have been reported. This compound has a 3D pillared-layered structure with 3,4,10-c net topology. The magnetic susceptibility data over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic interactions. - Highlights: • Novel metal phosphonate, [CuLi(PPA)] (1), has been synthesized and characterized. • Compound 1 has a 3D pillared-layered structure with 3,4,10-c net topology. • Magnetic susceptibility data reveals the occurrence of weak antiferromagnetic interactions.

  4. Cu/Cu{sub 2}O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Kaushik, S.D. [UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, BARC, Mumbai 400085 (India); Tripathi, Shilpa [UGC-DAE Consortium for Scientific Research, Indore, M.P. (India)

    2016-12-30

    Highlights: The salient features of this research article are following: • Mixed phase synthesis of Cu/Cu{sub 2}O/CuO nanoparticles prepared by Exploding Wire Technique (EWT). • Predominant Cu/Cu{sub 2}O phases along with minor CuO phase revealed through XRD, TEM, Raman, FTIR, UV–Visible and PL analyses. • XPS analysis provided direct evidences of Cu{sup 2+} and Cu{sup +} along with O deficiency for prepared nanoparticles. • Room temperature weak ferromagnetic behaviour was demonstrated for Cu/Cu{sub 2}O/CuO nanoparticles. - Abstract: In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu{sub 2}O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu{sub 2}O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu{sub 2}-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu{sub 2}O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu{sub 2}O/CuO nanoparticles are reflected through UV–vis (UV–vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes

  5. Measurements of the electric field gradient at cadmium in YBa2Cu3Ox, Y2BaCuO5 and Y2Cu2O5

    International Nuclear Information System (INIS)

    Saitovitch, H.; Silva, P.R.J.

    1990-01-01

    The electric Field Gradient (EFG) at diluted Cd sup(111) in YBa sub(2)Cu sub(3)O sub(x) was measured by Angular Correlation (AC). In order to determine the atom-probe localization, AC measurements were also, performed on Y sub(2)BaCuO sub(5). A nuclear electric quadrupole interaction frequency (NQIF) was associated with Cd sup(111) in YBa sub(2)Cu sub(3) O sub(x) Cu(1) site. (author)

  6. CH{sub 4} dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ling, Lixia [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2015-06-30

    Highlights: • Adsorbed Rh atom on Cu catalyst exhibits better catalytic activity for CH{sub 4} dehydrogenation. • The adsorbed Rh atom is the reaction active center for CH{sub 4} dehydrogenation. • The morphology of Cu substrate has negligible effect on CH{sub 4} dehydrogenation. - Abstract: In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH{sub 4} dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH{sub 4} dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol{sup −1} on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol{sup −1} on RhCu(1 1 1) surface, and to 180.0 kJ mol{sup −1} on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH{sub 4} complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH{sub 4}, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH{sub 4} dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the

  7. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    Science.gov (United States)

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  8. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Solid-state interaction between nickel and YBa/sub 2/Cu/sub 3/O/sub x/

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, B; Parent, L; Moreau, C

    1989-01-01

    As part of a search for suitable metals for use in composite cables made up of high-temperature superconductors in a metallic matrix, the solid-state reaction between nickel and YBa/sub 2/Cu/sub 3/O/sub x/ was studied. Green compacts of YBa/sub 2/Cu/sub 3/O/sub x/ were hot isostatically pressed (HIPed) in nickel. The microstructure, density and nature of phases present in HIPed parts were characterized. Resistivity measurements indicated that HIPed parts are not superconducting owing to the loss of oxygen and required an annealing step in oxygen for restoring superconductivity. The diffusion of nickel into YBa/sub 2/Cu/sub 3/O/sub x/ as well as the diffusion of Ba, Cu and Y into nickel was very limited. However, a thin interaction zone consisting of a nickel-rich oxide compound was formed at the Ni-YBa/sub 2/Cu/sub 3/O/sub x/ interface. The presence of such an interaction zone could have a detrimental effect on the thermal stabilization of Ni-YBa/sub 2/Cu/sub 3/O/sub x/ composite wires. 7 refs., 6 figs., 1 tab.

  10. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Science.gov (United States)

    Sahai, Anshuman; Goswami, Navendu; Kaushik, S. D.; Tripathi, Shilpa

    2016-12-01

    In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu2O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu2O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu2-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu2O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu2O/CuO nanoparticles are reflected through UV-vis (UV-vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes occurring therein. Iterative X-ray photoelectron spectroscopy (XPS) fitting of core level spectra of Cu (2p3/2) and O (1s), divulges presence of Cu2+ and Cu+ in the lattice with an interesting evidence of O deficiency in the lattice structure and surface adsorption. Magnetic analysis illustrates that the prepared nanomaterial demonstrates ferromagnetic behaviour at room temperature.

  11. /Cu-Al System

    Science.gov (United States)

    Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum

    2014-05-01

    Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.

  12. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    Science.gov (United States)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio rationally tailor the graphene crystal morphology and orientation.

  13. Dinuclear Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands: synthesis, structure, and magnetic properties.

    Science.gov (United States)

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia

    2012-05-07

    Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).

  14. Electronic states of the θ' phase in Cu-Al alloys as compared to C16-CuAl2: Cu Lα emission excited directly by undulator radiation

    Science.gov (United States)

    Dallera, C.; de Michelis, B.; Puppin, E.; Braicovich, L.; Brookes, N. B.

    1996-01-01

    The electronic states of the θ' phase formed by thermal aging in the Al-Cu (0.5 at. %) alloy are compared with those in C16-CuAl2, which is the final phase separated at equilibrium. This is done by means of Cu Lα fluorescence spectroscopy. The high brilliance of undulator radiation used as an excitation source is exploited. The spectra are taken using the first harmonic of the undulator at 1.7 keV, with a full width half maximum of ~250 eV. A narrowing of around 0.5 eV of the Cu Lα spectra in the θ' phase is found. This is explained in terms of the differences in the Cu 3d-Cu 3d interaction in the two phases and of the hybridization between Cu 3d and the nearly free-electron-like electrons. The results demonstrate the future possibilities of fluorescence spectroscopy of minority species in inhomogeneous systems.

  15. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  16. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu-(cytidine) and Cu-(uridine)

    Science.gov (United States)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H.; Guevara-García, Alfredo; Martínez, Ana

    2011-02-01

    The copper-nucleoside anions, Cu-(cytidine) and Cu-(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu-(cytidine) and Cu-(uridine), respectively. According to our calculations, Cu-(cytidine) and Cu-(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu-(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  17. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu(-)(cytidine) and Cu(-)(uridine).

    Science.gov (United States)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H; Guevara-García, Alfredo; Martínez, Ana

    2011-02-07

    The copper-nucleoside anions, Cu(-)(cytidine) and Cu(-)(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu(-)(cytidine) and Cu(-)(uridine), respectively. According to our calculations, Cu(-)(cytidine) and Cu(-)(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu(-)(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  18. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.

    Science.gov (United States)

    Kim, Bojeong; McBride, Murray B

    2009-01-01

    A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

  19. The electric and thermoelectric properties of Cu(II)-Schiff base nano-complexes

    Science.gov (United States)

    Ibrahim, E. M. M.; Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Elshafaie, A.; Hamdan, Samar Kamel; Ahmed, A. M.

    2018-05-01

    The physical properties, such as electric and optical properties, of metal-Schiff base complexes have been widely investigated. However, their thermoelectric (TE) properties remain unreported. This work presents Cu(II)-Schiff base complexes as promising materials for TE power generation. Therefore, three Cu(II)-Schiff base complexes (namely, [Cu(C32H22N4O2)].3/2H2O, [Cu(C23H17N4O7Br)], and [Cu(C27H22N4O8)].H2O) have been synthesized in nanosized scale. The electric and TE properties have been studied and comprehensive discussions have been presented to promote the nano-complexes (NCs) practical applications in the field of TE power generation. The electrical measurements confirm that the NCs are semiconductors and the electrical conduction process is governed by intermolecular and intramolecular transfer of the charge carriers. The TE measurements reveal that the Cu(II)-Schiff base NCs are nondegenerate P-type semiconductors. The measured Seebeck coefficient values were higher compared to the values reported in previous works for other organic materials indicating that the complexes under study are promising candidates for theremoelectric applications if the electrical conductivity could be enhanced.

  20. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 Catalysts for Direct NO Decomposition

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christiansen, Sofie E.

    2006-01-01

    Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Here, it is discovered that both Cu-ZSM-11 and Cu-ZSM-12 are about twice as active as Cu-ZSM-5. This difference is attributed to the active sites located almost exclusively in the straight zeolite pores...

  1. Control of interfacial charge-transfer interaction of dye and p-CuI in solid-state dye-sensitized solar cells

    Science.gov (United States)

    Moribe, Shinya; Kato, Naohiko; Higuchi, Kazuo; Mizumoto, Katsuyoshi; Toyoda, Tatsuo

    2017-04-01

    We systematically investigated the photovoltaic and absorption characteristics of solid-state dye-sensitized solar cells with CuI to elucidate the impact of the interaction between the dye and CuI. For the ruthenium complex N719, the incident photon-to-current conversion efficiency (IPCE) on the longer-wavelength side decreased owing to the change of the metal-to-ligand charge transfer (CT) of N719 due to the interaction between the thiocyanate groups of N719 and CuI. In contrast, when D149 — which included rhodanine groups — was used, the interaction with CuI and the resultant CT increased the IPCE. The results provide a new strategy for improving the photovoltaic performance by controlling the interfacial CT between the dye and CuI.

  2. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids

    Energy Technology Data Exchange (ETDEWEB)

    El-Trass, A.; ElShamy, H.; El-Mehasseb, I. [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt); El-Kemary, M., E-mail: elkemary@yahoo.com [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt)

    2012-01-15

    Cupric oxide (CuO) nanoparticles with an average size of 6 nm have been successfully prepared by an alcothermal method. The prepared CuO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) and UV-visible absorption spectroscopy. A strong sharp emission under UV excitation is reported from the prepared CuO nanoparticles. The results show that the CuO nanoparticles have high dispersion and narrow size distribution. The fluorescence emission spectra display an intense sharp emission at 365 nm and weak broad intensity emission at 470 nm. Picosecond fluorescence measurements of the nanoparticles suggest bi-exponential function giving time constants of {tau}{sub 1} (330 ps, 94.21%) and {tau}{sub 2} (4.69 ns, 5.79%). In neutral and alkaline solutions, Zeta potential values of CuO nanoparticles are negative, due to the adsorption of COO{sup -} group via the coordination of bidentate. At low pH the zeta potential value is positive due to the increased potential of H{sup +} ions in solution. Comparative UV-visible absorption experiments with the model amino acid compounds of positive and negative charges as arginine and aspartic acid, respectively confirmed the negative surface of CuO nanoparticles. The results should be extremely useful for understanding the mode of the interaction with biological systems. This binding process also affects the particle's behavior inside the body.

  3. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  4. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Andersen, Ulrik Grønbjerg; Thyssen, Anders

    2010-01-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar...... simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation...... is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation...

  5. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    International Nuclear Information System (INIS)

    Darma, Yudi; Rusydi, Andrivo; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun

    2014-01-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films

  6. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    Science.gov (United States)

    Darma, Yudi; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun; Rusydi, Andrivo

    2014-02-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.

  7. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  8. Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kiyoyuki Terakura

    2012-08-01

    Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.

  9. Magnetic excitations in CuO

    International Nuclear Information System (INIS)

    Ain, M.; Reichardt, W.; Hennion, B.; Pepy, G.; Wanklyn, B.M.

    1989-01-01

    The authors have studied the magnetic excitations of CuO both in the ordered and the paramagnetic phase. Their results demonstrate the dominance of the magnetic interaction along the 10-1 Cu-O zigzag chains. In this direction the slope of the acoustic branch is 550 neV Angstrom

  10. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  11. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  12. Surface structure and morphology of Cu-free and Cu-covered Au(100) and Au(111) electrodes in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Schlaup, Christian [Technical University of Denmark, Department of Physics, Fysikvey, DK-2800 Kongens Lyngby (Denmark); Friebel, Daniel [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wandelt, Klaus [University of Bonn, Institute for Physical und Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn (Germany)

    2011-07-01

    For both Cu-free Au-electrodes three different phases were observed as a function of the applied electrode potential. While at low potentials the onset of surface reconstruction points towards an apparently adsorbate free surface and, thus, a weak interaction with species from the electrolyte, a Au-hydroxide and a Au-oxide phase are formed subsequently during potential increase. A similar phase behavior was also found for Cu-covered Au-electrodes, while at low potentials an apparently adsorbate free Cu layer is observed, a Cu-hydroxide coadsorbate phase and a Cu-oxide phase are formed under increased potential conditions. In addition the apparently adsorbate free Cu-film tends to form a Cu-Au alloy phase while keeping the electrode for a sufficient long time at low potential conditions.

  13. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  14. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio

    Science.gov (United States)

    Noureen, Aasma; Jabeen, Farhat; Tabish, Tanveer A.; Yaqub, Sajid; Ali, Muhammad; Shakoor Chaudhry, Abdul

    2018-04-01

    Recently, Cu-based nanoparticles have drawn considerable attention for their various fascinating roles in multiple biological systems. It is recognized that their frequent use can create compatibility challenges for the recipient systems. Nevertheless, it is unclear how various biological interactions affect the compatibility of Cu oxide II (CuO) and Cu oxide nanoparticles (Cu-NPs) for different organisms. Consequently, it has been difficult to perform structured risk assessments for their use in biological systems. Therefore, this study compared the effects of different doses of waterborne Cu-NPs and CuO on the blood and liver of selected groups of Cyprinus (C) carpio. These fish while housed in suitable water tanks were exposed to one of the following treatments for 14 d: control (no added Cu) or 0.5 or 1 or 1.5 mg Cu as Cu-NPs or CuO l-1 of water. We found significant changes in all assessed blood parameters of fish in response to increasing doses from 0 to 1.5 mg of Cu-NPs or CuO. Similarly, increased levels of lipid peroxide and reduced glutathione (GSH) were also observed in the livers of C. carpio in Cu-NPs or CuO treated groups. Enhanced levels of lipid peroxidation and GSH were also recorded in the Cu-NP treated groups compared with the CuO treated groups in a dose dependent manner. The lowest catalase activity was observed in the liver of C. carpio treated with the higer dose of Cu-NPs. Cu-NP or CuO exposure induced significant histological alterations in the liver of C. carpio including focal necrosis, cloudy swelling of hepatocytes, degenerative hepatocytes, vacuolization, pyknotic nuclei, damaged central vein, nuclear hypertrophy, dilated sinusoid, vacuolated degeneration, congestion, and complete degeneration in a dose dependent manner. Substantial alterations in blood and liver specimens were observed in the Cu-NP treated fish when compared with the CuO treated fish. It appeared that the Cu-NPs were more toxic than the CuO as shown by the hemato- and

  15. High-temperature in-situ TEM straining of the interaction with dislocations and particles for Cu-added ferritic stainless steel.

    Science.gov (United States)

    Kobayashi, Shuhei; Kaneko, Kenji; Yamada, Kazuhiro; Kikuchi, Masao; Kanno, Norihiro; Hamada, Junichi

    2014-11-01

    IntroductionCu is always present in the matrix when ferritic steels were prepared from ferrous scrap. When the ferritic steels are aged thermally, Cu precipitates start appear and disperse finely and homogeneously [1], which may make the steels strengthened by precipitation hardening. In this study, the interaction between Cu precipitates and dislocations was exmined via high-temperature in-situ TEM straining. ExperimentalCu-added ferritic stainless steel (Fe-18.4%Cr-1.5%Cu) was used in the present study. Specimen was aged at1073 K for 360 ks. Samples for TEM observation were prepared by focused ion beam (FIB; Quanta 3D 200i) method. Microstructure of specimen was analyzed by JEM-3200FSK and high-temperature in-situ TEM straining was conducted using JEM-1300NEF. Results and discussionInteraction between Cu precipitates and dislocation is seen from consecutive TEM images acquired by in-situ TEM straining at 1073 K, as shown in Fig.1. The size of Cu precipitates was about 70 nm and several dislocations were present within the field of view. In particular, progressing dislocations contacted with the Cu precipitate at right angle, as indicated by arrows in Fig.1 (b) to (d). This result implies that there is an attractive interaction between dislocations and the Cu precipitate. This is attributed to the fact that Stress field of dislocations was easily relaxed in interface between the Cu precipitate and matrix because of lattice and interface diffusion as well as slip in the interface [2,3]. Furthermore, dislocations pass through the particle after contacting it, so that the interaction with dislocations and particles should be explained by Srolovitz mechanism [4].jmicro;63/suppl_1/i28/DFU083F1F1DFU083F1Fig. 1.TEM images foucused on interaction with dislocations and partticles. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons; Produccion de {sup 62} Cu y {sup 64} Cu con deuterones de 4,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Mario; Morales, J R; Riquelme, H O [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, {beta}{sup +}) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 {+-} 0,1 MeV energy has been obtained total yields of 1,103 {+-} 0,011 {mu}Cl/{mu}Ah medium for 62 Cu and of 0,148 {+-} 0,015 {mu}Cl/{mu}Ah for 64 Cu.

  17. Grain interaction effects in polycrystalline Cu

    DEFF Research Database (Denmark)

    Thorning, C.; Somers, Marcel A.J.; Wert, John A.

    2005-01-01

    Crystal orientation maps for a grain in a deformed Cu polycrystal have been analysed with the goal of understanding the effect of grain interactions on orientation subdivision. The polycrystal was incrementally strained in tension to 5, 8, 15 and 25% extension; a crystal orientation map...... was measured after each strain increment. The measurements are represented as rotations from the initial crystal orientation. A coarse domain structure forms in the initial 5% strain increment and persists at higher strains. Crystal rotations for all coarse domains in the grain are consistent with the full...... range of Tailor solutions for axisymmetric strain; grain interactions are not required to account for the coarse domain structure. Special orientation domains extend 20-100 µm into the grain at various locations around its periphery. The special orientation domain morphologies include layers along...

  18. The nature of interactions between [Cu2Cl3]−-based ionic liquid and thiophene – A theoretical study

    Directory of Open Access Journals (Sweden)

    Renqing Lü

    2016-05-01

    Full Text Available In an effort to deepen the understanding of nature of interactions between CuCl-based ionic liquids and thiophene, the electronic and topological properties of interactions between 1-butyl-3-methylimidazolium ([BMIM]+[Cu2Cl3]− and thiophene (TS have been investigated by the density functional theory. The occurrence of interactions caused by resonance effects between virtual orbitals of Cu and virtual orbitals of thiophene has been corroborated at the molecular level.

  19. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  20. Preparation of conductive Cu patterns by directly writing using nano-Cu ink

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Wenjiang; Wei, Jun [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Tan, Junjun [School of Chemical and Materials and Engineering, Hubei University of Technology, Hubei 435003 (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-07-01

    Conductive and air-stable Cu patterns were directly made on ordinary photo paper using a roller pen filled with nano-Cu ink, which was mainly composed of metallic Cu nanoparticles (NPs) capped with poly(N-vinylpyrrolidone) (PVP). The nano-Cu NPs were obtained via the reduction of Cu{sup 2+} ions by using an excess of hydrazine and PVP. The low sintering temperature (160 °C) in Ar atmosphere played an important role for the preparation of air-stable Cu patterns. The conductivity of a radio-frequency identification antenna made from nano-Cu ink was tested by a lamp, and its resistivity achieved 13.4 ± 0.4 μΩ cm. The Cu NPs were confirmed by means of X-ray powder diffraction and X-ray photoelectron spectra, and the Cu patterns were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. A mechanism for the high conductivity of the Cu pattern made from Cu NPs is proposed. - Highlights: • The synthesis of pure Cu is related to the reducing agent and capping agent. • The sintering under Ar atmosphere prevents Cu pattern's rapid oxidation. • The formation of the bulk Cu decreases the resistivity of the Cu pattern.

  1. Cu/Cu{sub 2}O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli, E-mail: zhaoxiaoli_zxl@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Tan, Yixin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wu, Fengchang, E-mail: wu_fengchang@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Niu, Hongyun [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Zhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Cai, Yaqi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Giesy, John P. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-11-15

    A simple, novel method for synthesis of Cu/Cu{sub 2}O/CuO on surfaces of carbon (Cu/Cu{sub 2}O/CuO@C) as a non-noble-metal catalyst for reduction of organic compounds is presented. Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less expensive. Characterization of the Cu/Cu{sub 2}O/CuO@C composites by high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), infrared spectroscopy and Raman analysis, revealed that it was composed of graphitized carbon with numerous nanoparticles (100 nm in diameter) of Cu/CuO/Cu{sub 2}O that were uniformly distributed on internal and external surfaces of the carbon support. Gallic acid (GA) has been used as both organic ligand and carbon precursor with metal organic frameworks (MOFs) as the sacrificial template and metal oxide precursor in this green synthesis. The material combined the advantages of MOFs and Cu-containing materials, the porous structure provided a large contact area and channels for the pollutions, which results in more rapid catalytic degradation of pollutants and leads to greater efficiency of catalysis. The material gave excellent catalytic performance for organic dyes and phenols. In this study, Cu/Cu{sub 2}O/CuO@C was used as catalytic to reduce 4-NP, which has been usually adopted as a model reaction to check the catalytic ability. Catalytic experiment results show that 4-NP was degraded approximately 3 min by use of 0.04 mg of catalyst and the conversion of pollutants can reach more than 99%. The catalyst exhibited little change in efficacy after being utilized five times. Rates of degradation of dyes, such as Methylene blue (MB) and Rhodamine B (RhB) and phenolic compounds such as O-Nitrophenol (O-NP) and 2-Nitroaniline (2-NA) were all similar. - Highlights: • We present an effective catalyst for reductive degradation of organic dyes and phenols in water. • Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less

  2. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami; Deng, Shuo; Ganesan, Pugalenthi; Kumar, Alan Prem; Lim, Kiat Hon; Yang, Henry; Hooi, Shing Chuan; Goh, Yaw Chong; Maciver, Sutherland K.; Pervaiz, Shazib; Yap, Celestial T.

    2016-01-01

    , and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained

  3. Controlled Synthesis of Heterostructured SnO2-CuO Composite Hollow Microspheres as Efficient Cu-Based Catalysts for the Rochow Reaction

    Directory of Open Access Journals (Sweden)

    Hezhi Liu

    2018-04-01

    Full Text Available In this work, we report the design and synthesis of a series of heterostructured SnO2-CuO hollow microspherical catalysts (H-SnO2(x-CuO, x is the weight ratio of Sn/Cu for the Rochow reaction. The microspherical catalysts with nanosheets and nanoparticles as building blocks were prepared by a facile one-pot hydrothermal method coupled with calcination. When tested for the Rochow reaction, the prepared H-SnO2(0.2-CuO composite exhibited higher dimethyldichlorosilane selectivity (88.2% and Si conversion (36.7% than the solid CuO, hollow CuO and other H-SnO2(x-CuO microspherical samples, because in the former there is a stronger synergistic interaction between CuO and SnO2.

  4. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  5. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  6. In-situ STM study of phosphate adsorption on Cu(111), Au(111) and Cu/Au(111) electrodes

    DEFF Research Database (Denmark)

    Schlaup, Christian; Horch, Sebastian

    2013-01-01

    The interaction of Cu(111), Au(111) and Cu-covered Au(111) electrodes with a neutral phosphate buffer solution has been studied by means of cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (EC-STM). Under low potential conditions, both the Cu(111) and the Au(111......) surface appear apparently adsorbate free, indicated by the presence of a (4×4) structure and the herringbone surface reconstruction, respectively. Upon potential increase, phosphate anions adsorb on both surfaces and for Cu(111) the formation of a (√3×√3)R30° structure is found, whereas on Au(111) a "(√3......×√7)" structure is formed. For a Cu-submonolayer on Au(111), coadsorption of phosphate anions leads to the formation of a (2×2) vacancy structure within an assumed pseudomorphic structure of the Cu-submonolayer with the phosphate anions occupying the vacancies. When desorbing the phosphate anions at low...

  7. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  8. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  9. Intermolecular interaction of photoexcited Cu(/TMpy-P4) with water studied by transient resonance Raman and picosecond absorption spectroscopies

    NARCIS (Netherlands)

    Kruglik, S.; Kruglik, Sergei G.; Ermolenkov, Vladimir V.; Shvedko, Alexander G.; Orlovich, Valentine A.; Galievsky, Victor A.; Chirvony, Vladimir S.; Otto, Cornelis; Turpin, Pierre-Yves

    1997-01-01

    photoinduced complex between Cu(TMpy-P4) and water molecules, reversibly axially coordinated to the central metal, was observed in picosecond transient absorption and nanosecond resonance Raman experiments. This complex is rapidly created (τ1 = 15 ± 5 ps) in the excited triplet (π, π*) state of

  10. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Jiamusi University, Jiamusi 154007 (China); Zheng, Lanlan [Jiamusi University, Jiamusi 154007 (China); Liu, Jie [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Dept. of Prosthodontics, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003 (China); Bai, Bing [Dept. of Prosthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110001 (China); Liu, Cong [Jiamusi University, Jiamusi 154007 (China)

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation.

  11. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Zheng, Lanlan; Liu, Jie; Bai, Bing; Liu, Cong

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation

  12. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis......) reveals a broad high temperature desorption state for CO2 with peak maximum around 450 K. X-ray photoelectron spectroscopy (XPS) shows that approximately one third of the oxygen accumulated on the surface upon CO2 exposure remains after TPD, indicative of carbonate formation via CO2 dissociation supplying...... O-ads and then facile CO2 + O-ads association, as well as subsequent decomposition at higher temperatures. Density functional theory studies of stepped Cu and Cu/Pt slabs reproduce vibrational frequencies of the carbonate, suggesting a nearly flat tridentate configuration at steps/defect sites....

  13. Renal Cu and Na excretion and hepatic Cu metabolism in both Cu acclimated and non acclimated rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Grosell, M.; Hogstrand, C.; Wood, C.M.

    1998-01-01

    protein depending on whether the Cu is derived from recent branchial uptake or is already present in the plasma prior to Cu-64 exposure. The plasma Cu pool derived from recent branchial uptake and the Cu pool present in the plasma prior to Cu-64 exposure is accessible to renal excretion to different...... Na+ efflux decreased by 40%, which was largely due to increased tubular Na+ reabsorption. Renal compensation for the impaired branchial Na+ uptake, seen during Cu exposure, thus seems to be involved in Cu acclimation in rainbow trout. (C) 1998 Elsevier Science B.V....

  14. Degradation of contaminants by Cu{sup +}-activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu{sup 3+})

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yong, E-mail: fengy@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Lee, Po-Heng, E-mail: phlee@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wu, Deli, E-mail: wudeli@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Zhou, Zhengyuan, E-mail: zzy247@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, Hangkong, E-mail: hangkong@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-06-05

    Highlights: • Sulfadiazine and methylene blue were nearly completely degraded by Cu{sup +}-O{sub 2} oxidation. • Reaction of Cu{sup +} and hydrogen peroxide produced Cu{sup 3+} as the major active species. • 5,5-dimethyl-2-hydroxypyrrolidine-N-oxyl (DMPO-OH) was found in the reaction process. • Benzoic acid and electron paramagnetic resonance are not capable to differentiate Cu{sup 3+} and ·OH. - Abstract: Copper ions (Cu{sup 2+} and Cu{sup +}) have shown potential as Fenton-like activators for the circumneutral removal of organic contaminants from aqueous solutions. However, the major active species (cupryl species (Cu{sup 3+}) versus hydroxyl radical (·OH)) produced during the activation of hydrogen peroxide by Cu{sup +} remain unclear. In this study, Cu{sup +}-O{sub 2} oxidation, in which hydrogen peroxide is produced via the activated decomposition of dissolved molecular oxygen, was used to degrade sulfadiazine, methylene blue, and benzoic acid. The results showed that both sulfadiazine and methylene blue could be efficiently degraded by Cu{sup +}-O{sub 2} oxidation in a wide effective pH range from 2.0 to 10.0. Quenching experiments with different alcohols and the effect of Br{sup −} suggested that Cu{sup 3+} rather than ·OH was the major active species. Electron paramagnetic resonance detected 5,5-dimethyl-2-hydroxypyrrolidine-N-oxyl (DMPO-OH), which was probably produced by the oxidation of DMPO by Cu{sup 3+} or ·OH formed as a product of Cu{sup 3+} decomposition. 4-hydroxybenzoic acid was produced during the degradation of benzoic acid by Cu{sup 3+}. The findings of this study may help to explain the inconsistency regarding the dominant active species produced by the interaction of Cu{sup +} and hydrogen peroxide.

  15. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  16. Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying

    Science.gov (United States)

    Barman, Sajib K.; Huda, Muhammad N.

    2018-04-01

    As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.

  17. Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Ennaoui, A.; Guminskaya, T.; Dittrich, Th.; Bohne, W.; Roehrich, J.; Strub, E.; Lux-Steiner, M.Ch.

    2005-01-01

    CuI has been synthesized at room temperature on Cu-tape/n-CuInS 2 by using the SILAR technique (successive ionic layer adsorption and reaction). The influence of wet chemical iodine treatment on the CuI has been investigated in more detail. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), elastic recoil detection analysis (ERDA) and surface photovoltage (SPV) techniques. The CuI films contain the no. gammano. -phase of the Zinkblende structure. The crystallites are preferentially oriented in the (111) direction. After wet chemical iodine treatment, the fibrous surface morphology changed to a more dense CuI film with larger crystallites. Oxides could not be detected on the CuI surface. The density of surface states of CIS decreased after the CuI deposition. The importance of the wet chemical iodine treatment for the performance of Cu-tape/n-CuInS 2 /p-CuI solar cells has been demonstrated

  18. Effect of cupric salts (Cu (NO{sub 3}){sub 2}, CuSO4{sub ,} Cu(CH{sub 3}COO){sub 2}) on Cu{sub 2}(OH)PO{sub 4} morphology for photocatalytic degradation of 2,4-dichlorophenol under near-infrared light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chao; Li, Pei; Zhang, Wei; Che, Yanhao; Sun, Yaxin; Chi, Fangli; Ran, Songlin; Liu, Xianguo; Lv, Yaohui, E-mail: yaohui2015@163.com [School of Materials Science and Engineering, Anhui Key Laboratory of Metal Materials and Processing, Anhui University of Technology (China)

    2017-03-15

    Cu{sub 2}(OH)PO{sub 4} microstructures were synthesized by the hydrothermal method using three different types cupric salts (Cu (NO{sub 3}){sub 2}, CuSO{sub 4}, Cu(CH{sub 3}COO){sub 2}) as raw materials. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible-NIR absorption spectra were used to characterize the as-obtained products. The different anions (SO{sub 4}{sup 2-}, CH{sub 3}COO-, NO{sub 3-}) have different shapes and polarities, which can generate different interactions in reaction bath, induced the difference of structure and morphology of the prepared Cu{sub 2}(OH)PO{sub 4}. The Cu{sub 2}(OH)PO{sub 4} microstructures prepared form Cu(NO{sub 3}){sub 2} ·3H{sub 2}O showed the best photocatalytic activity induced by near-infrared light to degrade 2,4-dichlorophenol (2,4-DCP) solution. Our work suggests that the active morphological surfaces as well as different coordination environments for the metal ions has an important influence on the photocatalytic performance of Cu{sub 2}(OH)PO{sub 4} microstructure. (author)

  19. Cu diffusion as an alternative method for nanopatterned CuTCNQ film growth

    International Nuclear Information System (INIS)

    Capitán, M J; Álvarez, J; Miranda, R; Navío, C

    2016-01-01

    In this paper we show by means of ‘in situ’ x-ray diffraction studies that CuTCNQ formation from Cu(solid)–TCNQ(solid tetracyanoquinodimethane) goes through Cu diffusion at room temperature. The film quality depends on the TCNQ evaporation rate. At low evaporation rate we get a single phase-I CuTCNQ film very well crystallized and well oriented. The film has a CuTCNQ(0 2 0) orientation. The film is formed by CuTCNQ nanorods of a very homogeneous size. The film homogeneity has also been seen by atomic force microscopy (AFM). The electronic properties of the film have been measured by x-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). Thus, the Cu-diffusion method has arisen as a very simple, clean and efficient method to grow localized CuTCNQ nanorods on Cu, opening up new insights for technological applications. (paper)

  20. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites

    International Nuclear Information System (INIS)

    Liu, Xueqin; Li, Zhen; Zhang, Qiang; Li, Fei

    2012-01-01

    Highlights: ► Facile sonochemical route. ► The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled. ► Structure and optical properties of Cu 2 O/Cu 31 S 16 were discussed. ► Enhanced photocatalytic property of Cu 2 O/Cu 31 S 16 . ► Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles. -- Abstract: The controlled synthesis of Cu 2 O/Cu 31 S 16 microcomposites with hierarchical structures had been prepared via a convenient sonochemical route. Ultrasonic irradiation of a mixture of Cu 2 O and (NH 2 ) 2 CS in an aqueous medium yielded Cu 2 O/Cu 31 S 16 composites. The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled by adjusting the synthesis time. The Cu 31 S 16 layer not only protected and stabilized Cu 2 O particles, but also prohibited the recombination of photogenerated electrons–holes pair between Cu 31 S 16 and Cu 2 O. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) spectra, ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize the products. Photocatalytic performance of the Cu 2 O/Cu 31 S 16 hierarchical structures was evaluated by measuring the decomposition rate of methyl orange solution under natural light. To the best of our knowledge, this is the first report on the preparation and photocatalytic activity of Cu 2 O/Cu 31 S 16 microcomposite. Additionally, the Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles during photocatalytic process since the photocatalytic activity of the second reused architecture sample was much higher than that of pure Cu 2 O. The Cu 2 O/Cu 31 S 16 microcomposites may be a good promising candidate for wastewater treatment.

  1. Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films

    International Nuclear Information System (INIS)

    Wijesundera, R.P.; Hidaka, M.; Koga, K.; Sakai, M.; Siripala, W.

    2006-01-01

    Cuprous oxide and copper thin films were potentiostatically electrodeposited in an acetate bath. Voltammetric curves were used to investigate the growth parameters; deposition potential, pH and temperature of the bath. Deposition potential dependency on the structural, morphological, optical and electronic properties of the films were investigated by the X-ray diffraction measurements, scanning electron micrographs, absorption measurements and dark and light current-voltage characterisations. It was observed that single phase polycrystalline Cu 2 O can be deposited from 0 to - 300 mV Vs saturated calomel electrode (SCE) and co-deposition of Cu and Cu 2 O starts at - 400 mV Vs SCE. Further increase in deposition potential from - 700 mV Vs SCE produces single phase Cu thin films. Single phase polycrystalline Cu 2 O thin films with cubic grains of 1-2 μm can be possible within the very narrow potential domain around - 200 mV Vs SCE. Enhanced photoresponse in a photoelectrochemical cell is produced by the Cu 2 O thin film prepared at - 400 mV Vs SCE, where Cu is co-deposited with Cu 2 O with random distribution of Cu spheres on the Cu 2 O surface. This study reveals that a single deposition bath can be used to deposit both Cu and Cu 2 O separately and an admixture of Cu-Cu 2 O by controlling the deposition parameters

  2. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 'C for 3 hours. As the annealing temperature was raised from 300 to 900 'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  3. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.

    2013-08-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 \\'C for 3 hours. As the annealing temperature was raised from 300 to 900 \\'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  4. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  5. Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.

    Science.gov (United States)

    Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A

    2016-12-07

    We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.

  6. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  7. Conversational Memory Employing Cued and Free Recall.

    Science.gov (United States)

    Benoit, Pamela J.; Benoit, William L.

    1988-01-01

    Tests two hypotheses: (1) that cued recall elicits significantly more conversational information than free recall; and (2) that conversational interactants recall more of their partner's utterances than their own. Finds cued recall produced significantly higher amounts of remembering than free recall. (MS)

  8. Effect of 67Cu and 99Mo labeled tetrathiomolybdate on the distribution of 67Cu, Cu, and 99Mo in bile fractions in sheep

    International Nuclear Information System (INIS)

    Gooneratne, R.; Laarveld, B.; Christensen, D.

    1989-01-01

    The effect of intravenous administration of 67 Cu and 99 Mo labeled tetrathiomolybdate (TTM) on the appearance of 67 Cu, stable Cu, and 99 Mo in gel chromatographic fractions of bile was examined in sheep fed either 5 or 35 mg Cu kg-1 DM. Peak excretory periods of biliary 67 Cu, stable Cu, and 99 Mo were observed at 30 min-1.25 hr, 2-3 hr, and 11-13 hr after 67 Cu and after 99 Mo labeled TTM. Sephadex G-75 gel filtration of bile samples collected at 1, 3, and 12 hr after 67 Cu administration revealed two major protein peaks of molecular weights of greater than 80,000 (peak I) and 7,000 (peak II) containing both 67 Cu and Cu. But the ratio of 67 Cu in the two peaks varied with time of bile collection. The ratio of areas of peak I:II 1 hr after 67 Cu administration was approximately 0.48; at 3 hr, 0.62, and at 12 hr 1.35. Tetrathiomolybdate administration increased both 67 Cu and stable Cu in bile by severalfold and induced a major shift of Cu into the higher molecular weight protein fraction. The experiments confirm the effectiveness of TTM as a ''decoppering'' agent. Furthermore, TTM not only promoted bile Cu excretion, but it also increased the incorporation of Cu into the macromolecular fraction. This may limit enterohepatic circulation of biliary Cu and thereby cause an overall Cu depletion and a negative Cu balance

  9. Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS{sub 2} for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany)]. E-mail: brsankapal@rediffmail.com; Ennaoui, A. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Guminskaya, T. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Dittrich, Th. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Bohne, W. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Strub, E. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Lux-Steiner, M.Ch. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany)

    2005-06-01

    CuI has been synthesized at room temperature on Cu-tape/n-CuInS{sub 2} by using the SILAR technique (successive ionic layer adsorption and reaction). The influence of wet chemical iodine treatment on the CuI has been investigated in more detail. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), elastic recoil detection analysis (ERDA) and surface photovoltage (SPV) techniques. The CuI films contain the no. gammano. -phase of the Zinkblende structure. The crystallites are preferentially oriented in the (111) direction. After wet chemical iodine treatment, the fibrous surface morphology changed to a more dense CuI film with larger crystallites. Oxides could not be detected on the CuI surface. The density of surface states of CIS decreased after the CuI deposition. The importance of the wet chemical iodine treatment for the performance of Cu-tape/n-CuInS{sub 2}/p-CuI solar cells has been demonstrated.

  10. Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanghui; Yi, Hong; Zhang, Guoting; Deng, Yi; Bai, Ruopeng; Zhang, Heng; Miller, Jeffrey T.; Kropf, Arthur J.; Bunel, Emilio E.; Lei, Aiwen

    2014-01-06

    ABSTRACT: X-ray absorption spectroscopy and in situ electron paramagnetic resonance evidence were provided for the reduction of Cu(II) to Cu(I) species by alkynes in the presence of tetramethylethylenediamine (TMEDA), in which TMEDA plays dual roles as both ligand and base. The structures of the starting Cu(II) species and the obtained Cu(I) species were determined as (TMEDA)- CuCl2 and [(TMEDA)CuCl]2 dimer, respectively.

  11. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  12. The influence of dietary Cu and diabetes on tissue 67Cu retention kinetics in rats

    International Nuclear Information System (INIS)

    Uriu-Hare, J.Y.; Rucker, R.B.; Keen, C.L.

    1991-01-01

    Compared to controls, diabetes results in higher plasma, liver and kidney Cu concentrations. Since alterations in Cu metabolism may be associated with diabetic pathology, the authors investigated how Cu metabolism is affected by diabetes and dietary Cu intake. Nondiabetic and STZ diabetic rats were fed Cu suppl. or Cu def. diets for 5 wks. Rats were intubated with 28 μCi 67 Cu and killed after 8, 16, 24, 32, 64, or 128 h. There were marked effects of both diet and diabetes on 67 Cu metabolism. Independent of diabetes, deficient rats had a higher % of retained 67 Cu, in liver, plasma, RBC, muscle, spleen, brain, lung, uterus, and intestine than adequate Cu rats. Independent of dietary Cu, diabetic rats had a lower % of retained 67 Cu in liver, plasma, RBC, muscle, spleen, lung, bone, pancreas, skin, uterus and heart than controls. Differential effects were noted for kidney; adequate Cu diabetic rats had a higher % of retained 67 Cu than all other groups. Marked effects of both diet and diabetes were evident when tissue Cu turnover was examined. Compared to Cu suppl. rats, Cu def. rats had a slower turnover of 67 Cu, in liver, plasma, intestine, pancreas, eye, brain, muscle, spleen, lung and heart. Diabetic rats had a slower turnover of 67 Cu than nondiabetic rats in liver, plasma, intestine, pancreas, eye, kidney, RBC and uterus. The data imply that a focus on Cu metabolism with regard to cellular Cu trafficking and pathology may be warranted

  13. A 3D network of helicates fully assembled by pi-stacking interactions.

    Science.gov (United States)

    Vázquez, Miguel; Taglietti, Angelo; Gatteschi, Dante; Sorace, Lorenzo; Sangregorio, Claudio; González, Ana M; Maneiro, Marcelino; Pedrido, Rosa M; Bermejo, Manuel R

    2003-08-07

    The neutral dinuclear dihelicate [Cu2(L)2] x 2CH3CN (1) forms a unique 3D network in the solid state due to pi-stacking interactions, which are responsible for intermolecular antiferromagnetic coupling between Cu(II) ions.

  14. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Isaacs, H.S. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  15. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center; Isaacs, H.S. [Brookhaven National Lab., Upton, NY (United States)

    1992-08-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  16. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    Science.gov (United States)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  17. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer

    International Nuclear Information System (INIS)

    Lim, Taeho; Kim, Myung Jun; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe; Lee, Young-Soo; Kim, Jae Jeong

    2014-01-01

    The uniformity of Cu growth on Pd nanocatalysts was controlled by using organic additives in the formation of electroless Cu seed layers. Polyethylene glycol (PEG, Mw. 8000) not only reduced the deposition rate but also improved the uniformity of Cu growth on each Pd nanocatalyst during the seed layer formation. The stronger suppression effect of PEG on Cu than on Pd reduced the difference in the deposition rate between the two surfaces, resulting in the uniform deposition. Meanwhile, bis(3-sulfopropyl) disulfide degraded the uniformity by strong and nonselective suppression. The sheet resistance measurement and atomic force microscopy imaging revealed that the uniform Cu growth by PEG was more advantageous for the formation of a thin and smooth Cu seed layer than the non-uniform growth. The uniform Cu growth also had a positive influence on the subsequent Cu electrodeposition: the 60-nm-thick electrodeposited Cu film on the Cu seed layer showed low resistivity (2.70 μΩ·cm), low surface roughness (6.98 nm), and good adhesion strength. - Highlights: • Uniform Cu growth on Pd was achieved in formation of electroless Cu seed layer. • PEG addition to electroless bath improved the uniformity of Cu growth on Pd. • A thin, smooth and continuous Cu seed layer was obtained with PEG. • Adhesion strength of the Cu seed layer was also improved with PEG. • The uniformity improvement positively affected subsequent Cu electrodeposition

  18. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  20. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa 2 Cu 3 O 7 (PBCO). We have performed linear muffin-tin orbital--atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a Cu II oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between Cu I and Cu II . The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa 2 Cu 3 O 7

  1. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  2. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  3. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  4. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

    Science.gov (United States)

    Gawande, Manoj B; Goswami, Anandarup; Felpin, François-Xavier; Asefa, Tewodros; Huang, Xiaoxi; Silva, Rafael; Zou, Xiaoxin; Zboril, Radek; Varma, Rajender S

    2016-03-23

    The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis.

  5. Photonuclear spallation reactions in Cu

    International Nuclear Information System (INIS)

    Shibata, S.; Imamura, M.; Miyachi, T.

    1986-06-01

    Formation yields of 24 radioactive nuclides by the interaction of bremsstrahlung in the maximum end-point energies of 100 MeV - 1 GeV with Cu have been measured by direct γ-ray counting of irradiated targets. The yields in the mass range of 42 to 60 except for 60 Cu were analysed by non-linear least-squares fit to construct the mass yield and charge dispersion curves in spallation reactions. From the parameter values obtained, the energy dependence of the slope of the mass yield curve and the relationship between target N/Z and the most probable product N/Z were investigated in comparison with the results of proton, α and heavy ion-induced spallations of Cu. The characteristics of photon-induced spallations are discussed. (author)

  6. A DFT study of Cu nanoparticles adsorbed on defective graphene

    International Nuclear Information System (INIS)

    García-Rodríguez, D.E.; Mendoza-Huizar, L.H.; Díaz, C.

    2017-01-01

    Highlights: • Cu_n supported on graphene may be a promising electrode material for DBFC's cells. • Cu_n/graphene interaction is rather local and size independent. • Cu_1_3 anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu_n nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu_n-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  7. Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Grosell, M.; Hogstrand, C.; Wood, C.M.

    1997-01-01

    -acclimation clearly involves changes in copper accumulation kinetics in the plasma. The acclimated fish showed a 65% reduced Cu-64 accumulation after 65 h and an increased turnover of Cu in the plasma compared to the non-acclimated fish. Total Cu in the plasma increased by 59% after 3 h of exposure in the non...... aortic catheter. By measuring both Cu-64 accumulation and total Cu concentrations, we were able to analyse the ongoing uptake and turnover of ambient Cu, independent of any Cu already present in the fish. Plasma accounted for at least 90% of the Cu-64 labelled Cu present in the blood and Cu...... h of exposure. Acclimation did not have an unambiguous effect on branchial Cu uptake and differences in branchial uptake could not explain the reduced accumulation in the plasma. The rapidly exchangeable Cu pools were 54% in the gills and 33% in the liver, suggesting a considerable hepatic Cu...

  8. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  9. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation

    Energy Technology Data Exchange (ETDEWEB)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C–C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C–C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C–C bonding over C–Cu bonding, which results in C–C dimer pair formation near the surface. The dramatically different C–C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  11. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  12. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  13. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution CuCu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  14. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  15. Effects of plasma cleaning of the Cu seed layer surface on Cu electroplating

    International Nuclear Information System (INIS)

    O, Jun Hwan; Lee, Seong Wook; Kim, Jae Bum; Lee, Chong Mu

    2001-01-01

    Effects of plasma pretreatment to Cu seed/tantalum nitride (TaN)/ borophosphosilicate glass (BPSG) samples on copper (Cu) electroplating were investigated. Copper seed layers were deposited by magnetron sputtering onto tantalum nitride barrier layers before electroplating copper in the forward pulsed mode. The Cu seed layer was cleaned by plasma H 2 and N 2 prior to electroplating a copper film. Cu films electroplated on the copper seed layer with plasma pretreatment showed better electrical and physical properties such as electrical resistivities, surface morphologies, levels of impurities, adhesion and surface roughness than those without plasma pretreatment. It is shown that carbon and metal oxide contaminants at the sputtered Cu seed/TaN surface could be effectively removed by plasma H 2 cleaning. The degree of the (111) prefered orientation of the Cu film with plasma H 2 pretreatment is as high as pulse plated Cu film without plasma pretreatment. Also, plasma H 2 precleaning is more effective in enhancing the Cu electroplating properties onto the Cu seed layer than plasma N 2 precleaning

  16. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gó mez, Javier Alexandra M; Larkin, Ivan A.; Schwingenschlö gl, Udo

    2010-01-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  17. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gómez, Javier Alexandra M

    2010-11-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  18. Approaching the limit of Cu(II)/Cu(I) mixed valency in a Cu(I)Br2-N-methylquinoxalinium hybrid compound.

    Science.gov (United States)

    Leblanc, Nicolas; Sproules, Stephen; Pasquier, Claude; Auban-Senzier, Pascale; Raffy, Helene; Powell, Annie K

    2015-08-18

    A novel 1D hybrid salt (MQ)[CuBr2]∞ (MQ = N-methylquinoxalinium) is reported. Structural, spectroscopic and magnetic investigations reveal a minimal Cu(II) doping of less than 0.1%. However it is not possible to distinguish Cu(I) and Cu(II). The unusually close packing of the organic moieties and the dark brown colour of the crystals suggest a defect electronic structure.

  19. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  20. High-temperature stability of Au/Pd/Cu and Au/Pd(P)/Cu surface finishes

    Science.gov (United States)

    Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang, Y. H.; Kuo, T. T.

    2018-03-01

    Thermal reliability of Au/Pd/Cu and Au/Pd(4-6 wt.% P)/Cu trilayers in the isothermal annealing at 180 °C were investigated by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and transmission electron microscopy (TEM). The pure Pd film possessed a nanocrystalline structure with numerous grain boundaries, thereby facilitating the interdiffusion between Au and Cu. Out-diffusion of Cu through Pd and Au grain boundaries yielded a significant amount of Cu oxides (CuO and Cu2O) over the Au surface and gave rise to void formation in the Cu film. By contrast, the Pd(P) film was amorphous and served as a good diffusion barrier against Cu diffusion. The results of this study indicated that amorphous Pd(P) possessed better oxidation resistance and thermal reliability than crystalline Pd.

  1. Computer simulation of the structure of liquid metal halides RbBr, CuCl, CuBr, CuI, and AgBr

    International Nuclear Information System (INIS)

    Belashchenko, D.K.; Ostrovskij, O.I.

    2003-01-01

    The computerized models of the RbBr, AgBr, CuCl, CuBr and CuI liquid ion systems of 498 ions dimension are simulated at the temperatures of 753-960 K on the basis of the known diffraction data through the BELION algorithm. Good agreement of diffraction and model partial pair correlation functions (PPCF), excluding the PPCF first peaks heights, is obtained in all the cases. The simulation is carried out by the varied ion charges (the atomization energy values, close to the real ones, are obtained by ion charges ±1.00 for the RbBr, ±1.15 for AgBr, ±1.20 for CuCl, ±1.48 for CuBr and ±1.367 for CuI). The noncoulomb contributions in the interparticle potentials are calculated [ru

  2. EPR of CU+2:Mb single crystal

    International Nuclear Information System (INIS)

    Nascimento, O.R.; Ribeiro, S.C.; Bemski, G.

    1976-01-01

    Copper introduced into met-myoglobin crystals occupies various sites as indicated by EPR parameters. CU 2+ (A) is probably liganded to histidine A10, lysine A14 and asparagine GH4 (Banaszak, 1965) and shows super-hyperfine interaction with a single (imidazole) nitrogen. Cu 2+ (B) and Cu 2+ (C) correspond to other anisotropic sites described with lesser details. Cu 2+ (A) exhibits a transition to an isotropic form with a transition temperature of 40.5 0 C. This transition is indicative of a conformational change in myoglobin and could correspond to a motion of A helix away from the GH section. The transition temperature is 7 0 C higher than the previously reported (Atanasov, 1971) one for myoglobin in solution

  3. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    Science.gov (United States)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  4. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  5. The activation energy for loop growth in Cu and Cu-Ni alloys

    International Nuclear Information System (INIS)

    Barlow, P.; Leffers, T.; Singh, B.N.

    1978-08-01

    The apparent activation energy for the growth of interstitial dislocation loops in copper, Cu-1%Ni, Cu-2%Ni, and Cu-5%Ni during high voltage electron microscope irradiation was determined. The apparent activation energy for loop growth in all these materials can be taken to be 0.34eV+-0.02eV. This value together with the corresponding value of 0.44eV+-0.02eV determined earlier for Cu-10%Ni is discussed with reference to the void growth rates observed in these materials. The apparent activation energy for loop growth in copper (and in Cu-1%Ni that has a void growth rate similar to that in pure copper) is interpreted as twice the vacancy migration energy (indicating that divacancies do not play any significant role). For the materials with higher Ni content (in which the void growth rate is much lower than that in Cu and Cu-1%Ni) the measured apparent activation energy is interpreted to be characteristic of loops positioned fairly close to the foil surface and not of loops in ''bulk material''. From the present results in combination with the earlier results for Cu-10%Ni it is concluded that interstitial trapping is the most likely explanation of the reduced void growth rate in Cu-Ni alloys. (author)

  6. A DFT study of Cu nanoparticles adsorbed on defective graphene

    Energy Technology Data Exchange (ETDEWEB)

    García-Rodríguez, D.E. [Universidad Politécnica de Aguascalientes, Calle Paseo San Gerardo No. 297 Fracc. San Gerardo, 20342 Aguascalientes, Ags. (Mexico); Mendoza-Huizar, L.H. [Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento. Carretera Pachuca-Tulancigo Km. 4.5 Mineral de la Reforma, 42186 Hidalgo (Mexico); Díaz, C., E-mail: cristina.diaz@uam.es [Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2017-08-01

    Highlights: • Cu{sub n} supported on graphene may be a promising electrode material for DBFC's cells. • Cu{sub n}/graphene interaction is rather local and size independent. • Cu{sub 13} anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu{sub n} nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu{sub n}-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  7. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    Science.gov (United States)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  8. Giant Cu 2p Resonances in CuO Valence-Band Photoemission

    NARCIS (Netherlands)

    Tjeng, L.H.; Chen, C.T.; Ghijsen, J.; Rudolf, P.; Sette, F.

    1991-01-01

    We report the observation of a giant resonance in the Cu 2p resonant-photoemission spectra of CuO. The study allows the unambiguous identification of the local Cu 3d8 configuration in the valence-band photoemission spectrum, providing conclusive evidence for the charge-transfer nature of the

  9. Low-lying isomeric levels in Cu75

    Science.gov (United States)

    Daugas, J. M.; Faul, T.; Grawe, H.; Pfützner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Angélique, J. C.; Baiborodin, D.; Bentida, R.; Béraud, R.; Borcea, C.; Bingham, C. R.; Catford, W. N.; Emsallem, A.; de France, G.; Grzywacz, K. L.; Lemmon, R. C.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, K.; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.

    2010-03-01

    Isomeric low-lying states were identified and investigated in the Cu75 nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as Cu75m1 and Cu75m2, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2-, 3/2-, and 5/2- states for the neutron-rich odd-mass Cu isotopes when filling the νg9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2- state coexists with more and more collective 3/2- and 1/2- levels at low excitation energies.

  10. Diffusion of Cu+ in β-phase CuI

    International Nuclear Information System (INIS)

    Johansson, J.X.M.Z.; Skoeld, K.; Joergensen, J.E.

    1992-01-01

    Measurements of ionic diffusion of Cu + in solid CuI in the β-phase is carried out with a non-destructive radioactive tracer technique, utilizing coincidence counting of the annihilation gammas from the positron decay of 64 Cu. The diffusion coefficient and the activation energy for the diffusion are evaluated. The experimental results show distinct diffusion character in the β-phase which differs from those in the γ- and α-phases. The β-phase diffusion properties together with the previous results for γ-and α-phases will provide valuable guidance for MD calculations, in which the diffusion coefficients and activation energies have been overestimated and the γ-β phase transition does not appear. The ionic conductivity of CuI estimated from tracer diffusion results and the Nernst-Einstein relation are compared with values from electro-chemical methods. In all three phases the conductivities obtained from electro-chemical methods are much lower than those calculated from the measured tracer diffusion coefficients. (author). 7 refs.; 4 figs.; 2 tabs

  11. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Vennestrøm, Peter N. R.; Falsig, Hanne

    2018-01-01

    behavior and mechanisms of a Cu-SAPO-34 catalyst were studied with reactor tests and DFT calculations. Exposure of the catalyst to two different SO2 concentrations and durations, but with the same total SO2 exposure, calculated as the product of partial pressure of SO2 and exposure time, lead to the same...... degree of deactivation. Exposure of the Cu-SAPO-34 catalyst to SO2 in the presence and absence of NO and NH3 at different temperatures between 200–600 °C showed different trends for the deactivation. Below 400 °C, the S/Cu ratio on the catalyst increased with temperature in absence of NO and NH3, while...... showing that SO2 and SO3, which is possibly formed by oxidation of SO2 over Cu sites, interact similar with Cu in Cu-SAPO-34 and Cu-SSZ-13....

  12. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1-,2- Tectons: First 3p-3d-4f complexes (mnt = maleonitriledithiolato).

    Science.gov (United States)

    Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius

    2008-02-04

    New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a

  13. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    Energy Technology Data Exchange (ETDEWEB)

    Carretta, P.; Corti, M.; Rigamonti, A. (Department of Physics Alessandro Volta,' ' University of Pavia, Via Bassi 6, 27100 Pavia (Italy))

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  14. Novel CuCr_2O_4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    International Nuclear Information System (INIS)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-01-01

    Graphical abstract: - Highlights: • Novel CuO–CuCr_2O_4 nanocomposites synthesized by reflux condensation method. • Methyl orange and methylene blue dye degradation studied under UV light irradiation. • Nanocomposites characterized by XRD, FESEM, TEM, EDX, UV–vis DRS and PL. • CuCr_2O_4 loading effectively enhanced the catalytic activity of CuO. - Abstract: Novel photocatalyst based on CuO–CuCr_2O_4 nanocomposites was synthesized for different Cr"3"+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr_2O_4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr"3"+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO–CuCr_2O_4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr_2O_4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO–CuCr_2O_4 nanocomposites can be attributed to the presence of CuCr_2O_4 as an electron acceptor, which improves the effective charge separation in CuO.

  15. Fabrication of Cu-riched W–Cu composites by combustion synthesis and melt-infiltration in ultrahigh-gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Guo, Shibin; Liu, Guanghua; Chen, Yixiang [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jiangtao, E-mail: ljt0012@vip.sina.com [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-15

    Unadulterated Cu-riched W–Cu composites of W27–Cu73, W34–Cu66, W40–Cu60, W49–Cu51 and W56–Cu44 have been prepared by a novel method called combustion synthesis and melt-infiltration in ultrahigh-gravity field, of which W27–Cu73 and W34–Cu66 showed good ductility and W40–Cu60, W49–Cu51 and W56–Cu44 were brittle. In this technique, Cu melt accompanied with a great amount of heat was produced by thermit reaction and infiltrated into W–Cu powder bed. When the powder bed was Cu-riched powder bed such as W50–Cu50 or W60–Cu40, Cu melt would go through the powder bed, reach the bottom of the graphite crucible and then form a heat dissipation channel. Thus the cooling rate was so fast that the product was mixed up with impurity. The problem can be solved by putting some W powders under W50–Cu50 or W60–Cu40 powder bed to prevent the formation of heat dissipation channel.

  16. Intermolecular interactions

    International Nuclear Information System (INIS)

    Kaplan, I.G.; Rodimova, O.B.; AN SSSR, Tomsk. Inst. Optiki Atmosfery)

    1978-01-01

    The present state of the intermolecular interaction theory is described. The general physical picture of the molecular interactions is given, the relative contributions of interactions of different types are analyzed (electrostatic, resonance, induction, dispersion, relativistic, magnetostatic and exchange), and the main ones in each range of separations are picked out. The methods of the potential curve calculations are considered, specific for definite separations between the interacting systems. The special attention is paid to the analysis of approximations used in different theoretical calculation methods

  17. Properties of the CuGaSe2 and CuInSe2 (001) surface

    International Nuclear Information System (INIS)

    Deniozou, T.

    2005-01-01

    The main task of this work was to investigate the (001) CuGaSe 2 and CuInSe 2 surface in dependence of preparation and stoichiometry. The knowledge of the atomic structure as well as other surface properties is important in respect to optimization of novel thin film solar cells. For the characterization of the layers mainly Auger electron Spectroscopy, low-energy electron diffraction and photoelectron spectroscopy were implemented. The development of an appropriate procedure with Ar + sputtering and annealing combined with decapping enabled the preparation of clean and well-ordered surfaces. Different surface structures were observed in dependence of the layer preparation and composition. A (4 x 1) reconstruction was observed for the first time on CuGaSe 2 layers grown with a moderate Cu-excess after preparation by sputtering and annealing. Similarly a (4 x 2) reconstruction was detected on CuInSe2 surfaces of Cu-poor layers. A reconstruction could be also observed on Cu-poorer layers, however the facets/steps could not be completely removed. Cu-richer layers were facet-free, however the observed reconstruction was also weaker. Thus it was shown that in contrary to recent expectations, according to which only the (112) surface is stable, also the (001) can be stable under particular conditions. The appearance of facets or steps is correlated with the presence of CuIn 3 Se 5 or CuGa 3 Se 5 phases. This information is furthermore important for the understanding of grain boundaries in polycrystalline CuGaSe 2 and CuInSe 2 . Binding energy shifts were observed for the first time on all Se3d, In4d, Ga3d, Cu3d core levels of the reconstructed surfaces. By comparison with results from the literature from the similar ZnSe (100) surface a modell for the (4 x 2) reconstruction was proposed. The surface components in the Se3d, In4d and Cu3d emission were attributed to Se dimers or In and Cu adatoms respectively. The x 1 periodicity of the (4 x 1) reconstruction of CuGaSe 2 is

  18. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  19. Separations on a cellulose exchanger with salicylic acid as functional group. [Fe/sup 3//sup+//Cu/sup 2//sup+/, Cu/sup 2//sup+//Ni/sup 2//sup+//, and Cu/sup 2//sup+//Cu complex separations

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P; Lieser, K H [Technische Hochschule Darmstadt (F.R. Germany). Fachbereich Anorganische Chemie und Kernchemie

    1976-07-01

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe/sup 3 +//Cu/sup 2 +/ and Cu/sup 2 +//Ni/sup 2 +/ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu/sup 2 +//(Cu(mnt)/sub 2/)/sup 2 -/ (mnt = maleonitril-1,2-dithiolate) and Cu/sup 2 +//dibenzo(b.i.)(5.9.14.18)tetraazacyclotetradecene-copper (Cu(chel)). The complex (Cu(mnt)/sub 2/)/sup 2 -/ can be labelled with Cu-64 on a separation column, whereas (Cu-(chel)) is substition inert.

  20. Laser Photolytic Approach to Cu/polymer Sols and Cu/polymer Nanocomposites with Amorphous Cu Phase.

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Ouchi, A.; Bakardjieva, Snejana; Urbanová, Markéta; Boháček, Jaroslav; Šubrt, Jan

    2007-01-01

    Roč. 192, 2-3 (2007) , s. 84-92 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : Cu-polymer nanocomposite * laser solution photolysis * amorphous Cu phase Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.911, year: 2007

  1. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  2. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  3. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm

    Science.gov (United States)

    Coutaud, Margot; Méheut, Merlin; Glatzel, Pieter; Pokrovski, Gleb S.; Viers, Jérôme; Rols, Jean-Luc; Pokrovsky, Oleg S.

    2018-01-01

    Despite the importance of phototrophic biofilms in metal cycling in freshwater systems, metal isotope fractionation linked to metal adsorption and uptake by biofilm remains very poorly constrained. Here, copper isotope fractionation by a mature phototrophic biofilm during Cu surface adsorption and incorporation was studied in batch reactor (BR) and open drip flow reactor (DFR) systems at ambient conditions. X-ray Absorption Spectroscopy (both Near Edge Structure, XANES, and Extended Fine Structure, EXAFS) at Cu K-edge of the biofilm after its interaction with Cu in BR experiments allowed characterizing the molecular structure of assimilated Cu and quantifying the degree of CuII to CuI reduction linked to Cu assimilation. For both BR and DFR experiments, Cu adsorption caused enrichment in heavy isotope at the surface of the biofilm relative to the aqueous solution, with an apparent enrichment factor for the adsorption process, ε65Cuads, of +1.1 ± 0.3‰. In contrast, the isotope enrichment factor during copper incorporation into the biofilm (ε65Cuinc) was highly variable, ranging from -0.6 to +0.8‰. This variability of the ε65Cuinc value was likely controlled by Cu cellular uptake via different transport pathways resulting in contrasting fractionation. Specifically, the CuII storage induced enrichment in heavy isotope, whereas the toxicity response of the biofilm to Cu exposure resulted in reduction of CuII to CuI, thus yielding the biofilm enrichment in light isotope. EXAFS analyses suggested that a major part of the Cu assimilated by the biofilm is bound to 5.1 ± 0.3 oxygen or nitrogen atoms, with a small proportion of Cu linked to sulfur atoms (NS biofilm exhibited a similar trend over time of exposure. Our study demonstrates the complexity of biological processes associated with live phototrophic biofilms, which produce large and contrasting isotope fractionations following rather small Cu redox and speciation changes during uptake, storage or release of

  4. Synthesis of Cu2O from CuO thin films: Optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Dhanya S. Murali

    2015-04-01

    Full Text Available Hole conducting, optically transparent Cu2O thin films on glass substrates have been synthesized by vacuum annealing (5×10−6 mbar at 700 K for 1 hour of magnetron sputtered (at 300 K CuO thin films. The Cu2O thin films are p-type and show enhanced properties: grain size (54.7 nm, optical transmission 72% (at 600 nm and Hall mobility 51 cm2/Vs. The bulk and surface Valence band spectra of Cu2O and CuO thin films are studied by temperature dependent Hall effect and Ultra violet photo electron Spectroscopy (UPS. CuO thin films show a significant band bending downwards (due to higher hole concentration than Cu2O thin films.

  5. Direct synthesis of RGO/Cu{sub 2}O composite films on Cu foil for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangmao; Wang, Kun [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Qian, Xiuzhen [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Shi [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhen, E-mail: zhenl@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Liu, Huakun; Dou, Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia)

    2014-02-15

    Graphical abstract: RGO/Cu{sub 2}O/Cu composites were synthesized by simple hydrothermal treatment of copper foils with graphene oxide, in which the reduction of graphene oxide and the formation of Cu{sub 2}O nanoparticles simultaneously happened in one-pot reaction. These composites can be directly used as electrodes of supercapacitors with the highest specific capacitance of 98.5 F/g at 1 A g{sup −1}, which is much better than that of CuO or Cu{sub 2}O electrodes. -- Highlights: • The RGO/Cu{sub 2}O/Cu composites were obtained by a friendly method in one step. • Improved capacitance performance is realized by the hydrothermal treatment of graphene oxides with Cu foils. • RGO/Cu{sub 2}O/Cu-200 composites exhibit the largest specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1}. -- Abstract: Reduced graphene oxide/cuprous oxide (RGO/Cu{sub 2}O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu{sub 2}O and reduction of GO, in which Cu{sub 2}O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu{sub 2}O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1} was obtained, which is much higher than that of pure Cu{sub 2}O prepared under the same conditions, due to the presence of RGO.

  6. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    Science.gov (United States)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  7. Synthesis of Cu Nanoparticles Using Copper Carbonate as Cu Source Toward Versatile Applications.

    Science.gov (United States)

    Yano, Kazuhisa; Ishizaki, Toshitaka; Sugiyama, Hidehiko

    2018-07-01

    Cu nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were fabricated by polyol method using copper carbonate as a raw material. To increase the reaction temperature, glycol multimers such as diethylene glycol, triethylene glycol, or tetraethylene glycol were examined as a solvent. With increasing degree of multimerization, average diameter of Cu NPs decreased. The synthesis of Cu NPs was further investigated by changing reaction temperature, the amount and molecular weight of PVP in triethylene glycol as a solvent. Average diameter and standard deviation of Cu NPs were found to be highly dependent on those factors. As a result, fine Cu NPs ranging from 28 to 67 nm in average size with narrow size distribution (standard deviation: 16-28%) were obtained. The obtained Cu NPs were applied to a nanofluid, which showed higher thermal conductivity than the theoretical value. The antibacterial activity of Cu NPs was also demonstrated, and found to have strong antibacterial activity.

  8. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    OpenAIRE

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hystere...

  9. Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites

    International Nuclear Information System (INIS)

    Li, Yinhui; Zhao, Mengyao; Zhang, Na; Li, Ruijuan; Chen, Jianxin

    2015-01-01

    Highlights: • Carbon spheres loaded Cu 2 O/Cu composites are obtained by hydrothermal process. • Cu 2 O/Cu nanocrystals grow on the surface of carbon spheres. • The composites with core–shell structure show highly photo-catalytic activity. • The composites can degrade methyl orange under simulated solar light irradiation. • The composites can be used to treat dye wastewater or organic pollutants. - Abstract: In this work, using amylose as carbon source and cupric acetate as copper source, carbon spheres loaded Cu 2 O/Cu composites were obtained by hydrothermal synthesis. The effects of the molar ratios between glucose and Cu(II), and hydrothermal time on the morphology and sizes of the composites were investigated. The result of photocatalytic experiments demonstrated that the composites could degrade methyl orange in aqueous solution under simulated solar light irradiation. The highest degradation rate was achieved to 93.83% when the composites were prepared by hydrothermal synthesis at 180 °C for 16 h and the molar ratio between glucose and Cu(II) was 10/1. The composites, as new and promising materials, can be used to treat dye wastewater or other organic pollutants

  10. Low-Temperature Cu-Cu Bonding Using Silver Nanoparticles Fabricated by Physical Vapor Deposition

    Science.gov (United States)

    Wu, Zijian; Cai, Jian; Wang, Junqiang; Geng, Zhiting; Wang, Qian

    2018-02-01

    Silver nanoparticles (Ag NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification layer. The bonding structure consisted of a Ti adhesive/barrier layer and a Cu substrate layer was fabricated on the silicon wafer. Ag NPs were deposited on the Cu surface by magnetron sputtering in a high-pressure environment and a loose structure with NPs was obtained. Shear tests were performed after bonding, and the influences of PVD pressure, bonding pressure, bonding temperature and annealing time on shear strength were assessed. Cu-Cu bonding with Ag NPs was accomplished at 200°C for 3 min under the pressure of 30 MPa without a post-annealing process, and the average bonding strength of 13.99 MPa was reached. According to cross-sectional observations, a void-free bonding interface with an Ag film thickness of around 20 nm was achieved. These results demonstrated that a reliable low-temperature short-time Cu-Cu bonding was realized by the sintering process of Ag NPs between the bonding pairs, which indicated that this bonding method could be a potential candidate for future ultra-fine pitch 3D integration.

  11. Investigation of Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2}/CdS interfaces using hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ümsür, B., E-mail: buenyamin.uemsuer@helmholtz-berlin.de [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Calvet, W.; Höpfner, B.; Steigert, A.; Lauermann, I.; Gorgoi, M.; Prietzel, K.; Navirian, H.A.; Kaufmann, C.A.; Unold, T. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, M. Ch. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin (Germany)

    2015-05-01

    Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2} (CIGSe) absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe/CdS interface accessible by hard X-ray photo-emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures (200 °C, 300 °C and 400 °C). It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu-poor surface after the 400 °C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu-rich surface after the same treatment at 400 °C. - Highlights: • Cd diffusion into Cu(In,Ga)Se{sub 2} (CIGSe) absorber is investigated. • Cu-poor and Cu-rich CIGSe samples are compared. • Cd diffusion into CIGSe is found to be dependent on the surface composition of CIGSe.

  12. Cu-Doping Effects in CdI(2) Nanocrystals: The Role of Cu-Agglomerates.

    Science.gov (United States)

    Miah, M Idrish

    2008-11-22

    Cu-doping effects in CdI(2) nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG) as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI(2) crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  13. Cu-Doping Effects in CdI2Nanocrystals: The Role of Cu-Agglomerates

    Directory of Open Access Journals (Sweden)

    Miah M

    2008-01-01

    Full Text Available Abstract Cu-doping effects in CdI2nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI2crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  14. Crystallization and electrical resistivity of Cu{sub 2}O and CuO obtained by thermal oxidation of Cu thin films on SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L., E-mail: ld301@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Salinas, D. Hurtado [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Dominguez, A. Bustamante [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Najarro, D. Acosta [Instituto de Fisica, Departamento de Materia Condensada, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, CP 01000 (Mexico); Khondaker, S.I. [NanoScience Technology Centre and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Mitrelias, T.; Barnes, C.H.W. [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Majima, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); CREST, Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-08-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO{sub 2}/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 Degree-Sign C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu {yields} Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO was detected. Pure Cu{sub 2}O films are obtained at 200 Degree-Sign C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 Degree-Sign C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: Black-Right-Pointing-Pointer The crystallization and electrical resistivity of oxides in a Cu films are studied. Black-Right-Pointing-Pointer In annealing Cu films, the phase evolution Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO occurs. Black-Right-Pointing-Pointer A resistivity phase diagram, obtained from the current-voltage response, is presented. Black-Right-Pointing-Pointer Some decreases in the resistivity may be related to the crystallization.

  15. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  16. Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor

    International Nuclear Information System (INIS)

    Wang, Kun; Dong, Xiangmao; Zhao, Chongjun; Qian, Xiuzhen; Xu, Yunlong

    2015-01-01

    A reduced graphene oxide (RGO)-based nanocomposite of redox counterpart of the oxides of Cu(I)-Cu(II) pair for Faradaic reaction, Cu 2 O/CuO/RGO, was controllably synthesized through a facile, eco-friendly one-step hydrothermal-assisted redox reaction of elemental Cu and graphene oxide (GO) without the addition of any other reagents. The resultant Cu 2 O/CuO/RGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, Thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). It is found that, when dealloyed nanoporous Cu was used as a Cu source, the uniform spherical Cu 2 O/CuO nanoparticles with double size scales (∼25 nm and ∼5 nm) were anchored on RGO sheets. This Cu 2 O/CuO/RGO nanocomposite redox counterpart exhibits improved rate capability and excellent cycling stability, i.e., only ca. 21.4% of the capacity was lost when the discharge current density increases from 1 A g −1 (173.4 F g −1 ) to 10 A g −1 (136.3 F g −1 ). Especially, the capacity remains almost unchanged (98.2%) after 100,000 cycles at 10 A g −1 . The good electrochemical performance and simple accessibility prove that this Cu 2 O/CuO/RGO composite consisting of a pair of redox counterparts is a promising material for supercapacitor applications

  17. Interactions of Cu-substrates with titanium-alloyed Sn-Zn solders

    Directory of Open Access Journals (Sweden)

    Soares D.

    2006-01-01

    Full Text Available The interactions of copper substrate with titanium-alloyed Sn-Zn eutectic solders have been studied. Two series of experiments have been performed. The first one consisted in differential thermal analyses of Sn-Zn nearly eutectic alloys containing from 1.3 to 2.2 wt. % Ti. Diffusion couples consisted of Cu-wires and Sn-Zn-Ti liquid solders, produced at 250 and 275 OC have been prepared in the second series,. The contact times were up to 3600 s. The contact zones have been characterized by optical and scanning electron microscope. Two layers have been found along the interfaces solid/liquid. The first and the second layers are identical, respectively, with γ and ε phases of the Cu-Zn system. No changes of the chemical compositions were detected for the tested temperatures and reaction times. Continuous parabolic growth of the total diffusion zone thickness with the time of diffusion is observed. The growth is due mainly to one the formed layers (γ while the thickness of the ε-phase layer, stays almost constant for all tested diffusion times and temperatures.

  18. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  19. Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode

    Science.gov (United States)

    Zheng, Tian; Li, Guangda; Li, Deming; Meng, Xiangeng

    2018-05-01

    Nanoporous CuO/Cu composites with a continuous channel structure were fabricated through a corroding Cu-Al alloy process. The width of the continuous channels was about 20 50 nm. Nanoporous structure could effectively sustain the volume expansion during the Na+ insertion/extraction process and shorten the Na+ diffusion length as well, which thus helps improve the Na+ storage performance. Moreover, the nanoporous structure can improve the contact area between the electrolyte and the electrode, leading to an increment in the number of Na+ insertion/extraction sites. When used as the anode for sodium-ion batteries, the CuO/Cu exhibited an initial capacity of 580 mAh g-1, and the capacity is maintained at 200 mAh g-1 after 200 cycles at a current density of 500 mA g-1.

  20. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    Science.gov (United States)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  1. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  2. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  3. Efficient Destruction of Pollutants in Water by a Dual-Reaction-Center Fenton-like Process over Carbon Nitride Compounds-Complexed Cu(II)-CuAlO2.

    Science.gov (United States)

    Lyu, Lai; Yan, Dengbiao; Yu, Guangfei; Cao, Wenrui; Hu, Chun

    2018-04-03

    Carbon nitride compounds (CN) complexed with the in-situ-produced Cu(II) on the surface of CuAlO 2 substrate (CN-Cu(II)-CuAlO 2 ) is prepared via a surface growth process for the first time and exhibits exceptionally high activity and efficiency for the degradation of the refractory pollutants in water through a Fenton-like process in a wide pH range. The reaction rate for bisphenol A removal is ∼25 times higher than that of the CuAlO 2 . According to the characterization, Cu(II) generation on the surface of CuAlO 2 during the surface growth process results in the marked decrease of the surface oxygen vacancies and the formation of the C-O-Cu bridges between CN and Cu(II)-CuAlO 2 in the catalyst. The electron paramagnetic resonance (EPR) analysis and density functional theory (DFT) calculations demonstrate that the dual reaction centers are produced around the Cu and C sites due to the cation-π interactions through the C-O-Cu bridges in CN-Cu(II)-CuAlO 2 . During the Fenton-like reactions, the electron-rich center around Cu is responsible for the efficient reduction of H 2 O 2 to • OH, and the electron-poor center around C captures electrons from H 2 O 2 or pollutants and diverts them to the electron-rich area via the C-O-Cu bridge. Thus, the catalyst exhibits excellent catalytic performance for the refractory pollutant degradation. This study can deepen our understanding on the enhanced Fenton reactivity for water purification through functionalizing with organic solid-phase ligands on the catalyst surface.

  4. The structure of molten CuCl, CuI and their mixtures as investigated by using neutron diffraction

    International Nuclear Information System (INIS)

    Drewitt, James W E; Salmon, Philip S; Takeda, Shin'ichi; Kawakita, Yukinobu

    2009-01-01

    The structure of molten CuCl, CuI and their mixtures (CuCl) x (CuI) 1-x with x = 0.294, 0.576, 0.801 was studied by using neutron diffraction. The results are discussed by reference to the information that is available on the structure of CuCl and CuI from experiment, theory and computer simulation. The comparison points to a need for more realistic models for the CuCl-CuI system which should take into account the presence of chemical bonds that have been found in CuI by the application of ab initio molecular dynamics methods.

  5. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  6. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.

    Science.gov (United States)

    Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng

    2017-07-01

    The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.

  7. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  8. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    Science.gov (United States)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  9. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    Science.gov (United States)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  10. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    International Nuclear Information System (INIS)

    Mula, Suhrit; Sahani, Pankajini; Pratihar, S.K.; Mal, Siddhartha; Koch, Carl C.

    2011-01-01

    Highlights: → Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. → Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. → A good combination of wear resistance, hardness and electrical conductivity resulted in Cu 94 Cr 6 -4% SiC. → Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains 99 Cr 1 , Cu 94 Cr 6 , Cu 99 Cr 1 -4 wt.% SiC and Cu 94 Cr 6 -4 wt.% SiC (average particle size ∼30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts (∼95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness ∼2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu 94 Cr 6 -4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  11. Synthesis and characterization of Cu2+ substituted magnetite

    International Nuclear Information System (INIS)

    Morales, A. L.; Velásquez, A. A.; Urquijo, J. P.; Baggio, E.

    2011-01-01

    Samples of magnetite, both pure and doped with divalent copper, Fe 3 − x Cu x O 4 , with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Mössbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu 2+ concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu 2+ in magnetite, the first one is its incorporation within the structure, replacing Fe 2+ ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu 2+ within the structure, generation of vacancies or both simultaneous effects.

  12. Thermal gravimetric analysis of the CsCuCl3, Cs2CuCl4 and Cs2CuCl4x2H2O crystals

    International Nuclear Information System (INIS)

    Soboleva, L.V.; Vasil'eva, M.G.

    1977-01-01

    The thermal characteristics of crystals of Cs 2 CuCl 4 , Cs 2 CuCl 4 x2H 2 O, and CsCuCl 3 were investigated thermogravimetrically. The derivatogram of the Cs 2 CuCl 4 crystal is characterized by the presence of a single endothermal effect at 505 deg C. The derivatogram of the Cs 2 CuCl 4 x2H 2 O crystal contains three endothermal effects: at 40, 135, and 480 deg C. The derivatogram of the CsCuCl 3 crystal shows the presence of two endothermal effects at 142 and 455 deg C. The thermogravimetric data on Cs 2 CuCl 4 and CsCuCl 3 crystals reveal crystal decomposition on melting; hence, these crystals cannot be grown from melts

  13. Stark broadening in the laser-induced Cu I and Cu II spectra

    International Nuclear Information System (INIS)

    Skočić, M; Burger, M; Nikolić, Z; Bukvić, S; Djeniže, S

    2013-01-01

    In this work we present the Stark widths (W) of 22 neutral (Cu I) and 100 singly ionized (Cu II) copper spectral lines that have been measured at 18 400 K and 19 300 K electron temperatures and 6.3 × 10  22 m −3 and 2.1 × 10  23 m −3 electron densities, respectively. The experiment is conducted in the laser-induced plasma—the Nd:YAG laser, operating at 532 nm, was used to produce plasma from the copper sample in the residual air atmosphere at a pressure of 8 Pa. The electron temperature and density were estimated by the Boltzmann-plot method and from the Saha equation. The investigated Cu I lines belong to the 4s–4p′, 4s  2 –4p″ and 4p′–4d′ transitions while Cu II spectral lines belong to the 4s–4p, 4p–5s, 4p–4d, 4p–4s  2 , 4d–4f and 4d–v transitions. Comparison with existing experimental data was possible only in the case of 17 Cu II lines due to a lack of experimental and theoretical values. The rest of the data, Stark widths of 22 Cu I and 83 Cu II lines are published for the first time. (paper)

  14. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  15. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    International Nuclear Information System (INIS)

    Franczak, Agnieszka; Levesque, Alexandra; Zabinski, Piotr; Li, Donggang; Czapkiewicz, Maciej; Kowalik, Remigiusz; Bohr, Frédéric

    2015-01-01

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits

  16. Effects of Cu content on the photoelectrochemistry of Cu2ZnSnS4 nanocrystal thin films

    International Nuclear Information System (INIS)

    Khoshmashrab, Saghar; Turnbull, Matthew J.; Vaccarello, Daniel; Nie, Yuting; Martin, Spencer; Love, David A.; Lau, Po K.; Sun, Xuhui; Ding, Zhifeng

    2015-01-01

    Highlights: • Two compositions of CZTS were synthesized, one yielding Cu-poor and the other Cu-stoichiometric nanocrystals (NCs). • Physical and electronic properties of both films were probed using various analytical techniques. • Films comprised of Cu-poor CZTS showed tighter packing with less defects compared to those of stoichiometric-Cu. • Photoelectrochemical measurements exhibited increased photoconversion and increased photostability of the Cu-poor films. • Intensity modulated photocurrent spectroscopy showed that the Cu-deficient NCs had half the recombination rate as that of stoichiometric-Cu films. - Abstract: Cu 2 ZnSnS 4 (CZTS) nanocrystals (NCs) were prepared via a one-pot solvothermal method. Given that the composition affects the electronic properties of this p-type semiconductor, two compositional ratios were chosen from 10 designed and synthesized analogues, one yielding Cu-poor and the other Cu-stoichiometric CZTS. NCs in which the Cu concentration was slightly below stoichiometric yielded more uniform films with greater photovoltaic performance. The lower Cu content also lead to slightly better crystallinity within the film, as demonstrated by XRD, Raman spectroscopy and transmission electron microscopy. Chronophotoelectrochemical measurements indicated that both types of NC films displayed good stability; however, with a decrease in potential, an increase in resistance for the Cu-stoichiometric film was observed. As determined by intensity modulated photocurrent spectroscopy, the product separation rate of the photoinduced holes and electrons in the Cu-poor films were more than 3 times that of the Cu-stoichiometric, confirming that the lower Cu content led to an improved photoperformance

  17. Synthesis of Ag-Cu and Ag-Cu{sub 2}O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Niknafs, Yasaman; Amirjani, Amirmostafa; Marashi, Pirooz, E-mail: pmarashi@aut.ac.ir; Fatmehsari, Davoud Haghshenas

    2017-03-01

    In this paper, Ag, Ag-Cu and Ag-Cu{sub 2}O nanoparticles were synthesized using a modified polyol method. Size, shape and composition of the obtained nanostructures were effectively controlled by adjusting the kinetic and thermodynamic conditions. Response surface methodology was employed to consider the interaction of parameters and to develop a polynomial equation for predicting the size of the silver nanoparticles. The precisely controlled silver nanoaprticles were used as the seeds for the formation of alloyed nanoparticles. By manipulating the involved parameters, both spherical and cubical Ag-Cu and Ag-Cu{sub 2}O nanostructures are obtainable in the size range of 90–100 nm. The morphological, optical and compositional characteristics of the obtained nanostructures were studied using SEM, FE-SEM, UV–Vis, EDS and XRD. - Highlights: • Synthesis of Ag, Ag-Cu and Ag-Cu{sub 2}O alloy nanostructures. • RSM was successfully employed for predicting the size of the AgNPs. • Size and composition tuning by adjusting the kinetic and thermodynamic conditions.

  18. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  19. Enhancement in visible light photocatalytic activity by embedding Cu nanoparticles over CuS/MCM-41 nanocomposite

    Science.gov (United States)

    Sohrabnezhad, Sh.; Karamzadeh, M.

    2017-07-01

    This article indicate the biogenic synthesis of copper nanoparticles (Cu NPs) using the borage flowers extract of Borago officinalis over CuS/MCM-41 nanocomposite (NC). No external reducing was utilized in the developed method. The CuS-MCM-41 NC was used as stabilizing agent. The synthesis of CuS nanostructure in MCM-41 material has been realized by hydrothermal method. Their physiochemical properties have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV-Visible diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. On the basis of TEM images, a layer of Cu NPs has been located over CuS/MCM-41 NC with average diameter of 60-80 nm. The results revealed the spherical nature of the prepared Cu NPs with diameter less than 10 nm. The DR spectra of Cu NPs in MCM-41 and CuS-MCM-41 NCs showed surface plasmon resonance bands at 570 and 500-600 nm, respectively. The photocatalytic activity was evaluated under visible light irradiation using the photocatalytic degradation of methylene blue (MB) as a model reaction. The prepared Cu/CuS/MCM-41 nanocomposite microspheres showed higher photodegradation ability for MB than CuS/MCM-41. The degradation of MB achieved up to 80% after 60 min and the nanocomposite could be recycled and reused.

  20. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  1. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  2. Interaction between Diethyldithiocarbamate and Cu(II on Gold in Non-Cyanide Wastewater

    Directory of Open Access Journals (Sweden)

    Nguyễn Hoàng Ly

    2017-11-01

    Full Text Available A surface-enhanced Raman scattering (SERS detection method for environmental copper ions (Cu2+ was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC on gold nanoparticles (AuNPs. The ultraviolet-visible (UV-Vis absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  3. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    Science.gov (United States)

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Magnetic dipole moments of 58Cu and 59Cu by in-source laser spectroscopy

    International Nuclear Information System (INIS)

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-01-01

    Online measurements of the magnetic dipole moments and isotope shifts of 58 Cu and 59 Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are μ ( 58 Cu) =+0.52(8) μ N ,μ( 59 Cu) =+1.84(3) μ N and for the isotope shifts δν 59,65 =1.72(22) GHz and δν 58,65 =1.99(30) GHz in the transition from the 3d 10 4s 2 S 1/2 ground state to the 3d 10 4p 2 P 1/2 state in Cu I. The magnetic moment of 58 Cu is discussed in the context of the strength of the subshell closure at 56 Ni, additivity rules and large-scale shell model calculations

  5. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  6. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions

    DEFF Research Database (Denmark)

    Holse, Christian; Elkjær, Christian Fink; Nierhoff, Anders Ulrik Fregerslev

    2015-01-01

    migrate to the Cu surface forming a Cu–Zn surface alloy. The oxidation and reduction dynamics of the CuZn nanoparticles is of great importance to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boosts the catalytic activity. Thus, the present......The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass......-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed...

  7. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  8. NMR of Cu satellites in the Kondo alloy CuCr

    International Nuclear Information System (INIS)

    Azevedo, L.J.; Follstaedt, D.; Narath, A.

    1978-01-01

    Using pulsed NMR techniques, resonances of Cu nuclei which are near neighbors to Cr impurities (c = 100 and 200 ppM) in CuCr (theta/sub k/ approx. 3K) have been studied in the temperature range 1 to 4K and applied fields H 0 = 20 to 125 kOe. At the highest fields and lowest temperatures the satellite shifts approach saturation. Above approx. 40 kOe the spin-lattice relaxation rate T 1 -1 is proportional to T/H 0 2 , indicating that the dominant relaxation mechanism arises from transverse fluctuations of a polarized local moment. The measured rates yield a local-moment/conduction-electron exchange interaction vertical bar J 0 vertical bar/g = 0.30, where g is the Cr g-value. Below approx. 40 kOe T 1 -1 appears to be slightly enhanced in comparison with the high-field behavior, but becomes field independent below approx. 30 kOe. Both effects are attributed to Kondo anomalies

  9. Electronic structures of the YBa2Cu3O7-x surface and its modification by sputtering and adatoms of Ti and Cu

    Science.gov (United States)

    Meyer, H. M., III; Hill, D. M.; Wagener, T. J.; Gao, Y.; Weaver, J. H.; Capone, D. W., II; Goretta, K. C.

    1988-10-01

    We present x-ray and inverse photoemission results for fractured surfaces of YBa2Cu3O6.9 before and after surface modification by Ar ion bombardment and the deposition of adatoms of Ti and Cu. Representative results are compared for samples prepared in three different ways. Two of the sample types exhibit substantial emission from grain-boundary phases because of both intergranular and transgranular fracture; they produce results that are very similar to those presented thus far in the literature. A third type was nearly free of contamination and clearly showed spectral features characteristic of the superconductor. Comparison of these nearly contamination-free valence-band results to those for clean La1.85Sr0.15CuO4 shows remarkably similar x-ray photoemission spectroscopy densities of states, with subtle differences near the Fermi level and at 3 eV. Inverse photoemission results show the top of the Cu-O hybrid orbitals to be 2 eV above EF and the empty states of Y and Ba at higher energy. Comparison with one-electron densities of states shows reasonable agreement, but there are large differences within the set of calculated results, and it is unclear from the valence bands alone how to account for final-state Cu d-d Coulomb correlation effects (satellite features show these effects very clearly). Argon sputtering for both types of samples shows destruction of the superconductor, with differences that can be related to sample surface quality. The deposition of adatoms of Ti and Cu results in reaction associated with oxygen withdrawal from the near-surface region. Studies of the Cu 2p3/2 line shape show that the deposition of as little as ~1 monolayer equivalent of Ti or Cu reduces the formal Cu2+ emission within the probed volume (30-50 Å deep). Core-level analysis shows that this chemical reduction of Cu is accompanied by crystal-structure modifications as well. Studies of Cu adatom interactions reveal the progression from Cu2+ to Cu1+ and ultimately, to Cu

  10. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  11. Interface characteristics at an organic/metal junction: pentacene on Cu stepped surfaces.

    Science.gov (United States)

    Matos, Jeronimo; Kara, Abdelkader

    2016-11-09

    The adsorption of pentacene on Cu (2 2 1), Cu (5 1 1) and Cu (9 1 1) is investigated using density functional theory (DFT) with the self-consistent inclusion of van der Waals (vdW) interactions. Cu (2 1 1) is a vicinal of Cu (1 1 1) while Cu (5 1 1) and (9 1 1) are vicinals of Cu (1 0 0). For all the three surfaces, we found pentacene to prefer to adsorb parallel to the surface and near the steps. The addition of vdW interactions resulted in an enhancement in adsorption energies, with reference to the PBE functional, of around 2 eV. With vdWs inclusion, the adsorption energies were found to be 2.98 eV, 3.20 eV and 3.49 eV for Cu (2 2 1), Cu (5 1 1) and Cu (9 1 1) respectively. These values reflect that pentacene adsorbs stronger on (1 0 0) terraces with a preference for larger terraces. The molecule tilts upon adsorption with a small tilt angle on the (1 0 0) vicinals (about a few degrees) as compared to a large one on Cu (2 2 1) where the tilt angle is found to be about 20°. We find that the adsorption results in a net charge transfer to the molecule of ~1 electron, for all surfaces.

  12. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  13. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  14. Charge transport properties of graphene: Effects of Cu-based gate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qide [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Zhang, C. X., E-mail: zhangchunxiao@xtu.edu.cn; Tang, Chao, E-mail: tang-chao@xtu.edu.cn; Zhong, Jianxin [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China); He, Chaoyu [Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China)

    2016-07-21

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  15. Ab initio electronic structure calculations for Mn linear chains deposited on CuN/Cu(001) surfaces

    International Nuclear Information System (INIS)

    Barral, Maria Andrea; Weht, Ruben; Lozano, Gustavo; Maria Llois, Ana

    2007-01-01

    In a recent experiment, scanning tunneling microscopy has been used to obtain a direct probe of the magnetic interaction in linear manganese chains arranged by atomic manipulation on thin insulating copper nitride islands grown on Cu(001). The local spin excitation spectra of these chains have been measured with inelastic electron tunneling spectroscopy. Analyzing the spectroscopic results with a Heisenberg Hamiltonian the interatomic coupling strength within the chains has been obtained. It has been found that the coupling strength depends on the deposition sites of the Mn atoms on the islands. In this contribution, we perform ab initio calculations for different arrangements of infinite Mn chains on CuN in order to understand the influence of the environment on the value of the magnetic interactions

  16. Radiolabeling and biodistribution of 62Cu-dithiocarbamate

    International Nuclear Information System (INIS)

    Matsumoto, Kazuya; Fujibayashi, Yasuhisa; Yokoyama, Akira; Konishi, Junji.

    1990-01-01

    The newly developed 62 Zn/ 62 Cu generator system has made available the production of the short-lived 62 Cu (T 1/2 = 9.8 min) positron radionuclide, eluted as 62 Cu-glycine. In the search for 62 Cu labeled radiopharmaceuticals for positron CT (PET) brain diagnostic studies, two ligands N,N-diethyl- and N,N-dimethyl-dithiocarbamic acid (DDC and DmDC) were selected, based on their Cu chelating abilities and the neutral lipophilic character of their copper chelates. In the present work, an in vitro study with non-radioactive Cu-glycine showed that both ligands easily formed the stable, neutral Cu-DDC and Cu-DmDC chelates (1:2 metal-ligand complexes) based on the ligand exchange reaction. Then the 62 Zn/ 62 Cu generator eluate, the 62 Cu-glycine was used for the radiolabeling of DDC and DmDC. The following HPLC analysis revealed that the ligand exchange reaction proceeded rapidly; the radiochemical purities of 62 Cu-DDC and 62 Cu-DmDC were extremely high (non-detectable 62 Cu-glycine) and both chelates were more lipophilic than 62 Cu-glycine. The mouse biodistribution of both radiolabeled compounds, 62 Cu-DDC and 62 Cu-DmDC indicated a brain accumlation of 2.8 and 5.3 times higher than 62 Cu-glycine, 15 min post injection, respectively. The brain accumulation observed with both 62 Cu-DDC and 62 Cu-DmDC might be due to their stable, neutral and lipophilic character; the latter enhanced by the presence of the methylated side chains. The gathered results indicated the applicability of dithiocarbamic acid derivatives in the production of new 62 Cu-labeled compounds using the 62 Zn/ 62 Cu generator system based on the ligand exchange reaction with 62 Cu-glycine eluate. Further studies with Cu-dithiocarbamic acid derivatives for development of new generator-produced 62 Cu positron radiopharmaceuticals can be recalled. (author)

  17. Influence of Cu Content on the Microstructure and Mechanical Properties of Cr-Cu-N Coatings

    Directory of Open Access Journals (Sweden)

    Ji Cheng Ding

    2018-01-01

    Full Text Available The Cr-Cu-N coatings with various Cu contents (0–25.18 (±0.17 at.% were deposited on Si wafer and stainless steel (SUS 304 substrates in reactive Ar+N2 gas mixture by a hybrid coating system combining pulsed DC and RF magnetron sputtering techniques. The influence of Cu content on the coating composition, microstructure, and mechanical properties was investigated. The microstructure of the coatings was significantly altered by the introduction of Cu. The deposited coatings exhibit solid solution structure with different compositions in all of the samples. Addition of Cu is intensively favored for preferred orientation growth along (200 direction by restricting in (111 direction. With increasing Cu content, the surface and cross-sectional morphology of coatings were changed from triangle cone-shaped, columnar feature to broccoli-like and compact glassy microstructure, respectively. The mechanical properties including the residual stress, nanohardness, and toughness of the coatings were explored on the basis of Cu content. The highest hardness was obtained at the Cu content of 1.49 (±0.10 at.%.

  18. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

    OpenAIRE

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-01-01

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of...

  19. Kinetics of carbon monoxide oxidation over modified supported CuO catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Loc, Luu Cam; Tri, Nguyen; Cuong, Hoang Tien; Thoang, Ho Si [Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City (Viet Nam). Inst. of Chemical Technology; Agafonov, Yu.A.; Gaidai, N.A.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2013-11-01

    The following supported on {gamma}-Al{sub 2}O{sub 3} catalysts: 10(wt.)%CuO (CuAl), 10%CuO+10%Cr{sub 2}O{sub 3} (CuCrAl) and 10%CuO+20%CeO{sub 2} (CuCeAl) were under the investigation. Physico-chemical characteristics of the catalysts were determined by the methods of BET, X-ray Diffraction (XRD), and Temperature-Programmed Reduction (TPR). A strong interaction of copper with support in CuAl resulted in the formation of low active copper aluminates. The bi-oxide CuCrAl was more active than CuAl owing to the formation of high catalytically active spinel CuCr{sub 2}O{sub 4}. The fact of very high activity of the sample CuCeAl can be explained by the presence of the catalytically active form of CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. The kinetics of CO total oxidation was studied in a gradientless flow-circulating system at the temperature range between 200 C and 270 C. The values of initial partial pressures of carbon monoxide (P{sup o}{sub CO}), oxygen (P{sup o}{sub O2}), and specially added carbon dioxide (P{sup o}{sub CO{sub 2}}) were varied in ranges (hPa): 10 / 45; 33 / 100, and 0 / 30, respectively. (orig.)

  20. Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study

    International Nuclear Information System (INIS)

    Pavelka, Matej; Burda, Jaroslav V.

    2005-01-01

    This work is devoted to investigate the interactions of the Cu(I)/Cu(II) cation with variable ammonia-water ligand field by the quantum chemical approach. For that purpose, the optimization of the [Cu(NH 3 ) m (H 2 O) n ] 2+/+ complexes (where n varies from 0 to 4 or 6 and m + n = 4 or 6) has been performed at the DFT/6-31+G(d) level of theory in conjunction with the B3PW91 hybrid functional. Based on the results of the single-point B3LYP/6-311++G(2df,2pd) calculations, the stabilization energies were determined. The two-coordinated copper(I) complexes appeared to be the most stable compounds with the remaining water or ammonia molecules in the second solvation shell. In the case of the Cu(II) systems, four-coordinated complexes were found to be the most stable. In order to examine and explain bonding characteristics, Morokuma interaction energy decomposition (for selected Cu + complexes) and Natural Population Analysis for all systems were performed. It was found that the most stable structures correlate with the highest donation effects. Therefore, more polarizable ammonia molecules exhibit higher donation than water and thus make stronger bonds to copper. This can be demonstrated by the fact that the NH 3 molecule always tries to occupy the first solvation shell in mixed ammine-aqua complexes

  1. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    Science.gov (United States)

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Ivanov, Ivo; Georgieva, Ventsislava; Evtimova, Bisera; Georgiev, George

    2007-02-12

    Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2'-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 micromol g(-1) of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO(3). The selectivity coefficients (S(Cu/Me)) for Me=Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 micromol L(-1) (3sigma) and 0.003 micromol L(-1) (6sigma), respectively.

  3. Multi-spectral and thermodynamic analysis of the interaction mechanism between Cu2+ and α-amylase and impact on sludge hydrolysis.

    Science.gov (United States)

    Zhou, Ruiqi; Liu, Hong; Hou, Guangying; Ju, Lei; Liu, Chunguang

    2017-04-01

    An increasing amount of heavy metals (e.g., Cu 2+ ) is being discharged into sewage treatment plants and is accumulating in sludge, which is toxic to the enzyme in sludge or soil when the sludge is used as fertilizer, resulting in unfavorable effect on the biological treatment of sludge and the circulation and conversion of materials in soil. In this research, effect of Cu 2+ on sludge hydrolysis by α-amylase is studied from the respect of concentration and components of soluble organic matter in sludge, using three-dimensional fluorescence spectra. Results show that Cu 2+ exposure not only inhibits the hydrolysis of sludge due to the denaturation of α-amylase but also affects the components of soluble organic matter in sludge. In order to illuminate the interaction mechanism between Cu 2+ and α-amylase (a model of hydrolase in sludge), multi-spectra and isothermal titration microcalorimetry techniques are applied. Results show that the secondary structure of α-amylase is changed as that the α-helical content increases and the structure loosens. The microenvironment of amino acid residue in α-amylase is changed that the hydrophobicity decreases and the polarity increases with Cu 2+ exposure. Isothermal titration calorimetry results show that Van der Waals force and hydrogen bond exist in the interaction between Cu 2+ and α-amylase. Results from this research would favor the development of advanced process for the biological treatment of sludge containing heavy metals.

  4. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  5. Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum

    DEFF Research Database (Denmark)

    Pang, Chengfang; Selck, Henriette; Banta, Gary Thomas

    2013-01-01

    The present study examined the relative importance of copper (aqueous Cu and CuO particles of different sizes) added to sediment to determine the bioaccumulation, toxicokinetics, and effects in the deposit feeder Potamopyrgus antipodarum. In experiment 1, the bioaccumulation of Cu (240 mg Cu/g dr...

  6. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  7. Theoretical studies of Cu(I) sites in faujasite and their interaction with carbon monoxide.

    Science.gov (United States)

    Rejmak, Pawel; Sierka, Marek; Sauer, Joachim

    2007-10-28

    Sitting, coordination, and properties of Cu(I) cations in zeolite faujasite are investigated using a combined quantum mechanics-interatomic potential function method. The coordination of Cu(I) ions depends on their location within the zeolite lattice. Cu(I) located inside the hexagonal prisms (site I') and in the plane of six-membered aluminosilicate rings on the walls of sodalite units (site II) is threefold coordinated, whereas Cu(I) located in the supercages (site III) is twofold coordinated. In agreement with available experimental data Cu(I) appears to be more strongly bound in sites I' and II than in site III. The binding energy of site II Cu(I) ions increases with the number of Al atoms, but only closest Al atoms have a substantial influence. The CO molecule binds more strongly onto sites with weaker bound cations and lower coordination. We assign the two CO stretching IR bands observed for Cu(I)-Y zeolites to sites II with one Al (2157-2161 cm(-1)) and two Al atoms (2140-2148 cm(-1)) in the six-membered aluminosilicate ring. For Cu(I)-X we tentatively assign the high frequency band to site III (2156-2168 cm(-1)) and the low-frequency band to site II with three Al atoms in the six-membered ring (2136-2138 cm(-1)).

  8. Cu-Cr Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Need, Ryan F. [Los Alamos National Laboratory

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  9. Spatial part-set cuing facilitation.

    Science.gov (United States)

    Kelley, Matthew R; Parasiuk, Yuri; Salgado-Benz, Jennifer; Crocco, Megan

    2016-07-01

    Cole, Reysen, and Kelley [2013. Part-set cuing facilitation for spatial information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 1615-1620] reported robust part-set cuing facilitation for spatial information using snap circuits (a colour-coded electronics kit designed for children to create rudimentary circuit boards). In contrast, Drinkwater, Dagnall, and Parker [2006. Effects of part-set cuing on experienced and novice chess players' reconstruction of a typical chess midgame position. Perceptual and Motor Skills, 102(3), 645-653] and Watkins, Schwartz, and Lane [1984. Does part-set cuing test for memory organization? Evidence from reconstructions of chess positions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 38(3), 498-503] showed no influence of part-set cuing for spatial information when using chess boards. One key difference between the two procedures was that the snap circuit stimuli were explicitly connected to one another, whereas chess pieces were not. Two experiments examined the effects of connection type (connected vs. unconnected) and cue type (cued vs. uncued) on memory for spatial information. Using chess boards (Experiment 1) and snap circuits (Experiment 2), part-set cuing facilitation only occurred when the stimuli were explicitly connected; there was no influence of cuing with unconnected stimuli. These results are potentially consistent with the retrieval strategy disruption hypothesis, as well as the two- and three-mechanism accounts of part-set cuing.

  10. Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses

    International Nuclear Information System (INIS)

    Elbatal, H.A.; Mandouh, Z.; Zayed, H.; Marzouk, S.Y.; Elkomy, G.; Hosny, A.

    2010-01-01

    Ultraviolet-visible absorption of undoped lithium disilicate glass reveals strong UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within raw materials used for the preparation of this glass. Optical absorption of the CuO-doped samples show an extra broad visible band centered at 780 nm and in high CuO contents samples obvious splitting to several component peaks are observed. This characteristic visible absorption of copper-doped samples is correlated with the presence of Cu +2 ions in octahedral coordination with tetragonal distortion. Gamma irradiation of the prepared samples produces radiation-induced defects, which are related to the sharing of host lithium disilicate glass, trace iron impurities and copper iron in their formation. The visible spectrum of the CuO samples shows shielding effect towards successive gamma irradiation.

  11. Microstructure and Mechanical Characterization of a Dissimilar Friction-Stir-Welded CuCrZr/CuNiCrSi Butt Joint

    Directory of Open Access Journals (Sweden)

    Youqing Sun

    2018-05-01

    Full Text Available Dissimilar CuNiCrSi and CuCrZr butt joints were successfully frictionstirwelded at constant welding speed of 150 mm/min and rotational speed of 1400 rpm with the CuCrZr alloy or the CuNiCrSi alloy located on the advancing side (AS. The microstructure and mechanical properties of joints were investigated. When the CuCrZr alloy was located on the AS, the area of retreating material in the nugget zone was a little bigger. The Cr solute-rich particles were found in the nugget zone on CuCrZr side (CuCrZr-NZ while a larger density of solute-rich particles identified as the concentration of Cr and Si element was found in the nugget zone on CuNiCrSi side (CuNiCrSi-NZ. The Cr precipitates and δ-Ni2Si precipitates were found in the base metal on CuNiCrSi side (CuNiCrSi-BM but only Cr precipitates can be observed in the base metal on CuCrZr side (CuCrZr-BM. Precipitates were totally dissolved into Cu matrix in both CuCrZr-NZ and CuNiCrSi-NZ, which led to a sharp decrease in both micro-hardness and tensile strength from BM to NZ. When the CuNiCrSi was located on the AS, the tensile testing results showed the fracture occurred at the CuCrZr-NZ, while the fracture was found at the mixed zone of CuNiCrSi-NZ and CuCrZr-NZ for the other case.

  12. The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA

    Science.gov (United States)

    Hadadzadeh, Hassan; Salimi, Mona; Weil, Matthias; Jannesari, Zahra; Darabi, Farivash; Abdi, Khatereh; Khalaji, Aliakbar Dehno; Sardari, Soroush; Ahangari, Reza

    2012-08-01

    The mononuclear Cu(II) complex, trans-[Cu(Pir)2(THF)2], where Pir is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been prepared and characterized by elemental analysis, spectroscopic methods (UV-Vis, IR, and 1H NMR) and single crystal X-ray structure analysis. The molecular structure of the centrosymmetric complex is made up of two monoanionic bidentate Pir ligands coordinated to the Cu(II) atom through the pyridyl N atom and the carbonyl O atom of the amide group in equatorial positions. The elongated rhombic octahedral (ERO) coordination of the CuNONOO2″ chromophore is completed by the O atoms of two THF molecules in axial positions. A strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom confirms the ZZZ conformation of piroxicam. In addition, CD spectroscopy and gel electrophoresis assays have been used to investigate the interaction of the complex with DNA. The results revealed that the binding of the complex with DNA led to DNA backbone distortion.

  13. Cu ion disordering in high ionic conductor Rb4Cu16I7Cl13

    International Nuclear Information System (INIS)

    Kawaji, Hitoshi; Atake, Tooru; Kanno, Ryoji; Izumi, Fujio; Yamamoto, Osamu.

    1993-01-01

    The properties of a high ionic conductor Rb 4 Cu 16 I 7+x Cl 13-x were studied by neutron and X-ray diffraction, and heat capacity measurements. The structure parameters of Rb 4 Cu 16 I 7.2 Cl 12.8 were obtained by the Rietveld analysis of TOF neutron diffraction data between 50 and 300 K, which showed gradual excitation of migration of Cu ions from Cu(3) site into Cu(2) site with increasing temperature from about 100 K to room temperature. The heat capacity was measured between 10 and 300 K using a high precision adiabatic calorimeter. An abnormal increase was observed in the heat capacity curve above about 100 K. The excess heat capacity showed a broad anomaly with a maximum at about 190 K. The measurements were also made of Rb 4 Cu 16 I 7 Cl 13 which showed slight different properties from Rb 4 Cu 16 I 7.2 Cl 12.8 . (author)

  14. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  15. Bonding in [CuNRR′]4 type clusters

    Institute of Scientific and Technical Information of China (English)

    WANG Bingwu; XU Guangxian; CHEN Zhida

    2004-01-01

    Many polynuclear Cu(I) compounds have been synthesized, but the problem whether there is direct or no direct Cu-Cu bonding in these compounds is not clear. The electronic structure of [CuNRR′]4 type clusters was investigated by using density functional methods. The results of geometrical optimization are in good agreement with experiment, and the localization of MO's shows that there are four Cu-Cu ( bonds to form the square Cu4 ring in addition to the four bridging Cu-N-Cu bonds. A concept of the covalence of molecular fragments is proposed to describe the bonding in these clusters.

  16. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  17. Loss of reserves of Cu in liver when Cu supplements are withdrawn from dairy herds in the Waikato region.

    Science.gov (United States)

    Hittmann, A R; Grace, N D; Knowles, S O

    2012-03-01

    To monitor the consequences of withdrawing mineral Cu supplements from two dairy herds with initially high concentrations of Cu in liver. Two herds were selected from dairy farms in the Waikato region of New Zealand that participated in an earlier survey of Cu supplementation practices and Cu status of dairy cows. The herds were fed pasture, grass and maize silage, plus palm kernel expeller (PKE) containing 25-30 mg Cu/kg dry matter (DM) fed at 2-4 kg/cow/day. No mineral Cu supplements were supplied from January 2009. Pasture samples were collected for mineral analysis in September 2008 and April 2009. Concentration of Cu in liver biopsies from the same 9-10 cows per herd was measured on three occasions between April 2009 and May 2010. Pastures on both farms contained 10 mg Cu/kg DM, 0.1-0.5 mg Mo/kg DM and 3.5-4.0 g S/kg DM. The initial herd mean concentrations of Cu in liver were 1,500 (SD 590) and 1,250 (SD 640) μmol Cu/kg fresh tissue. In the absence of mineral Cu supplements, those mean concentrations decreased over 12 months to 705 (SD 370) and 1,120 (SD 560) μmol Cu/kg fresh tissue, respectively. For cows in the first herd, the rate of depletion of liver Cu reserves was influenced by initial concentration of Cu, such that high concentration led to faster loss according to first-order kinetics. Mineral Cu supplementation was not necessary over 12 months for two dairy herds with mean concentrations of Cu in liver >1,250 μmol Cu/kg fresh tissue, grazing pastures containing 10 mg Cu/kg DM and concentrations of Mo <1 mg/kg DM. The quantity and particularly the duration of feeding PKE appeared to be a factor in whether or not the herd lost substantial reserves of Cu in liver during the year. However, the Cu status of both herds in this study was more than adequate to support late pregnancy and mating. CLINICAL REVELANCE: Copper status of the herd should be monitored and on-farm management of Cu nutrition should take into account all sources contributing to

  18. Thermodynamic optimization of the Cu-Nd system

    International Nuclear Information System (INIS)

    Wang Peisheng; Zhou Liangcai; Du Yong; Xu Honghui; Liu Shuhong; Chen Li; Ouyang Yifang

    2011-01-01

    Research highlights: → The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd were calculated using DFT. → The thermodynamic constraints to eliminate the artificial phase relations were imposed during the thermodynamic optimization procedure. → The Cu-Nd system was optimized under the thermodynamic constraints. - Abstract: The thermodynamic constraints to eliminate artificial phase relations were introduced with the Cu-Nd system as an example. The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd are calculated using density functional theory. Taking into account all the experimental data and the first-principles calculated enthalpies of formation of these compounds, the thermodynamic optimization of the Cu-Nd system was performed under the proposed thermodynamic constraints. It is demonstrated that the thermodynamic constraints are critical to obtain a set of thermodynamic parameters for the Cu-Nd system, which can avoid the appearance of all the artificial phase relations.

  19. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  20. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  1. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  2. Magnetic excitations and exchange interactions in the spin-gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kato, T; Kakurai, K; Müller, M; Mikeska, H J

    2002-01-01

    The magnetic excitations from the gapped ground state in TlCuCl sub 3 have been investigated by means of inelastic neutron scattering experiments. The excitation data were collected along four different directions in the a sup * -c sup * plane. A well-defined single magnetic excitation mode was observed. The lowest excitation occurs at Q=(h,0,l) with integer h and odd l, as observed in KCuCl sub 3. The dispersion relations were analyzed by the cluster-series expansion up to the sixth order, so that the individual exchange interactions were evaluated. It was demonstrated that TlCuCl sub 3 is a strongly coupled spin-dimer system. (orig.)

  3. ONE-DIMENSIONAL ORDERING OF IN ATOMS IN A CU(100) SURFACE

    NARCIS (Netherlands)

    BREEMAN, M; BARKEMA, GT; BOERMA, DO

    1994-01-01

    A Monte Carlo study of the ordering of In atoms embedded in the top layer of a Cu(100) surface is presented. The interaction energies between the In and Cu atoms were derived from atom-embedding calculations, with Finnis-Sinclair potentials. It was found that the interaction between In atoms in the

  4. Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Sulaiman N. Basahel

    2016-04-01

    Full Text Available Mesoporous CuO-ZrO2 catalysts were prepared and calcined at 500 °C. The performance of the synthesized catalysts for benzylation of benzene using benzyl chloride was studied. The bare support (macroporous ZrO2 offered 45% benzyl chloride conversion after reaction time of 10 h at 75 °C. Significant increase in benzyl chloride conversion (98% was observed after CuO loading (10 wt. % on porous ZrO2 support. The conversion was decreased to 80% with increase of CuO loading to 20 wt. %. Different characterization techniques (XRD, Raman, diffuse reflectance UV-vis, N2-physisorption, H2-TPR, XPS and acidity measurements were used to evaluate physico-chemical properties of CuO-ZrO2 catalysts; the results showed that the surface and structural characteristics of the ZrO2 phase as well as the interaction between CuO-ZrO2 species depend strongly on the CuO content. The results also indicated that ZrO2 support was comprised of monoclinic and tetragonal phases with macropores. An increase of the volume of monoclinic ZrO2 phase was observed after impregnation of 10 wt. % of CuO; however, stabilization of tetragonal ZrO2 phase was noticed after loading of 20 wt. % CuO. The presence of low-angle XRD peaks indicates that mesoscopic order is preserved in the calcined CuO-ZrO2 catalysts. XRD reflections due to CuO phase were not observed in case of 10 wt. % CuO supported ZrO2 sample; in contrast, the presence of crystalline CuO phase was observed in 20 wt. % CuO supported ZrO2 sample. The mesoporous 10 wt. % CuO supported ZrO2 catalyst showed stable catalytic activity for several reaction cycles. The observed high catalytic activity of this catalyst could be attributed to the presence of a higher number of dispersed interactive CuO (Cu2+-O-Zr4+ species, easy reducibility, and greater degree of accessible surface Lewis acid sites.

  5. Sulfur induced Cu4 tetramers on Cu(111)

    DEFF Research Database (Denmark)

    Foss, M.; Feidenhans'l, R.; Nielsen, M.

    1997-01-01

    The structures of the Cu(111) and the Cu(111)(root 7 x root 7)R19.1 degrees-S reconstructions have been studied by surface X-ray diffraction and two new structural models are proposed. Although the unit cells for the two structures are quite different, a high degree of similarity has been reveale...

  6. Investigation of CuI solubility in potassium metaniobate solution

    International Nuclear Information System (INIS)

    Tanirbergenov, B.

    1980-01-01

    The methods of solubility and potentiometry have been used to established the formation of the iodidometaniobate copper (1) complex [CuINbO 3 ] - in the case of CuI and KNbO 3 interaction. The data of the potentiometric method show the complex dissociation constant to be (0.9+-0.4)x10 -12

  7. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  8. Interplay of dopants and defects in making Cu doped TiO{sub 2} nanoparticle a ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Biswajit, E-mail: biswa.tezu@gmail.com [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Choudhury, Amarjyoti [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Borah, Debajit [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)

    2015-10-15

    Here we have studied the role of oxygen defects and Cu dopants on ferromagnetism in Cu doped TiO{sub 2} nanoparticles with nominal Cu concentration of 2%, 4% and 6 mol%. Electron paramagnetic resonance (EPR) spectra analysis reveals the presence of Cu{sup 2+} in the distorted octahedral coordination of TiO{sub 2}. Cu d-states undergo strong p-d coupling with the valence band O 2p state of TiO{sub 2} resulting the extended absorption hump in the visible region. Photoluminescence results reveal the presence of oxygen defect related emission peaks in Cu doped TiO{sub 2}. Room temperature ferromagnetism is observed in all the Cu doped TiO{sub 2} nanoparticles. Saturation magnetization is the highest at 4 mol% and then there is a decrease in magnetization at 6 mol%. Ferromagnetism completely disappears on calcinations of 4% Cu doped TiO{sub 2} in air at 450 °C for 8 h. It is speculated that both oxygen vacancies and Cu d-states are involved in the room temperature ferromagnetism. Spin polarization occurs by the formation of bound magnetic polaron between electrons in Cu{sup 2+}d-states and the unpaired spins in oxygen vacancies. Presence of Cu{sup 2+}-Cu{sup 2+}d-d exchange interaction and Cu{sup 2+}-O{sup 2−}-Cu{sup 2+} antiferromagnetic superexchange interactions might have resulted in the reduction in magnetization at 6 mol% Cu. - Graphical abstract: Ferromagnetism in Cu doped TiO{sub 2} requires presence of both Cu dopant and oxygen vacancies. - Highlights: • Cu doped TiO{sub 2} nanoparticle displays room temperature ferromagnetism. • Ferromagnetism requires presence of both Cu and oxygen vacancies. • Antiferromagnetic interaction persists at high Cu dopant concentration. • Paramagnetism appears on air annealing of the doped system for longer period.

  9. Synthesis and characterization of Cu{sup 2+} substituted magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A. L. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Velasquez, A. A., E-mail: avelas26@eafit.edu.co [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Urquijo, J. P. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Baggio, E. [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2011-11-15

    Samples of magnetite, both pure and doped with divalent copper, Fe{sub 3 - x}Cu{sub x}O{sub 4}, with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Moessbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu{sup 2+} concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu{sup 2+} in magnetite, the first one is its incorporation within the structure, replacing Fe{sup 2+} ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu{sup 2+} within the structure, generation of vacancies or both simultaneous effects.

  10. Diffusion characteristics in the Cu-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Laik, Arijit; Kale, Gajanan Balaji [Bhabha Atomic Reseach Centre, Mumbai (India). Materials Science Div.; Bhanumurthy, Karanam [Bhabha Atomic Reseach Centre, Mumbai (India). Scientific Information Resource Div.; Kashyap, Bhagwati Prasad [Indian Institute of Technology Bombay, Mumbai (India). Dept. of Metallurgical Engineering

    2012-06-15

    The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720 - 860 C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu-Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu{sub 4}Ti, Cu{sub 4}Ti{sub 3} and CuTi{sub 2}. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu{sub 4}Ti, CuTi and Cu{sub 4}Ti{sub 3} and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol{sup -1} respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol{sup -1} to 247.5 kJ mol{sup -1} with increasing concentration of Ti, in the range 0.5 - 4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established. (orig.)

  11. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  12. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  13. ZrCu2P2 and HfCu2P2 phosphides and their crystal structure

    International Nuclear Information System (INIS)

    Lomnitskaya, Ya.F.

    1986-01-01

    Isostructural ZrCu 2 P 2 and HfCu 2 P 2 compounds are prepared for the first time. X-ray diffraction analysis (of powder, DRON-2.0 diffractometer, FeKsub(α) radiation) was used to study crystal structure of HfCu 2 P 2 phosphide belonging to the CaAl 2 Si 2 structural type (sp. group P anti 3 m 1, R=0.095). Lattice parameters the compounds are as follows: for ZrCu 2 P 2 a=0.3810(1), c=0.6184(5); for HfCu 2 P 2 a=0.3799(1), c=0.6160(2) (nm). Atomic parameters in the HfCu 2 P 2 structure and interatomic distances are determined

  14. Impact parameter dependence of K-shell ionization in Cu-Cu collisions

    International Nuclear Information System (INIS)

    Frank, W.; Jaracz, P.; Kaun, K.-H.; Lenk, M.; Rudiger, J.; Stachura, Z.

    1980-01-01

    The impact parameter dependence of the yield of K-shell vacancy production in 1 MeV/ a.m.u. Cu-Cu collisions has been studied in an X-ray-scattered ion coincidence experiment. The results are compared with existing models for K-vacancy production

  15. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    International Nuclear Information System (INIS)

    Roque-Malherbe, R.; Lozano, C.; Polanco, R.; Marquez, F.; Lugo, F.; Hernandez-Maldonado, A.; Primera-Pedrozo, J.N.

    2011-01-01

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO 2 isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably due to the confinement of the CO 2 molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO 2 equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO 2 displayed a peak at about 2338 cm -1 that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm -1 evidenced that this molecule interacts with the Cu 2+ , which appears to act as an electron accepting Lewis acid site. The aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide. -- Graphical abstract: The adsorption space of a very well characterized Cu-nitroprusside polymorph, applying carbon dioxide as probe molecule, was studied. Display Omitted Highlights: → Accurate information about the geometry of the adsorption space was provided. → Truthful data about the interactions within the adsorption space was presented. → The structure of the tested Cu-NP polymorph was established. → Was evidenced adsorbed CO 2 molecules in the form of weakly bonded adducts. → Is proposed that adsorbed molecules could change the Cu-NP magnetic properties.

  16. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  17. Thermal stability of Py/Cu and Co/Cu giant magnetoresistance (GMR) multilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, Vitaliy

    2007-07-01

    NiFe/Cu and Co/Cu multilayer systems have been studied regarding the mechanisms of thermal degradation of the giant magnetoresistance effect (GMR). The different thermodynamics of the studied systems results in different mechanisms of the GMR degradation as shown by highest resolution nanoanalysis using the three dimensional wide angle tomographic atom probe. According to the TAP analysis, GMR deterioration in Py/Cu system occurs due to the broadening of the layer interfaces observed at 250 C. In contrast, due to the strong demixing tendency, Co/Cu multilayers remain stable up to 450 C. At higher temperatures ferromagnetic bridging of the neighboring Co layers takes place leading to the GMR breakdown. In both Py/Cu and Co/Cu systems recrystallization is induced at 350-450 C, which is accompanied by a change in the crystallographic orientation from <111> to <100> wire texture. The reaction may be utilized to produce GMR sensor layers of remarkable thermal stability. Although the systems of interest are equivalent in respect of the observed phenomenon, the Ni{sub x}Fe{sub 1-x}/Cu system is chosen for a detailed analysis because it allows a precise control of the lattice constant by varying the Fe content in the Ni{sub x}Fe{sub 1-x} layer. It is shown that the crystallographic reorientation is triggered by the minimization of lattice mismatch elastic energy. Moreover, the counteraction between the elastic and interfacial energy minimizations exerts a critical influence on the recrystallization probability. (orig.)

  18. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Qu, Jun; He, Xiaoman; Chen, Min; Hu, Huimin; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu_2(OH)_2CO_3) and aluminum hydroxide (Al(OH)_3) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  19. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  20. Aryl-1H-imidazole[4,5f][1,10]phenanthroline Cu(II) complexes: Electrochemical and DNA interaction studies.

    Science.gov (United States)

    Rajebhosale, Bharati S; Dongre, Shivali N; Deshpande, Sameer S; Kate, Anup N; Kumbhar, Anupa A

    2017-10-01

    The reaction of aryl imidazo[4,5f] [1,10]phenanthrolines with Cu(NO 3 ) 2 lead to the formation of Cu(II) complexes of the type [Cu(L)(NO 3 ) 2 ] where L=PIP, 2-(phenyl) [4,5f] imidazo phenanthroline; HPIP=2-(2-hydroxyphenyl)imidazo [4,5f] phenanthroline and NIP=2-(naphthyl) [4,5f] imidazo phenanthroline. The interaction of these complexes with calf thymus DNA has been studied using viscosity measurements, UV-visible and fluorescence spectroscopy. Chemical nuclease activity of these complexes has also been investigated. All complexes cleave DNA via oxidative pathway involving singlet oxygen. Molecular docking studies revealed that these complexes bind to DNA through minor groove. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  2. Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization

    Science.gov (United States)

    Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi

    2018-04-01

    The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.

  3. Preparation of Uniform Hexapod Cu{sub 2}O and Hollow Hexapod CuO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Youngsik; Huh, Youngduk [Dankook Univ., Yongin (Korea, Republic of)

    2013-10-15

    The filled hexapod Cu{sub 2}O precursors were also prepared under microwave irradiation for only 120 s using a commercial microwave oven. The optimal experimental conditions for the perfect and uniform hexapod-like Cu{sub 2}O precursors were examined. The control of the cooling rate by adding cold water was also examined for the elimination of further crystal growth at the end of the arm of the hexapod Cu{sub 2}O precursors due to the thermal diffusion in reaction medium. The uniform hollow structure and hexapod CuO products were also prepared from the direct thermal oxidation of the filled hexapod Cu{sub 2}O precursors. The morphology-dependent properties of inorganic materials, such as magnetic, photocatalytic, and antibacterial activities, is one of the most important experimental issues in inorganic technology. Many researchers have prepared uniform and specific shaped inorganic oxides to understand the morphology-dependent properties of inorganic oxides.

  4. Modeling Photoelectron Spectra of CuO, Cu2O, and CuO2 Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space.

    Science.gov (United States)

    Orms, Natalie; Krylov, Anna I

    2018-04-12

    The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.

  5. Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Huan, E-mail: huanzhong1982@hotmail.com [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada); Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province (China); Kraemer, Lisa; Evans, Douglas [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada)

    2013-10-15

    Highlights: • Mussels exposed to algal/sediment-Cu have different size-related Cu accumulation. • Size-related Cu accumulation in mussels could be more dependant on algal-Cu uptake. • Importance of algal/sediment-Cu to Cu bioaccumulation varies with mussel body size. • Cu sources (algae and sediments) should be considered in “mussel watch” programs. • Cu stable isotope offers many advantages in Cu bioaccumulation studies. -- Abstract: Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ({sup 65}Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels. Furthermore, the relative contribution of Cu uptake from algae (65–91%) to Cu bioaccumulation is always higher than that from sediments (9–35%), possibly due to the higher bioavailability of algal-Cu. Therefore, the size-related ingestion of algae could be more important in influencing the size-related variations in Cu bioaccumulation. However, the relative contribution of sediment-Cu to Cu bioaccumulation increased with body size and thus sediment ingestion may also affect the size-related Cu variations in larger mussels (tissue weight >7.5 mg). This study highlights the importance of considering exposure pathways in normalization of metal concentration variation when using bivalves as biomonitors.

  6. Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles.

    Science.gov (United States)

    Zhang, Renqin; McEwen, Jean-Sabin

    2018-05-22

    Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu + cation with a linear configuration and a Cu 2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu + cation is bonded to H 2 O or NH 3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu 2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH 3 _4_Z 2 Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu + cation and Cu 2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

  7. Bonding in d9 complexes derived from EPR: Application to CuCl2-4, CuBr2-4, and CdCl2:Cu2+

    Science.gov (United States)

    Aramburu, J. A.; Moreno, M.

    1985-12-01

    In this work are reported the theoretical expressions for the [g], hyperfine, and superhyperfine (shf) tensors of a d9 square-planar complex within a molecular orbital (MO) scheme. These expressions include contributions arising from crystal field and charge transfer excitations calculated up to third and second order perturbations, respectively. This makes the present framework more general than those previously used. Through those expressions we have derived from the experimental EPR and optical data the MO coefficients corresponding to the valence b1g(x2-y2), b2g(xy), and eg(xz,yz) levels and also the core polarization contribution K to the hyperfine tensor for the systems CuCl2-4, CuBr2-4, and CdCl2:Cu2+. The 3d charge obtained for CuCl2-4 is equal to 0.61, 0.83, and 0.85 for the antibonding 3b1g, 2b2g, and 2eg levels, respectively. These figures are much closer to the Xα results by Bencini and Gatteschi [J. Am. Chem. Soc. 105, 5535 (1983)] than to those by Desjardins et al. [J. Am. Chem. Soc. 105, 4590 (1983)]. The σ and π covalency for CuBr2-4 are both higher than for CuCl2-4 in accord to the lower electronegativity for bromine. However, only for the antibonding 3b1g level of CuBr2-4 have we obtained an electronic charge lying mainly on ligands. The covalency of CdCl2:Cu2+ is smaller than that found for CuCl2-4, a fact associated to a higher metal-ligand distance for the former. Evidence of this statement are also given from the analysis of crystal-field spectra and isotropic shf constant. The values of K derived for CuCl2-4 (128.1×10-4 cm-1), CuBr2-4 (103.6×10-4 cm-1), and CdCl2:Cu2+ (123.9×10-4 cm-1) point out the dependence of K on the equatorial covalency but also on the existence of axial ligands. The [g] tensor of CuBr2-4 is dominated by the charge transfer contribution while the crystal field one is negative. Finally an analysis of the importance of each one of the involved contributions to the spin-Hamiltonian parameters is reported for the

  8. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    Science.gov (United States)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  9. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  10. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin

    International Nuclear Information System (INIS)

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ("6"5Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne "6"5Cu for 48 h, during which the time course sampling was conducted to determine "6"5Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest "6"5Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest "6"5Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne "6"5Cu influx rate in the GT was positively correlated with "6"5Cu contents of chyme in NDG, whereas it was largely negatively correlated with "6"5Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs. - Highlights: • Feeding shows a protective effect against waterborne Cu uptake in fish. • The elevated dietary Cu can greatly suppress the waterborne Cu uptake. • The presence of chyme reduces Cu uptake in the gastrointestinal tract. • Feeding status has

  11. Study of properties of Cu-Y and Cu-Y-Al system alloys

    International Nuclear Information System (INIS)

    Shparo, N.B.; Nikolaev, A.K.; Rozenberg, V.M.

    1978-01-01

    Investigated were the strength properties of alloys Cu(0-1.2)% Y and Cu-(10-0.5)% Al-(0-0.5)% Y after being treated under various heat conditions and tested at temperatures of 20, 400 and 600 deg C. Yttrium additions raise the temperature of recrystallization of copper and of copper-aluminium alloys. Small additions of yttrium (0.05%) increase considerably strength of Cu-Al alloys without increasing their electric resistance. Optimum properties are attained after hardening, deformation and ageing at 400 deg C

  12. Nucleon shadowing effects in Cu + Cu and Au + Au collisions at RHIC within the HIJING code

    Science.gov (United States)

    Abdel-Waged, Khaled; Felemban, Nuha

    2018-02-01

    The centrality dependence of pseudorapidity density of charged particles ({{{d}}{N}}{{ch}}/{{d}}η ) in Cu + Cu (Au + Au) collisions at Relativistic Heavy Ion Collider energy of \\sqrt{{s}{{NN}}}=22.4, 62.4 and 200 (19.6, 62.4 and 200) GeV, is investigated within an improved HIJING code. The standard HIJING model is enhanced by a prescription for collective nucleon-nucleon (NN) interactions and more modern parton distribution functions. The collective NN-interactions are used to induce both cascade and nucleon shadowing effects. We find collective cascade broadens the pseudorapidity distributions in the tails (at | η | > {y}{beam}) above 25%-30% collision centrality to be consistent with the {{{d}}{N}}{{ch}}/{{d}}η data at \\sqrt{{s}{{NN}}} =19.6,22.4,62.4 {GeV}. The overall contribution of nucleon shadowing is shown to depress the whole shape of {{{d}}{N}}{{ch}}/{{d}}η in the primary interaction region (at | η | data.

  13. Formation of layered microstructure in the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Kammlott, G.W.; Tiefel, T.H.; Chen, S.K.

    1992-01-01

    The layered grain microstructure is essential for overcoming the weak link problem and ensuring high transport critical currents in the cuprate superconductors. In this paper we discuss the processing and the mechanisms for layer information in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. In melt-processed Y-Ba-Cu-O, sympathetic nucleation on previously nucleated YBa 2 Cu 3 O 7-δ plates during solidification appears to be dominant mechanism for the formation of parallel plate-shaped grains. In the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons, the interface reaction between the superconductor layer and the silvers substrate seems to be the main mechanism for the c-axis texturing of the layered grains. The drastically different critical current behavior in the c-axis textured Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons is discussed in terms of possible differences in the nature of the twist and tilt grain boundaries. (orig.)

  14. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  15. Current transport and electronic states in a,b-axis-oriented YBa2Cu3O7/PrBa2Cu3O7/YBa2Cu3O7 sandwich-type junctions

    International Nuclear Information System (INIS)

    Yoshida, J.; Nagano, T.; Hashimoto, T.

    1996-01-01

    Precise measurement of the temperature and voltage dependence of junction conductance has been carried out for a,b-axis-oriented YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 /YBa 2 Cu 3 O 7 sandwich-type junctions to investigate the possible origin of Josephson coupling in these junctions. Regardless of the presence or absence of the Josephson effect, most of the junctions exhibited a dip in conductance around zero voltage in their dI/dV profiles at low temperatures. This dI/dV anomaly was attributed to the existence of a minimum in the density of states due to electron-electron interaction in disordered metals in the vicinity of a tunneling barrier within the junctions. The complex temperature dependence of junction conductance was reproduced well by a theoretical model in which both tunneling conduction paths and variable range hopping paths were assumed to exist within the PrBa 2 Cu 3 O 7 barrier layer. No definite evidence of current transport through a small number of localized levels or a metallic conduction path in PrBa 2 Cu 3 O 7 has been confirmed, even for junctions with a 20-nm-thick barrier layer. copyright 1996 The American Physical Society

  16. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  17. Optical constants of Cu(In, Ga)Se{sub 2} for arbitrary Cu and Ga compositions

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, Shota; Kodera, Keita; Nakane, Akihiro; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Maekawa, Takuji [Research and Development Headquarters, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 (Japan); Niki, Shigeru [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-05-21

    The optical constants of Cu(In, Ga)Se{sub 2} (CIGS)-based polycrystalline layers with different Cu and Ga compositions are parameterized completely up to a photon energy of 6.5 eV assuming several Tauc-Lorentz transition peaks. Based on the modeled optical constants, we establish the calculation procedure for the CIGS optical constants in a two-dimensional compositional space of (Cu, Ga) by taking the composition-induced shift of the critical point energies into account. In particular, we find that the variation of the CIGS optical constants with the Cu composition can be modeled quite simply by a spectral-averaging method in which the dielectric function of the target Cu composition is estimated as a weighted average of the dielectric functions with higher and lower Cu compositions. To express the effect of the Ga composition, on the other hand, an energy shift model reported earlier is adopted. Our model is appropriate for a wide variety of CIGS-based materials having different Cu and Ga compositions, although the modeling error increases slightly at lower Cu compositions [Cu/(In + Ga) < 0.69]. From our model, the dielectric function, refractive index, extinction coefficient, and absorption coefficient for the arbitrary CIGS composition can readily be obtained. The optical database developed in this study is applied further for spectroscopic ellipsometry analyses of CIGS layers fabricated by single and multi-stage coevaporation processes. We demonstrate that the compositional and structural characterizations of the CIGS-based layers can be performed from established analysis methods.

  18. Influence of Cu Content on the Structure, Mechanical, Friction and Wear Properties of VCN–Cu Films

    Directory of Open Access Journals (Sweden)

    Fanjing Wu

    2018-03-01

    Full Text Available VCN–Cu films with different Cu contents were deposited by reactive magnetron sputtering technique. The films were evaluated in terms of their microstructure, elemental composition, mechanical, and tribological properties by X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, high resolution transmission electron microscopy (HR-TEM, Raman spectrometry, nano-indentation, field emission scanning electron microscope (FE-SEM, Bruker three-dimensional (3D profiler, and high-temperature ball on disc tribo-meter. The results showed that face-centered cubic (fcc VCN, hexagonal close-packed (hcp V2CN, fcc-Cu, amorphous graphite and CNx phases co-existed in VCN–Cu films. After doping with 0.6 at.% Cu, the hardness reached a maximum value of ~32 GPa. At room temperature (RT, the friction coefficient and wear rate increased with increasing Cu content. In the temperature range of 100–500 °C, the friction coefficient decreased, but the wear rate increased with the increase of Cu content.

  19. Mechanical, electronic and thermal properties of Cu{sub 5}Zr and Cu{sub 5}Hf by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Guohui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu, E-mail: xyzhang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Qin, Jiaqian, E-mail: jiaqianqin@gmail.com [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); Ning, Jinliang; Zhang, Suhong; Ma, Mingzhen; Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-08-15

    Highlights: • The mechanical and fundamental thermal data of Cu{sub 5}Zr and Cu{sub 5}Hf are determined. • The technologically important elastic anisotropy is obtained and discussed according to its industrial applications. • The brittle/ductile and bonding nature of Cu{sub 5}Zr and Cu{sub 5}Hf are analyzed in details. - Abstract: The structural, elastic, electronic and thermodynamic properties of Cu{sub 5}Zr and Cu{sub 5}Hf compounds are investigated by first-principles calculations combined with the quasi-harmonic Debye model. The calculated lattice parameters of cubic AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf agree well with available experimental and other theoretical results and the formation enthalpy calculations show that AuBe{sub 5}-type Cu{sub 5}Hf is more energetically stable than the competing hexagonal CaCu{sub 5}-type phase. The mechanical properties such as mechanical stabilities, anisotropy character, ductility (estimated from the value of B/G, Poisson’s ratio υ and Cauchy pressures C{sub 12}–C{sub 44}) and thermodynamic properties such as volume change under temperature and pressure (V/V{sub 0}), heat capacity (C{sub v}), Debye temperature (Θ), thermal expansion coefficient (α) of AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf are calculated together. Cu{sub 5}Hf has better performances than Cu{sub 5}Zr with higher hardness and better resistance to fracture which are rationalized from the calculated electronic structure (including density of states, charge density distributions, Mulliken’s population analysis) and we find that all ionic, covalent and metallic components exist in bonding of Cu{sub 5}Zr and Cu{sub 5}Hf but the covalent bonding in Cu{sub 5}Hf is stronger.

  20. Decomposition of NO on Cu-loaded zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Escribano, A; Marquez-Alvarez, C; Rodriquez-Ramos, I; Fierro, J L.G. [Instituto de Catalisis y Petroleoquimica, Madrid (Spain); Guerrero-Ruiz, A [Departamento de Quimica Inorganica, UNED, Madrid (Spain)

    1993-05-26

    Two copper ion-exchanged zeolites, Cu/NaY and Cu/NaZSM-5 have been studied by several techniques (TPR, TPD of NO, IR spectroscopy of adsorbed NO and XPS) and their catalytic activity for NO-decomposition have been determined under dynamic conditions. The results obtained here show that copper is stabilized as Cu[sup +] in Cu/NaZSM-5 after calcination in air at 673K, while in Cu/NaY the initial Cu[sup +]-ions are easier oxidized to Cu[sup 2+], this leading to a completely different catalytic behavior in the reaction of NO-decomposition. So, whereas the Cu/NaZSM-5 exhibits a high NO-conversion at the reaction temperatures (573 and 873K), the parent Cu/NaY zeolite becomes deactivated in the first stages of reaction.

  1. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  2. Water formation via HCl oxidation on Cu(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Ibrahim A., E-mail: isuleman@taibahu.edu.sa [College of Engineering, Taibah University, Yanbu 41911 (Saudi Arabia); Radny, Marian W. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Institute of Physics, Poznan University of Technology, 62-956 Poznan (Poland); Gladys, Michael J.; Smith, Phillip V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John C. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Chemistry, The University of Sydney (Australia); Stockenhuber, Michael; Kennedy, Eric M. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan Z. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Engineering and Information Technology, Murdoch University, Perth (Australia)

    2014-04-01

    Graphical abstract: This work investigates water formation on the Cu(1 0 0) surface via HCl oxidation using density functional theory and periodic slabs. We show that there are two different pathways for water formation on the surface depending on the temperature and oxygen coverage. - Highlights: • Pre-adsorbed chlorine increases the stability of water on Cu(1 0 0). • Two different pathways describe water formation on Cu(1 0 0) via HCl oxidation. • The mechanism of H{sub 2}O formation depends on the temperature and oxygen coverage. - Abstract: Using density functional theory and periodic slabs, we have studied water formation via HCl oxidation on the Cu(1 0 0) surface. We show that while adsorbed chlorine increases the stability of water on the Cu(1 0 0) surface, water molecules dissociate immediately when located next to an oxygen atom. We also show that these competing interactions, when arising from HCl reacting with oxygen on Cu(1 0 0), lead to water formation according to two different pathways depending on the temperature and oxygen coverage.

  3. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  4. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  5. Conducting mechanisms of forming-free TiW/Cu{sub 2}O/Cu memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, P.; Li, Y.; Hui, Y. J.; Zhong, S. J.; Zhou, Y. X.; Xu, L.; Liu, N.; Qian, H.; Sun, H. J., E-mail: shj@mail.hust.edu.cn; Miao, X. S. [Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-08-24

    P-type Cu{sub 2}O is a promising CMOS-compatible candidate to fabricate memristive devices for next-generation memory, logic and neuromorphic computing. In this letter, the microscopic switching and conducting mechanisms in TiW/Cu{sub 2}O/Cu memristive devices have been thoroughly investigated. The bipolar resistive switching behaviors without an electro-forming process are ascribed to the formation and rupture of the conducting filaments composed of copper vacancies. In the low resistive state, the transport of electrons in the filaments follows Mott's variable range hopping theory. When the devices switch back to high resistive state, the coexistence of Schottky emission at the Cu/Cu{sub 2}O interface and electron hopping between the residual filaments is found to dominate the conducting process. Our results will contribute to the further understanding and optimization of p-type memristive materials.

  6. First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene

    Science.gov (United States)

    Liu, Yang; An, Libao; Gong, Liang

    2018-04-01

    To enhance the interaction between Cu and graphene in graphene reinforced Cu matrix composites, the first principles calculation was carried out to study the adsorption of Cu atoms on graphene. P-type doping and n-type doping were formed, respectively, on vacancy-defected and Au-doped graphene based on band structure analysis, and this was verified by subsequent investigation on density of states. A computation on charge transfer confirmed that p-type doping could promote the electron transport between Cu and graphene, while n-type doping would prevent it. In addition, adsorption energy and Mulliken population analysis revealed that both vacancy defects and Au doping could improve the stability of the Cu-graphene system. The research conducted in this paper provides useful guidance for the preparation of Cu/graphene composites.

  7. A-site ordered perovskite CaCu3Cu2Ir2O12−δ with square-planar and octahedral coordinated Cu ions

    International Nuclear Information System (INIS)

    Zhao Qing; Wang Qing-Tao; Yin Yun-Yu; Dai Jian-Hong; Shen Xi; Yang Jun-Ye; Yu Ri-Cheng; Long You-Wen; Hu Zhi-Wei; Li Xiao-Dong

    2016-01-01

    A novel CaCu 3 Cu 2 Ir 2 O 12−δ polycrystalline sample was synthesized at 8 GPa and 1373 K. Rietveld structural analysis shows that this compound crystallizes in an -type A-site ordered perovskite structure with space group Im-3. X-ray absorption spectra reveal a +2-charge state for both the square-planar and octahedral coordinated Cu ions, and the valence state of Ir is found to be about +5. Although the A-site Ca and the A′-site Cu 2+ are 1:3 ordered at fixed atomic positions, the distribution of B-site Cu 2+ and Ir 5+ is disorderly. As a result, no long-range magnetic ordering is observed at temperatures down to 2 K. Electrical transport and heat capacity measurements demonstrate itinerant electronic behavior. The crystal structure is stable with pressure up to 35.7 GPa at room temperature. (paper)

  8. Reply to Comment on ‘Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2-δ ’

    Science.gov (United States)

    Shu, G. J.; Tian, J. C.; Lin, C. K.; Hayashi, M.; Liou, S. C.; Chen, W. T.; Wong, Deniz P.; Liou, H. L.; Chou, F. C.

    2018-05-01

    In this reply to the comment on ‘Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of {{{Li}}}2{{{CuO}}}2-δ ’ (2017 New Journal of Physics 19 023206), we have clarified several key questions and conflicting results regarding the size of the intra-chain nearest neighbor coupling J 1 and the sign of the Weiss temperature Θ defined in the Curie–Weiss law of χ(T) = χ ◦ + C/(T ‑ Θ). Additional data analysis is conducted to verify the validity of the Curie–Weiss law fitting protocol, including the negative sign and size of Θ based on the high-temperature linear temperature dependence of 1/χ(T) for T > J 1 and \\tfrac{g{μ }B{SH}}{{k}BT}\\ll 1. The consistency between the magnetic antiferromagnetic (AF) ground state below T N and the negative sign of Θ in the high-temperature paramagnetic (PM) state is explained via the reduction of thermal fluctuation for a temperature-independent local field due to magnetic interaction of quantum nature. A magnetic dipole–dipole (MDD)-type interaction among FM chains is identified and proposed to be necessary for the 3D AF magnetic ground state formation, i.e., the Heisenberg model of an exchange-type interaction alone is not sufficient to fully describe the quasi-1D spin chain system of {{{Li}}}2{{{CuO}}}2. Several typical quasi-1D spin chain compounds, including {{{Li}}}2{{{CuO}}}2,{{{CuAs}}}2{{{O}}}4,{{{Sr}}}3{{{Fe}}}2{{{O}}}5, and CuGeO3, are compared to show why different magnetic ground states are achieved from the chemical bond perspective.

  9. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Feng, Li-Chao; Xie, Ning; Shao, Wen-Zhu; Zhen, Liang; Ivanov, V.V.

    2014-01-01

    Highlights: • Cu 2 O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu 2 O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO 2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu 2 O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu 2 O/Cu was investigated in Na 3 AlF 6 –CaF 2 –Al 2 O 3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu 2 O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate

  10. Effects of the molecule-electrode interface on the low-bias conductance of Cu-H2-Cu single-molecule junctions.

    Science.gov (United States)

    Jiang, Zhuoling; Wang, Hao; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin

    2016-07-28

    The atomic structure and electronic transport properties of a single hydrogen molecule connected to both symmetric and asymmetric Cu electrodes are investigated by using the non-equilibrium Green's function formalism combined with the density functional theory. Our calculations show that in symmetric Cu-H2-Cu junctions, the low-bias conductance drops rapidly upon stretching, while asymmetric ones present a low-bias conductance spanning the 0.2-0.3 G0 interval for a wide range of electrode separations. This is in good agreement with experiments on Cu atomic contacts in a hydrogen environment. Furthermore, the distribution of the calculated vibrational energies of the two hydrogen atoms in the asymmetric Cu-H2-Cu junction is also consistent with experiments. These findings provide clear evidence for the formation of asymmetric Cu-H2-Cu molecular junctions in breaking Cu atomic contacts in the presence of hydrogen and are also helpful for the design of molecular devices with Cu electrodes.

  11. Effects of CuO nanoparticles on Lemna minor.

    Science.gov (United States)

    Song, Guanling; Hou, Wenhua; Gao, Yuan; Wang, Yan; Lin, Lin; Zhang, Zhiwei; Niu, Qiang; Ma, Rulin; Mu, Lati; Wang, Haixia

    2016-12-01

    Copper dioxide nanoparticles (NPs), which is a kind of important and widely used metal oxide NP, eventually reaches a water body through wastewater and urban runoff. Ecotoxicological studies of this kind of NPs effects on hydrophyte are very limited at present. Lemna minor was exposed to media with different concentrations of CuO NPs, bulk CuO, and two times concentration of Cu 2+ released from CuO NPs in culture media. The changes in plant growth, chlorophyll content, antioxidant defense enzyme activities [i.e., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) activities], and malondialdehyde (MDA) content were measured in the present study. The particle size of CuO NPs and the zeta potential of CuO NPs and bulk CuO in the culture media were also analyzed to complementally evaluate their toxicity on duckweed. Results showed that CuO NPs inhibited the plant growth at lower concentration than bulk CuO. L. minor roots were easily broken in CuO NPs media under the experimental condition, and the inhibition occurred only partly because CuO NPs released Cu 2+ in the culture media. The POD, SOD, and CAT activities of L. minor increased when the plants were exposed to CuO NPs, bulk CuO NPs and two times the concentration of Cu 2+ released from CuO NPs in culture media, but the increase of these enzymes were the highest in CuO NPs media among the three kinds of materials. The MDA content was significantly increased compared with that of the control from 50 mg L -1 CuO NP concentration in culture media. CuO NPs has more toxicity on L. minor compared with that of bulk CuO, and the inhibition occurred only partly because released Cu 2+ in the culture media. The plant accumulated more reactive oxygen species in the CuO NP media than in the same concentration of bulk CuO. The plant cell encountered serious damage when the CuO NP concentration reached 50 mg L -1 in culture media. The toxicology of CuO NP on hydrophytes must be considered because that hydrophytes

  12. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  13. Effect of age and lactose on 67Cu utilization in rats

    International Nuclear Information System (INIS)

    Link, J.; Dowdy, R.; Michelmann, E.; Hill, G.; Zinn, K.; Trrokey, D.; Ellersieck, M.

    1991-01-01

    Young and old male Fischer 344 rats were fed a control diet or a lactose diet. After four weeks rats were gavaged with approximately 6.24 uCl 67 Cu, placed in metabolism cages, and fed their respective diets for an additional two weeks. Daily whole body, urine and fecal radioactivity measurements were made. Rats were killed on day 42 and livers removed for radioactivity determination. Diet had no effect on whole body retention of 67 Cu in the old rats; approximately 20% of the initial dose was retained by the end of the study. In the young rats, however, lactose appeared to enhance initial 67 Cu retention; by day three young control rats retained only 30% of the initial dose, while the young lactose rats retained about 50%. Retention of 67 Cu at the end of the study was approximately 15% and 20% for young control and young lactose rats, respectively. During the first four days post dosing, cumulative fecal 67 Cu excretion was approximately 83% for young control rats and 69% for young lactose rats indicating enhancement of 67 Cu absorption by lactose in the young rats. For old rats cumulative 67 Cu excretion in feces was about 50% regardless of diet. Cumulative urinary 67 Cu excretion was approximately 6% and 8% for young control and lactose rats, respectively vs about 11% for old rats. 67 Cu retention in liver was greater in old rats regardless of diet. The early increase in 67 Cu absorption after a bolus dose may have therapeutic implications. In light of current concern regarding Cu-carbohydrate interactions, the apparent enhancement Cu retention by lactose in young rats deserves further attention

  14. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    Science.gov (United States)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  15. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  16. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  17. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn; Zhang, G.J.; Sun, J., E-mail: junsun@mail.xjtu.edu.cn

    2016-09-15

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V{sup *}), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  18. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    International Nuclear Information System (INIS)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G.; Zhang, G.J.; Sun, J.

    2016-01-01

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V * ), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  19. Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping; Zhou, Wei; Li, Ying; Wang, Jianchun; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-03-31

    Highlights: • CuO/ZnO nanocomposites have been synthesized by a one-step hydrothermal method. • The interaction between ZnO and CuO causes a modification of electronic structure. • The abnormal RTFM is discovered at the interface of CuO/ZnO. • The M{sub S} can be tuned by changing the phase ratios of the CuO and ZnO. • The indirect double-exchange model was employed to explain the origin of magnetism. - Abstract: CuO/ZnO nanocomposites have been successfully synthesized by a one-step hydrothermal method with different phase ratios. Field emission scanning electron microscopy and transmission electron microscopy results show that the obtained products of nanosheets are composed of small primary particles with an average size of about 20 nm. With the increasing proportion of CuO phase, nanosheets have significant collapse and the amount of small sheets increases obviously. The abnormal room temperature ferromagnetism was discovered at the interface between diamagnetic ZnO and antiferromagnetic CuO, which can be tuned by changing the phase ratios. Optical spectra indicate that the interaction between ZnO and CuO modifies the electronic structure of nanocomposites. XPS results verify the valence change of Cu ions and the presence of oxygen vacancies, which are ultimately responsible for the observed ferromagnetism. The indirect double-exchange model was employed to explain the origin of magnetism. Our study suggests that magnetically functional interfaces exhibit very appealing properties for novel devices.

  20. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  1. Recycled hierarchical tripod-like CuCl from Cu-PCB waste etchant for lithium ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Song [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China (China); Hou, Hongying, E-mail: hongyinghou@kmust.edu.cn [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China (China); Liu, Xianxi [Faculty of Mechanical and Electronic Engineering, Kunming University of Science and Technology, Kunming 650093 China (China); Duan, Jixiang; Yao, Yuan; Liao, Qishu; Li, Jing; Yang, Yunzhen [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China (China)

    2017-02-15

    Highlights: • High EVA CuCl was recycled with 85% recovery from Cu-PCB waste etchant. • The recycled CuCl displayed a hierarchical tripod-like morphology. • The evolution mechanism of the recycled hierarchical CuCl crystal was proposed. • The corresponding discharge capacity in LIB was 201.4 mAh/g after 100 cycles. • The results shed a new light on resource recovery and environmental protection. - Abstract: Hierarchical CuCl with high economic value added (EVA) was successfully recycled with 85% recovery from the acid Cu printed circuit board (Cu-PCB) waste etchant via facile liquid chemical reduction. The micro-structure and morphology of the recycled hierarchical CuCl were systematically characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). Furthermore, the corresponding electrochemical performances as lithium ion battery (LIB) anode were also investigated in terms of galvanostatic charge/discharge, cyclic voltammetry (CV) and AC impedance. As expected, the recycled CuCl displayed a hierarchical tripod-like structure and large specific surface area of 21.2 m{sup 2}/g. As the anode in LIB, the reversible discharge capacity was about 201.4 mAh/g even after 100 cycles, implying the satisfactory cycle performance. Clearly, the satisfactory results may open a new avenue to develop the sustainable industry, which is very important in terms of both the resource recovery and the environmental protection.

  2. Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers

    KAUST Repository

    Chen, Fang-Ping

    2016-01-18

    Abstract: In this work, a uniform heterojunction of cupric oxide/cuprous oxide was decorated on the surface of carbon fibers by electrochemical method (CuO/Cu2O/CDs/CFs). Methyl-β-cyclodextrin was first grafted on the surface of carbon fibers (CDs/CFs). Cubic cuprous oxide was electrodeposited on the surface of (Cu2O/CDs/CFs) in 0.1 M KNO3, the cuprous oxide was then partly anodized to cupric oxide to form a heterojunction of cupric oxide/cuprous oxide with a burr shape (CuO/Cu2O/CDs/CFs). The obtained materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The potential application in pollution treatment was further investigated, and the prepared CuO/Cu2O/CDs/CFs could be a promising adsorbent/photocatalyst toward the uptake and degradation of 2, 6-dichlorophenol (2, 6-DCP). Graphical Abstract: [Figure not available: see fulltext.] © 2016 Springer Science+Business Media Dordrecht

  3. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  4. Surface studies by low energy ion beams: Cu/Ru(0001) and Cu/O/Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.G.; O`Connor, D.J.; MacDonald, R.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Wandelt, H. [Institut fur Physikalische und Theoretische Chemie der Universitat Bonn, Bonn (Germany).; Zee, H. van [Eindhoven University of Technology, Eindhoven (Netherlands) Dept. of Physics

    1993-12-31

    The surface structure of Cu on Ru(OOO1) has been studied by low energy Li{sup +} ion scattering. It was found that Cu forms pseudomorphic islands for two layers. The effects of Cu on an O-precovered RU(OOO1) surface has also been investigated using keV He{sup +} ions. The results show that during the deposition of Cu, O is displaced from the Ru surface and migrated onto the top of the surface of the growing overlayer. The floated out O has been tested, showing a disordered overlayer. 5 refs., 3 figs.

  5. Surface studies by low energy ion beams: Cu/Ru(0001) and Cu/O/Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y G; O` Connor, D J; MacDonald, R J [Newcastle Univ., NSW (Australia). Dept. of Physics; Wandelt, H [Institut fur Physikalische und Theoretische Chemie der Universitat Bonn, Bonn (Germany).; Zee, H van [Eindhoven University of Technology, Eindhoven (Netherlands) Dept. of Physics

    1994-12-31

    The surface structure of Cu on Ru(OOO1) has been studied by low energy Li{sup +} ion scattering. It was found that Cu forms pseudomorphic islands for two layers. The effects of Cu on an O-precovered RU(OOO1) surface has also been investigated using keV He{sup +} ions. The results show that during the deposition of Cu, O is displaced from the Ru surface and migrated onto the top of the surface of the growing overlayer. The floated out O has been tested, showing a disordered overlayer. 5 refs., 3 figs.

  6. Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass

    International Nuclear Information System (INIS)

    Kopittke, P.M.; Asher, C.J.; Blamey, F.P.C.; Menzies, N.W.

    2009-01-01

    Sabi grass (Urochloa mosambicensis (Hack.) Dandy) (a C4 species of Poaceae) is commonly used to revegetate disturbed sites in low-rainfall environments, but comparatively little is known regarding copper (Cu) toxicity in this species. A dilute nutrient solution culture experiment was conducted for 10 d to examine the effects of elevated Cu 2+ activities ({Cu 2+ }) on the growth of Sabi grass. Growth was inhibited by high Cu in solution, with a 50% reduction in the relative fresh mass occurring at 1.0 μM {Cu 2+ } for the roots and 1.2 μM {Cu 2+ } for the shoots. In solutions containing 1.2-1.9 μM {Cu 2+ }, many of the roots ruptured due to the tearing and separation of the rhizodermis and outer cortex from the underlying tissues. Transmission electron microscopy revealed that Cu-rich deposits were found to accumulate predominantly within vacuoles. Due to limited translocation of Cu from the roots to the shoots, phytotoxicity is likely to be more of a problem in remediation of Cu-toxic sites than is Cu toxicity of fauna consuming the above-ground biomass.

  7. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS

    International Nuclear Information System (INIS)

    Cestone, Benedetta; Vogel-Mikuš, Katarina; Quartacci, Mike Frank; Rascio, Nicoletta; Pongrac, Paula; Pelicon, Primož; Vavpetič, Primož; Grlj, Nataša; Jeromel, Luka; Kump, Peter; Nečemer, Marijan; Regvar, Marjana; Navari-Izzo, Flavia

    2012-01-01

    A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N′-ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 μM or 150 μM CuSO 4 or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 μM treatments with both CuSO 4 and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 μM CuSO 4 , Cu was mainly accumulated in root vascular bundles, whereas with 150 μM CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H + -ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 μM CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO 4 treatment. Inhibition of H + -ATPase activity resulted in reduced Cu accumulation in 30 μM CuEDDS-treated roots and 150 μM CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed. - Highlights: ► We localised Cu in Brassica carinata treated with CuSO 4 or CuEDDS by micro-PIXE. ► EDDS-assisted Cu uptake and transport resulted in preserved root endodermis. ► EDDS enhanced Cu transport from roots to shoots. ► Cu sequestration within leaf veins

  8. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    International Nuclear Information System (INIS)

    Horvath, Z.E.; Peto, G.; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J.

    1999-01-01

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF 2 + ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO 2 to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly

  9. Direct jet reconstruction in p+p and Cu + Cu collisions at PHENIX

    International Nuclear Information System (INIS)

    Lai, Yue Shi

    2011-01-01

    Direct jet reconstruction in heavy ion collisions is an important probe for the in-medium parton energy loss and jet-medium interactions and reconstructed jets provide additional constraints to characterize the underlying mechanisms. However, traditional jet reconstruction algorithms operating in the large soft background at RHIC produce fake jets well above the intrinsic production rate of high-p T hard scattering, thus impeding the detection of the low cross section jet signal at RHIC energies. We developed a jet reconstruction algorithm that locates and reconstructs the jet energy using a Gaussian filter. This algorithm is combined with a fake jet rejection scheme that provides efficient jet reconstruction with acceptable fake rate in a background environment up to the central Au + Au collision at √(s NN )=200GeV. We present results of its application in p+p and Cu + Cu collisions using data from the PHENIX detector, including jet spectrum up to 60 GeV/c, nuclear modification factor, and fragmentation function.

  10. Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Sağlam, M.; Güzeldir, B., E-mail: msaglam@atauni.edu.tr

    2016-09-15

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ{sub b}), series resistance (R{sub s}), leakage current (I{sub 0}), and interface states (N{sub ss}) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.

  11. Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method

    International Nuclear Information System (INIS)

    Sağlam, M.; Güzeldir, B.

    2016-01-01

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ_b), series resistance (R_s), leakage current (I_0), and interface states (N_s_s) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.

  12. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu{sup 2+}: An exploratory biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no; Chora, Suze; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2014-10-15

    Highlights: • Different protein expression patterns, tissue and Cu form dependent. • Different cellular mechanisms involved in CuO NPs and Cu{sup 2+} toxicity. • CuO NPs toxicity mediated by cell signalling cascades that result in apoptosis. • Caspase 3/7–1, catL, Zn-finger, precol-D as new molecular targets for both Cu forms in mussels. - Abstract: CuO NPs are one of the most used metal nanomaterials nowadays with several industrial and other commercial applications. Nevertheless, less is known about the mechanisms by which these NPs inflict toxicity in mussels and to what extent it differs from Cu{sup 2+}. The aim of this study was to investigate changes in protein expression profiles in mussels Mytilus galloprovincialis exposed for 15 days to CuO NPs and Cu{sup 2+} (10 μg L{sup −1}) using a proteomic approach. Results demonstrate that CuO NPs and Cu{sup 2+} induced major changes in protein expression in mussels’ showing several tissue and metal-dependent responses. CuO NPs showed a higher tendency to up-regulate proteins in the gills and down-regulate in the digestive gland, while Cu{sup 2+} showed the opposite tendency. Distinctive sets of differentially expressed proteins were found, either common or specific to each Cu form and tissue, reflecting different mechanisms involved in their toxicity. Fifteen of the differentially expressed proteins from both tissues were identified by MALDI-TOF-TOF. Identified proteins indicate common response mechanisms induced by CuO NPs and Cu{sup 2+}, namely in cytoskeleton and cell structure (actin, α-tubulin, paramyosin), stress response (heat shock cognate 71, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing protein 1, nuclear receptor subfamily 1G) and energy metabolism (ATP synthase F0 subunit 6). CuO NPs alone also had a marked effect on other biological processes, namely oxidative stress (GST), proteolysis (cathepsin L) and apoptosis (caspase 3/7-1). On

  13. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Busson, Bertrand; De Gaudenzi, Gian Pietro; Mele, Claudio; Tadjeddine, Abderrahmane

    2007-01-01

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN - stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface

  14. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Universite Paris-Sud, 91405 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Bat. 201, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex (France)

    2007-01-16

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN{sup -} stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface.

  15. A density functional theory study of CO oxidation on CuO1-x(111).

    Science.gov (United States)

    Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong

    2015-08-01

    The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.

  16. Copper Selenidophosphates Cu4P2Se6, Cu4P3Se4, Cu4P4Se3, and CuP2Se, Featuring Zero-, One-, and Two-Dimensional Anions.

    Science.gov (United States)

    Kuhn, Alexander; Schoop, Leslie M; Eger, Roland; Moudrakovski, Igor; Schwarzmüller, Stefan; Duppel, Viola; Kremer, Reinhard K; Oeckler, Oliver; Lotsch, Bettina V

    2016-08-15

    Five new compounds in the Cu/P/Se phase diagram have been synthesized, and their crystal structures have been determined. The crystal structures of these compounds comprise four previously unreported zero-, one-, and two-dimensional selenidophosphate anions containing low-valent phosphorus. In addition to two new modifications of Cu4P2Se6 featuring the well-known hexaselenidohypodiphosphate(IV) ion, there are three copper selenidophosphates with low-valent P: Cu4P3Se4 contains two different new anions, (i) a monomeric (zero-dimensional) selenidophosphate anion [P2Se4](4-) and (ii) a one-dimensional selenidophosphate anion [Formula: see text], which is related to the well-known gray-Se-like [Formula: see text] Zintl anion. Cu4P4Se3 contains one-dimensional [Formula: see text] polyanions, whereas CuP2Se contains the 2D selenidophosphate [Formula: see text] polyanion. It consists of charge-neutral CuP2Se layers separated by a van der Waals gap which is very rare for a Zintl-type phase. Hence, besides black P, CuP2Se constitutes a new possible source of 2D oxidized phosphorus containing layers for intercalation or exfoliation experiments. Additionally, the electronic structures and some fundamental physical properties of the new compounds are reported. All compounds are semiconducting with indirect band gaps of the orders of around 1 eV. The phases reported here add to the structural diversity of chalcogenido phosphates. The structural variety of this family of compounds may translate into a variety of tunable physical properties.

  17. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  18. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).

    Science.gov (United States)

    Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio

    2016-01-15

    A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dynamics of very low energy photoelectrons interacting with image charge of Cs/Cu(111) surface

    International Nuclear Information System (INIS)

    Hayashi, K.; Arafune, R.; Ueda, S.; Uehara, Y.; Ushioda, S.

    2005-01-01

    We have measured the very low energy photoelectron spectra of Cs-covered Cu(111) surfaces, and determined the mechanism for the appearance of a spike structure due to the interaction of emitted electron with its image charge. At high Cs coverage of 0.10 and 0.14 monolayers (ML), the spike structure appeared at the vacuum level. No such structure was found at low coverage of 0.06 ML. The vacuum level at high coverage lies in the energy gap at the Γ point in the surface Brillouin zone of the Cu(111) surface, while it lies outside the energy gap at low coverage. These results confirm the validity of our proposed mechanism that the spike structure appears when the vacuum level lies in the energy gap

  20. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  1. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Spectroscopic study of the CuO chains in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Edwards, H.; Derro, D.J.; Barr, A.L.; Markert, J.T.; de Lozanne, A.L.

    1996-01-01

    We interpret our previously published results obtained using a technique called current-imaging tunneling spectroscopy (CITS) to study the detailed electronic structure of the CuO chains in the high-temperature superconductor YBa 2 Cu 3 O 7-x near the Fermi level. Our CITS data comprise sequences of 32 simultaneously obtained images taken at bias voltages ranging from -78 to 72 mV. Cross sections of the CITS data, normalized-conductance analysis, and logarithmic-derivative analysis allow us to examine in detail the behavior of electronic modulations along the CuO chains and the energy gap in the CuO chains of YBa 2 Cu 3 O 7-x . This new analysis lends a strong foundation to our previous interpretation of the CITS data [H. L. Edwards et al., Phys. Rev. Lett. 75, 1387 (1995)]. copyright 1996 American Vacuum Society

  3. Theory of phonon properties in doped and undoped CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2012-07-02

    We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.

  4. Magnon spectrum of the helimagnetic insulator Cu2OSeO3.

    Science.gov (United States)

    Portnichenko, P Y; Romhányi, J; Onykiienko, Y A; Henschel, A; Schmidt, M; Cameron, A S; Surmach, M A; Lim, J A; Park, J T; Schneidewind, A; Abernathy, D L; Rosner, H; van den Brink, Jeroen; Inosov, D S

    2016-02-25

    Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.

  5. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  6. First-principles study of atomic ordering in bcc Cu-Al

    Science.gov (United States)

    Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.

    2011-01-01

    The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.

  7. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  8. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Z.E.; Peto, G. E-mail: peto@mfa.kfki.hu; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J

    1999-01-02

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF{sub 2}{sup +} ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO{sub 2} to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly.

  9. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  10. Diffusivities and atomic mobilities in Cu-rich fcc Al-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming; Du, Yong; Cui, Senlin; Xu, Honghui; Liu, Shuhong [Central South Univ., Changsha (China). State Key Laboratory of Powder Metallurgy; Zhang, Lijun [Bochum Univ. (DE). Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

    2012-07-15

    Via solid-solid diffusion couples, electron probe microanalysis and the Whittle and Green method, interdiffusivities in fcc Al-Cu-Mn alloys at 1 123 K were measured. The reliability of the obtained diffusivities is validated by comparing the computed diffusivities with literature data plus constraints among the diffusivities. Through assessments of experimentally determined diffusion coefficients by means of a diffusion-controlled transformations simulation package, the atomic mobilities of Al, Cu, and Mn in fcc Al-Cu-Mn alloys are obtained. Comprehensive comparisons between the model-predicted and the experimental data indicate that the presently obtained atomic mobilities can reproduce most of the diffusivities, concentration profiles, and diffusion paths reasonably. (orig.)

  11. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    International Nuclear Information System (INIS)

    Mohammadi, Kh.; Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-01-01

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps

  12. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  13. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  14. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing

    International Nuclear Information System (INIS)

    Li, Yi; Lim, Adeline B.Y.; Luo, Kaiming; Chen, Zhong; Wu, Fengshun; Chan, Y.C.

    2016-01-01

    The evolution of microstructure in Cu/In–48Sn/Cu solder bump interconnects at a current density of 0.7 × 10"4 A/cm"2 and ambient temperature of 55 °C has been investigated. During electromigration, tin (Sn) atoms migrated from cathode to anode, while indium (In) atoms migrated from anode to cathode. As a result, the segregation of the Sn-rich phase and the In-rich phase occurred. A Sn-rich layer and an In-rich layer were formed at the anode and the cathode, respectively. The accumulation rate of the Sn-rich layer was 1.98 × 10"−"9 cm/s. The atomic flux of Sn was calculated to be approximately 1.83 × 10"1"3 atoms/cm"2s. The product of the diffusivity and the effective charge number of Sn was determined to be approximately 3.13 × 10"−"1"0 cm"2/s. The In–48Sn/Cu IMC showed a two layer structure of Cu_6(Sn,In)_5, adjacent to the Cu, and Cu(In,Sn)_2, adjacent to the solder. Both the cathode IMC and the anode IMC thickened with increasing electromigration time. The IMC evolution during electromigration was strongly influenced by the migration of Cu atoms from cathode to anode and the accumulation of Sn-rich and In-rich layers. During electromigration, the Cu(In,Sn)_2 at the cathode interface thickened significantly, with a spalling characteristic, due to the accumulation of In-rich layer and the migration of Cu atoms - while the Cu(In,Sn)_2 at the anode interface reduced obviously, due to the accumulation of Sn-rich layer. The mechanism of electromigration-induced failure in Cu/In–48Sn/Cu interconnects was the cathode Cu dissolution-induced solder melt, which led to the rapid consumption of Cu in the cathode pad during liquid-state electromigration and this finally led to the failure. - Highlights: • Sn migrates to the anode, while In migrates to the cathode, during EM in Cu/In–48Sn/Cu. • The atomic flux of Sn has been calculated. • The interfacial IMCs were identified as: Cu_6(Sn,In)_5 + Cu(In,Sn)_2. • The interface evolution is strongly

  15. Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods

    Science.gov (United States)

    Govindhan, Raman; Karthikeyan, Balakrishnan

    2017-12-01

    3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.

  16. Infrared Zeeman study of the Nd.sup.3+./sup.-Cu.sup.2+./sup. anisotropic exchange interaction in Nd.sub.2./sub.CuO.sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Richard, P.; Jandl, S.; Poirier, M.; Furnier, P.; Nekvasil, Vladimír; Sadowski, M.L.

    2005-01-01

    Roč. 72, č. 1 (2005), 014506/1-014506/10 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/03/0552 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprate superconductors * Nd 2 CuO 4 * Zeeman and Stark splitting * anisotropic exchange interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005

  17. Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I–Cu(II Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand

    Directory of Open Access Journals (Sweden)

    Kenji Nakatani

    2015-04-01

    Full Text Available A new mixed-valence Cu(I–Cu(II 1D coordination polymer, [CuI4CuIIBr4(Cy2dtc2]n, with an infinite chain structure is synthesized by the reaction of Cu(Cy2dtc2 (Cy2dtc− = dicyclohexyl dithiocarbamate, C13H22NS2 with CuBr·S(CH32. The as-synthesized polymer consists of mononuclear copper(II units of CuII(Cy2dtc2 and tetranuclear copper(I cluster units, CuI4Br4. In the cluster unit, all the CuI ions have distorted trigonal pyramidal coordination geometries, and the CuI–CuI or CuI–CuII distances between the nearest copper ions are shorter than the sum of van der Waals radii for Cu–Cu.

  18. Preparation of three-dimensional porous Cu film supported on Cu foam and its electrocatalytic performance for hydrazine electrooxidation in alkaline medium

    International Nuclear Information System (INIS)

    Liu, Ran; Ye, Ke; Gao, Yinyi; Long, Ziyao; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2016-01-01

    Highlights: • A binder-free Cu/Cu foam electrode is prepared by an electrochemical method. • The electrode owns a novel three-dimensional porous structure. • The electrode exhibits superior catalytic activity for hydrazine electrooxidation. - Abstract: A three-dimensional porous copper film is directly deposited on Cu foam by an electrodeposition method using hydrogen bubbles as dynamic template (denoted as Cu/Cu foam). Its electrocatalytic activity toward hydrazine electrooxidation is tested by linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Compared with Cu foam, hydrazine electrooxidation on the Cu/Cu foam electrode shows that the onset oxidation potential displays a ~100 mV negative shift, the current density at −0.6 V raises about 14 times, the apparent activation energy and the charge transfer resistance reduce significantly. The increasing electrocatalytic performance for hydrazine electrooxidation is mainly caused by the highly porous structure of the Cu/Cu foam electrode which can provide a large surface area and make electrolyte access the electrocatalyst surfaces more easily. Hydrazine electrooxidation on the Cu/Cu foam electrode proceeds through a near 4-electron process.

  19. Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study

    Science.gov (United States)

    Zhou, Wei; Liu, Lijuan; Li, Baoling; Wu, Ping

    2009-06-01

    Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.

  20. Field-dependent antiferromagnetism and ferromagnetism of the two copper sublattices in Sr2Cu3O4Cl2

    International Nuclear Information System (INIS)

    Kastner, M.A.; Aharony, A.; Birgeneau, R.J.; Chou, F.C.; Entin-Wohlman, O.; Greven, M.; Harris, A.B.; Kim, Y.J.; Lee, Y.S.; Parks, M.E.; Zhu, Q.

    1999-01-01

    The Cu 3 O 4 layer in Sr 2 Cu 3 O 4 Cl 2 is a variant of the square CuO 2 lattice of the high-temperature superconductors, in which the center of every second plaquette contains an extra Cu 2+ ion. The ions that make up the conventional CuO 2 network, called CuI, have CuI-CuI exchange energy ∼130meV, and order antiferromagnetically at about 380 K; the CuII-CuII exchange is only ∼10meV, and the CuII close-quote s order at ∼40K. A study is reported here of the dependence of the magnetization on field, temperature, and crystallographic orientation for this interesting system. We show that the small permanent ferromagnetic moment, that appears when the CuI spins order, and the unusual spin rotation transitions seen most clearly for one particular direction of the magnetic field, are the result of several small bond-dependent anisotropic terms in the spin Hamiltonian that are revealed because of the frustration of the isotropic Heisenberg interaction between CuI and CuII spins. These include a term which favors collinearity of the CuI and CuII spins, which originates from quantum fluctuations, and also the pseudodipolar interaction. Some of these small interactions also come into play in other lamellar cuprates, connected with the high-T c superconductivity materials, and in many spin-chain and spin-ladder compounds. copyright 1999 The American Physical Society

  1. Titulações potenciométricas de cátions metálicos tendo como eletrodo indicador o sistema Cu/Cu(II-EDTA Potentiometric titrations of metal cations with edta using the Cu/Cu(II-EDTA system as indicator electrode

    Directory of Open Access Journals (Sweden)

    Paulo H. Pereira da Silva

    2008-01-01

    Full Text Available In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.

  2. R&D of CuCrZr tubes for W/Cu monoblock components

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Sixiang, E-mail: sxzhao@impcas.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Ma, Linsheng [State Nuclear Bao Ti Zirconium Industry Company, 206 Hi-Tech Avenue, Baoji 721013 (China); Peng, Lingjian [Advanced Technology & Materials Co., Ltd. - AT& M, Beijing 100081 (China); Gao, Bo [State Nuclear Bao Ti Zirconium Industry Company, 206 Hi-Tech Avenue, Baoji 721013 (China); Li, Chun [Laboratory of Advanced materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Li, Qiang; Wang, Wanjing; Wei, Ran; Xu, Yuping [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Pan, Ningjie; Qin, Sigui; Shi, Yingli; Liu, Guohui; Wang, Tiejun [Advanced Technology & Materials Co., Ltd. - AT& M, Beijing 100081 (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Hefei Center for Physical Science and Technology, Hefei 230031 (China); Hefei Science Center of CAS, Hefei 230031 (China)

    2016-11-15

    Highlights: • CuCrZr tubes with excellent HIP performance and good resistance to grain growth have been developed. • A circumferential ductility testing manner for small-diameter tubes has been utilized in this study. • The evolution of microstructures has been revealed throughout the new tube forming processes. - Abstract: In order to avoid the occurrence of two types of longitudinal defects (strain localization and folding flaws), which were observed in the CuCrZr tubes of EAST W/Cu upper divertor components, in the future manufacturing of monoblock components using hot isostatic pressing (HIP), a new CuCrZr tube forming protocol is proposed. The evolution of Cu grains and Cr-rich particles is monitored by scanning electron microscopy throughout the new tube forming processes. The final microstructures of the newly developed tubes are totally different from those of the EAST project previously chosen tubes and the elongation of Cr-rich precipitates has been substantially suppressed by using the new tube forming protocol. The newly developed tubes show better HIP performance than the EAST previously chosen ones. Since circumferential mechanical properties, especially ductility, are of great importance, a circumferential ductility testing manner for small-diameter tubes, which might be a supplement to longitudinal tensile testing, has been utilized and the preliminary testing results are given. The recrystallization behavior of the newly developed tubes is also investigated.

  3. Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics: the role of Sb valency and Cu d levels.

    Science.gov (United States)

    Do, Dat; Ozolins, Vidvuds; Mahanti, S D; Lee, Mal-Soon; Zhang, Yongsheng; Wolverton, C

    2012-10-17

    In this paper we discuss the results of ab initio electronic structure calculations for Cu(3)SbSe(4) (Se4) and Cu(3)SbSe(3) (Se3), two narrow bandgap semiconductors of thermoelectric interest. We find that Sb is trivalent in both the compounds, in contrast to a simple nominal valence (ionic) picture which suggests that Sb should be 5 + in Se4. The gap formation in Se4 is quite subtle, with hybridization between Sb 5s and the neighboring Se 4s, 4p orbitals, position of Cu d states, and non-local exchange interaction, each playing significant roles. Thermopower calculations show that Se4 is a better p-type system. Our theoretical results for Se4 agree very well with recent experimental results obtained by Skoug et al (2011 Sci. Adv. Mater. 3 602).

  4. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses

    International Nuclear Information System (INIS)

    Silva, Luis Carlos Elias da

    2006-01-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  5. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-03-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  6. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-05-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  7. Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A Chelates for Targeted Positron Emission Tomography with an αvβ6-Specific Peptide

    Directory of Open Access Journals (Sweden)

    Sven H. Hausner

    2009-03-01

    Full Text Available Significant upregulation of the integrin αvβ6 has been described as a prognostic indicator in several cancers, making it an attractive target for tumor imaging. This study compares variants of a PEGylated αvβ6-targeting peptide, bearing either an [>18F]fluorobenzoyl prosthetic group ([18F]FBA-PEG-A20FMDV2 or different [64Cu]copper chelators (DOTA-PEG-A20FMDV2, CB-TE2A-PEG-A20FMDV2. The compounds were evaluated in vitro by enzyme-linked immunosorbent assay (against the integrin αvβ6 and the closely related integrin αvβ6 and by cell labeling (αvβ6-positive DX3puroβ6/αvβ6-negative DX3puro and in vivo using micro-positron emission tomography in a mouse model bearing paired DX3puroβ6/Dx3puro xenografts. In vitro, all three compounds showed excellent αvβ6-specific binding (50% inhibitory concentration [IC50](αvβ6 = 3 to g nmol/L; IC50(αvβ3 > 10 (μmol/L. In vivo, they displayed comparable, preferential uptake for the αvβ6-expressmg xenograft over the αvβ6-negative control (> 4:1 ratio at 4 hours postinjection. Whereas [64Cu]Cu-DOTA-PEG-A20FMDV2 resulted in increased levels of radioactivity in the liver, [64Cu]Cu-CB-TE2A-PEG-A20FMDV2 did not. Significantly, both 64Cu-labeled tracers showed unexpectedly high and persistent levels of radioactivity in the kidneys (> 40% injected dose/g at 4 and 12 hours postinjection. The findings underscore the potential influence of the prosthetic group on targeted in vivo imaging of clinically relevant markers such as αvβ6. Despite identical targeting peptide moiety and largely equal in vitro behavior, both 64Cu-labeled tracers displayed inferior pharmacokinetics, making them in their present form less suitable candidates than the 18F-labeled tracer for in vivo imaging of αvβ6

  8. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    Science.gov (United States)

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations.

  9. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    Science.gov (United States)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  10. Electrodeposition of Cu-In alloys for preparing CuInS sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1990-01-01

    Copper-indium alloys were prepared by electroplating from citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) baths onto Ti substrate. Formation of the alloys was carried out by direct codeposition of the elements and by sequential electrodeposition of copper and indium. Studies of the alloy formation by electrochemical measurements and X-ray diffraction were performed. The presence of Cu{sub 7}In{sub 4} in direct deposit as well as in sequentially electrodeposited material was observed during the alloy formation. The as-deposited layers were heated in H{sub 2}S. X-ray diffraction showed the annealed layers to be CuInS{sub 2} with the chalcopyrite structure, where the CuIn{sub 5}S{sub 8} phase was included during the annealing process. Photoelectrochemical characterization of the samples allowed us to determine the photoconductivity which is related with the Cu/In ratio in the samples. The energy gap for CuInS{sub 2} photoelectrodes in polysulphide solution was 1.57 Ev. (orig.).

  11. Effect of the ITO substrate on the growth of Cu(In,Ga)Se{sub 2}, CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films by flash evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, E J; Merino, J M; Leon, M [Department of Applied Physics, Universidad Autonoma de Madrid (UAM), Cantoblanco, 28049 Madrid (Spain); Trigo, J F; Guillen, C [Department of Energy, CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Ramiro, J, E-mail: josue.friedrich@uam.e [Department of Theory of Signal and Communications, URJC, Campus Fuenlabrada, 122, 28943 Madrid (Spain)

    2009-04-21

    Structural, compositional, electrical and morphological properties of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (x = 0.15, 0.30) and ordered defect compounds (ODC) CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8}, CuIn{sub 3}Se{sub 5} thin films grown by flash evaporation onto soda lime glass substrates (SLG) and ITO/SLG have been studied. Polycrystalline thin films with accentuated preferential orientation in the (1 1 2) plane of the tetragonal structure have been obtained. Annealing in Se atmosphere improves the structural, morphological, electrical and optical properties of the evaporated films, but provokes the formation of a CuIn{sub x}Se{sub y} phase on the surface of the films. Band gap values ranging between 1.01 and 1.21 eV have been obtained for the as-grown CuIn{sub 1-x}Ga{sub x}Se{sub 2} thin films and between 1.09 and 2.01 eV for the CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films.

  12. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O3 multiferroic materials

    International Nuclear Information System (INIS)

    Jeuvrey, L.; Peña, O.; Moure, A.; Moure, C.

    2012-01-01

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO 3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn 1−x Cu x O 3 ; x 1+y MnO 3 ; y 3+ two-dimensional lattice. The magnetic transition at T N decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn 3+ –Mn 4+ interactions created by the substitution of Mn 3+ by Cu 2+ , are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn 3+ –Mn 4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: ► Hexagonal-type solid solutions of Y(Mn,Cu)O 3 synthesized by Pechini process. ► Chemical substitution at B site inhibits geometrical magnetic frustration. ► Magnetic transition decreases with Cu-doping. ► Local ferromagnetic Mn–Mn interactions coexist with the frustrated state.

  13. Phase equilibria and crystalline structure of compounds in the Lu-Al and Lu-Cu-Al systems

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.; Galamushka, L.I.

    1992-01-01

    Phase equilibria and crystal structure of compounds in Lu-Al and Lu-Cu-Al systems were studied. Existence of Lu 2 Al compound having the structure of the PbCl 2 type is ascertained. Diagram of phase equilibria of Lu-Cu-Al system at 870 K is plotted. Compounds Lu 2 (Cu,Al) 17 (the Th 2 Zn 17 type structure), Lu(Cu,Al) 5 (CaCu 5 type structure), Lu 6 (Cu,Al) 23 (Th 6 Mn 23 type structure) and ∼ LuCuAl 2 have been prepared for the first time. Investigation of component interaction in Lu-Cu-Al system shows that the system is similar to previously studied systems Dy-Cu-Al and Er-Cu-Al. The main difference consists in the absence of LuCuAl 3 compound with rhombic structure of the CeNi 2+x Sb 2-x type in the system investigated

  14. Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu.

    Science.gov (United States)

    Zhong, Huan; Kraemer, Lisa; Evans, Douglas

    2013-10-15

    Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ((65)Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels. Furthermore, the relative contribution of Cu uptake from algae (65-91%) to Cu bioaccumulation is always higher than that from sediments (9-35%), possibly due to the higher bioavailability of algal-Cu. Therefore, the size-related ingestion of algae could be more important in influencing the size-related variations in Cu bioaccumulation. However, the relative contribution of sediment-Cu to Cu bioaccumulation increased with body size and thus sediment ingestion may also affect the size-related Cu variations in larger mussels (tissue weight >7.5mg). This study highlights the importance of considering exposure pathways in normalization of metal concentration variation when using bivalves as biomonitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO{sub 4} or CuEDDS

    Energy Technology Data Exchange (ETDEWEB)

    Cestone, Benedetta, E-mail: benedettacestone@yahoo.it [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy); Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Quartacci, Mike Frank [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy); Rascio, Nicoletta [Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova (Italy); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Pelicon, Primoz; Vavpetic, Primoz; Grlj, Natasa; Jeromel, Luka; Kump, Peter; Necemer, Marijan [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Navari-Izzo, Flavia [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy)

    2012-06-15

    A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N Prime -ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 {mu}M or 150 {mu}M CuSO{sub 4} or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 {mu}M treatments with both CuSO{sub 4} and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 {mu}M CuSO{sub 4}, Cu was mainly accumulated in root vascular bundles, whereas with 150 {mu}M CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H{sup +}-ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 {mu}M CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO{sub 4} treatment. Inhibition of H{sup +}-ATPase activity resulted in reduced Cu accumulation in 30 {mu}M CuEDDS-treated roots and 150 {mu}M CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed. - Highlights: Black-Right-Pointing-Pointer We localised Cu in Brassica carinata treated with CuSO{sub 4} or CuEDDS by micro-PIXE. Black-Right-Pointing-Pointer EDDS-assisted Cu uptake and transport resulted in preserved root

  16. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  17. Syntheses, crystal Structures and electronic Structures of new metal chalcoiodides Bi2CuSe3I and Bi6Cu3S10I

    International Nuclear Information System (INIS)

    Liang, I-Chu; Bilc, Daniel I.; Manoli, Maria; Chang, Wei-Yun; Lin, Wen-Fu; Kyratsi, Theodora; Hsu, Kuei-Fang

    2016-01-01

    Two new metal chalcoiodides were synthesized by solid-state reactions at 400 °C. Crystal Data: Bi 2 CuSe 3 I, 1, monoclinic, C2/m, a=14.243(2) Å, b=4.1937(7) Å, c=14.647(2) Å, β=116.095(2)°, V=785.7(2) Å 3 , and Z=4; Bi 6 Cu 3 S 10 I, 2, orthorhombic, Pnma, a=17.476(2) Å, b=4.0078(4) Å, c=27.391(2) Å, V=1918.5(3) Å 3 , and Z=4. Compound 1 adopts a three-dimensional structure formed by two alternative layers, which consist of BiSe 5 square pyramids, BiSe 4 I 2 octahedra, CuSe 4 tetrahedra, and CuSe 2 I 2 tetrahedra. Compound 2 possesses a new open framework built up of BiS 5 square pyramides, BiS 6 octahedra, BiS 8 polyhedra, and CuS 4 tetrahedra where I − anions are uniquely trapped within the tunnels. Both electronic structures reveal that bismuth and chalcogenide orbitals dominate the bandgaps. The Cu d and I p states contribute to the top of valence bands, in which the distribution of I orbitals may correspond to the relative bonding interactions in 1 and 2. The optical bandgaps determined by the diffuse reflectance spectra are 0.68 eV and 0.72 eV for 1 and 2, respectively. 1 is a p-type semiconductor with high Seebeck coefficients of 460–575 μV/K in the temperature range of 300–425 K. The electrical conductivity is 0.02 S/cm at 425 K for the undoped sample. The thermal conductivity is 0.22 W/mK at 425 K. - Graphical abstract: The hybridization of chalcogenides and iodides produces two new solids Bi2CuSe3I and Bi6Cu3S10I. The I − anions participate in distinct bonding interactions within the two structures and that is consistent with the analyses of density of states. 1 is a p-type semiconductor with an optical bandgap of 0.68 eV, which possesses high Seebeck coefficient and low lattice thermal conductivity in 300–425 K.

  18. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shun, E-mail: shun.yokoyama.c2@tohoku.ac.jp; Motomiya, Kenichi; Takahashi, Hideyuki; Tohji, Kazuyuki [Tohoku University, Graduate School of Environmental Studies (Japan)

    2016-11-15

    Films made of closely packed Cu nanoparticles (NPs) were obtained by drop casting Cu NP inks. The capillary immersion force exerted during the drying of the inks caused the Cu NPs to attract each other, resulting in closely packed Cu NP films. The apparent density of the films was found to depend on the type of solvent in the ink because the capillary immersion force is affected by the solvent surface tension and dispersibility of Cu NPs in the solvent. The closely packed particulate structure facilitated the sintering of Cu NPs even at low temperature, leading to low-resistivity Cu films. The sintering was also enhanced with a decrease in the size of NPs used. We demonstrated that a closely packed particulate structure using Cu NPs with a mean diameter 61.7 nm showed lower resistivity (7.6 μΩ cm) than a traditionally made Cu NP film (162 μΩ cm) after heat treatment.

  19. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts

    KAUST Repository

    Chen, Wei

    2013-01-01

    Core-shell heterostructured Cu/Cu2O nanowires with a high aspect ratio were synthesized from Cu foam using a novel oxidation/reduction process. In situ XRD was used as an efficient tool to acquire phase transformation details during the temperature-programmed oxidation of Cu foam and the subsequent reduction process. Based on knowledge of the crucial phase transformation, optimal synthesis conditions for producing high-quality CuO and core-shell Cu/Cu2O nanowires were determined. In favor of efficient charge separation induced by the special core-shell heterostructure and the advanced three-dimensional spatial configuration, Cu/Cu2O nanowires exhibited superior visible-light activity in the degradation of methylene blue. The present study illustrates a novel strategy for fabricating efficiently core-shell heterostructured nanowires and provides the potential for developing their applications in electronic devices, for environmental remediation and in solar energy utilization fields. This journal is © The Royal Society of Chemistry.

  20. A TEM study of D+-implanted Cu following Ar+-ion milling: Microstructure and epitaxial Cu2O formation

    International Nuclear Information System (INIS)

    Johnson, P.B.; Corfiatis, T.; Long, N.J.; Nelson, D.G.A.; Victoria Univ., Wellington; Thomson, R.W.

    1988-01-01

    In examining the microstructure of TEM specimens prepared from D + -implanted Cu for the presence of bubbles it was found that cuprous oxide (Cu 2 O) layers had formed over large areas of the specimen surfaces. The Cu was irradiated at normal incidence with 200 keV D + ions at a temperature of 120 K to a dose of ≅ 2x10 21 D + /m 2 . Ar + ion milling at 330 K was used to erode irradiated surfaces to various depths prior to chemical back-thinning in a jet electropolishing bath. There was no evidence for the formation in the Cu of bubbles of either deuterium or argon, but dislocations at high density and planar defects were evident. Lattice fringes from {110}, {111} and {200} planes in Cu 2 O and moire patterns formed by double diffraction in the Cu and overlaid Cu 2 O film were obvious features in bright-field micrographs. The moire patterns include examples of magnified images of lattice defects. (orig.)

  1. Toxicity Action of Cu2+ on Lemna minor%Cu2+对浮萍的毒性作用

    Institute of Scientific and Technical Information of China (English)

    王爱丽; 宋志慧; 程守敬

    2004-01-01

    Cu2+作为胁迫因子研究了Cu2+对浮萍叶片数、叶绿素含量和过氧化物酶活性的影响.结果表明,Cu2+浓度低于200μg@L-1时,能刺激浮萍生长,对浮萍叶绿素含量影响不大;Cu2+浓度再增加时会抑制浮萍的生长;当Cu2+浓度为400 μg@L-1时,会严重影响浮萍的生长,对浮萍叶绿素含量的影响十分明显.Cu2+对浮萍过氧化物酶活性的影响随Cu2+浓度的升高逐渐增加.

  2. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  3. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  4. The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation

    International Nuclear Information System (INIS)

    Lin, Yu-Wei; Wang, Ren-You; Ke, Wun-Bin; Wang, I-Sheng; Chiu, Ying-Ta; Lu, Kuo-Chang; Lin, Kwang-Lung; Lai, Yi-Shao

    2012-01-01

    Highlights: ► Pd distribution in Pd-plated Cu wires reveals the whirlpool flow pattern of Cu. ► The mechanisms of the Cu flow behavior and Pd distribution are proposed. ► At Pd-rich phases, small voids formed and followed the direction of Cu flow. ► Nanoindentation studies show the Cu ball bond is harder in regions with Pd. - Abstract: The Pd plating on the 20 μm Cu wire dissolves in the free air ball (FAB) and the Cu ball bond during the wire bonding process without forming intermetallic compounds. The limiting supply of Pd and the short bonding process, 15 ms of thermosonic bonding, result in uneven distribution of Pd in the as produced Cu ball bond. Also, the Pd-rich phase may accompany small voids formed within the FAB and the wire bond, and following the direction of semi-solid Cu flow. The Pd distribution, as evidenced by the focused ion beam (FIB) and wavelength dispersive X-ray spectroscopy (WDS) mapping, reveals the whirlpool flow pattern of Cu within the FAB and the ball bond. Pd distributes within the copper ball through convective transport by the copper flow. Additionally, hardness measurements by nanoindentation testing show that the Cu ball bond is harder in the regions where Pd exists.

  5. Effect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies

    Directory of Open Access Journals (Sweden)

    M. M. Larijani

    2013-06-01

    Full Text Available Titanium nitride-Copper (TiN-Cu nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of the deposited films was studied using atomic force microscopy. Film hardness was estimated by a triboscope nanoindentation system. However, X-ray photoelectron spectroscopy analysis was performed to study the surface chemical bonding states. It was found that addition of soft Cu phase above 2 at.% to TiN film drastically decreased the film hardness from 30 to 2.8 Gpa due to lubricant effect of segregated copper particles. X-ray photoelectron spectroscopy results showed that Cu and TiN phases grew separately. In our case,the formation of a solid solution or chemical bonding between Cu and Ti was rejected.

  6. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    International Nuclear Information System (INIS)

    Eyckmans, Marleen; Blust, Ronny; De Boeck, Gudrun

    2012-01-01

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 μg/l (0.79 μM) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills and

  7. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    Energy Technology Data Exchange (ETDEWEB)

    Eyckmans, Marleen, E-mail: marleen.eyckmans@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Blust, Ronny; De Boeck, Gudrun [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-08-15

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 {mu}g/l (0.79 {mu}M) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills

  8. Proximity effect of Pb on CeCu6 and La0.05Ce0.95Cu6

    International Nuclear Information System (INIS)

    Chen, T.P.; Tipparachi, U.; Yang, H.D.; Wang, J.T.; Chen, B.; Chen, J.C.J.

    1999-01-01

    Heavy fermion materials have attracted a great deal of attention since 1979. These materials which contain a rare earth (U, or Ce, etc.) element exhibit unusual behavior at low temperature. The effective mass m* of the Landau quasiparticles is found to be orders of magnitude higher than that of a bare electron. Some of the Heavy Fermion materials become superconductors at low temperature. The pairing of electrons in these superconductors may not be of s symmetry like those in BCS type superconductors. The mismatch in electronic mass and the difference in pairing state between the light conventional superconducting electrons and the heavy fermion electrons have brought the coupling between light electrons (BCS type) and the heavy fermion electrons into question. Proximity effect of Pb on CeCu 6 , Pb on La 0.05 Ce 0.95 Cu 6 , and Pb on Cu was used to investigate the coupling between the conventional superconducting electrons of Pb and the heavy electrons in CeCu 6 or La 0.05 Ce 0.95 Cu 6 . In this experiment proximity effect was found between Pb and CeCu 6 , as well as between Pb and La 0.05 Ce 0.95 Cu 6 . However, the proximity effect is small when compared with that between Pb and Cu. This indicates a much shorter extrapolation length in the heavy fermion materials than in Cu. Such a phenomenon can be explained by the mismatch in effective mass between the superconducting Pb electrons and the heavy fermion electrons

  9. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    Science.gov (United States)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  10. Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Galván, A., E-mail: amendoza@qro.cinvestav.mx [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Arreola-Jardón, G. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Karlsson, L.H.; Persson, P.O.Å. [Thin Film Physics Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jiménez-Sandoval, S. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico)

    2014-11-28

    The effective complex dielectric function (ε) of Cu and O containing CdTe thin films is reported in the spectral range of 0.05 to 6 eV. The films were fabricated by rf sputtering from targets comprised by a mixture of CdTe and CuO powders with nominal Cu and O concentrations in the range of 2–10 at.%. Low concentration levels improved the crystalline quality of the films. Spectroscopic ellipsometry and transmittance measurements were used to determine ε. The critical point energies E{sub 1}, E{sub 1} + Δ{sub 1}, and E{sub 2} of CdTe are red-shifted with the incorporation of Cu and O. Also, an absorption band is developed in the infrared range which is associated with a mixture of CdTe and low resistivity phases Cu{sub 2−x}Te according to an effective medium analysis. The elemental distribution of the films was mapped by energy dispersive X-ray spectroscopy using scanning transmission electron microscopy. - Highlights: • Incorporation of 2 to 10 at.% of Cu and O atoms in CdTe films • Improved crystalline quality with 2 and 3 at.% of Cu and O • Complex dielectric function of Cu and O containing CdTe thin films • Effective medium modeling of below band-gap absorption.

  11. Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Hiemstra, T.

    2008-01-01

    The interaction between copper ions (Cu2+), Strichen fulvic acid (FA), and goethite has been studied with batch experiments in the pH range of 3¿11. Similar systems with Ca2+ have been studied previously and are used here for comparison. Depending on the pH and Cu2+ loading, the binding of Cu ions

  12. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  13. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    Science.gov (United States)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  14. Molecular dynamics simulation of defect formation during energetic Cu deposition

    International Nuclear Information System (INIS)

    Gilmore, Charles M.; Sprague, James A.

    2002-01-01

    The deposition of energetic Cu atoms from 5 to 80 eV onto (0 0 1) Cu was simulated with molecular dynamics. The Cu-Cu interaction potential was a spline of the embedded atom potential developed from equilibrium data, and the universal scattering potential. Incident Cu atoms substituted for first layer substrate atoms by an exchange process at energies as low as 5 eV. Incident Cu atoms of 20 eV penetrated to the second substrate layer, and 20 eV was sufficient energy to produce interstitial defects. Incident atoms of 80 eV penetrated to the third atomic layer, produced interstitials 12 atomic layers into the substrate by focused replacement collision sequences, and produced sputtered atoms with a 16% yield. Interstitial clusters of up to 7 atoms were observed. The observed mechanisms of film growth included: the direct deposition of atoms into film equilibrium atom positions, the exchange of substrate atoms to equilibrium film atoms positions, and the migration of interstitials to equilibrium film atom positions. The relative frequency of each process was a function of incident energy. Since all observed growth mechanisms resulted in film atoms in equilibrium atomic positions, these simulations suggest that stresses in homoepitaxial Cu thin films are due to point defects. Vacancies would produce tensile strain and interstitial atoms would produce compressive strain in the films. It is proposed that immobile interstitial clusters could be responsible for retaining interstitial atoms and clusters in growing metal thin films

  15. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  16. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  17. CFA-13 - a bifunctional perfluorinated metal-organic framework featuring active Cu(i) and Cu(ii) sites.

    Science.gov (United States)

    Fritzsche, J; Denysenko, D; Grzywa, M; Volkmer, D

    2017-11-07

    The synthesis and crystal structure of the mixed-valent perfluorinated metal-organic framework (Me 2 NH 2 )[CFA-13] (Coordination Framework Augsburg University-13), (Me 2 NH 2 )[CuCu(tfpc) 4 ] (H 2 -tfpc = 3,5-bis(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) is described. The copper-containing MOF crystallizes in the monoclinic crystal system within the space group P2 1 /n (no. 14) and the unit cell parameters are as follows: a = 22.3887(19), b = 13.6888(8), c = 21.1804(13) Å, β = 90.495(3)°, V = 6491.0(8) Å 3 . (Me 2 NH 2 )[CFA-13] features a porous 3-D structure constructed from two types of secondary building units (SBUs). Besides novel trinuclear [Cu(pz) 4 ] - coordination units, the network also exhibits Cu(ii) paddle-wheel SBUs. (Me 2 NH 2 )[CFA-13] is fully characterized by single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence, gas sorption measurements and pulse chemisorption experiments. M[CFA-13] (M = K + , Cs + ) frameworks were prepared by postsynthetic exchange of interchannel dimethylammonium cations. Moreover, it was shown that CO molecules can be selectively bound at Cu(i) sites of [Cu(pz) 4 ] - units, whereas Cu(ii) paddle-wheel units bind selectively NH 3 molecules.

  18. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  19. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  20. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Motamedi, Hossein [Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mayer, Peter [LMU München Department Chemie, Butenandtstr 5-13, D-81377 München (Germany); Bruno, Giuseppe [Dipartimento di Chimica Inorganica, Università di Messina, Vill. S. Agata, Salita Sperone 31, 98166 Messina (Italy); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2017-05-15

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers

  1. Effect of annealing process on the heterostructure CuO/Cu2O as a highly efficient photocathode for photoelectrochemical water reduction

    Science.gov (United States)

    Du, Fan; Chen, Qing-Yun; Wang, Yun-Hai

    2017-05-01

    CuO/Cu2O photocathodes were successfully prepared via simply annealing the electrodeposited Cu2O on fluoride doped tin oxide (FTO) substrate. They were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-vis absorption spectra and X-ray photoelectron spectroscopy (XPS). The results showed that the heterojunction of CuO/Cu2O was formed during the annealing process and presented the nature of p-type semiconductor. The photocurrent density and photoelectrochemical (PEC) stability of the p-type heterostructure CuO/Cu2O photocathode was improved greatly compared with the pure Cu2O, which was greatly affected by annealing time and temperature. The highest photo current density of -0.451 mA/cm2 and highest stability was obtained via annealing at 650 °C for 15 min (at -0.3 V vs. Ag/AgCl), which gave a remarkable improvement than the as-deposited Cu2O (-0.08 mA/cm2). This suggested that the CuO/Cu2O heterojunction facilitated the electron-hole pair separation and improved the photocathode's current and stability.

  2. Preparation of Cu@Cu2O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol

    OpenAIRE

    Seongwan Jang; Chohye Yoon; Jae Myung Lee; Sungkyun Park; Kang Hyun Park

    2016-01-01

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe3O4@HKUST-1 by layer-by layer assembly strategy and Cu@Cu2O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu2O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di-tert-butylcatechol. Through this method, MOF can maintain the ...

  3. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  4. New insight on the local structure of Cu2+ ion in the solution of CuBr2 by EXAFS studies

    International Nuclear Information System (INIS)

    Yu Meijuan; Chu Wangsheng; Chen Xing; Wu Ziyu

    2009-01-01

    CuBr 2 solutions at different concentrations were studied by extended X-ray absorption fine structure (EXAFS) at the Cu K edge. In the saturated solution Cu 2+ ions have chemical bonds with 3.0 oxygen atoms and 0.9 Br ion at about 1.96 A and 2.42 A, respectively. It indicates that the CuBr 4 -2 configuration exists with a ratio of 25% under this condition. In the dilute solutions no evidence of Br ions contributions in the first shell around Cu 2+ ions occurs. The almost identical X-ray absorption near edge structure (XANES) and EXAFS characters address similar local environments around Cu 2+ in agreement with results of the EXAFS fit taking into account only the contributions of Cu-O bonds.

  5. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  6. Evaluation of (64)Cu-labeled DOTA-D-Phe(1)-Tyr (3)-octreotide ((64)Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors.

    Science.gov (United States)

    Hanaoka, Hirofumi; Tominaga, Hideyuki; Yamada, Keiich; Paudyal, Pramila; Iida, Yasuhiko; Watanabe, Shigeki; Paudyal, Bishnuhari; Higuchi, Tetsuya; Oriuchi, Noboru; Endo, Keigo

    2009-08-01

    In-111 ((111)In)-labeled octreotide has been clinically used for imaging somatostatin receptor-positive tumors, and radiolabeled octreotide analogs for positron emission tomography (PET) have been developed. Cu-64 ((64)Cu; half-life, 12.7 h) is an attractive radionuclide for PET imaging and is produced with high specific activity using a small biomedical cyclotron. The aim of this study is to produce and fundamentally examine a (64)Cu-labeled octreotide analog, (64)Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-D: -Phe(1)-Tyr(3)-octreotide ((64)Cu-DOTA-TOC). (64)Cu produced using a biomedical cyclotron was reacted with DOTA-TOC for 30 min at 45 degrees C. The stability of (64)Cu-DOTA-TOC was evaluated in vitro (incubated with serum) and in vivo (blood collected after administration) by HPLC analysis. Biodistribution studies were performed in normal mice by administration of mixed solution of (64)Cu-DOTA-TOC and (111)In-DOTA-TOC and somatostatin receptor-positive U87MG tumor-bearing mice by administration of (64)Cu-DOTA-TOC or (64)Cu-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid-octreotide ((64)Cu-TETA-OC). The tumor was imaged using (64)Cu-DOTA-TOC, (64)Cu-TETA-OC, and FDG with an animal PET scanner. (64)Cu-DOTA-TOC can be produced in amounts sufficient for clinical study with high radiochemical yield. (64)Cu-DOTA-TOC was stable in vitro, but time-dependent transchelation to protein was observed after injection into mice. In biodistribution studies, the radioactivity of (64)Cu was higher than that of (111)In in all organs except kidney. In tumor-bearing mice, (64)Cu-DOTA-TOC showed a high accumulation in the tumor, and the tumor-to-blood ratio reached as high as 8.81 +/- 1.17 at 6 h after administration. (64)Cu-DOTA-TOC showed significantly higher accumulation in the tumor than (64)Cu-TETA-OC. (64)Cu-DOTA-TOC PET showed a very clear image of the tumor, which was comparable to that of (18)F-FDG PET and very similar to that of (64)Cu

  7. Evaluation of 64Cu-labeled DOTA-D-Phe1-Tyr3-octreotide (64Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors

    International Nuclear Information System (INIS)

    Hanaoka, Hirofumi; Tominaga, Hideyuki; Yamada, Keiich

    2009-01-01

    In-111 ( 111 In)-labeled octreotide has been clinically used for imaging somatostatin receptor-positive tumors, and radiolabeled octreotide analogs for positron emission tomography (PET) have been developed. Cu-64 ( 64 Cu; half-life, 12.7 h) is an attractive radionuclide for PET imaging and is produced with high specific activity using a small biomedical cyclotron. The aim of this study is to produce and fundamentally examine a 64 Cu-labeled octreotide analog, 64 Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-D-Phe 1 -Tyr 3 -octreotide ( 64 Cu-DOTA-TOC). 64 Cu produced using a biomedical cyclotron was reacted with DOTA-TOC for 30 min at 45 deg C. The stability of 64 Cu-DOTA-TOC was evaluated in vitro (incubated with serum) and in vivo (blood collected after administration) by high performance liquid chromatography (HPLC) analysis. Biodistribution studies were performed in normal mice by administration of mixed solution of 64 Cu-DOTA-TOC and 111 In-DOTA-TOC and somatostatin receptor-positive U87MG tumor-bearing mice by administration of 64 Cu-DOTA-TOC or 64 Cu-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid-octreotide ( 64 Cu-TETA-OC). The tumor was imaged using 64 Cu-DOTA-TOC, 64 Cu-TETA-OC, and fluorodeoxyglucose (FDG) with an animal PET scanner. 64 Cu-DOTA-TOC can be produced in amounts sufficient for clinical study with high radiochemical yield. 64 Cu-DOTA-TOC was stable in vitro, but time-dependent transchelation to protein was observed after injection into mice. In biodistribution studies, the radioactivity of 64 Cu was higher than that of 111 In in all organs except kidney. In tumor-bearing mice, 64 Cu-DOTA-TOC showed a high accumulation in the tumor, and the tumor-to-blood ratio reached as high as 8.81±1.17 at 6 h after administration. 64 Cu-DOTA-TOC showed significantly higher accumulation in the tumor than 64 Cu-TETA-OC. 64 Cu-DOTA-TOC PET showed a very clear image of the tumor, which was comparable to that of 18 F-FDG PET and

  8. Deposition of CuIn(Se,S)2 thin films by sulfurization of selenized Cu/In alloys

    International Nuclear Information System (INIS)

    Sheppard, C.J.; Alberts, V.; Bekker, W.J.

    2004-01-01

    The relatively small band gap values (close to 1eV) of CuInSe 2 thin films limits the conversion efficiencies of completed CuInSe 2 /CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to increase the band gap by substituting indium with gallium. In this study, sputtered copper-indium alloys were exposed to a H 2 Se/Ar atmosphere under defined conditions in order to produce partially reacted CuInSe 2 structures. These films were subsequently exposed to a H 2 S/Ar atmosphere to produce monophasic CuIn(Se, S) 2 quaternary alloys. The homogeneous incorporation of S into CuInSe 2 led to a systematic shift in the lattice parameters and band gap of the ab- sorber films. From these studies optimum selenization/sulfurization conditions were determined for the deposition of homogeneous CuIn(Se,S) 2 thin films with an optimum band gap values between 1.15 and 1.2 eV. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Oxidation of Propylene on catalytic Pt-Cu/y alumina. (Part I) Characterization of catalysts of Pt-Cu/y alumina for chemisorption of H2

    International Nuclear Information System (INIS)

    Carballo, Luis M; Zea, Hugo R

    1999-01-01

    In this work the effect of the composition of catalysts of Pt-Cu/y-alumina is analyzed on the superficial area it reactivates corresponding to the total oxidation of propylene. The experimental essays were also made in a differential reactor that was used so much for the characterization of the catalyst in situ by means of the measurement of the selective chemisorption of H 2 , the effects and the bimetallic interactions are discussed that frequently happen in the supported catalysts. Starting from the studies of chemical adsorption of H 2 on the supported catalysts of Pt-Cu was, by means of the application of the theory of the regular solution to the surface of the glasses and keeping in mind that the H 2 it adsorbs chemically only on the superficial atoms of Pt (it was observed that the hydrogen not it chemi-absorb on the Cu) that the Cu atoms are segregated to the surface of the bimetallic crystals

  10. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih, E-mail: fduman@erciyes.edu.tr [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri (Turkey); Erciyes University, Nanotechnology Research Center, 38039, Kayseri (Turkey); Kup, Fatma Ozturk [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey)

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv–Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV–Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as − 20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. - Highlights: • The synthesis of microwave assisted green synthesis of CuO nanoparticles • The synthesized nanoparticles were analyzed by FT-IR, DLS, XRD, EDX and SEM. • Concentration-dependent antioxidant activity of CuO NPs was determined. • CuO NPs cause both cleavage in the DNA double helix structure and breaks as well.

  11. Humidity sensing performance of in-situ fabricated Cu/Cu2O/Cu2S-polymer nanocomposite via polyphenylene sulphide cyclisation route.

    Science.gov (United States)

    Adkar, Dattatraya; Hake, Abhay; Jadkar, Sandesh; Adhyapak, Parag; Mulik, Uttamrao; Amalnerkar, Dinesh

    2011-08-01

    We herein report the feasibility of novel polymer-inorganic solid state reaction route for simultaneous in situ generation of Cu2S and Cu nanostructures in polymer network. Polyphenylene Sulphide (PPS) which is engineering thermoplastic acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the two reactants i.e., copper acetate and PPS by varying molar ratios mainly 1:1, 1:5, 1:10, 1:15, 1:20 at the crystalline melting temperature (285 degrees C) of PPS. The synthesized products were characterized using various physicochemical characterization techniques like X-ray Diffractometry, Field emission Scanning Electron Microscopy, Transmission Electron Microscopy, UV-Visible spectroscopy and X-ray photoelectron spectroscopy. The prima facie observations suggest occurrence of nanocrystalline Cu2S in case of product obtained with equimolar ratio, whereas remaining samples show mixture of Cu and Cu2O. The TEM analysis reveals nanoscale polydispersity (5-60 nm) and prevalence of mainly spherical morphological features in all the cases with occasional indications of plate like and cubical morphological features depending upon the molar ratio of the reactants. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 70% RH) was compared for these nanocomposites. The linear response is obtained for all the samples. The sensitivity of 1:1 molar ratio sample was found to be maximum among all the samples.

  12. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  13. Why the compound Yba sub 2 Cu sub 3 O sub 6 is not a superconductor. Pourquoi le compose YBa sub 2 Cu sub 3 O sub 6 n'est-il pas un supraconducteur

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M [Paris-11, Univ., 91 - Orsay (FR); Gupta, R P [CEA Centre d' Etudes Nucleaire de Saclay, 91 - Gif-sur-Yvette (FR). Dept. de Technologie

    1989-01-01

    A comparative study of the electronic structure of superconducting YBa{sub 2}Cu{sub 3}O{sub 7} and non superconducting YBa{sub 2}Cu{sub 3}O{sub 6} is presented. Our calculation shows that the densities of states at the Cu sites with pyramidal coordination and at its four oxygen neighboring sites in the horizontal planes are very similar in the superconducting and non-superconducting phases. Thus, the bidimensional character is unaltered in the two compounds. However, unlike for YBa{sub 2}Cu{sub 3}O{sub 7}, we find that in YBa{sub 2}Cu{sub 3}O{sub 6}, the Cu atoms of the linear chain sites and the oxygen atoms with which it interacts along the c axis are respectively in the charged state Cu{sup +} and O{sup 2-}; these sites are insulating since the densities of states at the Fermi energy is almost nil. These results suggest the importance of the linear Cu-O chains in the superconducting properties.

  14. Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects

    Science.gov (United States)

    Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun

    2012-07-01

    A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.

  15. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    DEFF Research Database (Denmark)

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald

    2017-01-01

    As power electronic devices have tendencies to operate at higher temperatures and current densities, the demand for reliable and efficient packaging technologies are ever increasing. This paper reports the studies on application of transient liquid phase (TLP) bonding of CuSnCu systems...

  16. Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance.

    Science.gov (United States)

    Shinde, S K; Fulari, V J; Kim, D-Y; Maile, N C; Koli, R R; Dhaygude, H D; Ghodake, G S

    2017-08-01

    In this research article, we report hybrid nanomaterials of copper hydroxide/copper oxide (Cu(OH) 2 /CuO). A thin films were prepared by using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method. As-synthesized and hybrid Cu(OH) 2 /CuO with two different surfactants polyvinyl alcohol (PVA) and triton-X 100 (TRX-100) was prepared having distinct morphological, structural, and supercapacitor properties. The surface of the thin film samples were examined by scanning electron microscopy (SEM). A nanoflower-like morphology of the Cu(OH) 2 /CuO nanostructures arranged vertically was evidenced on the stainless steel substrate. The surface was well covered by nanoflake-like morphology and formed a uniform Cu(OH) 2 /CuO nanostructures after treating with surfactants. X-ray diffraction patterns were used to confirm the hybrid phase of Cu(OH) 2 /CuO materials. The electrochemical properties of the pristine Cu(OH) 2 /CuO, PVA:Cu(OH) 2 /CuO, TRX-100:Cu(OH) 2 /CuO films were observed by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy technique. The electrochemical examination reveals that the Cu(OH) 2 /CuO electrode has excellent specific capacitance, 292, 533, and 443Fg -1 with pristine, PVA, and TRX-100, respectively in 1M Na 2 SO 4 electrolyte solution. The cyclic voltammograms (CV) of Cu(OH) 2 /CuO electrode shows positive role of the PVA and TRX-100 to enhance supercapacitor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  18. Resistive switching of Cu/Cu2O junction fabricated using simple thermal oxidation at 423 K for memristor application

    Science.gov (United States)

    Ani, M. H.; Helmi, F.; Herman, S. H.; Noh, S.

    2018-01-01

    Recently, extensive researches have been done on memristor to replace current memory storage technologies. Study on active layer of memristor mostly involving n-type semiconductor oxide such as TiO2 and ZnO. This paper highlight a simple water vapour oxidation method at 423 K to form Cu/Cu2O electronic junction as a new type of memristor. Cu2O is a p-type semiconductor oxide, was used as the active layer of memristor. Cu/Cu2O/Au memristor was fabricated by thermal oxidation of copper foil, followed by sputtering of gold. Structural, morphological and memristive properties were characterized using XRD, FESEM, and current-voltage, I-V measurement respectively. Its memristivity was indentified by pinch hysteresis loop and measurement of high resistance state (HRS) and low resistance state (LRS) of the sample. The Cu/Cu2O/Au memristor demonstrates comparable performances to previous studies using other methods.

  19. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  20. First-principles study of electronic structure of CuSbS{sub 2} and CuSbSe{sub 2} photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T., E-mail: tmaeda@ad.ryukoku.ac.jp; Wada, T.

    2015-05-01

    We studied the features of CuSbS{sub 2} (CAS) and CuSbSe{sub 2} (CASe), two proposed photovoltaic compounds, and clarified their electronic structures by first-principles calculations and compared them to the chalcopyrite-type CuInSe{sub 2} results. For both CAS and CASe, the calculated enthalpies of formation of the chalcostibite phases were considerably lower than those of the chalcopyrite phases. Therefore, we considered that the chalcostibite phase is more stable for CAS and CASe. In their band structure calculated with the HSE06 hybrid functional, the valence band maxima of CAS and CASe were located at the Γ-point, and the conduction band minima were located at the R-point. Their second lowest conduction band was located at the Γ-point, whose energy level nearly equaled the R-point. For CAS (CASe), the partial density of the states shows the character of the Cu 3d and S 3p (Se 4p) orbitals at the top of the valence bands and the Sb 5p and S 3p (Se 4p) orbitals at the bottom of the conduction bands. The conduction bands of CAS and CASe have a p-orbital character (Sb 5p) that differs from the s-orbital character (In 5s) of CuInSe{sub 2}. It is for the reason that CAS and CASe do not have a chalcopyrite structure but a chalcostibite-type structure. The calculated absorption coefficient of CuSbS{sub 2} (10{sup 4}-10{sup 5} cm{sup −1}) is comparable to that of CuInSe{sub 2}. - Highlights: • We studied the features of CuSbS{sub 2} and CuSbSe{sub 2}, newly proposed photovoltaic compounds. • Chalcostibite phase is more stable in CuSbS{sub 2} and CuSbSe{sub 2}. • Band structures of CuSbS{sub 2} and CuSbS{sub 2} were calculated with HSE06 hybrid functional. • Absorption coefficient of chalcostibite-type CuSbS{sub 2} is comparable to that of CuInSe{sub 2}.

  1. Modeling Cu{sup 2+}-Aβ complexes from computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Alí-Torres, Jorge [Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, 111321 (Colombia); Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona, E-mail: Mariona.Sodupe@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2015-09-15

    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu{sup 2+} metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu{sup 2+}-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu{sup 2+}-Aβ coordination and build plausible Cu{sup 2+}-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  2. Development of a Low-Cost TiO2/CuO/Cu Solar Cell by using Combined Spraying and Electroplating Method

    Directory of Open Access Journals (Sweden)

    Mamat Rokhmat

    2018-03-01

    Full Text Available A simple method is proposed to develop a low-cost TiO2/CuO/Cu based solar cell. The cell is made by employing a lower grade (technical grade of TiO2 as the active material. CuO powder is synthesized using a wet chemical method and mixed with TiO2 powder to give impurity to the TiO2. A layer of TiO2/CuO is then deposited onto fluorin-doped tin oxide (FTO by spraying. Copper particles are grown on the spaces between the TiO2 and/or CuO particles by electroplating for more feasible electron migration. The TiO2/CuO/Cu solar cell is finalized by sandwiching a polymer electrolyte between the film and the counter electrode. Current-voltage measurement was performed for various parameters, such as the molarity of NaOH for producing CuO particles, the weight ratio of CuO over TiO2, and the current in the electroplating process. A highest efficiency of 1.40% and a fill factor of 0.37 were achieved by using this combined spray and electroplating method.

  3. Effect of oxidant on resputtering of Bi from Bi--Sr--Ca--Cu--O films

    International Nuclear Information System (INIS)

    Grace, J.M.; McDonald, D.B.; Reiten, M.T.; Olson, J.; Kampwirth, R.T.; Gray, K.E.

    1992-01-01

    The type and partial pressure of oxidant mixed with argon can affect the selective sputtering of Bi in composite-target, magnetron-sputtered Bi--Sr--Ca--Cu--O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O + 2 , which interacts with the target to produce energetic O - . In contrast, ozone may form lower-energy O - by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y--Ba--Cu--O by others are comparable. Bi in Bi--Sr--Ca--Cu--O behaves as Ba in Y--Ba--Cu--O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi--Sr--Ca--Cu--O is similar to what is observed for Cu in Y--Ba--Cu--O

  4. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

    Science.gov (United States)

    Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman

    2013-01-01

    A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.

  5. Insight on a novel layered semiconductors: CuTlS and CuTlSe

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Donostia International Physics Center (DIPC), 20080 San Sebastian (Spain); Zúñiga, Fco. Javier [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Koroteev, Yury M. [Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, 634055 Tomsk (Russian Federation); Tomsk State University, Tomsk, 634050 (Russian Federation); Breczewski, Tomasz [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Nizamaddin B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Amiraslanov, Imamaddin R. [Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Politano, Antonio [Department of Physics, University of Calabria, 87036 Rende (CS) (Italy); Madariaga, Gotzon [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Mahammad B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); and others

    2016-10-15

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and are narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.

  6. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  7. Exchange correlation length and magnetoresistance in Fe-Cu and Fe-Cu-Ni melt-spun ribbons

    International Nuclear Information System (INIS)

    El Ghannami, M.; Gomez-Polo, C.; Rivero, G.; Hernando, A.

    1994-01-01

    The magnetic properties of Fe 30 Cu 70 melt-spun ribbons are reported for the first time. In the as-cast state, the microstructure consists of b.c.c.-Fe grains immersed in a Cu-rich matrix. However, the addition of a small percentage of Ni gives rise to the appearance of new Cu-Fe-Ni phases. Under suitable thermal treatments, the microstructure of both alloys evolves towards a complete phase segregation in b.c.c-Fe and f.c.c.-Cu immiscibles phases. The temperature dependence of the magnetic properties is analysed and related to the microstructural changes produced during the thermal treatments. Remarkable magneto-resistance effects have been observed in both as-cast alloys, with maximum values of the order of 6% at low measuring temperatures. (orig.)

  8. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  9. Glass-formation and hardness of Cu-Y alloys

    International Nuclear Information System (INIS)

    Satta, Marta; Rizzi, Paola; Baricco, Marcello

    2009-01-01

    Metallic glasses exhibit particularly attractive mechanical properties, like high stresses to fracture and large elastic strain (up to 2%), but they show generally low plasticity. Aim of this work is to investigate the glass forming range in the Cu-Y system, in order to form the ductile CuY phase (CsCl structure) upon crystallization. Cu 58 Y 42 , Cu 50 Y 50 and Cu 33 Y 67 alloys have been prepared by rapid solidification and copper mould casting, obtaining ribbons and cylindrical shaped ingots, with diameter of 2 mm. Fully amorphous, partially amorphous and fully crystalline samples have been obtained for different compositions and quenching conditions. In some cases, the X-ray diffraction results, analysed using the Rietveld method, showed CuY nanocrystals embedded in an amorphous matrix. The microstructure was studied by transmission electron microscopy (TEM) and the presence of nanocrystals of the ductile phase CuY has been confirmed. Microhardness results showed a softening of the amorphous phase due to the presence of CuY nanocrystals and a hardening due to the Cu 2 Y phase.

  10. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  11. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  12. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  13. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  14. Cu-64-pyruvaldehyde-bis-(N4-methylthiosemicarbazide) or Cu-64-PTSM as tracer for brain positron emission tomography

    International Nuclear Information System (INIS)

    Torres, E.A.; Lago Fernandez, J.L.; Casale, G.A.; Arguelles, M.G.

    1993-01-01

    Synthesis of pyruvaldehyde-bis-(N 4 -methylthiosemicarbazide) (PTSM), used for medical investigation and diagnosis, has been carried out in our Radiopharmaceutical Division in C.A.E. (Ezeiza Atomic Center). PTSM has been obtained introducing modifications to a previous synthesis published by H.G. Petering. (M.P. 236-238 degrees C). TLC, HPLC and IR spectrum controls have been performed. Cu-64 can be obtained by the Cu-63(n,α) and Zn-64(n,p) reactions. This last reaction has been chosen for the production in the RA-3 reactor since it leads to Cu-64 of high specific activity. Two different assays have been performed to obtain the chelate PTSM-Cu-64. The first one has been obtained by buffering the Cu-64 to pH 3-4; adding the PTSM solution to ethanol. The second assay has been carried out by buffering the Cu-64 solution with sodium acetate 3M and adding 100 μl of PTSM solution. Biodistribution studies have been carried out on NIH and rats showing a brain uptake of 4%, 30 minutes after injection. Thus, PTSM-Cu-64 proves a good brain diagnosis agent. (author). 1 ref

  15. Growth of CuPd nanoalloys encapsulated in carbon-shell

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. Y.; Wang, H. P., E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering (China)

    2013-05-15

    Preparation of nanostructured copper-palladium (CuPd) alloys is getting more attention because specific catalytic properties can be tuned by controlling their composition, size, and shape. Thus, a better understanding especially in the formation mechanism of the CuPd nanoalloys is of great importance in designing the catalysts. Growth of CuPd nanoalloys encapsulated in carbon-shell (CuPd-C) was, therefore, studied by in situ synchrotron small-angle X-ray scattering during temperature-programed carbonization (TPC) of the Cu{sup 2+}- and Pd{sup 2+}-{beta}-cyclodextrin complexes. A rapid reduction of Cu{sup 2+} and Pd{sup 2+} with nucleation is found at the temperatures of <423 K, followed by coalescence at 453-573 K. The well-dispersed CuPd nanoalloys having the sizes of 7.6-7.9 nm in diameter are encapsulated in carbon-shell of 1.4-1.8 nm in thickness. The refined extended X-ray absorption fine structure spectra indicate that the bond distances of the first-shell Cu-Pd are 2.61-2.64 A with the coordination numbers of 5.1-5.6. A homogeneous CuPd alloy at the Cu/Pd atomic ratio of 1 is observed. Note that at the high Cu/Pd ratio, Cu is enriched on the CuPd nanoalloy surfaces, attributable to the relatively low surface free energy of Cu.

  16. Submillimeter and microwave residual losses in epitaxial films of Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O

    International Nuclear Information System (INIS)

    Miller, D.; Richards, P.L.; Eom, C.B.; Geballe, T.H.; Etemad, S.; Inam, A.; Venkatesan, T.; Martens, J.S.; Lee, W.Y.

    1992-12-01

    We have used a novel bolometric technique and a resonant technique to obtain accurate submillimeter and microwave residual loss data for epitaxial thin films of YBa 2 Cu 3 O 7 , Tl 2 Ca 2 Ba 2 Cu 3 O 10 and Tl 2 CaBa 2 Cu 2 O 8 . For all films we obtain good agreement between the submillimeter and microwave data, with the residual losses in both the Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O films scaling approximately as frequency squared below ∼ 1 THz. We are able to fit the losses in the Y-Ba-Cu-O films to a two fluid and a weakly coupled grain model for the a-b planeconductivity, in good agreement with results from a Kramers-Kronig analysis of the loss data

  17. The Y-Cu-Al system

    International Nuclear Information System (INIS)

    Krachan, T.; Stel'makhovych, B.; Kuz'ma, Yu.

    2003-01-01

    The phase diagram of the Y-Cu-Al system at 820 K has been constructed using X-ray powder diffraction. The existence of earlier known ternary aluminides has been confirmed and their homogeneity regions and atomic distributions in the structures have been determined: YCu 4.6-4.0 Al 7.4-8.0 (ThMn 12 -type R I =0.049), Y 2 Cu 12.0-10.5 Al 5.0-6.5 (Th 2 Zn 17 -type R I =0.092), YCu 1.0-1.1 Al 1.0-0.9 (Fe 2 P-type R I =0.068). It has been shown that the structure of Y(Cu,Al) 3 is characterized by an ordered distribution of the Cu and Al atoms and it should be referred as Ca 3 Cu 2 Al 7 structure type (R I =0.060) besides the PuNi 3 structure type with statistical occupancies of the smaller atoms. At the investigated temperature the compound YCu 1.0-0.25 Al 3.0-3.75 (BaAl 4 -type) was not observed. However, we found the ternary aluminide with composition Y 3 Cu 2.7-2.0 Al 8.3-9.0 and related La 3 Al 11 -type (space group Immm, a=0.4192-0.4228, b=1.2423-1.2557, c=0.9812-0.9895 nm, R I =0.069). The compounds YCu 6.8 Al 4.2 (space group Fddd, Tb(Cu 0.58 Al 0.42 ) 11 -type, a=1.42755, b=1.48587, c=0.65654 nm, R I =0.062) and YCu 6.5 Al 4.5 (space group I4 1 /amd, BaCd 11 -type, a=1.02774, c=0.65838 nm, R I =0.071) have been found and structurally refined for the first time

  18. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  19. A first-principles study of the structural, mechanical and electronic properties of precipitates of Al2Cu in Al-Cu alloys.

    Science.gov (United States)

    Ouyang, Y F; Chen, H M; Tao, X M; Gao, F; Peng, Q; Du, Y

    2018-01-03

    The properties of precipitates are important in understanding the strengthening mechanism via precipitation during heat treatment and the aging process in Al-Cu based alloys, where the formation of precipitates is sensitive to temperature and pressure. Here we report a first-principles investigation of the effect of temperature and pressure on the structural stability, elastic constants and formation free energy for precipitates of Al 2 Cu, as well as their mechanical properties. Based on the formation enthalpy of Guinier-Preston (GP(I)) zones, the size of the GP(I) zone is predicted to be about 1.4 nm in diameter, which is in good agreement with experimental observations. The formation enthalpies of the precipitates are all negative, suggesting that they are all thermodynamically stable. The present calculations reveal that entropy plays an important role in stabilizing θ-Al 2 Cu compared with θ C '-Al 2 Cu. The formation free energies of θ''-Al 3 Cu, θ C '-Al 2 Cu, θ D '-Al 5 Cu 3 and θ t '-Al 11 Cu 7 increase with temperature, while those of θ'-Al 2 Cu, θ O '-Al 2 Cu and θ-Al 2 Cu decrease. The same trend is observed with the effect of pressure. The calculated elastic constants for the considered precipitation phases indicate that they are all mechanically stable and anisotropic, except θ C '-Al 2 Cu. θ D '-Al 5 Cu 3 has the highest Vicker's hardness. The electronic structures are also calculated to gain insight into the bonding characteristics. The present results can help in understanding the formation of precipitates by different treatment processes.

  20. Infiltrated TiC/Cu composites

    International Nuclear Information System (INIS)

    Frage, N.; Froumin, N.; Rubinovich, L.; Dariel, M.P.

    2001-01-01

    One approach for the fabrication of ceramic-metal composites is based on the pressureless impregnation of a porous ceramic preform by a molten metal. Molten Cu does not react with TiC and the wetting angle is close to 90 o . Nonetheless, molten Cu readily impregnates partially sintered TiC preforms. A model that describes the dependence of the critical contact angle for spontaneous impregnation by molten metals in partially sintered preforms on the level of densification and on the morphology of the particles was developed. For high aspect ratios of the particles forming the preform, wetting angles close to 90 o still allow impregnation by the molten metal. The results of the model were confirmed by infiltration of partially sintered TiC preforms with molten Cu and by fabrication of the TiC/Cu composites with various ceramic-to metal ratios. Decreasing of the metal content in the composite from 50 vol.% to 10 vol.% leads to a hardness increase from 250 to 1800 HV, and to the decrease of the bending strength from 960 to 280 MPa. The resistivity of these TiC/Cu composites decreases from 142 ohm cm to 25 ohm cm. (author)

  1. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1.

    Science.gov (United States)

    Bhunia, Manas K; Hughes, James T; Fettinger, James C; Navrotsky, Alexandra

    2013-06-25

    Metal-organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data. The enthalpy of formation (ΔHf) of the as-synthesized Cu-HKUST-H2O ([Cu3TMA2·3H2O]·5DMF) is -52.70 ± 0.34 kJ per mole of Cu. The ΔHf for Zn-HKUST-DMF ([Zn3TMA2·3DMF]·2DMF) is -54.22 ± 0.57 kJ per mole of Zn. The desolvated Cu-HKUST-dg [Cu3TMA2] has a ΔHf of 16.66 ± 0.51 kJ/mol per mole Cu. The ΔHf for Zn-HKUST-amorph [Zn3TMA2·2DMF] is -3.57 ± 0.21 kJ per mole of Zn. Solvent stabilizes the Cu-HKUST-H2O by -69.4 kJ per mole of Cu and Zn-HKUST-DMF by at least -50.7 kJ per mole of Zn. Such strong chemisorption of solvent is similar in magnitude to the strongly exothermic binding at low coverage for chemisorbed H2O on transition metal oxide nanoparticle surfaces. The strongly exothermic solvent-framework interaction suggests that solvent can play a critical role in obtaining a specific secondary building unit (SBU) topology.

  2. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    Science.gov (United States)

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  3. The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Raaif, M.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-06-15

    Transparent conductive CdO/Cu/CdO multilayer films were prepared using rf plasma magnetron sputtering and electron beam evaporation techniques. The CdO layers were prepared using rf plasma magnetron sputtering, while the Cu interlayer was prepared by electron beam evaporation technique. The Cu layer thickness was varied between 1 and 10 nm. The structural and optical properties as well as the sheet resistance of the multilayer films were studied. X-ray diffraction measurements revealed the presence of cubic CdO structure and the Cu peak was only observed for the multilayers prepared with 10 nm of Cu. It has been observed that the Cu interlayer thickness has a great influence on the optical and electrical properties of the multilayers. The transmittance of the multilayer films decreased while the reflectance increased with increasing Cu interlayer thickness. The refractive index and the extinction coefficient of the multilayer films were calculated. The estimated optical band gap values were found to be decreased from 2.75 ± 0.02 to 2.40 ± 0.02 eV as the Cu interlayer thickness increased from 1 to 10 nm. The sheet resistance was sensitive to the Cu interlayer thickness and it decreased with increasing Cu interlayer thickness. A sheet resistSSance of 21.7 Ω/sq, an average transmittance (between 700 and 1000 nm) of 77%, and an optical band gap of 2.5 ± 0.02 eV were estimated for the multilayer film with 2 nm Cu layer. The multilayer film with 2 nm Cu layer has the highest figure of merit value of 3.2 x 10{sup -3} Ω{sup -1}. This indicates that the properties of this multilayer film are suitable for transparent conductive electrode applications. (orig.)

  4. Macrocyclic effects upon isomeric Cu M and M Cu cores. Formation ...

    Indian Academy of Sciences (India)

    Administrator

    from the iminic site to the aminic site in the synthesis of 10 is explained by ... Our previous studies suggest that isomeric MIICuII ... Calcd. for C24H27Br2ClCuN4NiO8: C 35⋅28; H 3⋅33; N 6⋅86; Cu 7⋅78; Ni .... Electronic absorption spectra in .... 3. 1497(1). 1452. ⋅3(5). 2992(1). 1860(2). 3206(1). Z. 2. 2. 4. 2. 4. D calcd. /g.

  5. Surface chemistry of 2-butanol and furfural on Cu, Au and Cu/Au single crystals

    OpenAIRE

    Megginson, Rory

    2016-01-01

    In this study, the adsorption of 2-butanol and furfural was investigated on Au (111), Cu (111) and Cu/Au (111) surfaces. It was hoped that by studying how these species adsorbed on these surfaces , insight would be provided into the roles of Cu and Au in the “hydrogen free” hydrogenation of furfural to furfuryl alcohol. This is a valuable process as currently furfuryl alcohol is derived from crude oil but it is possible to derive furfural from corn husk making it a greener process...

  6. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  7. Processing and characterization of composite CuO/CuO/Cu-CGO obtained by a chemical synthesis route in one step

    International Nuclear Information System (INIS)

    Sousa, A.R.O. de; Menezes, A.J.; Souza, G.S.; Lima, C.G.M. de; Souza, G.S.; Dutra, R.P.S.; Macedo, D.A.

    2016-01-01

    This paper deals with the processing and characterization of composite CuO / ceria doped with 10 mol% gadolinia (CuO-Ce0,9Gd0,1O1,95) obtained by a chemical synthesis route in one step. It was varied CuO content at 40, 50 and 60% by weight, resulting in resin precursor, which was mixed with the CGO and then heat treated at 350 ° C and subsequently calcined at 1050 deg C. The particulate materials were characterized by X-ray diffractometry using powders, it was possible to synthesize and deposit, by serigraphy, films of the anodes of the three compositions CGO electrolyte. The technique of impedance spectroscopy allowed the analysis of the electrical properties of the material, as well as the understanding of their behavior when subjected to different atmospheres of hydrogen and methane. (author)

  8. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    International Nuclear Information System (INIS)

    Yang, Ming; Ko, Yong-Ho; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo; Li, Mingyu

    2017-01-01

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  9. Electrodeposition and properties of Zn, Cu, and Cu{sub 1−x} Zn{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Rasim [Kilis Vocational High School, Kilis 7 Aralık University, 79000 Kilis (Turkey); Karahan, İsmail Hakkı, E-mail: ihkarahan@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, 31040 Hatay (Turkey)

    2014-11-01

    Highlights: • Cu, Zn and Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The effect of alloying element was investigated on the electrical resistivity and the structure of Cu–Zn alloy. • The average crystallite size of the samples varied from 66 to 161 nm and decreased when the Zn and Cu combined in Cu–Zn. • Microstrain has been decreased with increasing crystallite size. • Electrical resistivity of alloy was obtained between the Zn and Cu films. - Abstract: The electrodeposition of Cu, Zn and Cu–Zn deposits from the non-cyanide Zn sulphate and Cu sulphate reduced by citrate at constant stirring speed has been investigated. The composition of the Cu–Zn bath was shown to influence the morphology, electrical resistivity, phase composition, and Cu and Zn content of the Cu–Zn deposits. Their structural and electrical properties have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), cyclic voltammeter (CV) and current–voltage measurements against the temperature for electrical resistivity, respectively. XRD shows that Cu–Zn samples are polycrystalline phase. Resistivity results show that the copper film exhibits bigger residual resistivity than both the zinc and the Cu–Zn alloy. Theoretical calculations of the XRD peaks demonstrate that the average crystallite size of the Cu–Zn alloy decreased and microstrain increased when the Cu alloyed with zinc.

  10. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Ko, Yong-Ho [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bang, Junghwan [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Kim, Taek-Soo [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Chang-Woo, E-mail: cwlee@kitech.re.kr [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Li, Mingyu, E-mail: myli@hit.edu.cn [Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-02-15

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  11. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  12. Electronic Structure and Magnetic Interactions in the Radical Salt [BEDT-TTF]2[CuCl4].

    Science.gov (United States)

    Calzado, Carmen J; Rodríguez-García, Bárbara; Galán Mascarós, José Ramón; Hernández, Norge Cruz

    2018-06-07

    The magnetic behavior and electric properties of the hybrid radical salt [BEDT-TTF] 2 [CuCl 4 ] have been revisited through extended experimental analyses and DDCI and periodic DFT plane waves calculations. Single crystal X-ray diffraction data have been collected at different temperatures, discovering a phase transition occurring in the 250-300 K range. The calculations indicate the presence of intradimer, interdimer, and organic-inorganic π-d interactions in the crystal, a magnetic pattern much more complex than the Bleaney-Bowers model initially assigned to this material. Although this simple model was good enough to reproduce the magnetic susceptibility data, our calculations demonstrate that the actual magnetic structure is significantly more intricate, with alternating antiferromagnetic 1D chains of the organic BEDT-TTF + radical, connected through weak antiferromagnetic interactions with the CuCl 4 2- ions. Combination of experiment and theory allowed us to unambiguously determine and quantify the leading magnetic interactions in the system. The density-of-states curves confirm the semiconductor nature of the system and the dominant organic contribution of the valence and conduction band edges. This general and combined approach appears to be fundamental in order to properly understand the magnetic structure of these complex materials, where experimental data can actually be fitted from a variety of models and parameters.

  13. Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles.

    Science.gov (United States)

    Kurokawa, Akinobu; Yanoh, Tkuya; Yano, Shinya; Ichiyanagi, Yuko

    2014-03-01

    CuMnO2 nanoparticles with diameters of 64 nm were synthesized by a novel wet chemical method. An optimized two-step annealing method was developed through the analysis of thermogravimetric differential thermal analysis (TG-DTA) measurements in order to obtain single-phase CuMnO2. A sharp exothermic peak was observed in the DTA curve at approximately 500 K where structural changes of the copper oxides and manganese oxides in the precursor are expected to occur. It is believed that Cu+ ions were oxidized to Cu2+ ions and that Mn2+ ions were oxidized to Mn3+ ions in the Cu-Mn-O system. Deoxidization reactions were also found at approximately 1200 K. The optimized annealing temperature for the first step was determined to be 623 K in air. The optimized annealing temperature for the second step was 1173 K in an Ar atmosphere. Magnetization measurements suggested an antiferromagnetic spin ordering at approximately 50 K. It was expected that Mn3+ spin interactions induced magnetic phase transition affected by definite temperature.

  14. Local Seebeck coefficient near the boundary in touching Cu/Bi-Te/Cu composites

    International Nuclear Information System (INIS)

    Yamashita, O.; Odahara, H.

    2007-01-01

    The thermo-emf ΔV and temperature difference ΔT across the boundary were measured as a function of r for the touching p- and n-type Cu/Bi-Te/Cu composites composed of a combination of t Bi-Te =2.0 mm and t Cu =0.3 mm, where ΔT is produced by imposing a constant voltage of 1.7 V on two Peltier modules connected in series and r is the distance from the boundary that corresponds to the interval s between two thermocouples. The resultant Seebeck coefficient α across the boundary was obtained from the relation α=ΔV/ΔT. As a result, the resultant α of the touching p- and n-type composites have surprisingly great local maximum values of 1330 and -1140 μV/K at r∼0.03 mm, respectively, and decreased rapidly with an increase of r to approach the Seebeck coefficients of the intrinsic Bi-Te compounds. The resultant maximum α of the touching p- and n-type Cu/Bi-Te/Cu composites are approximately 5.4 and 5.5 times higher in absolute value than those of the intrinsic Bi-Te compounds, respectively. It was thus clarified for the first time that the local Seebeck coefficient is enhanced most strongly in the Bi-Te region where there is an approximately 30-μm distance from the boundary, not at the boundary between Bi-Te compounds and copper. (orig.)

  15. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  16. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  17. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  18. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    Science.gov (United States)

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  19. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  20. Axial strain localization of CuCrZr tubes during manufacturing of ITER-like mono-block W/Cu components using HIP

    International Nuclear Information System (INIS)

    Zhao, S.X.; Peng, L.J.; Li, Q.; Wang, W.J.; Wei, R.; Qin, S.G.; Shi, Y.L.; Chang, S.P.; Xu, Y.; Liu, G.H.; Wang, T.J.; Luo, G.-N.

    2014-01-01

    Highlights: • Axial cracking and denting of CuCrZr tubes were observed. • Annealing the as-received tubes can alleviate cracking. • Denting results in the formation bonding flaws at the Cu/CuCrZr interfaces. - Abstract: Two forms of axial strain localization of CuCrZr tubes, i.e., cracking and denting, were observed during the manufacturing of ITER-like mono-block W/Cu components for EAST employing hot isostatic pressing (HIP). Microscopic investigations indicate that the occurrence of axial strain localization correlates to the heavily deformed Cu grains and elongated Cr-rich precipitates as well as highly anisotropic microstructures, which impair the circumferential ductility. Annealing the as-received tubes at 600 °C alleviates cracking due to partial recrystallization of Cu grains. However, the annealed tubes are still sensitive to wall thinning (caused by non-uniform polishing or tube bending), which results in denting. Denting may cause bonding flaws at CuCrZr/Cu interfaces and the underlying mechanisms are discussed. To some extent, denting seems do not affect the high heat flux performance of components. In this paper, we demonstrate that testing only the axial mechanical properties is not enough for manufacturers who use HIP or hot radial pressing technologies, especially for those anisotropic tubes

  1. Synthesis and characterization of micrometer Cu/PVP architectures

    International Nuclear Information System (INIS)

    Luo, Huajuan; Zhao, Yanbao; Sun, Lei

    2011-01-01

    Graphical abstract: A simple method for the synthesis of novel micrometer flower-like Cu/PVP architectures was introduced. Highlights: → Micrometer flower-like copper/polyvinylpyrrolidone architectures were obtained by a simple chemical route. → The amount of N 2 H 4 ·H 2 O, the reaction temperature, the molar ratio of CuCl 2 to PVP and different molecular weights of PVP play an important role in the controlling the morphology of the Cu/PVP architectures. → A possible mechanism of the formation of Cu/PVP architectures was discussed. -- Abstract: Micrometer-sized flower-like Cu/polyvinylpyrrolidone (PVP) architectures are synthesized by the reduction of copper (II) salt with hydrazine hydrate in aqueous solution in the presence of PVP capping agent. The resulting Cu/PVP architectures are investigated by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The Cu/PVP flowers have uniform morphologies with an average diameter of 10 μm, made of several intercrossing plates. The formation of Cu/PVP flowers is a new kinetic control process, and the factors such as the amount of N 2 H 4 ·H 2 O, reaction temperature, molar ratio of CuCl 2 to PVP and molecular weight of PVP have significant effect on the morphology of Cu/PVP architectures. A possible mechanism of the formation of micrometer Cu/PVP architectures was discussed.

  2. Microstructure, impurity and metal cap effects on Cu electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Hu, C.-K.; Gignac, L. G.; Ohm, J.; Breslin, C. M.; Huang, E.; Bonilla, G.; Liniger, E.; Rosenberg, R. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Choi, S.; Simon, A. H. [IBM Microelectronic Division, Hopewell Junction, NY 12533 (United States)

    2014-06-19

    Electromigration (EM) lifetimes and void growth of pure Cu, Cu(Mn) alloy, and pure Cu damascene lines with a CoWP cap were measured as a function of grain structure (bamboo, near bamboo, and polycrystalline) and sample temperature. The bamboo grains in a bamboo-polycrystalline grained line play the key role in reducing Cu mass flow. The variation in Cu grain size distribution among the wafers was achieved by varying the metal line height and wafer annealing process step after electroplating Cu and before or after chemical mechanical polishing. The Cu grain size was found to have a large impact on Cu EM lifetime and activation energy, especially for the lines capped with CoWP. The EM activation energy for pure Cu with a CoWP cap from near-bamboo, bamboo-polycrystalline, mostly polycrystalline to polycrystalline only line grain structures was reduced from 2.2 ± 0.2 eV, to 1.7 ± 0.1 eV, to 1.5 ± 0.1 eV, to 0.72 ± 0.05 eV, respectively. The effect of Mn in Cu grain boundary diffusion was found to be dependent on Mn concentration in Cu. The depletion of Cu at the cathode end of the Cu(Mn) line is preceded by an incubation period. Unlike pure Cu lines with void growth at the cathode end and hillocks at the anode end of the line, the hillocks grew at a starting position roughly equal to the Blech critical length from the cathode end of the Cu(Mn) polycrystalline line. The effectiveness of Mn on Cu grain boundary migration can also be qualitatively accounted for by a simple trapping model. The free migration of Cu atoms at grain boundaries is reduced by the presence of Mn due to Cu-solute binding. A large binding energy of 0.5 ± 0.1 eV was observed.

  3. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  4. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  5. Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2015-06-01

    Full Text Available Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

  6. A first principles study of interactions of CO{sub 2} with surfaces of a Cu(benzene‐1,3,5‐tricarboxylate) metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: jl3336@drexel.edu [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104 (United States); Zhu, Chenming [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Qiao, Zhen [Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Chen, Xinqing; Wei, Wei [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Ji, Haifeng [CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210 (China); Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Sohlberg, Karl [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104 (United States); Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States)

    2016-11-01

    Highlights: • DFT calculations are reported for a new Cu(benzene 1,3,5 tricarboxylate) MOF. • Neither of two low-index surfaces displays appreciable surface relaxation. • Strongest CO{sub 2} binding is to surface-exposed aryl groups. • Surface-exposed Cu atoms do not bind CO{sub 2} strongly, even if unsaturated. • Fitting the BET isotherm yields a binding energy in agreement with DFT calculations. - Abstract: Density functional theory is used to investigate the interaction of CO{sub 2} with the 100 and 010 surfaces of a Cu(benzene 1,3,5 tricarboxylate) metal organic framework. The calculation method is first validated by applying it to similar systems for which reliable results have been reported in literature and verifying that consistent results are obtained. The method is then applied to the Cu(benzene 1,3,5 tricarboxylate) system. The results show that neither the 100 or 010 surface undergoes major surface relaxation or surface reconstruction during structural optimization. CO{sub 2} adsorption calculations show that on the 100 surface, the CO{sub 2} molecule interacts with the surface benzene ring through π-π interaction. On the 010 surface, the interaction between the CO{sub 2} and the surface is again dominated by dispersion. Population analysis shows that a Cu atom on the 010 surface, even when nominally coordinatively unsaturated, is not electron deficient, which explains why CO{sub 2} does not bind to it chemically. Adsorption of multiple CO{sub 2} molecules on the 100 surface was also studied to investigate the dependence of the interaction on surface coverage. Least squares fitting of experimental adsorption versus pressure data to the BET isotherm model yields a binding energy in good agreement with the first-principles calculations.

  7. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(II).

    Science.gov (United States)

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2013-10-15

    The co-adsorption of copper and the fluoroquinolone antibiotic enrofloxacin (ENR) at the water-soil interface was studied by means of batch adsorption experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over a pH range between 6 and 10, at different contact times, ionic strengths, and ENR concentrations. Adsorption coefficient - Kd - was determined at relevant environmental concentrations and the value obtained in water at a ionic strength imposed by the soil and at soil natural pH was equal to 0.66Lg(-1). ENR adsorption onto the soil showed strong pH dependence illustrating the influence of the electrostatic interactions in the sorption processes. The simultaneous co-adsorption of ENR and Cu(II) on the soil was also investigated. The presence of Cu(II) strongly influenced the retention of the antibiotic, leading to an increase up to 35% of adsorbed ENR amount. The combined quantitative and spectroscopic results showed that Cu(II) and ENR directly interacted at the water-soil interface to form ternary surface complexes. Cu K-edge EXAFS data indicated a molecular structure where the carboxylate and carbonyl groups of ENR coordinate to Cu(II) to form a 6-membered chelate ring and where Cu(II) bridges between ENR and the soil surface sites. Cu(II) bonds bidentately to the surface in an inner-sphere mode. Thus, the spectroscopic data allowed us to propose the formation of ternary surface complexes with the molecular architecture soil-Cu(II)-ENR. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  9. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Longo, Paolo; Buha, Joka; Botton, Gianluigi A.; Lazar, Sorin; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco; Lentijo Mozo, Sergio; Zuddas, Efisio; Falqui, Andrea

    2016-01-01

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  10. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  11. Glass-formation and hardness of Cu-Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Satta, Marta; Rizzi, Paola [Dipartimento di Chimica IFM and NIS/INSTM/CNISM, Universita di Torino, v. Giuria 9, I-10125 Torino (Italy); Baricco, Marcello, E-mail: marcello.baricco@unito.i [Dipartimento di Chimica IFM and NIS/INSTM/CNISM, Universita di Torino, v. Giuria 9, I-10125 Torino (Italy)

    2009-08-26

    Metallic glasses exhibit particularly attractive mechanical properties, like high stresses to fracture and large elastic strain (up to 2%), but they show generally low plasticity. Aim of this work is to investigate the glass forming range in the Cu-Y system, in order to form the ductile CuY phase (CsCl structure) upon crystallization. Cu{sub 58}Y{sub 42}, Cu{sub 50}Y{sub 50} and Cu{sub 33}Y{sub 67} alloys have been prepared by rapid solidification and copper mould casting, obtaining ribbons and cylindrical shaped ingots, with diameter of 2 mm. Fully amorphous, partially amorphous and fully crystalline samples have been obtained for different compositions and quenching conditions. In some cases, the X-ray diffraction results, analysed using the Rietveld method, showed CuY nanocrystals embedded in an amorphous matrix. The microstructure was studied by transmission electron microscopy (TEM) and the presence of nanocrystals of the ductile phase CuY has been confirmed. Microhardness results showed a softening of the amorphous phase due to the presence of CuY nanocrystals and a hardening due to the Cu{sub 2}Y phase.

  12. Toxicity assessment and selective leaching characteristics of Cu-Al-Ni shape memory alloys in biomaterials applications.

    Science.gov (United States)

    Chang, Shih-Hang; Chen, Bor-Yann; Lin, Jin-Xiang

    2016-04-06

    Cu-Al-Ni shape memory alloys (SMAs) possess two-way shape memory effects, superelasticity, and damping capacity. Nonetheless, Cu-Al-Ni SMAs remain promising candidates for use in biomedical applications, as they are more economical and machinable than other SMAs. Ensuring the biocompatibility of Cu-Al-Ni SMAs is crucial to their development for biomedical applications. Therefore, this study aimed to assess the toxicity of Cu-Al-Ni SMAs using a Probit dose-response model and augmented simplex design. In this study, the effects of Cu2+, Al3+ and Ni2+ metal ions on bacteria (Escherichia coli DH5α) using Probit dose-response analysis and augmented simplex design to assess the actual toxicity of the Cu-Al-Ni SMAs. Extraction and repetition of Escherichia coli DH5α solutions with high Cu2+ ion concentrations and 30-hour incubation demonstrated that Escherichia coli DH5α was able to alter its growth mechanisms in response to toxins. Metal ions leached from Cu-Al-Ni SMAs appeared in a multitude of compositions with varying degrees of toxicity, and those appearing close to a saddle region identified in the contour plot of the augmented simplex model were identified as candidates for elevated toxicity levels. When the Cu-13.5Al-4Ni SMA plate was immersed in Ringer's solution, the selective leaching rate of Ni2+ ions far exceeded that of Cu2+ and Al3+. The number of Cu2+, Al3+ and Ni2+ ions leached from Cu-Al-Ni SMAs increased with immersion time; however, at higher ratios, toxicity interactions among the metal ions had the effect of gradually reducing overall toxicity levels with regard to Escherichia coli DH5α. The quantities of Cu2+, Al3+ and Ni2+ ions leached from the Cu-13.5Al-4Ni SMA plate increased with immersion time, the toxicity interactions associated with these compositions reduced the actual toxicity to Escherichia coli DH5α.

  13. Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices

    International Nuclear Information System (INIS)

    Thermadam, S. Puthen; Bhagat, S.K.; Alford, T.L.; Sakaguchi, Y.; Kozicki, M.N.; Mitkova, M.

    2010-01-01

    This paper presents a study of Cu diffusion at various temperatures in thin SiO 2 films and the influence of diffusion conditions on the switching of Programmable Metallization Cell (PMC) devices formed from such Cu-doped films. Film composition and diffusion products were analyzed using secondary ion mass spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction and Raman spectroscopy methods. We found a strong dependence of the diffused Cu concentration, which varied between 0.8 at.% and 10 -3 at.%, on the annealing temperature. X-ray diffraction and Raman studies revealed that Cu does not react with the SiO 2 network and remains in elemental form after diffusion for the annealing conditions used. PMC resistive memory cells were fabricated with such Cu-diffused SiO 2 films and device performance, including the stability of the switching voltage, is discussed in the context of the material characteristics.

  14. Electronic structures of PrBa2Cu3O7, Pr2Ba4Cu7O15-y(y=0,1), and PrBa2Cu4O8 based on LSDA+U method

    International Nuclear Information System (INIS)

    Tavana, A.; Shirazi, M.; Akhavan, M.

    2009-01-01

    The electronic structures of PrBa 2 Cu 3 O 7 (Pr123), Pr 2 Ba 4 Cu 7 O 15-y (Pr247), and PrBa 2 Cu 4 O 8 (Pr124) cuprates have been obtained using density-functional theory in the local spin density approximation plus onsite Coulomb interaction (LSDA+U). Onsite Hubbard correlation, U, has been considered for Pr-f and Cu-d orbitals and the effects of considering these correlation corrections on the Pr-O hybridizations have been inspected. Results imply that the Pr ionization state in Pr123 system is constituted from two different configurations, and the energy of the f states in these two configurations has an important role in superconductivity properties of the system. Our calculations also show that in both Pr124 and Pr247 systems, suppression of superconductivity is weaker than that in the Pr123 system. This occurs due to the weaker Pr-O bond in both Pr124 and Pr247 systems. The role of the double chain and single chain on the conduction properties of these compounds has been investigated. We have also studied the effect of oxygen deficiency in Pr247 system, which seems to revive superconductivity in this system. Investigating the hole carriers in the CuO 2 plane shows a correlation between superconductivity suppression and hole decrement in the planes. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas

    2014-01-01

    , it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related poly- morphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X......-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures....

  16. Preparation of Cu@Cu2O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol

    Directory of Open Access Journals (Sweden)

    Seongwan Jang

    2016-11-01

    Full Text Available HKUST-1, a copper-based metal organic framework (MOF, has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe3O4@HKUST-1 by layer-by layer assembly strategy and Cu@Cu2O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu2O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di-tert-butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  17. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    Science.gov (United States)

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  18. Compound cuing in free recall.

    Science.gov (United States)

    Lohnas, Lynn J; Kahana, Michael J

    2014-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity effect should be greater when the 2 most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cuing in both conditional response probabilities and interresponse times. To help rule out a rehearsal-based account of these compound cuing effects, we conducted an experiment with immediate, delayed, and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cuing was present in all conditions, and was not significantly influenced by the presence of interitem distractors.

  19. Corrosion behavior of Cu during graphene growth by CVD

    International Nuclear Information System (INIS)

    Dong, Yuhua; Liu, Qingqing; Zhou, Qiong

    2014-01-01

    Highlights: • Graphene films were deposited on the Cu by chemical vapor deposition method. • Annealing affects the corrosion property of Cu. • Graphene films improve corrosion performance of Cu for a short period of time. - Abstract: The corrosion performance of Cu samples may be affected by annealing at high temperatures during graphene growth via the chemical vapor deposition method. In this study, multiple graphene films were deposited on Cu and characterized by Raman spectroscopy and transmission electron microscopy. The corrosion behavior of Cu immersed in 3.5 wt.% NaCl solution was investigated using electrochemical impedance spectroscopy. The Cu morphology was observed by optical microscopy and scanning electron microscopy. Results indicated that annealing affects the corrosion process of Cu. The presence of graphene films on the Cu substrate improved the corrosion performance of the material for a short period of time

  20. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses

    DEFF Research Database (Denmark)

    Saksl, K.; Franz, H.; Jovari, P.

    2003-01-01

    Change in local atomic environment during crystallization of Zr-based glassy alloys was studied by extended x-ray absorption fine structure (EXAFS) spectroscopy. The formation of icosahedral quasicrystalline phase followed by crystallization of tetragonal CuZr2 has been observed in the Zr70Cu29Pd1...... glassy alloy during annealing up to 850 K. On the other hand, the binary Zr70Cu30 alloy shows a single glassy to crystalline CuZr2 phase transformation. The local atomic environment of as-quenched Zr70Cu30 alloy is matched to an icosahedral local atomic configuration, which is similar to that of the as......-quenched Zr70Cu29Pd1 alloy and the alloy annealed at 593 K containing icosahedral phase. Considering that the supercooled liquid region appears prior to crystallization in the Zr70Cu30 glassy alloy, the observed results support the theory claiming a strong correlation between the existence of local...

  1. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  2. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    Science.gov (United States)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  3. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Mohamad, Dasmawati, E-mail: dasmawati@kck.usm.my [School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  4. Using 67Cu to study the biogeochemical cycling of copper in the northeast subarctic Pacific Ocean

    Directory of Open Access Journals (Sweden)

    David M Semeniuk

    2016-06-01

    bacterial remineralization on dissolved Cu. These results provide a more detailed understanding of the interactions between Cu speciation and microorganisms in seawater, and present evidence that marine phytoplankton modify Cu speciation in the open ocean.

  5. Benefits of oxygen in CuInSe{sub 2} and CuGaSe{sub 2} containing Se-rich grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chunbao, E-mail: chunbaofeng@126.com [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Luo, Min; Li, Bolin; Li, Dengfeng [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Nie, Jinlan [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Dong, Huining [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China)

    2014-05-01

    Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CuInSe{sub 2} and CuGaSe{sub 2}. The Se atoms with dangling bonds in a Se-rich Σ3 (114) grain boundary (GB) create deep gap states due to strong interaction between Se atoms. However, when such a Se atom is substituted by an O atom, the deep gap states can be shifted into valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically to substitute these Se atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close or even below the top of the valence band.

  6. Preparation of Cu Nanoclusters within Dendrimer Templates

    National Research Council Canada - National Science Library

    Zhao, M

    1998-01-01

    ... (16-atom Cu cluster in G4 and 64-atom Cu cluster in G6 dendrimers). The clusters remain trapped within the dendrimers for extended periods of time, do not agglomerate, and do not precipitate. The clusters can also be oxidized to yield dendrimer-encapsulated Cu(2+).

  7. Heating induced microstructural changes in graphene/Cu nanocomposites

    International Nuclear Information System (INIS)

    Solá, F; Niu, J; Xia, Z H

    2013-01-01

    Dynamic heating experiments on graphene/Cu nanocomposites by in situ scanning electron microscopy were conducted to observe the evolution of the morphology and size of the Cu nanoparticles. Microstructural characterization showed that the graphene/Cu nanocomposites system consists of graphene sheets decorated with Cu-based nanoparticles with different chemistries (Cu, Cu 2 O), shapes (cube, rod, triangle, etc) and sizes. Evidence of neck evolution, coalescence, sublimation and Ostwald ripening were observed. Interestingly, some of the events occurred at the edges of the graphene sheets. The quantitative data of necking evolution deviates from the classical continuum theory indicating that intrinsic faceting and the shape of the nanoparticles played an important role in the necking process. This was supported by molecular dynamics simulations. Experimental data of liquid-spherical nanoparticles on graphene suggested that Cu did not wet graphene. Based on sublimation experiments and surface stability, we propose that graphene decorated with Cu nanoparticles enclosed by {111} facets are the most stable nanocomposite at high temperatures. The growth mechanism of nanoparticles on graphene is discussed.

  8. In Situ Synthesis of Ag@Cu2O-rGO Architecture for Strong Light-Matter Interactions

    Directory of Open Access Journals (Sweden)

    Shuang Guo

    2018-06-01

    Full Text Available Emerging opportunities based on two-dimensional (2D layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu2O-rGO, where the reduced graphene oxide (rGO 2D acting as a platform is uniformly decorated by Ag@Cu2O core-shell nanoparticles. Cu2O nanoparticles occupy the defect positions on the surface of the rGO platform and restore the conjugation of the rGO structure, which contributes to the significant decrease of the ID/IG intensity ratio. The rGO platform can not only bridge the isolated nanoparticles together but also can quickly transfer the free electrons arising from the Ag core to the Cu2O shell to improve the utilization efficiency of photogenerated electrons, as is verified by high efficient photocatalytic activity of Methyl Orange (MO. The multi-interface coupling of the Ag@Cu2O-rGO platform-core-shell nanostructure leads to the decrease of the bandgap with an increase of the Cu2O shell thickness, which broadens the absorption range of the visible light spectrum.

  9. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Displacement waves in La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta)

    Science.gov (United States)

    Kajitani, Tsuyoshi; Onozuka, Takashi; Yamaguchi, Yasuo; Hirabayashi, Makoto; Syono, Yasuhiko

    1987-11-01

    Structural investigation of orthorhombic La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta) was carried out by means of X-ray and neutron diffraction on the basis of the space group Cmmm. The periodic expansion/contraction type distortion of CuO6 octahedra was found in both orthorhombic compounds. The distortion is nearly one-dimensional in La2CuO(4-delta) but is two-dimensional in La(1.85)Sr(0.15)CuO(4-delta). The existence of a charge-density wave is highly possible in the structures.

  11. Cu charge fluctuations and anomalous behaviour in the phonon spectrum of La2CuO4

    International Nuclear Information System (INIS)

    Dobry, A.; Greco, A.; Migoni, R.; Stachiotti, M.

    1991-09-01

    The additional excitation observed in the phonon spectrum of La 2 CuO 4 is shown to arise from Cu charge fluctuations. A nonlinear breathing shell model is formulated for the coupling of these fluctuations with the lattice. The harmonic dynamics and exact nonlinear solutions are studied in a 2-D model of the CuO 2 planes. A molecular dynamics simulation shows an additional peak of nonphononic character originated by the nonlinear lattice dynamics. (author). 20 refs, 3 figs

  12. Interface phenomena in the Y2O3/(Al-Cu) system

    International Nuclear Information System (INIS)

    Barzilai, S.; Aizenshtein, M.; Froumin, N.; Frage, N.

    2006-01-01

    Wetting behavior and the interface reaction in the Y 2 O 3 /(Cu-Al) system were investigated at 1423 K. A contact angle of about 130 o was measured in the Y 2 O 3 /Cu system. Aluminum addition to copper improves wetting and the transition from non-wetting to wetting (θ ≤ 90 o ) was observed for the alloy with 50 at.% Al. The microstructure examination of the interface indicates that Al reacts with yttria, yttrium dissolves in the melt and a crater of AlYO 3 is formed at the substrate. The interface interaction in the Y 2 O 3 /(Cu-Al) system is in a good agreement with the results of a thermodynamic analysis in the Y-Al-Cu-O system. The crater depth and the macroscopic final contact angles are correlated with the Y and Al activities in the melt

  13. Highly stable carbon-doped Cu films on barrierless Si

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Li, X.N.; Nie, L.F.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C.

    2011-01-01

    Electrical resistivities and thermal stabilities of carbon-doped Cu films on silicon have been investigated. The films were prepared by magnetron sputtering using a Cu-C alloy target. After annealing at 400 deg. C for 1 h, the resistivity maintains a low level at 2.7 μΩ-cm and no Cu-Si reaction is detected in the film by X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. According to the secondary ion mass spectroscopy (SIMS) results, carbon is enriched near the interfacial region of Cu(C)/Si, and is considered responsible for the growth of an amorphous Cu(C)/Si interlayer that inhibits the Cu-Si inter-diffusion. Fine Cu grains, less than 100 nm, were present in the Cu(C) films after long-term and high-temperature annealings. The effect of C shows a combination of forming a self-passivated interface barrier layer and maintaining a fine-grained structure of Cu. A low current leakage measured on this Cu(C) film also provides further evidence for the carbon-induced diffusion barrier interlayer performance.

  14. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  15. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  16. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Jing; Feng, Huijie; Yang, Jiaqin; Qin, Qing; Fan, Hongmin; Wei, Caiying; Zheng, Wenjun

    2015-10-07

    It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 μm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.

  17. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  18. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Dong, Qimei; Chen, Yingying; Wang, Lingli; Ai, Shasha; Ding, Hanming

    2017-12-01

    Alkalinized graphitic carbon nitride (CNK-OH) has been synthesized by one-step thermal poly-condensation method, and Cu-modified alkalinized g-C3N4 (Cu-CNK-OH) has been prepared by impregnation approach over CNK-OH. These copper species in Cu-CNK-OH are embedded in the frame of CNK-OH mostly via the Cu-N bonds. Cu-CNK-OH has been employed as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB). Both the production efficiency of hydroxyl radicals and the transformation rate of Cu(II)/Cu(I) redox pair increase under visible-light irradiation. As a result, Cu-CNK-OH exhibits improved Fenton-like catalytic activity on the degradation of RhB. The synergetic interaction between Fenton-like process and photocatalytic process also contributes such improvement. The hydroxyl radicals and holes are the major reactive species in the photocatalytically assisted Fenton-like process. This study provides a valuable strategy for metal modification of alkalinized g-C3N4 with enhanced Fenton-like catalytic performance for the degradation of organic contaminants.

  19. Processing of R-Ba-Cu-O superconductors

    International Nuclear Information System (INIS)

    Wu, H.

    1998-01-01

    Precipitation processes were developed to introduce second phases as flux pinning centers in Gd-Ba-Cu-O and Nd-Ba-Cu-O superconductors. In Gd-Ba-Cu-O, precipitation is caused by the decrease of the upper solubility limit of Gd 1+x Ba 2-x Cu 3 O 7 solid solution (Gd123ss) in low oxygen partial pressure. Processing of supersaturated Gd 1.2 Ba 1.8 Cu 3 O 7 in low oxygen partial pressure can produce dispersed second phases. Gd211 is formed as a separate phase while extensive Gd124 type stacking fault is formed instead of a separate CuO phase. As a result of the precipitation reaction, the transition temperature and critical current density are increased. In Nd-Ba-Cu-O, precipitation is caused by the decrease of the lower solubility limit of Nd 1+x Ba 2-x Cu 3 O 7 solid solution (Nd123ss) in oxygen. DTA results reveal the relative stability of Nd123ss in different oxygen partial pressures. In 1 bar oxygen partial pressure, Nd123ss with x = 0.1 is the most stable phase. In lower oxygen partial pressures, the most stable composition shifts towards the stoichiometric composition. The relative stability changes faster with decreasing oxygen partial pressure. Therefore, processing in oxygen and air tends to produce broad superconducting transitions but sharp transitions can be achieved in 0.01 bar and 0.001 bar oxygen partial pressures. While the lower solubility limits in 0.01 bar and 0.001 bar oxygen partial pressures remain at x = 0.00, the solubility limits in oxygen and air show a narrowing with decreasing temperature. Because of the narrowing of the solubility range in oxygen, oxygen annealing of Nd123 initially processed in low oxygen partial pressures will result in precipitation of second phases. The equilibrium second phase is BaCuO 2 for temperature above 608 C, and at lower temperatures the equilibrium second phases are Ba 2 CuO 3.3 and Ba 2 Cu 3 O 5+y . However, annealing at low temperature may produce a fine metastable transition phase. A coherent intermediate

  20. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  1. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  2. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  3. A first-principles study of the possible magnetism of Rh in the Cu/Rh/Cu(001) system

    CERN Document Server

    Jang, Y R; Chang, C S; Cho, L H; Lee, J I

    1999-01-01

    Possible 4d magnetism of a Rh monolayer in a Cu/Rh/Cu(001) system is investigated using the full-potential linearized augmented-plane-wave (FLAPW) energy band method based on the local-spin-density approximation (LSDA). We have calculated the total energy of the Cu/Rh/Cu(001) system and have found that the Rh monolayer is ferromagnetic (FM) with a tiny magnetic moment. However, the total energy difference between the ferromagnetic and the paramagnetic states is found to be very small, and thus which state can be realized at room temperature is uncertain. The calculated charge densities and layer-projected density of states (LDOS) are presented and discussed in relation to the magnetic properties.

  4. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  5. Superconductivity in La1.56Sr0.44CuO4/La2CuO4 Superlattices

    International Nuclear Information System (INIS)

    Bozovic, I.; Suter, A.; Morenzoni, E.; Prokscha, T.; Luetkens, H.; Wojek, B.M.; Logvenov, G.; Gozar, A.

    2011-01-01

    Superlattices of the repeated structure La 1.56 Sr 0.44 CuO 4 /La 2 CuO 4 (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T(prime) c 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy μSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.

  6. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    Science.gov (United States)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  7. Oxygen potentials and phase equilibria of the quaternary Y-Ba-Cu-O system in the region involving the YBa2Cu3O7-x phase

    International Nuclear Information System (INIS)

    Fitzner, K.; Musbah, O.; Hsieh Kerchang; Zhang Minxian; Chang, Y.A.

    1993-01-01

    The equilibrium oxygen potentials of four-phase equilibria (counting only the condensed phases) in the CuO-Cu 2 O-BaCuO 2 -Y 2 BaCuO 5 (211)-YBa 2 Cu 3 O 7-x (123) phase region were determined using the following solid-oxide electrolyte e.m.f. cell: Pt10Rh, air (psub(O 2 )=0.21 atm) vertical stroke ZrO 2 +Y 2 O 3 vertical stroke mixtures of oxides, Pt. The oxide mixtures whose oxygen potentials were measured were CuO-Cu 2 O-211-123, CuO-Cu 2 O-BaCuO 2 -123, Cu 2 O-BaCuO 2 -211-123 and CuO-BaCuO 2 -211-123. The phase in some of the mixtures were identified by X-ray diffraction. These data were analyzed and are presented using stability diagrams, i.e., oxygen potential as a function of the reciprocal of the temperature. Extrapolation of these data for the four four-phase equilibra to high temperatures yields a metastable five-phase equilibrium, i.e., 123=CuO+Cu 2 O+BaCuO 2 +211, at ∼1243 K (970 ) and log psub(O 2 ) ∼ -1.21 (psub(O 2 )∼0.062 atm). (orig.)

  8. Interactions in YBa2Cu3O7-x aqueous suspensions

    International Nuclear Information System (INIS)

    Dusoulier, Laurent; Cloots, Rudi; Vertruyen, Benedicte; Garcia-Fierro, Jose L.; Moreno, Rodrigo; Ferrari, Begona

    2009-01-01

    Surface charging mechanism of YBa 2 Cu 3 O 7-x (YBCO) particles in water has been investigated in order to understand their colloidal behaviour and stabilise concentrated suspensions. A broad study relating the suspension parameters (pH and zeta potential) vs. the conditions of the suspension performance (atmosphere and time) has been shown and discussed. The zeta potential values remain positive in all the pH range for the highest powder concentration studied (10 g l -1 ), evidencing a large influence of the solid content in the particle charge. The chemistry of YBa 2 Cu 3 O 7-x in water has been studied through the chemical analysis of the supernatant by inductively coupled plasma (ICP), and the surface analysis of the particles by X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). The presence of BaCO 3 , CuO, and the hydrolysed Ba species, such as Ba(OH) 2 and Ba(OH) + , at the particles surface has been evaluated as a function of the powder concentration. Based on these analyses, the dependence of the colloidal behaviour of YBCO on the presence of Ba soluble species has been determined. A stabilisation mechanism for YBCO particles in aqueous suspension focus on the powders deleterious minimization was proposed.

  9. Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

    International Nuclear Information System (INIS)

    Yap, C.K.; Yazdani, M.; Abdullah, F.; Tan, S.G.

    2011-01-01

    The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/ L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC 50 value of the isolate was 287.73 mg/ L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/ g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4 %, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem. (author)

  10. Synthesis of CuInSe2 thin films from electrodeposited Cu11In9 precursors by two-step annealing

    Directory of Open Access Journals (Sweden)

    TSUNG-WEI CHANG

    2014-02-01

    Full Text Available In this study, copper indium selenide (CIS films were synthesized from electrodeposited Cu-In-Se precursors by two-step annealing. The agglomeration phenomenon of the electrodeposited In layer usually occurred on the Cu surface. A thermal process was adopted to turn Cu-In precursors into uniform Cu11In9 binary compounds. After deposition of the Se layer, annealing was employed to form chalcopyrite CIS. However, synthesis of CIS from Cu11In9 requires sufficient thermal energy. Annealing temperature and time were investigated to grow high quality CIS film. Various electrodeposition conditions were investigated to achieve the proper atomic ratio of CIS. The properties of the CIS films were characterized by scanning electron microscopy (SEM, X-ray Diffraction (XRD, and Raman spectra.

  11. Inhibiting properties of benzimidazole films for Cu(II)/Cu(I) reduction in chloride media studied by RDE and EQCN techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scendo, M. [Institute of Chemistry, Saint Cross Academy, ul. Checinska 5, 25020 Kielce (Poland)]. E-mail: scendo@pu.kielce.pl; Hepel, M. [Department of Chemistry, State University of New York, Potsdam, NY 13676, USA (United States)

    2007-08-15

    The effects of benzimidazole (BIM) and 2-methylbenzimidazole (MBIM) on the electroreduction of Cu(II) on a rotating Pt disk electrode in chloride media were investigated. These studies were undertaken in conjunction with earlier observation that these imidazole derivatives act as inhibitors of copper corrosion processes and are non-toxic. We have found that BIM and MBIM also form adsorption films on Pt, which are able to inhibit one-electron reduction of Cu(II) to Cu(I) and prevent the development of convective diffusion limiting current wave. The inhibition was found to be controlled by field-assisted mass transfer in the film. The ingress of Cu(II) species into the film was detected using the EQCN technique. The EQCN measurements indicate that small fraction of Cu(I) formed in the film by reduction of Cu(II) is retained in the film, most likely in the form of CuCl. The uptake of CuCl by inhibitor films diminishes in strongly inhibiting films (e.g., in acidic medium). The inhibition effectiveness of Cu(II) reduction process by Pt vertical bar BIM and Pt vertical bar MBIM films increases strongly with increasing acidity of the medium in the pH range from 3.0 to 1.0. The mechanism of this remarkable pH effect has been proposed. It is based on charge and pH-induced film restructuring, including changes in orientation and protonation of BIM molecules in the film.

  12. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    Science.gov (United States)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

  13. Temperature stability of AgCu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sopoušek, Jiří, E-mail: sopousek@mail.muni.cz; Zobač, Ondřej; Vykoukal, Vít [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Buršík, Jiří; Roupcová, Pavla [Institute of Physics of Materials ASCR (Czech Republic); Brož, Pavel; Pinkas, Jiří [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Vřešťál, Jan [Masaryk University, Central European Institute of Technology, CEITEC (Czech Republic)

    2015-12-15

    The colloidal solutions of the Ag–Cu nanoparticles (NPs, 10–32 nm) were prepared by solvothermal reactions. The samples of dried AgCu NPs and the resulting microstructures after heat treatment in air were investigated by various methods including electron microscopy (TEM, SEM) and high-temperature X-ray powder diffraction (HTXRD). The AgCu randomly mixed, Cu-rich, and Ag-rich face centred cubic crystal lattices were detected during the experiments. The temperature induced sintering was observed experimentally by HTXRD at 250 °C. The phase transformations at high temperatures were monitored by differential scanning calorimetry. The formation of the Ag-rich grains during heating in air and evolution of copper oxide microstructure were detected.Graphical abstract.

  14. Thermodynamic analysis of the Cu2S-Cu2Te system using dissociation pressure data

    International Nuclear Information System (INIS)

    Glazov, V.M.; Pashinkin, A.S.; Burkhanov, A.S.; Saleeva, N.M.

    1978-01-01

    The Knudsen effusive method has been used for studying the dissociation pressure in the Cu 2 S-Cu 2 Te system, and on the basis of the experimental data obtained, the tellurium activity in the system and the mixing energy have been calculated. The dissociation pressure of pure components and alloys containing 10, 30, 50, 70, and 90 mol% of copper telluride within the temperature range of 750-1200 deg C has been studied. A smooth character of the concentration dependence of tellurium activity is observed, which points to the formation of a continuous series of solid solutions in the Cu 2 S-Cu 2 Te system within the temperature range studied. The data on the mixing energy in the system show a good agreement of the values obtained from the dissociation pressure with those determined from the fusibility diagram. The results indicate that the system in question is described well within the framework of the model of regular solutions

  15. Oxygen isotope effect in YBa2Cu3O7 prepared by burning YBa2Cu3 in 16O and 18O

    Science.gov (United States)

    Yvon, Pascal J.; Schwarz, R. B.; Pierce, C. B.; Bernardez, L.; Conners, A.; Meisenheimer, R.

    1989-04-01

    We prepared YBa2Cu3 powder by ball milling a 2:1 molar mixture of the intermetallics BaCu and CuY. We synthesized YBa2Cu3(16O)7-x and YBa2Cu3(18O)7-x by oxidizing the YBa2Cu3 powder in 16O and 18O. The 16O/18O ratios were determined by laser-ionization and sputtering-ionization mass spectroscopy. The YBa2Cu3(160)7-x sample had 99.8 at. %16O, and the YBa2Cu3(18O)7-x sample had 96.5 at. %18O. Susceptibility measurements of the superconducting transition temperature (Tc=91.7 K for 16O; half-point transition at 84 K show an isotope effect of 0.4+/-0.1 K.

  16. Thermodynamics of the Cu(II) adsorption on thin vanillin-modified chitosan membranes

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Mattos, Charlene R.S.

    2006-01-01

    In this work, low-density vanillin-modified thin chitosan membranes were synthesized and characterized. The membranes were utilized as adsorbent for the removal of Cu(II) from aqueous solutions. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Langmuir model (average R 2 > 0.99). Interactions thermodynamic parameters (Δ int H, Δ int G, and Δ int S), as well as the interaction thermal effects (Q int ) were determined from T = (298 to 333) K. The thermodynamic parameters, the Dubinin-Radushkevick equation and the comparative values of Δ int H for some Cu(II)-adsorbent interactions suggested that the adsorption of Cu(II) ions to vanillin-chitosan membranes show average results for both the diffusional (endothermic) and chemical bonding (exothermic) processes in relation to the temperature range studied

  17. Transient and modulated charge separation at CuInSe{sub 2}/C{sub 60} and CuInSe{sub 2}/ZnPc hybrid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Morzé, Natascha von, E-mail: natascha.von_morze@helmholtz-berlin.de; Dittrich, Thomas, E-mail: dittrich@helmholtz-berlin.de; Calvet, Wolfram, E-mail: wolfram.calvet@helmholtz-berlin.de; Lauermann, Iver, E-mail: iver.lauermann@helmholtz-berlin.de; Rusu, Marin, E-mail: rusu@helmholtz-berlin.de

    2017-02-28

    Highlights: • Surface physical properties of non- and Na-treated CuInSe{sub 2} layers studied. • Evidence of exciton dissociation and charge separation at CuInSe{sub 2}/ZnPc interface. • Strong band bending at the CuInSe{sub 2} surface in contact with C{sub 60} observed. • No evidence for exciton dissociation at the CuInSe{sub 2}/C{sub 60} interface found. • Cu-poor phase at CuInSe{sub 2}/organic interface crucial for charge separation. - Abstract: Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe{sub 2} (untreated and Na-conditioned) thin films and organic C{sub 60} as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe{sub 2} surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C{sub 60} layer, a strong band bending at the CuInSe{sub 2} surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe{sub 2}/ZnPc interface. The Cu-poor layer at the CuInSe{sub 2} surface was found to be crucial for transient and modulated charge separation at CuInSe{sub 2}/organic hybrid interfaces.

  18. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  19. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu{sub 2}O microspheres for degrading organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui, E-mail: chengyahui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Lin, Yuanjing [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Xu, Jianping [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Li, Lan [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Du, Xiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Weichao [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Liu, Hui, E-mail: liuhui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zheng, Rongkun [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-15

    Graphical abstract: - Highlights: • Cu NPs introduce the SPR and result in an increase of visible light absorption. • The photocatalytic activity of Cu{sub 2}O/Cu improves greatly due to the SPR effect. • A dark catalytic activity is observed stemming from the Fenton-like reaction. • The • O{sub 2}{sup −} and • OH radicals contribute to the photocatalytic process. • The • OH radicals contribute to the dark catalytic process. - Abstract: Micron-sized Cu{sub 2}O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu{sub 2}O–Cu–H{sub 2}O{sub 2} system exhibits a superior photocatalytic activity to Cu{sub 2}O–H{sub 2}O{sub 2} or pure H{sub 2}O{sub 2} with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H{sub 2}O{sub 2}. The radical quenching experiments indicate that both • O{sub 2}{sup −} and • OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the • OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H{sub 2}O{sub 2}, the Cu{sub 2}O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  20. Preparation of 64Cu based on nuclear reaction of 64Ni (p,n) 64Cu: Simulations of target preparation and radionuclidic separation

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2010-01-01

    As a preliminary study for production technology of 64 Cu based on nuclear reaction of 64 Ni (p,n) 64 Cu, the nickel targets were prepared by electroplating method using acidic solution of nickel chloride - boric acid and basic solution of nickel sulphate - nickel chloride mixtures on a silver-surfaced target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel containing radioactive copper. In the presented work the irradiation of nickel target was omitted, while the radioactive copper was obtained from neutron irradiation of CuO target. The separation of radioactive copper was based on anion exchange column chromatography in which the radiocopper was conditioned to form CuCl 4 2- anion complex, while the nickel was kept as Ni 2+ cation. It was found that the electroplating deposit from the acidic solution was better than that form the basic solution. By conditioning the matrix solution in 6 M HCl, the radioactive copper was indicated in the forms of Cu 2+ and CuCl 4 2- while the nickel was in the form of Ni 2+ . In the condition of 9 M HCl, the radioactive copper was in the form of CuCl 4 2- , while the nickel was found as both Ni 2+ and CuCl 4 2- . The best condition of separation was in 8 M HCl in which the radioactive copper was in the form of CuCl 4 2- , while the nickel was in the form of Ni 2+ . The retained CuCl 4 2- was then changed back into Cu 2+ cation and eluted out from the column by using 0.05 M HCl. The γ-spectrometric analysis showed a single strong peak at 511 keV in accordance to γ-annihilation peak coming from positron decay of 64 Cu, and a very weak peak at 1346 keV related to γ-ray from internal energy transition of 64 Cu. (author)