WorldWideScience

Sample records for intermetallic ni-nb-al compounds

  1. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    International Nuclear Information System (INIS)

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  2. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  3. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  4. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  5. Diffusion mechanisms in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)

    1992-08-01

    Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.

  6. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  7. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  8. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAlintermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  9. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  10. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  11. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  12. The Ni3Al and NiAl alloys: a class of intermetallics which can replace the Ni-base superalloys for the aerospace high temperature structural applications

    International Nuclear Information System (INIS)

    Lucaci, M.; Vidu, C.D.; Vasile, E.

    2001-01-01

    The paper presents the results obtained in synthesizing Ni-base refractory intermetallics from elemental powder mixes. In view of this, four mixes were made for the Ni 3 Al intermetallics and five mixes for the NiAl ones. The compound synthesis was made at T = 660 o C under vacuum by the SHS method, in the thermo-explosion mode. The variable parameters were the compacting pressure and the aluminum amount in the mixes. The obtained materials were then characterized by the microstructure and by the physical properties. The product synthesis degree was followed as well as their influence on the types of microstructures obtained. The reaction products were evidenced by x-ray diffraction and by quantitative chemical microanalysis. The obtained results revealed the formation of the Ni 3 Al compound having a primitive cubic crystal lattice with a 0 = 3,564 Aa and the formation of the NiAl compound, of a bcc lattice having a 0 = 2,86 Aa. Those obtained prove the ample influences of the powder homogeneity degree and of the powder purity on the possibility to produce an adequate synthesis, as well as the influence of the amount liquid appeared in the system on the synthesis degree, on the reaction rate and on the porosity of materials obtained. (author)

  13. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  14. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  15. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  16. Containerless automated processing of intermetallic compounds and composites

    Science.gov (United States)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  17. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  18. Microstructural analyses of intermetallic TiAl(Nb)-compounds prepared by arc melting and by powder metallurgy

    International Nuclear Information System (INIS)

    Chen, S.

    1988-01-01

    Intermetallic compounds based on TiAl with Nb or V as alloying additions prepared by powder metallurgy (P/M) and arc melting (A/M) techniques have been investigated with respect to their potential as new high temperature materials. All the alloys with nominal Al-concentrations 34-36 wt% contain two phases, γ-TiAl and α 2 -Ti 3 Al, but significant differences in the distribution of γ and α 2 were found between the P/M and A/M materials. The role of impurities during processing and the microstructural stability in the planned service temperature range 700-1000 0 C are discussed. In the P/M TiAl alloys two carbide precipitates have been found, which are the cubic Perovskite-AlTi 3 C phase in the γ-matrix and the hexagonal H-AlTi 2 (C, N) phase at grain boundaries. At high temperatures the AlTi 3 C phase dissolves and is replaced by more stable H-phase, and therefore no longer contributes to the high temperature strength of the material. Mechanical properties of both the P/M and A/M alloys are compared in association with the processing methods and the resulting microstructures. (orig.) With 71 figs., 22 tabs [de

  19. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  20. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  1. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  2. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  3. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  4. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  5. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  6. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  7. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  8. FY 1992 Report on the survey results. Surveys on trends of research and development of advanced materials for severe environments (Intermetallic compounds); 1992 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu (kinzokukan kagobutsu) ni kakawaru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The trends of the ongoing researches on intermetallic compounds are surveyed through interviews and inquiries, in order to evaluate the results of the projects and research and development of the advanced materials for severe environments, and also to survey the research trends. The survey results are pigeonholed into 4 general categories; (1) research trends in the USA, UK and Germany, (2) notable topics of recent progress in intermetallic research and development, (3) evaluation of the projects, and (4) lists of the results of the researches on the Al-Ti and Al-Nb intermetallic compounds. The ongoing projects include those for intermetallic compounds of high specific strength and of high melting point, the former being represented by Al-Ti compounds and the latter by Al-Nb compounds, for aircraft and space development purposes. The projects are evaluated, viewed from materials and purposes/targets pursued by the projects, R and D organizations, and degree of attention the projects are attracting. The intermetallic compounds are extensively studied and attracting attention in various countries, but possibilities of achieving the set targets are rather pessimistic. (NEDO)

  9. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  10. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  11. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials

    International Nuclear Information System (INIS)

    He, P.; Liu, D.

    2006-01-01

    The formation of brittle intermetallic compounds at the interfaces of diffusion bonds is the main cause which leads to poor bond strength. Therefore, it is very important to study and establish the formation and growth model of intermetallic compounds at the interfaces for the control process of diffusion bonding. In this paper, according to the diffusion kinetics and the thermodynamics, the principle of formation of intermetallic compounds at interfaces in the multi-component diffusion couple, the flux-energy principle, is put forward. In the light of diffusion theory, the formation capacity of the phase at the interfaces is determined by specific properties of the composition in the diffusion couple and the composition ratio of the formed phase is in agreement with the diffusion flux. In accordance with the flux-energy principle, the microstructure of the Ni/TC4 interface is Ni/TiNi 3 /TiNi/Ti 2 Ni/TC4, the microstructure of the TC4/00Cr18Ni9Ti interface is 00Cr18Ni9Ti/TiFe 2 /TiFe/Ti 2 Fe/TC4, and the microstructure of the TiAl/40Cr interface is 40Cr/TiC/Ti 3 Al + FeAl + FeAl 2 /TiAl. Multi-intermetallic compounds with the equivalent flux-energy can be formed at the interfaces at the same time

  12. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  13. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  14. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  15. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  16. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  17. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  18. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  19. The effect of boron additions on irradiation-induced order changes in Ni3Al intermetallic compounds

    International Nuclear Information System (INIS)

    Njah, N.; Gilbon, D.; Dimitrov, O.

    1995-01-01

    The effects of boron additions (0.1 wt%) on the kinetics of atomic order changes in a Ni 76 Al 24 intermetallic compound, under 1 MeV electron irradiation, were investigated at temperatures of 293 K and 410 K and displacement rates of 0.09 x 10 -3 to 4.7 x 10 -3 dpa.s -1 . In these irradiation conditions, a state of residual order was obtained for long irradiation times, characterized by a steady state order parameter S∞; it corresponds to a competition between two opposite features: irradiation disordering and thermal reordering enhanced by irradiation. Boron additions did not affect the efficiency of irradiation-induced disordering: the disordering cross-section (or, equivalently, the number of replacements per displacement var-epsilon) were comparable with and without a boron addition. By contrast, the S∞ values at 293 K were much lower in the alloy containing boron. Since boron does not change the disordering rate, the large difference between the values obtained in undoped and in boron-doped alloys shows that the reordering rate is strongly reduced by the presence of boron. Thus, boron modifies the mobility of the defects responsible for the irradiation-enhanced diffusion. The data on dislocation-loop size and the reordering kinetics suggest that vacancies are trapped by boron at low temperatures and immobilized, probably by the formation of a boron-vacancy complex. The effect becomes weaker at higher displacement rates and higher temperatures, probably due to the boron-vacancy complexes becoming unstable. It is proposed that two different reordering mechanisms may be operative at 293 K, according to the presence of boron: reordering is promoted by vacancy migration in the Ni 76 Al 24 alloy, whereas in the Ni 76 Al 24 (0.1 wt%B) alloy, it is promoted by the migration of split-interstitials or/and of low-mobility vacancy-boron complexes

  20. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation

    International Nuclear Information System (INIS)

    Poli, G.; Sola, R.; Veronesi, P.

    2006-01-01

    The microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator has been simulated numerically and performed with the aim of achieving the highest yields, energy efficiency and process reproducibility. The electromagnetic field modeling of the microwave system allowed to chose the proper experimental set-up and the materials more suitable for the application, minimising the reflected power and the risks of arcing. In all the experimental conditions tested, conversions of 3-5 g 1:1 atomic ratio Ni and Al powder compacts into NiAl ranged from 98.7% to 100%, requiring from 30 to 180 s with power from 500 to 1500 W. The optimisation procedure allowed to determine and quantify the effects of the main process variables on the ignition time, the NiAl yields and the specific energy consumption, leading to a fast, reproducible and cost-effective process of microwave-assisted combustion synthesis of NiAl intermetallics

  1. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  2. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  3. Neutron diffraction study of dense-Kondo compound CeNi2Al5

    International Nuclear Information System (INIS)

    Munoz, A.; Givord, F.; Boucherie, J.X.; Flouquet, J.; Isikawa, Y.; Mizushima, T.; Sakurai, J.; Mori, K.; Oliveira, I.S.

    1993-01-01

    Intermetallic CeNi 2 Al 5 is a dense-Kondo compound with a magnetic transition temperature at 2.6 K. We have carried out a neutron diffraction measurement to study a magnetic structure of CeNi 2 Al 5 using a powder sample and a single crystalline sample. It is found that the magnetic structure is an incommensurate sinusoidal one with a propagation vector k = (0.5, 0.405, 0.083) and that the amplitude of magnetic moment is 1.54 μ Β and the direction of magnetic moment is declined 8 deg. from the b-axis toward the a-axis. (authors). 3 refs., 2 figs

  4. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model

    International Nuclear Information System (INIS)

    Hou Hua; Zhao Yuhong; Zhao Yuhui

    2009-01-01

    With the microscopic phase-field model, atomic-scale computer simulation programs for the precipitation mechanism of the ordered intermetallic compound γ' in binary Ni-15.5 at.%Al alloy, θ and γ' in ternary Ni 75 Al x V 25-x alloys were worked out based on the microscopic diffusion equation and non-equilibrium free energy. The simulation can be applied to the whole precipitation process and composition range. A prior assumptions on the new phase structure or transformation path was unnecessary, the possible non-equilibrium phases, atomic clustering and ordering could be described automatically, and atomic images, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence of θ and γ' in complicated system with ordering and clustering simultaneously. Through the simulated atomic images and chemical order parameters of precipitates, we can explain the complex precipitation mechanisms of θ (Ni 3 V) and γ' (Ni 3 Al) ordered phases. For the binary alloy, the precipitation mechanism of γ' phase has the characteristic of both non-classical nucleation and growth (NCNG) and congruent ordering and spinodal decomposition (COSD). For the ternary alloys, the precipitation characteristic of γ' phase transforms from NCNG to COSD gradually, otherwise, the precipitation characteristic of θ phase transforms from COSD to NCNG mechanism gradually

  5. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  7. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  8. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  10. New intermetallic compounds Ln(Ag, AL)4 (Ln-Y, Gd, Tb, Dy) and their structure

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.

    1990-01-01

    By the methods of X-ray analysis crystal structure of compounds Ln(Ag,Al) 4 , where Ln-Y, Gd, Tb, Dy, posessing rhombic structure, is determined. The intermetallics have been prepared for the first time. Ways of atom distribution and their coordinates in DyAg 0.55 Al 3.45 structure (a=0.4296(1), b=04179(1), c=0.9995(3), R=0.093) are specified. Other compounds are formed in case of LnAgAl 3 compositions. Interatomic distances in Dy(Ag,Al) 4 structure are considered. A supposition is made on the formation in Ln-Ag-Al systems of a greater number of intermetallic compounds

  11. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  12. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  13. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  14. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  15. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure...

  16. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  17. Reaction of intermetallic compounds of the ScT composition (T=Ag, Cu, Zn, Ni) with hydrogen

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.; Tarasov, B.P.

    1995-01-01

    Reaction of intermetallic compounds of ScT composition (T=Ag, Cu, Zn, Ni), crystallized in CsCl structural type, with hydrogen at 0.2-10 MPa pressure and 293-673 K temperature is studied by chemical, x-ray phase and complex thermogravimetry analysis methods. It is shown that under such conditions hydrogen absorption by ScAg and ScCu is accompanied by the decay of their source matrices into scandium dihydride and metal silver and copper respectively. For ScZn a fine-dispersion mixture of scandium dihydride with zinc and hydride phase of a new zinc-containing intermetallic compound appears to be the finite reaction product. In case of ScNi a hydride phase of ScNiH 2.6 composition is produced, which is crystallized in a rhombic syngony with the lattice periods: a=0.5281±0.0007, b=0.7393±0.0009 and c=0.3327±0.0004 nm. 9 refs.; 2 tabs

  18. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  19. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  20. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  1. The characteristics of precipitates in 18% Cr/30% Ni cast steel with additions of Nb and Ti

    International Nuclear Information System (INIS)

    Piekarski, B.

    1995-01-01

    The microstructure of austenitic cast steel with approx. 0.3%C, 4.37%Si, 0.69%Mn, 17.8%Cr, 29.3%Ni, 1.47%Nb and 1.07%Ti have been examined after ageing at 900 C for 300 h. There was found five precipitates: M 23 C 6 , MnS, Ni 3 Fe, (Ti,Nb)C and an intermetallic Ni-Nb-S phase. Ni, Nb, Si-rich precipitate could have been formed in as cast condition. (author)

  2. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In

    International Nuclear Information System (INIS)

    Lapolli, Andre Luis

    2006-01-01

    Systematic behavior of magnetic hyperfine field (B hf ) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B hf were carried out at the rare earth atom and in sites using the nuclear probes 140 Ce and 11 '1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from 140 Ce probe as well as at in sites obtained from 111 Cd probe for each series of compounds were extrapolated to zero Kelvin B hf (T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B hf comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B hf (T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with 111 Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the 111 Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  3. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  4. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  5. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    Science.gov (United States)

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  6. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  7. Nuclear quadrupole resonance of 93Nb in ternary phases on the bases of Nb3Al compound

    International Nuclear Information System (INIS)

    Matukhin, V.L.; Safin, I.A.; Shamraj, V.F.

    1980-01-01

    Results of investigations into concentration dependences of 93 Nb spectrum parameters of nuclear quadrupole resonance (n.g.r.) (frequencies of n.g.r. transitions, rates of nuclear spin - lattice relaxation R) in triple phases which appear as a result of Nb 3 Al compound alloying with Zr, Ga, Sn, are presented. Nb 3 Al alloying with gallium does not considerably change the R value (R-rate of nuclear spin - lattice relaxation, while alloying with zirconium decreases it to a noticeable extent. It is 30% less in the triple phase than in the Nb 3 Al compound. R alterations, frequency reduction in the 93 Nb n.q.r. spectrum and the decrease of constant of the quadrupole bond point to the alteration of the spatial electron distribution around a niobium atom during alloying [ru

  8. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    Science.gov (United States)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  9. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  10. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  11. Fracture toughness of ordered intermetallic compounds exhibiting limited ductility and mechanical properties of ion-irradiated polycrystalline NiAl. Final report, July 1, 1986 - June 30, 1997

    International Nuclear Information System (INIS)

    Ardell, A.J.

    1997-09-01

    The focus of the research performed under the auspices of this grant changed several times during the lifetime of the project. The initial activity was an investigation of irradiation-induced amorphization of ordered intermetallic compounds, using energetic protons as the bombarding species. Two significant events stimulated a change of direction: (1) the proton accelerating facility that the authors had been using at the California State University at Los Angeles became unavailable late in 1988 because of a personnel matter involving the only individual capable of operating the machine; (2) they learned that disordering and amorphization of intermetallic compounds produced interesting effects on their mechanical properties. Loss of access t the local accelerator prompted a collaboration with Dr. Droa Pedraza of the Oak Ridge National Laboratory (ORNL), enabling access to the accelerator at ORNL. The influence of disordering and amorphization on mechanical properties ultimately stimulated the development of a miniaturized disk-bend testing (MDBT) facility, the intent of which was to provide semiquantitative and even quantitative measures of the mechanical behavior of ion-irradiated ordered intermetallic alloys. The second phase of the project involved the perfection and usage of the MDBT, and involved exploratory experiments on unirradiated materials like amorphous alloy ribbons and brittle grain boundaries in Ni 3 Al. This report is a brief summary of the research highlights of the project, organized according to the activity that was emphasized at the time

  12. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    Science.gov (United States)

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  13. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  14. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  15. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  16. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  17. Properties of vacancies type defects in intermetallic compounds of the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, M.I; Fernandez, J.R; Monti, A.M

    2006-01-01

    There are five intermetallic compounds in the Al-Mo system that are stable at low temperatures. Of these, the richest phases in some of the two components are the compounds Al 12 Mo and AlMo 3 , whose Pearson symbols are cI26 and cP8, respectively. In both structures, the atoms of the minority component occupy positions bcc and each one of them is surrounded by 12 atoms first neighbors of the other component. These 13 atoms form icosahedron shaped units or heaps. Unlike what occurs in Al 12 Mo, the AlMo 3 heaps are superposed by sharing atoms from the majority component. The neighboring environment of the majority component is mixed but differs considerably in one or another intermetallic. In each structure, the sites occupied by any given species are crystallographically equivalent, that is, they can self generate from one of the positions and from the crystalline structure's elements of symmetry. This work studies the energy of vacancies and antisites in both compounds and the atomic-jump processes to vacant sites. Computer simulation techniques were used based on minimizing the system's energy. Many-body embedded-atom potentials were used to represent the atomic interactions. The potential mixture used resulted in an adjustment to the crystalline structure of the AlMo 3 phase at low temperatures and to its formation energy (cw)

  18. Shock response of Ni/Al reactive inter-metallic composites

    Science.gov (United States)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    2014-03-01

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~41 million atom) molecular dynamics simulations of shock-induced chemistry in porous, polycrystalline, lamellar Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse, leading to substantial inhomogeneity in the local stress states of the material. We describe the importance of pores as sites of initiation, where local temperatures can rise to several thousands of degrees, and chemical mixing is accelerated by vortex formation and jetting in the pore. We also follow the evolution of the chemistry after the shock passage by allowing the sample to ``cook'' under the shock induced pressures and temperatures for up to 0.5 ns. Multiple ``tendril-like'' reaction fronts, born in the cauldron of the pores, propagate rapidly through the sample, consuming it within a nanosecond. US Defense Threat Reduction Agency, Contract No. HDTRA1-10-1-0119.

  19. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  20. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  1. Computer simulations of disordering and amorphization kinetics in intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Victoria, M.

    1995-01-01

    Molecular dynamics computer simulations on three intermetallic compounds, Cu 3 Au, Ni 3 Al and NiAl, have been performed to investigate the kinetics of the disordering and amorphization processes. These systems were chosen because reliable embedded atom potentials were developed for the constituent species and their alloys, and also because extended experimental results are available for them. Previous simulations of collision cascades with 5 keV Cu and Ni primary knock-out atom (PKA) showed a significant difference between the evolution of the short range order (SRO) and the crystalline order (CO) parameters in all of the intermetallics: a complete loss of the crystalline structure and only partial chemical disorder in the core of the cascade [T. Diaz de la Rubia et al., Phys. Rev. B 47 (1993) 11483; M. Spaczer et al., Phys. Rev. B 50 (1994) 13204]. The present paper deals with the simulation of the amorphization process in NiAl by 5 and 15 keV Ni PKAs. The kinetic energy of the atoms in the simulated systems was removed on different time scales to mimic strong or weak coupling between electrons and phonons. No evidence of amorphization was found at the end of the cascades created by the 5 keV recoils. However, the 15 keV PKA events showed that (i) in the no-coupling case the system evolved to a highly disordered state, (ii) an amorphous region with about 100 non-lattice atoms was found in the case of weak coupling, (iii) the locally melted and recrystallized region collapsed to a small dislocation loop when medium coupling was used and (iv) a highly ordered state resulted in the case of strong coupling. (orig.)

  2. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  3. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  4. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  5. Effect of Nb on plasticity and oxidation behavior of TiA1Nb intermetallic compound by density functional theory

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; XU Hui; SONG Zhao-quan; MA Song-shan

    2010-01-01

    Based on the pseudo potential plane-wave method of density functional theory(DFT),Ti1-xNbxA1(x=0,0.062 5,0.083 3,0.125,0.250)crystals' geometry structure,elastic constants,electronic structure and Mulliken populations were calculated,and the effects of doping on the geometric structure,electronic structure and bond strength were systematically analyzed.The results show that the influence of Nb on the geometric structure is little in terms of the plasticity,and with the increase of Nb content,the covalent bond strength remarkably reduces,and Ti-A1,Nb-M(M=Ti,A1)and other hybrid bonds enhance; meanwhile,the peak district increases and the pseudo-energy gap first decreases and then increases,the overall band structure narrows,the covalent bond and direction of bonds reduce.The population analysis also shows that the results are consistent with the electronic structure analysis.The density of states of TiAlNb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film.All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5%(mole fraction).

  6. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  7. Effects of Nb content on the Zr2Fe intermetallic stability

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    2003-01-01

    With the aim of studying the stability range of the Zr 2 Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase (λ 1 ) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr 2 Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr 2 Fe+λ 1 region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed

  8. In situ synthesis of NiAl–NbB2 composite powder through combustion synthesis

    International Nuclear Information System (INIS)

    Shokati, Ali Akbar; Parvin, Nader; Sabzianpour, Naser; Shokati, Mohammad; Hemmati, Ali

    2013-01-01

    Highlights: ► A Novel NiAl matrix composite powder with 0–40 wt.% NbB 2 was synthesized. ► Composite powders were synthesized by thermal explosion reaction of Ni–Al–Nb–B system. ► Microhardness of NiAl considerably increased with raising NbB 2 content. ► Synthesized composite powders is a good candidate as precursor for thermal barrier application. - Abstract: Synthesis of a novel NiAl matrix composite powder reinforced with 0–40 wt.% NbB 2 by combustion synthesis in thermal explosion mode was investigated. The elemental powders of Ni, Al, Nb, and amorphous boron were used as starting material. For all compositions final products consisted of only the NiAl and NbB 2 phases. Coarser NbB 2 with a relatively uniform distribution in NiAl matrix was formed with rising NbB 2 content. Microhardness of NiAl considerably increased from 377 ± 13 HV 0.05 to 866 ± 81 HV 0.05 for NiAl with 40 wt.% NbB 2 . High microhardness, proper size and distribution of NbB 2 in NiAl matrix make it a good candidate as precursor for thermal spray application.

  9. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  10. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  11. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  12. The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples

    International Nuclear Information System (INIS)

    Dai, Jiahong; Jiang, Bin; Li, Xin; Yang, Qingshan; Dong, Hanwu; Xia, Xiangsheng; Pan, Fusheng

    2015-01-01

    Graphical abstract: Al–Ce intermetallic compounds (IMCs) formed in Mg–Al/Mg–Ce diffusion couples. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg atoms of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce, and AlCe were formed via the reaction of Al and Ce. - Highlights: • Al–Ce IMCs formation in the Mg–Al/Mg–Ce diffusion couples was studied. • Formation of Al 4 Ce as the first phase was rationalized using the Gibbs free energy. • The activation energy for the growth of the diffusion reaction zones was 36.6 kJ/mol. - Abstract: The formation of Al–Ce intermetallic compounds (IMCs) during interdiffusion of Mg–Al/Mg–Ce diffusion couples prepared by solid–liquid contact method was investigated at 623 K, 648 K and 673 K for 24 h, 48 h and 72 h, respectively. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce and AlCe were formed via the reaction of Al and Ce. The formation of Al 4 Ce as the first kind of IMC was rationalized on the basis of an effective Gibbs free energy model. The activation energy for the growth of the total diffusion reaction layer was 36.6 kJ/mol

  13. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  14. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  15. Study on the improvement of toughness of Nb-based super high temperature materials by forming solid solution and composites; Niobuki chokoon zairyo no koyoka to fukugoka ni yoru kyojinsei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    If materials superior to Ni-based and Co-based super alloys could be developed, great progress is expected in the energy source saving, enhancement of aircraft speed, and simplification of member structure. Metals having high fusing point are prospective as well as C/C composites and ceramics among possible materials. Especially, Nb has a similar density to Ni, and its fusing point is 1,000 centigrade higher than Ni. It has also ductility. Furthermore, it is characterized by the formation of solid solution with other various metals having high fusing point. Accordingly, Nb-based composite alloys having excellent high temperature strength as well as excellent ductility and toughness can be developed by enhancing the solid solution formation and the dispersion with composites of compound phases using Nb as a base material. The purpose of this study is to provide fundamental data for the development of Nb-based composite alloys. The optimum matrix materials and their fabrication processes have been investigated, to evaluate their high temperature properties. Consequently, it was found that the enhancement by the deposition of intermetallic compounds or by the dispersion of oxides was an effective method for the formation of composites of Nb-based alloys. 4 refs., 88 figs., 24 tabs.

  16. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  17. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  18. Characterization of intermetallic compounds in Cu-Al ball bonds: layer growth, mechanical properties and oxidation

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1 st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  19. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  20. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  1. Large magnetocaloric effect of GdNiAl2 compound

    International Nuclear Information System (INIS)

    Dembele, S.N.; Ma, Z.; Shang, Y.F.; Fu, H.; Balfour, E.A.; Hadimani, R.L.; Jiles, D.C.; Teng, B.H.; Luo, Y.

    2015-01-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl 2 . Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl 2 alloy is CuMgAl 2 -type phase structure with about 1 wt% GdNi 2 Al 3 secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10 2 J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl 2 compound. • The ΔS Mmax and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl 2 comparing with other candidates

  2. Effects of Nb content on the Zr{sub 2}Fe intermetallic stability

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. E-mail: ciramos@cnea.gov.ar; Saragovi, C.; Granovsky, M.; Arias, D

    2003-02-01

    With the aim of studying the stability range of the Zr{sub 2}Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase ({lambda}{sub 1}) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr{sub 2}Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr{sub 2}Fe+{lambda}{sub 1} region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed.

  3. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  4. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  5. Neutron diffraction determination of atomic mean-square displacements in cubic compounds of Ni-Al and Ni-Al-Cu systems

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.

    2002-01-01

    The atomic mean-square displacements (AMSD) are some of important characteristics of the solid and can be the main information for determination of a number of other characteristics of substances. In the work AMSD is determined for a number of cubic compounds of Ni-Al, Ni-Al-Cu systems immediately from intensities of neutron diffraction maxima. It is shown by the offered method that in all NiAl x and NiAlCu x compounds with the CsCl - type structure AMSD are near each other and they are practically constant. Therefore it is possible to assume that within the homogeneity region of these compounds the interatomic bond forces are changed insignificantly

  6. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  7. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  8. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  9. Characterization of intermetallic compounds in Cu-Al ball bonds: thermo-mechanical properties, interface delamination and corrosion

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Kouters, M.H.M.; Dos Santos Ferreira, O.

    2012-01-01

    In high power automotive electronics copper wire bonding is regarded as the most promising alternative for gold wire bonding in 1st level interconnects. In the Cu-Al ball bond interface the growth of intermetallic compounds can deteriorate the electrical and mechanical properties of the

  10. Modeling the anomalous flow behavior of Ni3Al intermetallic single crystals

    International Nuclear Information System (INIS)

    Choi, Y.S.; Parthasarathy, T.A.; Dimiduk, D.M.; Uchic, M.D.

    2004-01-01

    In this study we present a new constitutive model for Ni3Al and Ni3(Al, X) alloys that was developed to represent many of the unusual plastic flow behavior found in L12 intermetallics while maintaining consistency with the experimentally-observed evolution of dislocation substructure. In particular, we sought to develop a model that would not only predict the anomalous increase of the yield strength with increasing temperature, but would also capture other important flow characteristics such as extremely high work-hardening rates that change anomalously with temperature, and a flow stress that is partially to fully reversible with temperature. For this model, we have treated work-hardening as arising from two different sources. Thermally-reversible work hardening is accounted for using the description of screw dislocation motion proposed by Caillard, which involves exhaustion of mobile dislocations by cross-slip locking of the dislocation core and athermal unlocking. Thermally-irreversible work hardening is accounted for using an approach consistent with the theoretical framework proposed by Ezz and Hirsch, which involves both the multiplication of Frank-Reed sources and the interaction of edge-dislocation segments with cross-slip locking events and the dislocation forest. Both work-hardening contributions were incorporated into the rate formulation for thermally-activated plastic flow proposed by Kocks, Argon and Ashby. We will show simulation results for the flow response of Ni3(Al, X) crystals over a wide range of temperatures in the anomalous flow regime, and we will compare these findings with experimental data

  11. Ni3Al intermetallide-based alloy: a promising material for turbine blades

    International Nuclear Information System (INIS)

    Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskij, E.R.; Muboyadzhyan, S.A.

    2002-01-01

    A consideration is given to properties and structure of a cast intermetallic alloy grade VKNA-4U-mono- with monocrystalline structure in the temperature range of 20-1250 deg C. The influence of long-term heating at 1200 deg C on the stability of alloy mechanical properties is investigated. The advantages of a cast alloy on the basis of alloyed intermetallic compound Ni 3 Al are demonstrated, the processing and physical properties of the alloy are presented [ru

  12. Large magnetocaloric effect of GdNiAl{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Dembele, S.N.; Ma, Z.; Shang, Y.F. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, H., E-mail: fuhao@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Balfour, E.A. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R.L.; Jiles, D.C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Teng, B.H.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-10-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl{sub 2}. Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl{sub 2} alloy is CuMgAl{sub 2}-type phase structure with about 1 wt% GdNi{sub 2}Al{sub 3} secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10{sup 2} J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl{sub 2} compound. • The ΔS{sub Mmax} and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl{sub 2} comparing with other candidates.

  13. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  14. Method of mechanochemical synthesis for the production of nanocrystalline Nb-Al alloys

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tret'yakov, K.V.; Logacheva, A.I.; Logunov, A.V.; Razumovskij, I.M.

    2004-01-01

    Using X-ray diffraction and DS analyses the process of solid phase synthesis on cooperative comminution of components (Nb, Al, Cr) in a planetary ball mill is investigated. Powder nanocrystalline Nb 3 Al base alloys of various compositions with simultaneous introduction of chromium are synthesized. High power milling results in block size of ∼ 20 nm. It is shown that final chromium dissolution and partial decomposition of Nb(Al) supersaturated solid solutions proceed after heating up to 1100 deg C only. With the help of doping with niobium by the method of mechanical alloying, a two-phase alloy Nb 3 Al + Nb 2 Al having been produced by arc melting, is corrected by composition and transferred to the two-phase region of Nb 3 Al + Nb(Al). It is revealed that the process of niobium aluminide phase formation during mechanochemical synthesis and the process of mechanical activation of Nb-Al system intermetallics enriched with niobium always proceed through formation of supersaturated solid solutions. The mechanism of the process is probably associated with stacking faults formation due to deformation [ru

  15. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  16. Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer

    Institute of Scientific and Technical Information of China (English)

    SHAN Jiguo; DONG Wei; TAN Wenda; ZHANG Di; PEN Jialie

    2007-01-01

    Surfacing beads are prepared by a direct current tungsten inert gas arc nickel-aluminum (Ni-Al) powder surfacing process. With the aim of controlling the dilution rate and obtaining surfacing beads rich in intermetallic compounds, the effects of surfacing parameters on geometric parameters, dilution rate, composition, and microstructure of the bead are investigated. An assistant cooler, which can potentially reduce the temperature of the base metal, is used in the surfacing process and its effect on dilution rate and microstructure is studied. The result indicates that with the surfacing parameter combination of low current and speed, the width and penetration of the bead decrease, reinforcement increases, and dilution rate drops markedly. With the reduc- tion of the parameter combination, the intergranular phase T-(Fe, Ni) is formed in the grain boundaries of Ni-Al interme- tallic matrix instead of the intergranular phase α-Fe, and large amount of intermetallics are obtained. With the use of an assistant cooler on a selected operation condition during the surfacing process, the reinforcement of the bead increases, penetration decreases, and dilution rate declines. The use of an assistant cooler helps obtain a surfacing bead composed of only intermetallics.

  17. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  18. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  19. Experimental investigation of phase equilibria in the Ni-Nb-V ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering

    2017-09-15

    The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.

  20. Mictomagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1–x)13 intermetallic compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Nieuwenhuys, G.J.; Mydosh, J.A.; Buschow, K.H.J.

    1985-01-01

    Cubic La(FexAl1–x)13 intermetallic compounds can be stabilized with iron concentration x between 0.46 and 0.92 in the NaZn13-type structure (D23) with Fm3c (Oh6) space-group symmetry. Here the Fe-Fe coordination number can increase up to 12. At low x values, a mictomagnetic regime occurs with

  1. Dispersion of complex dielectric constant and electronic characteristics of the compounds Nb-Al and Nb-Ge with A15 structure

    International Nuclear Information System (INIS)

    Kuzmichev, N.D.; Levchenko, I.S.; Motulevich, G.P.

    1989-01-01

    This paper reports that the dispersions of complex dielectric constant of the compounds Nb-Al and Nb-Ge with A15 structure, used for determination of electronic characteristics and their variations with temperature, are measured in the 0.177-3.1 eV spectral interval at 295 and 670 K. The squares of the plasma frequencies ω 2 p of conduction electrons are obtained. In both compounds ω 2 p ∼ 19 eV 2 , which is 3.2 times less than for niobium. In this spectral interval, Nb-Al has four interband transition zones at 0.2, 0.35, 1.45, and 3.1 eV, while Nb-Ge has five such bands: 0.21, 0.32, 0.48, 0.95 and 2.0 eV. As the temperature increases ω 2 p of conduction electrons increases somewhat more than for usual metals (in both compounds), and the decrease in the analogous characteristic in the long-wave band for Nb-Ge is unusually great, preserving the sum of the changes, and there is also a significant decrease in the width of the long-wave band. These anomalies can be explained by thermal transfer of electrons from the base state of the long-wave band to the conduction band

  2. Atomic site occupancies and magnetic properties of Ni-doped FeAl intermetallic compounds

    CERN Document Server

    Ko, K Y; Yoon, S

    1999-01-01

    Neutron and X-ray powder diffraction revealed FeAl sub 1 sub - sub x Ni sub x alloys to have the B2(CsCl) structure with a virtually constant lattice parameter of 2.91 A and with the Ni atoms preferring the Fe sites. The annealed specimens showed paramagnetism for x 0.25 whereas the rapidly solidified specimens showed superparamagnetism for x = 0.25. The magnetization increased as the Ni concentration (x) increased. The rapidly solidified specimens, in general, showed stronger magnetic properties than the annealed ones. The magnetic properties were explained in terms of the local environmental model for magnetic atoms.

  3. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  4. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  5. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  6. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  7. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  8. Surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rahman, A.M. [Physics Department, Faculty of Science, Sohag University (Egypt)], E-mail: ahmedphys96@hotmail.com; Maitz, M.F. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany); Kassem, M.A. [Department of Materials and Metals Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University (Egypt); Prokert, F.; Reuther, H.; Pham, M.T.; Richter, E. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany)

    2007-09-30

    The present work describes the surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding. The nitriding process was carried out at different plasma power from 400 W to 650 W where the other plasma conditions were fixed. Grazing incidence X-ray diffractometry (GIXRD), Auger electron spectroscopy (AES), tribometer and a nanohardness tester were employed to characterize the nitrided layer. Further potentiodynamic polarization method was used to describe the corrosion behavior of the un-nitrided and nitrided alloy. It has been found that the Vickers hardness (HV) and corrosion resistance values of the nitrided layers increase with increasing plasma power while the wear rates of the nitrided layers reduce by two orders of magnitude as compared to those of the un-nitrided layer. This improvement in surface properties of the intermetallic alloy is due to formation of a thin modified layer which is composed of titanium nitride in the alloy surface. Moreover, all modified layers were tested for their sustainability as a biocompatible material. Concerning the application area of biocompatibility, the present treated alloy show good surface properties especially for the nitrided alloy at low plasma power of 400 W.

  9. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  10. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  11. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  12. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  13. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  14. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  15. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.

    Science.gov (United States)

    Oliynyk, Anton O; Mar, Arthur

    2018-01-16

    probabilities. Major results include the discovery of RhCd, the first new binary AB compound to be found in over 15 years, with a CsCl-type structure; the connection between "ambiguous" prediction probabilities and the phenomenon of polymorphism, as illustrated in the case of TiFeP (with TiNiSi- and ZrNiAl-type structures); and the preparation of new predicted Heusler phases MRu 2 Ga and RuM 2 Ga (M = first-row transition metal) that are not obvious candidates. Second, how can the search for materials with desired properties be accelerated? One particular application of strong current interest is thermoelectric materials, which present a particular challenge because their optimum performance depends on achieving a balance of many interrelated physical properties. Making use of a recommendation engine developed by Citrine Informatics, we have identified new candidates for thermoelectric materials, including previously unknown compounds (e.g., TiRu 2 Ga with Heusler structure; Mn(Ru 0.4 Ge 0.6 ) with CsCl-type structure) and previously reported compounds but counterintuitive candidates (e.g., Gd 12 Co 5 Bi). An important lesson in these investigations is that the machine-learning models are only as good as the experimental data used to develop them. Thus, experimental work will continue to be necessary to improve the predictions made by machine learning.

  16. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  17. Calorimetric study of the intermetallic compounds UAl2 and PuAl2

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Knapp, G.S.

    1975-01-01

    Results of low temperature specific heat measurements are presented on the strongly paramagnetic intermetallic compounds UAl 2 and PuAl 2 in the temperature intervals 0.9 to 20 0 K, respectively. These compounds are characterized by very narrow 5f bands near the Fermi energy. The low-temperature properties of UAl 2 and PuAl 2 are dominated by long lived spin fluctuations within these narrow bands. In UAl 2 a nearly field-independent T 3 logT contribution dominates the specific heat below 10 0 K, consistent with the predictions of ferromagnetic spin-fluctuation theory. The specific heat, static susceptibility, and electrical resistivity are mutually consistent with T/sub sf/ = 25 +- 10 0 K, where T/sub sf/ is the characteristic spin-fluctuation temperature of the system. Below 20 0 K, the specific heat of PuAl 2 contains a very large linear term, C greater than or approximately equal to 260T (mJ/mole- 0 K), which is approximately four times the magnitude of the measured susceptibility, when both quantities are expressed in the same units. The specific heat of PuAl 2 exhibits no anomalous behavior below 10 0 K, where a resistivity anomaly has been previously obser []ed. The properties of PuAl 2 are qualitatively discussed in terms of antiferromagnetic spin fluctuations. (auth)

  18. Intermetallic Compound Growth and Stress Development in Al-Cu Diffusion Couple

    Science.gov (United States)

    Mishler, M.; Ouvarov-Bancalero, V.; Chae, Seung H.; Nguyen, Luu; Kim, Choong-Un

    2018-01-01

    This paper reports experimental observations evidencing that the intermetallic compound phase interfaced with Cu in the Al-Cu diffusion couple is most likely α2-Cu3Al phase, not γ-Cu9Al4 phase as previously assumed, and that its growth to a critical thickness may result in interface failure by stress-driven fracture. These conclusions are made based on an interdiffusion study of a diffusion couple made of a thick Cu plate coated with ˜ 2- μm-thick Al thin film. The interface microstructure and lattice parameter were characterized using scanning electron microscopy and x-ray diffraction analysis. Specimens aged at temperature between 623 K (350°C) and 723 K (450°C) for various hours produced consistent results supporting the main conclusions. It is found that disordered α2-Cu3Al phase grows in a similar manner to solid-state epitaxy, probably owing to its structural similarity to the Cu lattice. The increase in the interface strain that accompanies the α2-Cu3Al phase growth ultimately leads to interface fracture proceeding from crack initiation and growth along the interface. This mechanism provides the most consistent explanation for interface failures observed in other studies.

  19. High-temperature resistant MeCrAlY+Al coatings obtained by ARC-PVD method on Ni Base superalloys

    International Nuclear Information System (INIS)

    Swadzba, L.; Maciejny, A.; Mendala, B.; Supernak, W.

    1999-01-01

    Investigations of obtaining high temperature coatings on the Ni base superalloys by the ARC-PVD method, using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C NiAl high temperature diffusion coating containing 21% at. Al and 50 μm thick was obtained. In the next stage coatings with more complex chemical composition NiCoCrAlY were formed. The two targets were applied for formation of complex NiCoCrAlY coatings. The good consistence between the chemical composition of the targets and the coatings and an uniform distribution of elements in the coatings were shown. Then the surface was covered with aluminium also by the ARC-PVD method. In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation NiAl intermetallics of high Co, Cr, Y content was initiated by the changes in process parameters. The final heat treatment of coatings was conducted in the air and vacuum at 1050 o C. The strong segregation of yttrium in to the oxide scale in the specimens heated in the air was shown. It was possible to obtain NiAl intermetallic phase coatings modified by Co, Cr and Y by the ARC-PVD method. An example of the application of this method for the aircraft engine turbine blades was presented. Method of ARC-PVD gives the possibility chemical composition and high resistance to oxidizing and hot corrosion. (author)

  20. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. E-mail: granovsk@cnea.gov.ar; Canay, M.; Lena, E.; Arias, D

    2002-04-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions {alpha}-Zr and {beta}-Zr, the intermetallic Zr{sub 3}Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb){sub 2}Fe '{lambda}{sub 1}' with a cubic Ti{sub 2}Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb){sub 2}Zr '{lambda}{sub 2}' indexed as hexagonal Laves phase MgZn{sub 2} type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe.

  1. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Canay, M.; Lena, E.; Arias, D.

    2002-01-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions α-Zr and β-Zr, the intermetallic Zr 3 Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb) 2 Fe 'λ 1 ' with a cubic Ti 2 Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb) 2 Zr 'λ 2 ' indexed as hexagonal Laves phase MgZn 2 type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe

  2. Intermetallic compound development for the 21st century

    International Nuclear Information System (INIS)

    Munroe, P.R.

    2000-01-01

    lntermetallic compounds have been vigorously researched for the past twenty years. As a result of these studies the fundamental behaviour of a number of transition metal aluminides and suicides is now well understood, and a number of alloys with commercially acceptable properties have been developed. Future challenges for these alloys, for example Ni 3 AI, TiAI and Fe 3 AI, are focused on the development of large-scale production routes. However, there remain a number of other intermetallic compounds, such as Laves phases, which exhibit some promising properties, but little is presently known about their intrinsic behaviour. For compounds such as these more fundamental studies are required

  3. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  4. Identification of new phases in the Zr-Nb-Fe system

    International Nuclear Information System (INIS)

    Granovsky, Marta S.; Arias, Delia E.; Lena, Esteban M.

    1999-01-01

    Intermediate phases in the Zr - rich region of the Zr - Nb - Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microanalysis. The chemical composition ranges of the alloys here studied were (52 - 97) at. % Zr, (14 - 0.9) at. % Nb and (38 - 0.6) at. % Fe. The phases found in this region were the solid solutions α(Zr) and β(Zr), the intermetallic Zr 3 Fe with less than 0.2 at. % Nb in solution, and two new ternary phases: (Zr + Nb) 2 Fe, identified as a cubic Ti 2 Ni - type structure and another compound with composition close to Zr - 12 at. % Nb - 50 at. % Fe. (author)

  5. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  6. Synthesis, magnetism and electronic structure of YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) isolated from Al flux

    Energy Technology Data Exchange (ETDEWEB)

    Xiuni, Wu [Department of Physical Sciences, Rhode Island College, Providence, RI 02908 (United States); Francisco, Melanie [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Rak, Zsolt [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Bakas, T [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2008-12-15

    The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) which adopts the CaCo{sub 2}Al{sub 8} structure type with a=14.458(3) A, b=12.455(3) A, c=3.9818(8) A and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated {mu}{sub eff}=2.19 {mu}{sub B}. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f{sup 13} configuration in the ground state. - Graphical abstract: The reaction of ytterbium, nickel, iron in aluminum flux gives crystals of the intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.96) which adopts the CaCo{sub 2}Al{sub 8} structure, ab initio electronic structure calculations within density functional theory using LDA+U approximation suggest an f{sup 13} configuration in the ground state.

  7. Microstructure and wear characteristics on Al alloy matrix composite reinforced with Ni perform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Park, Cheol Hong; Kim, Hyung Jin; Huh, Sun Chul [Gyeongsang National University, Tongyeong, (Korea, Republic of)

    2012-06-15

    Al based composite reinforced with Nickel is used for diesel engine piston, because the thermal properties, strength and corrosion resistant are for better than Al alloy alone. For processing, the intermetallic compounds of Ni and Al improves wear resistance due to its high hardness. Existing process methods for MMC (metal matrix composite) using preform were manufactured under high-pressure. However, this causes deformation of the preform or weaknesses in the completed MMC. Low-pressure infiltration can prevent these problems, and there is an advantage of cost reduction in of production with small-scale of production equipment. In this study, the microstructure and wear characteristics of Al-based composite with Ni preform as reinforcement with low-pressure infiltration was analyzed.

  8. Liquidus projection of the Nb-Cr-Al system near the Al3(Nb,Cr) + Cr(Al,Nb) eutectic region

    International Nuclear Information System (INIS)

    Souza, S.A.; Ferrandini, P.L.; Nunes, C.A.; Coelho, A.A.; Caram, R.

    2006-01-01

    The system Nb-Cr-Al was investigated in the region near the Al 3 (Nb,Cr) + Cr(Al,Nb) eutectic and the liquidus projection of that region was determined based on the microstructural characterization of arc melted alloys. The characterization utilized scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results allowed one to determine three primary solidification liquidus surfaces ((Cr,Al) 2 Nb, Cr(Al,Nb) and Al 3 (Nb,Cr)), that are originated from the binary systems Cr-Nb, Cr-Al and Al-Nb. It is proposed the occurrence of the invariant reaction L + (Cr,Al) 2 NbAl 3 (Nb,Cr) + Cr(Al,Nb) and of a point of minimum, which involves a three phase reaction, L ↔ Al 3 (Nb,Cr) + Cr(Al,Nb). All alloys studied showed formation of the Al 3 (Nb,Cr) + Cr(Al,Nb) eutectic as the last solidification step with Al(Nb)Cr 2 precipitating from Cr(Al,Nb)

  9. Prediction of intermetallic compounds

    International Nuclear Information System (INIS)

    Burkhanov, Gennady S; Kiselyova, N N

    2009-01-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  10. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Pecharsky, A.O.; Pecharsky, V.K.

    2004-01-01

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from ∼3 to ∼350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature ( 2 , Er 3 Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K

  11. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  12. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  13. Comparison of Mechanical Properties of Ni[sub]3Al Thin Films in Disordered FCC and Ordered L1[sub]2 Phases

    OpenAIRE

    Nix, Wiliam D.; Saha, R.; Aziz, Michael; Hutchinson, John; Evans, Anthony G.; Huang, Yonggang

    2001-01-01

    We report the results of several experiments isolating the effect of long-range order on mechanical properties of intermetallic compounds. Kinetically disordered FCC Ni3Al (Ni 76%) thin films were produced by rapid solidification following pulsed laser melting. For comparison, compositionally and microstructurally identical films with ordered L12 structure were produced by subsequent annealing at 550 °C for 2 hours. These FCC and L12 Ni3Al thin films were tested by nanoindentation for hardnes...

  14. The Application of 40Ti-35Ni-25Nb Filler Foil in Brazing Commercially Pure Titanium

    Directory of Open Access Journals (Sweden)

    Shan-Bo Wang

    2018-03-01

    Full Text Available The clad ternary 40Ti-35Ni-25Nb (wt % foil has been applied in brazing commercially pure titanium (CP-Ti. The wavelength dispersive spectroscope (WDS was utilized for quantitative chemical analyses of various phases/structures, and electron back scattered diffraction (EBSD was used for crystallographic analyses in the brazed joint. The microstructure of brazed joint relies on the Nb and Ni distributions across the joint. For the β-Ti alloyed with high Nb and low Ni contents, the brazed zone (BZ, consisting of the stabilized β-Ti at room temperature. In contrast, eutectoid decomposition of the β-Ti into Ti2Ni and α-Ti is widely observed in the transition zone (TZ of the joint. Although average shear strengths of joints brazed at different temperatures are approximately the same level, their standard deviations decreased with increasing the brazing temperature. The presence of inherent brittle Ti2Ni intermetallics results in higher standard deviation in shear test. Because the Ni content is lowered in TZ at a higher brazing temperature, the amount of eutectoid is decreased in TZ. The fracture location is changed from TZ into BZ mixed with α and β-Ti.

  15. An experimental study of praseodymium intermetallic compounds at low temperatures

    International Nuclear Information System (INIS)

    Greidanus, F.J.A.M.

    1982-01-01

    In this thesis the author studies the low temperature properties of praseodymium intermetallic compounds. In chapter 2 some of the techniques used for the experiments described in the subsequent chapters are discussed. A set-up to perform specific-heat experiments below 1 K and a technique for performing magnetic susceptibility measurments below 1 K, using a superconducting quantum interference device (SQUID) are described. Chapter 3 is devoted to the theory of interacting Pr 3+ ions. Both bilinear and biquadratic interactions are dealt with in a molecular-field approximation. It is shown that first as well as second-order phase transitions can occur, depending on the nature of the ground state, and on the ratio of magnetic to crystal-field interactions. In chapters 4, 5, 6 and 7 experimental results on the cubic Laves phase compounds PrRh 2 , PrIr 2 , PrPt 2 , PrRu 2 and PrNi 2 are presented. From inelastic neutron scattering experiments the crystalline electric field parameters of the above compounds are determined. In chapters 5 and 6 susceptibility, neutron-diffraction, hyperfine specific-heat, low-field magnetization, pulsed-field magnetization, specific-heat and resistivity measurements are presented. In chapter 7 the specific heat and differential susceptibility of PrNi 2 below 1 K are studied. Finally, in chapter 8 praseodymium intermetallic compounds with low-symmetry singlet ground states, and cubic compounds with magnetic doublet ground states are studied. (Auth.)

  16. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  17. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and anneal-.

  18. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  19. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  20. The influence of AlCrN coating on the high-temperature corrosion resistance of Ti-46Al-7Nb alloy in an atmosphere containing 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Malecka, Joanna [Opole Univ. of Technology (Poland). Faculty of Mechanical Engineering

    2013-09-15

    The results of investigation of the isothermal oxidation wear mechanism of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic alloy with AlCrN coating are presented. Tests in 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2} atmosphere were performed at a temperature of 700 C. The structure of the specimen and chemical composition of the oxidation products were analysed using scanning electron microscopy and energy dispersive X-ray analysis. In addition, mass changes were investigated.

  1. Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads

    International Nuclear Information System (INIS)

    Kim, Hyung Giun; Kim, Sang Min; Lee, Jae Young; Choi, Mi Ri; Choe, Si Hyun; Kim, Ki Hong; Ryu, Jae Sung; Kim, Sangshik; Han, Seung Zeon; Kim, Won Yong; Lim, Sung Hwan

    2014-01-01

    A comparative study on the difference in interfacial behavior of thermally aged Cu wire bonding with Al and Au pads was conducted using transmission electron microscopy. During high-temperature lifetime testing of Cu wire bonding with Al and Au pads at 175 °C for up to 2000 h, different growth rates and growth characteristics were investigated in the Cu–Al intermetallic compounds (IMCs), including CuAl 2 , CuAl and Cu 9 Al 4 , and in the Cu–Au IMCs, including (Au,Cu), Cu 3 Au and (Cu,Au). Because of the lower growth rates and greater ductility of Cu–Au IMCs compared to those of Cu–Al IMCs, the Cu wire bonding with the Au pad showed relatively better thermal aging properties of bond pull strength and ball shear strength than those with the Al pad counterpart. In this study, the coherent interfaces were found to retard the growth of IMCs, and a variety of orientation relationships between wire, pad and interfacial IMCs were identified

  2. First principles electronic and thermal properties of some AlRE intermetallics

    Science.gov (United States)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  3. First principles electronic and thermal properties of some AlRE intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vipul [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India)], E-mail: vips73@yahoo.com; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India); Rajagopalan, M. [Department of Physics, Anna University, Chennai-600 025 (India)

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B{sub 2}-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  4. First principles electronic and thermal properties of some AlRE intermetallics

    International Nuclear Information System (INIS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-01-01

    A study on structural and electronic properties of non-magnetic cubic B 2 -type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics

  5. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  6. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  7. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  8. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    Science.gov (United States)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  9. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  10. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    International Nuclear Information System (INIS)

    Sabochick, M.J.

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After ∼0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing ∼0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs

  11. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  12. Isothermal analysis of intermetallic MmNi5-xAlx in air decomposition processes

    International Nuclear Information System (INIS)

    Obregon, S.A.; Andrade Gamboa, J.J.; Esquivel, M.R.

    2012-01-01

    In this paper, it is analyzed the behavior of the degree of reaction as function of time α (t) of a sample of MmNi 4.3 Al 0.7 (Mm mischmetal = La 0.25 Ce 0.52 Nd 0.17 Pr 0.06 ) at different temperatures. The curves were obtained by isothermal calorimetric techniques. As a result of this study, it was observed that the kinetics of intermetallic can be separated into two main stages. At temperatures below 350 o C, the first stage is the oxidation of Mm and Al. At temperatures over 400 o C, the oxidation of Ni is also produced parallel to the above mentioned reactions. But the kinetics of the last one is at least three orders of magnitude slower. It was also observed that no thermal event occurs below 180 o C. It indicates that the intermetallic do not react at temperatures below this temperature value (author)

  13. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  14. Computer simulation of disordering kinetics in irradiated A3B intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; De la Rubia, T.

    1994-01-01

    Molecular dynamics computer simulations of collision cascades on intermetallic Ni 3 Al, Cu 3 Au and NiAl have been performed to study the nature of the disordering processes in the cascade. The evolution of the crystalline and chemical order parameters show different time scales. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the relaxation time and saturation value of the chemical short range order, SRO. A theoretical model for the time evolution of the SRO is given. ((orig.))

  15. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  16. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  17. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    Science.gov (United States)

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  18. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  19. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  20. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  1. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  2. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    International Nuclear Information System (INIS)

    Mitrovic, B.; Schachinger, E.; Carbotte, J.P.

    1984-01-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon--coupling spectra α 2 F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α 2 F = CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ 0 /k/sub B/T/sub c/approx. =4.6, ΔC/γT/sub c/approx. =2.5--2.6, -T/sub c/[dH/sub c/(T)/dT]c/ H/sub c/(0)approx. =2.1, γ[T/sub c//H/sub c/(0)] 2 approx. =0.134, and positive D(t)'s with the maximum value around 0.02. For Nb 3 Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γapprox. =52 mJ/mol K 2 ). The same applies to V 3 Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔC/γT/sub c/, -T/sub c/[dH/sub c/(T)/dT]c/H/sub c/(0), γ[T/sub c//H/sub c/(0)] 2 , and experimental values for Nb 3 Al and Nb 3 Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α 2 F

  3. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  4. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...... crystallographic direction (in the sense of highest compressibility under hydrostatic pressure) must be mutually orthogonal....

  5. Computer simulations of disordering kinetics in irradiated intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; Diaz de la Rubia, T.

    1994-01-01

    Molecular-dynamics computer simulations of collision cascades in intermetallic Cu 3 Au, Ni 3 Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni 3 Al and Cu 3 Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given

  6. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    Science.gov (United States)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along {1 1 0} direction, {1 1 0} direction and {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, and directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along direction of AlSc will easily split into two superpartials.

  7. Cs0.49NbPS6

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2011-01-01

    Full Text Available The quaternary thiophosphate, Cs0.49NbPS6, caesium hexathioniobiophosphate(V, has been synthesized by the reactive halide flux method. The title compound is isotypic with Rb0.46TaPS6 and is made up of a bicapped trigonal–biprismatic [Nb2S12] unit and a tetrahedral [PS4] group. The [Nb2S12] units linked by the [PS4] tetrahedra form infinite chains, yielding a three-dimensional network with rather large van der Waals gaps along the c axis in which the disordered Cs+ ions reside. The electrons released by the Cs atoms are transferred to the pairwise niobium metal site and there are substantial intermetallic Nb—Nb bonding interactions. This leads to a significant decrease of the intermetallic distance in the title compound compared to that in TaPS6. The classical charge balance of the title compound may be represented as [Cs+]0.49[Nb4.51+][P5+][S2−]4[S22−].

  8. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  9. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  10. Microstructure and tribological properties of Ti–Cu intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo, Chun; Zhou, Jiansong; Yu, Youjun; Wang, Lingqian; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    Highlights: ► Ti–Cu coating has been synthesized on pure Ti substrate by laser cladding. ► Microstructure and tribological properties of Ti–Cu coating were analyzed. ► The prepared Ti–Cu intermetallic compound coating has excellent wear resistance. -- Abstract: Ti–Cu intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using copper powder as the precursor. It has been found that the prepared coating mainly contains of TiCu, TiCu 3 , Ti 3 Cu, and Ti phases. The transmission electron microscopy results conform further the existence of Ti–Cu intermetallic compound in the fabricated coating. Tribological properties of the prepared Ti–Cu intermetallic compound coating were systematically evaluated. It was found that normal loads and sliding speeds have a strong influence on the friction coefficient and wear rate of Ti–Cu intermetallic compound coating. Namely, the friction coefficient of the Ti–Cu intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the Ti–Cu intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  11. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  12. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  13. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  14. The influence of pressure on diffusion leading to intermetallic compounds

    International Nuclear Information System (INIS)

    Adda, Y.; Beyeler, M.; Kirianenko, A.; Pernot, B.

    1961-01-01

    Some investigators A.D. LE CLAIRE, J.L. ZAMBROW, L. CASTLEMAN, have shown that the application of uniaxial pressure parallel to the direction of diffusion may notably modify the kinetics of growth of the intermediate phases which can be formed in this direction. The interpretation of this phenomenon being obscure, an attempt is made to explain it by detailed analysis of the experimental facts. The microscopic studies of the kinetics of growth of the zones formed shows particularly in the couples Uranium-Copper and Uranium-Nickel that it is influenced in a similar manner by a uniaxial pressure and a hydrostatic one. On the other hand the rate of growth of these zones increases as a function of the applied pressure in the systems Uranium-Copper, Uranium-Nickel and Uranium-Aluminium (this effect being particularly marked in Uranium-Aluminium). To determine with precision the limits of the range of stability of the intermetallic compounds, the curves of concentration penetration characteristics of the diffusion have been established by means of the CASTAING electronic microanalyser. The examination of the results indicates that when diffusion takes place without external pressure (couples U-Cu and U-Ni) or with a pressure less than 300 kg/cm 2 (couple U-Al) the concentration varies notably in the compounds obtained, which theoretically are stoichiometric. Thus, when crossing the zone of diffusion of one base metal to another one notes a continual passage of: UCu 4.70 to UCu 5.25 in the couple U-Cu; UNi 4.75 to UNi 5.25 in the couple U-Ni; UAl 2.2 to UAl 3.3 in the couple U-Al. If an uniaxial or hydrostatic pressure above 500 kg/cm 2 is applied to the couples U-Cu and U-Ni, or above 1000 kg/cm 2 for the couple U-Al, the composition is then constant in the zones formed. It corresponds to: UCu 5 in the couple U-Cu; UNi 5 in the couple U-Ni; UAl 3 in the couple U-Al. These results are confirmed by an X-ray diffraction study, mainly in the U-Cu system. Experiments in

  15. Mechanically induced atomic disorder and phase transformations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Limei, D

    1992-11-30

    The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.

  16. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  17. Synthesis of nano intermetallic Nb{sub 3}Sn by mechanical alloying and annealing at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    López, M., E-mail: marlope@udec.cl [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile); Jiménez, J.A. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas, C.S.I.C., Av. Gregorio del Amo 8, 28040 Madrid (Spain); Ramam, K.; Mangalaraja, R.V. [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile)

    2014-11-05

    Highlights: • Intermetallic Nb{sub 3}Sn nano grains were synthesized by powder metallurgy route. • Structure analysis was studied using a multiphase Rietveld refinement fit. • The presence of Nb{sub 3}Sn 86% and NbO 8% was identified. • More tin content in the equilibrium Nb–Sn diagram was obtained. • Magnetic properties show Nb{sub 3}Sn powders are soft super paramagnetic materials. - Abstract: In this study, intermetallic Nb{sub 3}Sn of nanometer-sized grains was synthesized by powder metallurgy route. Elemental powders of Nb and Sn in the stoichiometric proportions were mechanically alloyed for 3 h in a high-energy mill under a protective atmosphere of argon. X-ray diffraction patterns of milled powders confirmed the formation of a Nb(Sn) solid solution evidenced by the presence of Nb peaks only, which are shifted to higher angles. Rietveld refinements used to analyze this XRD pattern indicated a better fit when a tetragonal structure with the space group I4/mmm is used instead the Nb cubic lattice with space group Im−3m. Size-strain analysis from line-broadening of peak profiles by using “double-Voigt” approaches showed that the broadening is due to both a small crystallite size (around 6 nm) and microstrains. Subsequent heat treatment of the Nb(Sn) powder mixture was required for the formation of the Nb{sub 3}Sn ordered phase. X-ray diffraction patterns obtained after a thermal treatment at 700 °C for 1 h were fitted using a multiphase Rietveld refinement. Although the resulting powders are composed mainly by Nb{sub 3}Sn (up to 87 weight%), certain amount of other intermetallic phases like Nb{sub 6}Sn{sub 5}, NbSn{sub 2} and Nb and Sn oxides were also determined. In agreement with the Rietveld refinement analysis, microprobe analysis also revealed that changes in chemical composition at different sites of powder particles are preserved even after annealing at 700 °C. Magnetic properties measured at 300 K on resulted Nb{sub 3}Sn powders

  18. Studies on SiC(p) reinforced Al-Al sub 3 Ni eutectic matrix composites

    International Nuclear Information System (INIS)

    Masrom, A.K.; Foo, L.C.; Ismail, A.B.

    1996-01-01

    An investigation on processing of Al-5.69wt% Ni eutectic with SiC particulate composites is reported. The intermetallic composites are prepared by elemental powder metallurgy route and sintered at two different temperatures, i.e., 600 degree C and 620 degree C. Results show that the metal matrix was Al-Al sub 3 Ni eutectic. The phase analysis by XRD identified the presence of Al sub 3 Ni and Al as dominant phases together with silicon and Al sub 4 C sub 3 phase as minor phases. The Al sub 4 C sub 3 and Si phases are formed during sintering due to SiC-Al interface reaction. SEM micrographs also reveal the formation of microvoid surrounding the SiC particle

  19. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  20. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  1. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  2. Superconducting Nb{sub 3}Sn intermetallics made by electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Fray, D J; Yan, X-Y; Chen, G

    2003-05-01

    The article is focused on low temperature superconducting Nb{sub 3}Sn material manufactured by novel electrodeoxidizing method developed in Cambridge whereby the range of alloys and intermetallics are produced cheaply making potential superconducting wires more cost effective. The process of direct electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} mixtures and in situ formation of the Nb{sub 3}Sn is discussed in details.

  3. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  4. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  5. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  6. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  7. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  8. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  9. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  10. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  11. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    Science.gov (United States)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  12. Structural and superconducting properties of as-cast Nb3Al

    International Nuclear Information System (INIS)

    Mondal, Puspen; Manekar, Meghmalhar; Roy, S.B.; Kumar, Ravi; Ganguli, Tapas

    2007-01-01

    We present the results of x-ray diffraction and magnetization measurements on the as-cast compound Nb 3 Al. X-ray diffraction shows the presence of the Al 5 Nb 3 Al phase along with a bcc Nb-Al solid solution. The average grain size of Nb 3 Al estimated from the line broadening is about 35 nm. Magnetization measurements show a superconducting transition temperature of about 16.8 K which is amongst the highest known T c for the as-cast sample. In the superconducting state, the sample shows interesting thermo-magnetic history effects in the temperature and field variation of magnetization. (author)

  13. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  14. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  15. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  16. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi; Dlouhy, Ivo; Brno University of Technology

    2014-01-01

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s -1 to 50 K s -1 . However, the α phase is partially retained at the cooling rate of 300 K s -1 . A fully lamellar structure appears at cooling rates lower than 10 K s -1 .

  17. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi [Yokohama National University (Japan). Div. of Materials Science and Chemical Engineering; Dlouhy, Ivo [Institute of Physics of Materials, Brno (Czech Republic); Brno University of Technology (Czech Republic). Inst. of Materials Science and Engineering

    2014-11-15

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s{sup -1} to 50 K s{sup -1}. However, the α phase is partially retained at the cooling rate of 300 K s{sup -1}. A fully lamellar structure appears at cooling rates lower than 10 K s{sup -1}.

  18. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  19. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan [Erciyes University, Institute of Science and Technology, Department of Physics, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2009-12-15

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were {alpha}-Al, intermetallic Al{sub 3}Ni and Al{sub 2}Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al{sub 3}Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  20. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2009-01-01

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were α-Al, intermetallic Al 3 Ni and Al 2 Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al 3 Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  1. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  2. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  3. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  4. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  5. Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-05-15

    Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.

  6. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  7. The crystal structure of (Nb$_{0.75}$Cu$_{0.25}$)Sn$_{2}$ in the Cu-Nb-Sn system

    CERN Document Server

    Martin, Stefan; Nolze, Gert; Leineweber, Andreas; Leaux, Floriane; Scheuerlein, Christian

    2017-01-01

    During the processing of superconducting Nb$_{3}$Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.7...

  8. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  9. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  10. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    1999-01-01

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti 2 Ni type phase with a similar stoichiometry to the tetragonal Zr 2 Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr(β) phase (IS: (-0.11 α 0.01) mm/s, QS: (0.23 α 0.02) mm/s), and to the hcp Zr(β T ) phase (IS: (-0.24 α 0.02) mm/s, QS: (0.45 α 0.02) mm/s)

  11. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  12. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  13. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  14. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    Science.gov (United States)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  15. Phase stability, crystal structure and magnetism in (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6

    Science.gov (United States)

    Provino, Alessia; Bhattacharya, Amitava; Dhar, Sudesh K.; Pani, Marcella; Gatti, Flavio; Paudyal, Durga; Manfrinetti, Pietro

    Ternary phases with composition T2M21X6 and T3M20X6 (T = transition metal; M = 3 d metal; X = B, C, P) are reported to crystallize with the W2Cr21C6-type and Mg3Ni20B6-type, respectively (ternary ordered derivatives of the cubic Cr23C6-type, cF116). They attract interest due to their refractory, mechanical, and peculiar magnetic properties. Literature data on these compounds only concern apparently stoichiometric 2:21:6 and 3:20:6 phases. Often only nominal composition has been reported, with few structural refinements and no measurements of physical properties. Lack of detailed stoichiometry and crystallographic data does not allow sufficient understanding of the crystal chemistry and properties of these compounds. We studied stability, crystal structure and magnetism of (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6; stable phases are U2Ni21B6 and Nb3Ni20B6, as also confirmed by theoretical calculations. The two pristine compounds solubilize Nb and U, respectively, up to a given extent. The substitution of U by Nb leads to a structural change from the W2Cr21C6- to the Mg3Ni20B6-type. While U2Ni21B6 is a Pauli paramagnet (itinerant non-magnetic state of U-5 f electrons), in agreement with literature, magnetization data for (UyNb1-y)3 Ni20B6 show itinerant ferromagnetism with TC >300 K.

  16. Moessbauer Study of the Ball Milling Disordering Process of FeAl Intermetallic Compounds

    International Nuclear Information System (INIS)

    Oleszak, Dariusz; Bruna, Pere; Crespo, Daniel; Pradell, Trinitat

    2005-01-01

    Structural changes during ball milling of ordered Fe50Al50 intermetallic compounds were studied. X-Ray diffraction allowed the computation of a Long Range Order parameter (LRO) which dropped to zero after a short milling time. The initial B2 ordered structure gradually transforms into a disordered BCC structure, with a final crystallite size of about 25 nm. Moessbauer spectroscopy was used for obtaining a Chemical Short Range Order parameter (CSRO). Using a semiempirical n-body noncentral potential a model of the partially disordered B2 structure was built allowing computing the distribution of Quadrupole Splitting during the disordering process. Comparison between experimental and simulated Moessbauer spectra shows a maximum of disorder in the system for 5h milling, related to the highest value of the lattice spacing and the broader quadrupole hyperfine distribution. However, after milling for times longer than 5h, there is a change on the behavior of the experimental data that cannot be explained by the simple disordering process

  17. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  18. Effect of heat treatment on the microstructure change and mechanical properties for the Ni-19Si-3Nb-0.15B intermetallic alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.

    2003-01-01

    The microstructural change of the Ni-19Si-3Nb-0.15B alloys after different heat treatment was examined by scanning electron microscopy with energy dispersive spectrum. In addition, Vickers's hardness test was used to measure the variation of mechanical properties for each heat-treated alloy. The results reveal that the typical dendritic microstructure of the heat-treated alloys (comprised of dendritic β-phase, α-β eutectic, and the Nb-rich precipitates) remained almost the same microstructure as the as-cast alloy. However, the morphology of the sharp-edged Nb-rich precipitate (identified to be the cubic Nb 3 Ni 2 Si by electron diffraction of TEM) would be blunted by homogenization. In addition, the size of precipitates seemed to grow with increased aging temperature and aging time. Correlating the result of microhardness measurement with the microstructure observation, an aging temperature of 700 deg. C and an aging time of 10 h is found to be the optimum treating condition for the Ni-19Si-3Nb-0.15B alloy. In addition, the precipitate growth is revealed dominating by an interfacial-controlled kinetics with a thermal activation process of Arrhenius type. The strengthening effect of the heat treatment is not obvious from the hardness test. However, the effect of heat treatment exhibited significant improvement on the ductility of the Ni-19Si-3Nb-0.15B alloy (ε ∼3% for as-cast alloy and 12% for heat-treated alloy)

  19. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  20. Nonequilibrium synthesis of Nb-Al alloys by laser processing

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1993-01-01

    The technique of laser surface modification provides a unique means of synthesizing novel nonequilibrium materials in near net shape. Claddings of several NbAl 3 alloys with Ti, B and Hf as a ternary alloy addition were prepared using a CW CO 2 laser. Isothermal oxidation behavior of the clads were examined in air. Oxidation tests at 800, 1,200 and 1,400 C. Alternating layers of alumina and NbAlO 4 were not observed in any of the samples as reported in literature for conventionally processed NbAl 3 oxidized under similar conditions. The parabolic rate constants for all the alloys, except 0 B, were comparable to that for isothermal oxidation of β-NiAl, at 1,200 and 1,400 C in 0.1 atm oxygen, which is a known alumina former. Ternary alloying additions for improved oxidation resistance at 1,400 C accompanied with improved ductility were identified

  1. Synthesis of Nb-18%Al alloy by mechanical alloying method

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Dollar, M.

    1999-01-01

    The main goal of this study was attempt to employ by mechanical alloying to produce Nb-Al alloy. The Nb-rich alloy composition was selected in order to receive the ductile niobium solid solution (Nb ss ) phase in the final, equilibrium state. This ductile phase was believed to prevent crack propagation in the consolidated alloy and thus to improve its ductility and toughness. Elemental powders of niobium (99.8% pure and -325 mesh) and aluminium (99.9% pure and -325 mesh) were used as starting materials. These powders were mixed to give the nominal compositions od 82% Nb and 18% Al (atomic percent). Mechanical alloying was carried out in a Szegvari laboratory attritor mill in an argon atmosphere with the controlled oxygen level reduced to less than 10 ppm. The total milling time was 86 hours. During the course of milling powder samples were taken out after 5, 10 and 20 hours, which allowed characterization of the powder morphology and progress of the mechanical alloying process. The changes in particle morphology during milling were examined using a scanning electron microscope and the phase analysis was performed in a X-ray diffractometer with CoK α radiation. Initially, particles' size increased and their appearance changed from the regular to one of the flaky shape. X-ray diffraction patterns of examined powders as a function of milling time are presented. Peaks from Al, through much weaker than in the starting material, were still present after 5 hours of milling but disappeared completely after 10 hours of milling. With increasing milling time, the peaks became broader and their intensities decreased. Formation of amorphous phase was observed after 86 hours of milling. This was deducted from a diffuse halo observed at the 2Θ angle of about 27 o . Intermetallic phases Nb 3 Al and Nb 2 Al were found in the consolidated material only. (author)

  2. Internal friction behaviours in Zr57Al10Ni12.4Cu15.6Nb5 bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang Bo; Zu Fangqiu; Zhen Kang; Shui Jiapeng; Wen Ping

    2002-01-01

    The internal friction patterns of Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 bulk metallic glass (BMG) were investigated with different frequencies and heating rates. An internal friction peak with extremely large magnitude is observed in the internal friction curves as a function of temperature (Q -1 -T curves). The internal friction peak was fitted by an equation Q -1 =AX(T)/η, where A is a constant, X(T) is the fraction of the glass/supercooled liquid and the viscosity η obeys the Vogel-Fulcher-Tammann relation. We confirm that the internal friction peak originates from both of the glass transition and crystallization. The anomalous behaviours of the peak suggest that Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 BMG has a wide supercooled liquid region and the magnitude of the peak can be used to judge the glass forming ability (GFA) of the glass forming alloys. In addition, the internal friction technique proved to be a new powerful tool for studying structural relaxation and phase transition as well as the GFA of BMG. (author)

  3. On the competition in phase formation during the crystallisation of Al-Ni-Y metallic glasses

    International Nuclear Information System (INIS)

    Styles, M.J.; Sun, W.W.; East, D.R.; Kimpton, J.A.; Gibson, M.A.; Hutchinson, C.R.

    2016-01-01

    Glassy metals exhibit a range of interesting properties including high strength and corrosion resistance, but often have poor toughness and tensile ductility in the fully amorphous state. It has been shown that combinations of desirable properties can be achieved by the partial crystallisation of glass-forming alloys, either during controlled solidification or by annealing a fully amorphous glass. The aim of this investigation is to understand the competition in phase formation during the crystallisation of metallic glasses in the Al-Ni-Y system. High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the first crystallisation product was found to vary from FCC Al to the intermetallic Al 9 Ni 2 phase with increasing Ni concentration. In addition, the crystallisation sequence also changed from a two-stage to a three-stage process. High number densities of crystallites (∼10 23  m −3 ) were observed initially for both FCC Al and Al 9 Ni 2 . Upon cooling, the partially disordered Al 9 Ni 3 Y phase was found to form preferentially over the intermetallic phases observed during heating. The difference in competition in phase formation during heating and cooling are discussed in terms of nucleation barriers calculated using a recent thermodynamic assessment of the Al-Ni-Y system. The role of compositional heterogeneities in the as-quenched glasses and long-range diffusion on the nucleation process is discussed. - Graphical abstract: High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the

  4. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  5. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  6. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  7. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    International Nuclear Information System (INIS)

    Cao, J.; Song, X.G.; Wu, L.Z.; Qi, J.L.; Feng, J.C.

    2012-01-01

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni 3 (AlTi) layer, a Ni 2 AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi 3 layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al 3 Ni and Al 3 Ni 2 phases. The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 and the final products were AlNi and AlNi 3 phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: ► Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. ► The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 . ► The interfacial microstructure of the joint was clarified. ► The application of Al/Ni multilayers improved the joining quality.

  8. Stability of ZrBe17, and NiBe intermetallics during intermediate temperature oxidation

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.; Wadsworth, J.

    1992-01-01

    This paper reports that since the finding of MoSi 2 pest by Fitzer in 1955, a number of intermetallic compounds, e.g., ZrBe 13 , WSi 2 , and NiAl have also been reported to exhibit similar behavior during oxidation in air. For example, Lewis reported that catastrophic failure (total disintegration into powders) occurred in ZrBe 13 when oxidized at 700 degrees C in air. X-ray diffraction analyses revealed that the powders were composed of BeO, ZrO 2 (cubic), Zr 2 Be 17 , and unreacted ZrBe 13 . Regardless of numerous cited incidents of pest in intermetallics, fundamental understanding of pest is very limited. Recently, MoSi 2 pest has been studied in a great detail and fundamental insights to the mechanism of pest have been established. It is found that both single- and ply- crystalline MoSi 2 are susceptible to pest, which leads to the disintegration of test samples into powder consisting of MoO 3 whiskers, SiP 2 clusters, and residual MoSi 2 crystals. Pest is also noted to associate with substantial volume expansion of the samples. Most important, the occurrence of pest is contingent upon the formation of blisters, resulting from volume expansion by oxidation and the evaporation of MoO 3 on the surfaces and grain boundary interfaces

  9. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    In based compounds, as related to the type of the rare earth element RE (La, Cc, Pr or Nd) and to the extent of substitutions of Ni by Cu and In by Al. The three main topics addressed were: 1) Effect of substitutions on the structural aspects of the unusual H...H pair. 2) Concentration range of the stability of the hydride phases containing the short hydrogen distance depending on the type of substituting element. 3) Influence of substitutions on the thermodynamic behaviour of hydrogen in the intermetallic compounds.

  10. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. [Universidad de Buenos, Facultad de Ciencias Exactas y Naturales (Argentina); Saragovi, C. [Departamento de Fisica, Comision Nacional de Energia Atomica (Argentina); Granovsky, M.; Arias, D. [Departamento de Materiales, Comision Nacional de Energia Atomica (Argentina)

    1999-11-15

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti{sub 2}Ni type phase with a similar stoichiometry to the tetragonal Zr{sub 2}Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr({beta}) phase (IS: (-0.11 {alpha} 0.01) mm/s, QS: (0.23 {alpha} 0.02) mm/s), and to the hcp Zr({beta}{sup T}) phase (IS: (-0.24 {alpha} 0.02) mm/s, QS: (0.45 {alpha} 0.02) mm/s)

  11. Mechanical properties of intermetallics formed during thermal aging of Cu-Al ball bonds

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.; Weltevreden, E.R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  12. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  13. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  14. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    Science.gov (United States)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  15. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (Ni

  16. Bulk-compositional changes of Ni2Al3 and NiAl3 during ion etching

    International Nuclear Information System (INIS)

    Chen Houwen; Wang Rong

    2008-01-01

    Bulk-compositional changes of Ni 2 Al 3 and NiAl 3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar + ions for 15, 24 and 100 h nickel contents in both Ni 2 Al 3 and NiAl 3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar + ions the compositions of these two compounds reached a similar value, about Ni 80-83 Al 12-15 Fe 3-4 Cr 1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film

  17. The liquidus surface of the Cr–Al–Nb system and re-investigation of the Cr–Nb and Al–Cr phase diagrams

    International Nuclear Information System (INIS)

    Stein, F.; He, C.; Wossack, I.

    2014-01-01

    Highlights: • Liquidus surface and reaction scheme of the Cr–Al–Nb system experimentally determined. • Solidification paths of the ternary alloys derived from as-cast microstructures. • Compositions and temperatures of the invariant points. • Revised versions of the phase diagrams of the Cr–Nb and Al–Cr boundary systems. - Abstract: The liquidus surface and corresponding reaction scheme of the ternary Cr–Al–Nb system were determined experimentally. The solidification paths of a series of more than 40 ternary alloys were deduced from investigation of their as-cast microstructures and measurement of all reaction temperatures applying scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential thermal analysis (DTA). The hexagonal C14-type Laves phase Nb(Cr,Al) 2 , which is not stable in any of the binary boundary systems and which is the only ternary compound, forms the most extended primary crystallization field of the ternary system dominating the centre of the liquidus surface. A ternary eutectic was found near the Al–Nb boundary composed of the three intermetallic phases C14 + Nb 2 Al + NbAl 3 . Besides the ternary liquidus surface, the solidus and liquidus curves of the Cr–Nb boundary system and of the Cr-rich part of the Al–Cr system were determined resulting in revised binary phase diagrams

  18. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  19. Intermetallics Synthesis in the Fe–Al System via Layer by Layer 3D Laser Cladding

    Directory of Open Access Journals (Sweden)

    Floran Missemer

    2013-10-01

    Full Text Available Intermetallide phase formation was studied in a powdered Fe–Al system under layer by layer laser cladding with the aim of fabricating the gradient of properties by means of changing the Fe–Al concentration ratio in the powder mixture from layer to layer. The relationships between the laser cladding parameters and the intermetallic phase structures in the consecutively cladded layers were determined. In order to study the structure formation an optical microscopy, X-ray diffraction analysis, measurement of microhardness, scanning electron microscopy (SEM with energy dispersive X-ray (EDX spectroscopy analysis were used after the laser synthesis of intermetallic compounds.

  20. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  1. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  2. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  3. Charge-transport in Josephson-junctions with ferromagnetic Ni3Al-interlayer

    International Nuclear Information System (INIS)

    Born, F.

    2006-01-01

    The present dissertation reports on experimental studies about superconducting coupling through a thin Ni 76 Al 24 film. A new patterning process has been developed, which allows in combination with the wedge shaped deposition technique the in situ deposition of 20 single Nb/Al/Al 2 O 3 /Ni 3 Al/Nb multilayers, each with its own well defined Ni 3 Al thickness. Every single multilayer consists of 10 different sized Josephson junctions, showing a high reproducibility and scaling with its junction area. Up to six damped oscillations of the critical current density against F-layer thickness were observed, revealing three single 0-π-transitions in the ground state of Josephson junctions. Contrary to former experimental studies, the exponential decay length is one magnitude larger than the oscillation period defining decay length. The theoretical predictions based on linearised Eilenberger equations results in excellent agreement of theory and experimental results. (orig.)

  4. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  5. Effects of Fragmented Fe Intermetallic Compounds on Ductility in Al-Si-Mg Alloys.

    Science.gov (United States)

    Kim, JaeHwang; Kim, DaeHwan

    2018-03-01

    Fe is intentionally added in order to form the Fe intermetallic compounds (Fe-IMCs) during casting. Field emission scanning electron microscope with energy dispersive spectrometer (EDS) was conducted to understand microstructural changes and chemical composition analyses. The needlelike Fe-IMCs based on two dimensional observation with hundreds of micro size are modified to fragmented particles with the minimum size of 300 nm through clod rolling with 80% thickness reduction. The ratio of Fe:Si on the fragmented Fe-IMCs after 80% reduction is close to 1:1, representing the β-Al5FeSi. The yield and tensile strengths are increased with increasing reduction rate. On the other hand, the elongation is decreased with the 40% reduction, but slightly increased with the 60% reduction. The elongation is dramatically increased over two times for the specimen of 80% reduction compared with that of the as-cast. Fracture behavior is strongly affected by the morphology and size of Fe-IMCs. The fracture mode is changed from brittle to ductile with the microstructure modification of Fe-IMCs.

  6. Effect of boron on the properties of ordered Ni-Mo alloys

    International Nuclear Information System (INIS)

    Tawancy, H.M.

    1994-01-01

    Ordered alloys and intermetallic compounds have long been known to possess a number of technologically useful properties, however, their structural applications is limited by relatively poor ductility. Efforts to improve the mechanical strength of these materials have led to the recognition that small additions of B improve the ductility of intermetallic compounds, based upon the L1 2 , superlattice such as Ni 3 Al and Ni 3 Si. Also it has been demonstrated that small additions of B improve the ductility of binary ordered Ni-Ni 4 Mo alloys. The objective of this study is to demonstrate that critical additions of B to selected Ni-Mo alloys could significantly improve their ductility and corrosion properties in the ordered state while maintaining a similar level of other properties, particularly, weldability. The effect of B on the ordered microstructure was emphasized

  7. New NbCd2 Phase in Niobium-Cadmium Coating Films

    Science.gov (United States)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2018-02-01

    Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.

  8. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  9. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J., E-mail: cao_jian@hit.edu.cn [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Song, X.G. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Wu, L.Z. [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Qi, J.L.; Feng, J.C. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-02-29

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni{sub 3}(AlTi) layer, a Ni{sub 2}AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi{sub 3} layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al{sub 3}Ni and Al{sub 3}Ni{sub 2} phases. The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3} and the final products were AlNi and AlNi{sub 3} phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: Black-Right-Pointing-Pointer Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. Black-Right-Pointing-Pointer The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3}. Black-Right-Pointing-Pointer The interfacial microstructure of the joint was clarified. Black-Right-Pointing-Pointer The application of Al/Ni multilayers improved the joining quality.

  10. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  11. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  12. Thermal and electron transport studies on the valence fluctuating compound YbNiAl4

    Science.gov (United States)

    Falkowski, M.; Kowalczyk, A.

    2018-05-01

    We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.

  13. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. II - Oxidation behavior

    Science.gov (United States)

    Haasch, R. T.; Tewari, S. K.; Sircar, S.; Loxton, C. M.; Mazumder, J.

    1992-01-01

    Isothermal oxidation behaviors of NbAl3 alloy synthesized by laser cladding were investigated at temperatures between 800 and 1400 C, and the effect of vanadium microalloying on the oxidation of the laser-clad alloy was examined. The oxidation kinetics of the two alloys were monitored using thermal gravimetric weight gain data, and the bulk and surface chemistries were analyzed using XRD and XPS, respectively. It was found that NbAl3 did not form an exclusive layer of protective Al2O3. The oxidation products at 800 C were found to be a mixture of Nb2O5 and Al2O3. At 1200 C, a mixture of NbAlO4, Nb2O5, and Al2O3 formed; and at 1400 C, a mixture of NbAlO4, Al2O3, NbO2, NbO(2.432), and Nb2O5 formed. The addition of V led to a dramatic increase of the oxidation rate, which may be related to the formation of (Nb, V)2O5 and VO2, which grows in preference to protective Al2O3.

  14. A crystallographic constitutive model for Ni3Al (L12) intermetallics

    International Nuclear Information System (INIS)

    Choi, Y.S.; Dimiduk, D.M.; Uchic, M.D.; Parthasarathy, T.A.

    2005-01-01

    A constitutive model was developed in order to capture the unique thermo-mechanical flow behavior of L1 2 -structured Ni 3 (Al, X) alloys. This model utilized a framework for flow-stress partitioning, which was previously proposed by Ezz and Hirsch, and incorporated a model for exhaustion hardening proposed by Caillard. The simulation results well represent the major aspects of the thermo-mechanical flow behavior of Ni 3 (Al, X) alloys, such as a flow-stress anomaly, its strain dependence and a work-hardening rate anomaly. Selected limitations are discussed along with our current efforts toward extending the present model

  15. Fabrication and Characterization of Al/NiO Energetic Nanomultilayers

    Directory of Open Access Journals (Sweden)

    YiChao Yan

    2015-01-01

    Full Text Available The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD and scanning electron microscope (SEM results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS demonstrates that the thickness of Al2O3 increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities.

  16. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  17. Micromechanisms of fracture and fatigue in Ti3Al based and TiAl based intermetallics

    International Nuclear Information System (INIS)

    James, A.W.; Chave, R.A.; Hippsley, C.A.; Bowen, P.

    1993-01-01

    Micromechanisms of fracture and fatigue crack growth resistance in specific Ti 3 Al based and TiAl based intermetallics are reviewed. Effects of test temperature, environment and microstructure on crack growth resistance are considered in detail for several Ti 3 Al and Ti'Al based intermetallic systems under development. The implications of these studies for the structural reliability of these materials is also addressed briefly. (orig.)

  18. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  19. Radiation detection with Nb/Al-AlOx/Al/Nb superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Matsumura, Atsuki; Takahashi, Toru; Kurakado, Masahiko

    1992-01-01

    Superconductor radiation detectors have the possibility of 20-30 times better energy resolution than that of a high resolution Si detector. We fabricated Nb/Al-AlOx/Al/Nb superconducting tunnel junctions with low leakage current. X rays were detected with large area junctions of 178x178 μm 2 . High energy resolution of 160 eV for 5.9 keV was obtained. We also fabricated series connected junctions which covers a rather large area of 4x4 mm 2 . α particles injected into the rear substrate were detected using nonthermal phonons induced by the radiations in the substrate. (author)

  20. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  1. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  2. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  3. Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing

    International Nuclear Information System (INIS)

    Tai, K. P.; Wang, L. T.; Liu, B. X.

    2007-01-01

    Four Ni-Nb metallic glasses are obtained by ion beam mixing and their compositions are measured to be Ni 77 Nb 23 , Ni 55 Nb 45 , Ni 31 Nb 69 , and Ni 15 Nb 85 , respectively, suggesting that a composition range of 23-85 at. % of Nb is favored for metallic glass formation in the Ni-Nb system. Interestingly, diffraction analyses show that the structure of the Nb-based Ni 31 Nb 69 metallic glass is distinctly different from the structure of the Nb-based Ni 15 Nb 85 metallic glass, as the respective amorphous halos are located at 2θ≅38 and 39 deg. To explore an atomic scale description of the Ni-Nb metallic glasses, an n-body Ni-Nb potential is first constructed with an aid of the ab initio calculations and then applied to perform the molecular dynamics simulation. Simulation results determine not only the intrinsic glass forming range of the Ni-Nb system to be within 20-85 at. % of Nb, but also the exact atomic positions in the Ni-Nb metallic glasses. Through a statistical analysis of the determined atomic positions, a new dominant local packing unit is found in the Ni 15 Nb 85 metallic glass, i.e., an icositetrahedron with a coordination number to be around 14, while in Ni 31 Nb 69 metallic glasses, the dominant local packing unit is an icosahedron with a coordination number to be around 12, which has been reported for the other metallic glasses. In fact, with increasing the irradiation dose, the Ni 31 Nb 69 metallic glasses are formed through an intermediate state of face-centered-cubic-solid solution, whereas the Ni 15 Nb 85 metallic glass is through an intermediate state of body-centered-cubic-solid solution, suggesting that the structures of the constituent metals play an important role in governing the structural characteristics of the resultant metallic glasses

  4. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  5. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  6. Formation of Nb3Al in powder processed Nb-Al superconductors

    International Nuclear Information System (INIS)

    Johnson, P.E.

    1987-05-01

    In high magnetic fields, the critical current density is strongly dependent on the upper critical field, which is determined primarily by the stoichiometry of the Nb 3 Al. The critical temperature (T/sub c/), like the upper critical field, is considered to be a measure of the ''intrinsic'' quality of the superconductor, indicating the stoichiometry, order, and strain. If the A15 phase is stoichiometric and well ordered, a high T/sub c/ (and high H/sub C 2 /) is expected, regardless of the volume fraction of superconductor. On the other hand, if sigma phase is present with the A15, the resultant composition gradient across the sigma-A15 interface(s) requires that some of the A15 be off-stoichiometric, and therefore that the T/sub c/ (and H/sub C 2 /) be low. Thus the extent of the A15 (Nb 3 Al) reaction and the quality of the A15 formed are interdependent. This work focuses on the factors that control the extent of Nb 3 Al formation in Nb/Al powder wires. The morphology and content of the reacted and unreacted wires are studied in optical, SEM, and TEM micrographs. Critical current density data and its dependence on processing are explained in terms of the unreacted microstructure and its effect on the extent of Nb 3 Al formation. As a method of improving the critical current density, a new variation of the conventional powder process for wire manufacturing is developed and tested

  7. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  8. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  9. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  10. Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts

    International Nuclear Information System (INIS)

    Ji, De−Bin; Yan, Yong−De; Zhang, Mi−Lin; Li, Xing; Jing, Xiao−Yan; Han, Wei; Xue, Yun; Zhang, Zhi−Jian; Hartmann, Thomas

    2015-01-01

    Highlights: • The reduction process of Sm(III) was investigated in LiCl–KCl melt on an aluminum electrode at 773 K. • Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) was prepared by potentiostatic electrolysis on an aluminum electrode with the change of electrolytic potentials and time in LiCl–KCl–SmCl 3 melts. • Al − Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The results from micro–hardness test and potentiodynamic polarization test show the micro hardness and corrosion property are remarkably improved with the help of Al–Sm intermetallic compound whiskers. - Abstract: This work presents the electrochemical study of Sm(III) on an aluminum electrode in LiCl–KCl melts at 773 K by different electrochemical methods. Three electrochemical signals in cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and cathode polarization curve are attributed to different kinds of Al–Sm intermetallic compounds, Al 2 Sm, Al 3 Sm, and Al 4 Sm, respectively. Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) could be obtained by the potentiostatic electrolysis with the change of electrolytic potentials and time. Al–Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The XRD and SEM&EDS were employed to investigate the phase composition and microstructure of Al–Sm alloy. SEM analysis shows that lots of needle−like precipitates formed in Al–Sm alloy, and their ratios of length to diameter are found to be greater than 10 to 1. The TEM and electron diffraction pattern were performed to investigate the crystal structure of the

  11. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  12. Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 degree centigrade

    International Nuclear Information System (INIS)

    Luna-Ramirez, A.; Porcayo-Calderon, J.; Martinez-Villafane, A.; Gonzalez-Rodriguez, J. G.; Chaon-Nava, J. G.

    2012-01-01

    The corrosion behavior of Fe 3 Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO 2 +N 2 at 900 degree centigrade for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe 3 AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage. (Author) 39 refs.

  13. Fiscal 1993 achievement report on next-generation industrial structure technology (Advanced materials for extreme environments - Development of methane fueled aeroengine); 1993 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Efforts were exerted to develop advanced materials for use under extreme environments, which were intermetallic compounds and fiber reinforced intermetallic compound composite materials excellent in heat resistance, specific strength, oxidation resistance, or the like. For the development of intermetallic compounds, efforts were made to develop Ti-Al-X (X=metal) high specific strength intermetallic compounds and Nb-Al-X (X=metal) high melting point intermetallic compounds. Ternary phase diagrams were prepared and the effect of added elements on basic characteristics was investigated. Basics of element technologies (texture control, melting, casting, and isothermal rolling) for manufacturing panel materials were studied and, in the case of Ti-Al-X systems, Ti-Al thin panels were fabricated. In the case of Nb-Al-X systems, items were experimentally fabricated by casting in an effort to study precision casting technology optimization. For the development of composite materials, efforts were made to develop SiC based and SiMC (M=metal) based fibers, and studies were carried out to complex them with Ti-Al based matrices. (NEDO)

  14. The Influence of Cr on the Solidification Behavior of Polycrystalline γ(Ni)/ γ'(Ni3Al)- δ(Ni3Nb) Eutectic Ni-Base Superalloys

    Science.gov (United States)

    Xie, Mengtao; Helmink, Randolph; Tin, Sammy

    2012-04-01

    In the current investigation, the effect of Cr on the solidification characteristics and as-cast microstructure of pseudobinary γ- δ eutectic alloys based on a near-eutectic composition (Ni-5.5Al-13.5Nb at. pct) was investigated. It was found that Cr additions promote the formation of a higher volume fraction of γ- δ eutectic microstructure in the interdendritic region. Increasing levels of Cr also triggered morphological changes in the γ- δ eutectic and the formation of γ- γ'- δ ternary eutectic during the last stage of solidification. A detailed characterization of the as-cast alloys also revealed that Cr additions suppressed the liquidus, solidus, and γ' precipitation temperature of these γ/ γ'- δ eutectic alloys. A comparison of the experimental results with thermodynamic calculations using the CompuTherm Pandat database (CompuTherm LLC, Madison, WI) showed qualitative agreement.

  15. Catalytic steam reforming of ethanol over W-, V-, or Nb–modified Ni-Al-O hydrotalcite-type precursors

    Directory of Open Access Journals (Sweden)

    Korneeva E.V.

    2017-10-01

    Full Text Available 2:1 Ni/Al layered double hydroxides (LDH doped by anions using ammonium salts (NH410[W12O41], NH4VO3 or (NH43[NbO(C2O43] have been prepared by co-precipitation, dried and calcined at 600оС, forming NiO-based solid solutions. Diffraction patterns are typical for the layered Ni-Al-O hydrotalcite-like structure. Anion incorporation into the interlayer space increases the interlayer distance for W- and Nb-containing anions but decreases it for VO3 -1. Broad halos in the diffraction patterns indicate amorphous or strongly disordered phases containing the doping anions. H2 reduction of undoped Ni-Al-O (NA and those doped by W (NAW and Nb (NANb occurred in one step, while that doped by V (NAV was reduced in two steps. W doping increases the reduction temperature, but Nb doping decreases it. The hydrogen consumed increases in the row: NANb < NAW < NAV < NA. In the ethanol steam reforming reaction, modification by W and Nb anions results in ethanol conversion rates close to that of the unmodified sample, but V increases it nearly twofold.

  16. Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables

    International Nuclear Information System (INIS)

    Yamada, Ryuji; Kikuchi, Akihiro; Wake, Masayoshi

    2006-01-01

    Using a Cu stabilized Nb 3 Al strand with Nb matrix, a 30 meter long Nb 3 Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb 3 Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B c2 ∼ 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb 3 Al Rutherford cables is attributed to this effect

  17. The nucleation and growth of intermetallic Al-Pt phases

    International Nuclear Information System (INIS)

    Kovacs, A.; Barna, P.B.; Labar, J. l.

    2002-01-01

    The nucleation and growth of intermetallic Al-Pt phases on amorphous carbon was investigated by half shadow technique in co-deposited thin films. In such experimental condition, the composition of the deposited films varied in the range of Al x Pt 1-x (0≤x≤0.6). The coexistence of Al 5 Pt, Al 2 Pt, Al 3 Pt 2 intermetallic phases have been found in the whole range with varying ratio. Vapour depositions were performed in an UHV system. The Al and Pt components were evaporated simultaneously onto amorphous carbon layer supported by TEM micro-grids. Deposition rates were controlled separately by quartz crystal monitors. Substrate temperature during deposition was 350 grad C. A special evaporation arrangement made possible to create a half shadow area on the substrate in which the quantity one of the components increased from zero to the wanted composition of the sample. The composition of the zones was determined by energy dispersive X-ray spectroscopy (EDS) in TEM. The intermetallic phases developed in the sample were investigated by analytical TEM (Philips CM20) and high resolution TEM (JEOL 3010 UHR). The electron diffraction patterns have been evaluated by ProcessDiffraction program. (Authors)

  18. FY 1998 annual report on the improvement of toughness of silicide-based intermetallic compounds by controlling their composite structures; 1998 nendo fukugo soshikika ni yoru shirisaidokei kinzokukan kagobutsu no kyojinsei kaizen chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Intermetallic compounds, although attracting much attention as most promising materials serviceable at superhigh temperature, are very fragile at normal temperature, which is one of their major disadvantages. Structures of these compounds prepared by the melting method are controlled to improve their toughness by, e.g., changing phase ratio of the initial crystal for the Mo-Si-Nb system to prevent cracking during the melting and casting stages, addition of a third element (e.g., Zr, Ti or Hf) or a mixed component of Nb and Zr to control the structure of Mo{sub 5}Si{sub 3} considered to be a cause for the cracking, and controlling melting and solidification rates for the FZ melting method. The three-phase microstructures with added Hf or Zr show improved toughness, but need additional procedures for controlling solidification and cooling conditions. For the powder method, the MA conditions are investigated with a two-element system, and the effects of Al or Zr as the third element added to the base composition on the composite microstructures and constituent phases are also investigated. Unlike the melting method, the powder method causes no cracking problems during the stock preparation stage and hence is expected to be applicable to production of larger stocks. However, the products by this method are found to be insufficient both in toughness and high-temperature strength. It is necessary to develop methods for cutting down and controlling oxides in the grain boundaries, in order to prevent deterioration of their strength at high temperature. (NEDO)

  19. The influence of Ta on the solidification microstructure and segregation behavior of γ(Ni)/γ′(Ni3Al)–δ(Ni3Nb) eutectic Ni-base superalloys

    International Nuclear Information System (INIS)

    Xie, M.; Helmink, R.; Tin, S.

    2013-01-01

    Highlights: ► Ta and Nb have a nominally identical influence on equilibrium δ volume fraction. ► Ta and Nb impact the sequence and segregation differently during solidification. ► Microstructure varies with both overall Ta + Nb level and Ta/Nb ratio. ► Pandat (PanNi7) is unable to predict trends quantitatively in this system. -- Abstract: Polycrystalline γ/γ′–δ eutectic Ni-base superalloys based on the Ni–Al–Nb alloy system were recently demonstrated to possess excellent high temperature strength and creep resistance. Investigations aimed to establish the fundamental relationships between alloy chemistry, solidification behavior and cast microstructure in these novel Ni–Al–Nb γ/γ′–δ alloy systems are currently underway. This particular study is focused on understanding the influence of Ta additions on the solidification sequence, phase volume fraction, distribution coefficient and solid state partitioning parameter of this eutectic alloy system by systematically investigating a series of experimental alloys with nominally constant overall levels of Ta + Nb content but varying Ta/Nb ratios. Although many of the tendencies observed in these multi-component γ/γ′–δ eutectic alloys are in agreement with trends observed in lower order model alloy systems, Ta additions were found to significantly modify solidification characteristics of the alloys. The experimental observations were also used to critically assess the predictive capability of thermodynamic database calculations. Despite the qualitative agreement observed between the experimental results and predictions for relatively simple quaternary and quinary model alloys, comparison of the results for higher order, multi-component γ/γ′–δ eutectic alloys reveals notable differences

  20. Method of production multifilamentary intermetallic superconductors

    International Nuclear Information System (INIS)

    Marancik, W.G.; Young, M.S.

    1980-01-01

    A method of making A-15 type intermetallic superconductors is disclosed which features elimination of numerous annealing steps. Nb or V filaments are embedded in Cu matrices; annular layers of Sn or Ga, respectively, separated from each other by Cu layers, provide the other component of the intermetallic superconductors Nb3Sn and V3Ga

  1. Large positive magnetoresistance in intermetallic compound NdCo2Si2

    Science.gov (United States)

    Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.

    2018-04-01

    The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.

  2. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  3. Oxygen stabilized rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Dariel, M.P.; Malekzadeh, M.; Pickus, M.R.

    1975-10-01

    A new, oxygen-stabilized intermetallic compound was identified in sintered, pre-alloyed rare-earth iron powder samples. Its composition corresponds to formula R 12 Fe 32 O 2 and its crystal structure belongs to space group Im3m. The presence of these compounds was observed, so far, in several R--Fe--O systems, with R = Gd, Tb, Dy, Ho, Er, and Y

  4. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni2In-type intermetallics of the Ni–In–Sn system

    International Nuclear Information System (INIS)

    Ramos de Debiaggi, S.; González Lemus, N.V.; Deluque Toro, C.; Fernández Guillermet, A.

    2015-01-01

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G m ) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni 2 In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni) 1 (Ni,Va) 1 (In,Ni) 1 and (Ni,Va) 1 (Ni,Va) 1 (In,Ni,Sn) 1 , respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G m for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni) 1 (Ni) 1 (In) 1 , which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni 2 In”), Ni:Ni:Ni (i.e., “Ni 3 ”), Ni:Ni:Sn (“Ni 2 Sn”), Ni:Va:In (i.e., “NiIn”), Ni:Va:Ni (i

  5. Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Molecular dynamics (MD) has been applied to simulate the radiation damage created in displacement cascades in D0 19 Ti 3 Al structural intermetallics. Collision cascades formed by the recoil of either Al or Ti primary knock-on atoms (PKA) with energy E PKA = 5, 10, 15 or 20 keV were considered in Ti 3 Al single crystals at T = 100, 300, 600 and 900 K. At least 24 different cascades for each (E PKA , T, PKA type) set were simulated. A comprehensive treatment of the modelling results has been carried out. We have evaluated the number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA ,T, PKA type). Preferred formation of both Al vacancies and self-interstitial atoms in D0 19 Ti 3 Al exposed to irradiation has been detected

  6. The intergranular segregation of boron in substoichiometric Ni/sub 3/Al

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, A.

    1987-12-01

    The intermetallic compound Ni/sub 3/Al offers promise as a material for high temperature applications. In addition to its unusual property of increasing strength with temperature (until approx.700/sup 0/C), it has excellent corrosion and oxidation resistance. Microalloying the alloy with boron has been shown to be dramatically effective in improving its inherent intergranular brittleness. This improvement results from the strong tendency of boron to segregate to the grain boundaries of Ni/sub 3/Al. This research deals with the study of the segregation behavior of boron. Auger electron spectroscopy was chosen as the technique adopted to study this segregation. The strong effect of segregant level on the grain boundary strength level can be controlled by thermal history variations and by variations in the level of solute in the bulk. Cathodic hydrogen charging was shown to be a potent tool in opening up other wise cohesive boundaries for analysis. The effective binding energy of boron at the grain boundaries of Ni/sub 3/Al was calculated from experimental data; it was found to vary between 0.2 and 0.45 eV. Kinetics of segregation have been investigated; the present set of kinetic studies were shown to be inadequate to find a diffusion coefficient and that temperatures lower than those studied here need to be used. As an associated investigation, a set of elemental standards were developed for the particular scanning Auger microprobe used in this study. 141 refs., 94 figs., 26 tabs.

  7. Fiscal 1991 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments (Development of methane fueled aeroengine); 1991 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Research and development was carried out for intermetallic compounds and fiber reinforced intermetallic compound composite materials for use as advanced materials. Activities were conducted in the four fields of (1) high specific strength intermetallic compounds, (2) high melting point intermetallic compounds, (3) fiber reinforced intermetallic compound composite materials, and (4) a comprehensive survey and research. In Field (1), ternary phase diagrams (Mo, Nb) were prepared for Ti-Al-X (X=metal) systems, and studies were made of alloy designs for Ti-Al based high specific strength intermetallic compounds. In Field (2), binary phase diagrams were prepared for Nb-Al systems, and the effect of phase and structure on their basic properties were investigated. A powder manufacturing tester was designed and built, and basic powder manufacturing tests were conducted. In Field (3), studies were made of heat treatment and surface coating technologies, and a silicon carbide based fiber was developed, excellent in oxidation resistance. In Field (4), technical trends were surveyed, and studies were made as to basic technical tasks to discharge for the development of materials for aeroengines. (NEDO)

  8. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  9. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  10. The possibility to use TiAl intermetallics for high temperature applications

    International Nuclear Information System (INIS)

    Molotkov, A.V.

    1993-01-01

    Titanium aluminide TiAl is the promising heat resisting structural material with operation temperature up to 850-900 deg C. This intermetallic compound is characterized by low density and high specific values of elasticity moduli and heat resistance properties in wide temperature range, as compared to known heat resisting titanium, iron and nickel base alloys. Test batch of pressed blades was manufactured of TiAl with the use of powder technology. Results of testing showed, that endurance strength of blades exceeded by 30% the strength, required for operation. The calculations showed, that the use of such blades in gas-turbine cagines could provide 30-40% decrease of mass of compressor blading

  11. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  12. Incommensurate magnetic ordering of PrPdAl

    Energy Technology Data Exchange (ETDEWEB)

    Keller, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doenni, A. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan). Tsukuba Lab.; Fauth, F. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    The intermetallic rare earth compound PrPdAl with ZrNiAl-type structure was investigated by means of powder neutron diffraction. PrPdAl orders below T{sub N} {approx_equal}4.2 K with an incommensurate antiferromagnetic propagation vector k = [1/2,0,{tau}], {tau}=0.398. The best fit was obtained with a sinusoidal modulation of the magnetic moments along the c-axis. (author) 2 figs., 2 refs.

  13. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  14. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  15. A structural, magnetic, and Mössbauer study of the Dy{sub 2}Fe{sub 17−x}Nb{sub x} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rai, B.K. [Department of Physics, The University of Memphis, Memphis, TN 38152 (United States); Syed Ali, K.S. [Department of Science, Estill High school, Estill, SC 29918 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, The University of Memphis, Memphis, TN 38152 (United States); Khanra, S.; Ghosh, K. [Department of Physics, Astronomy, and Materials Science, The Missouri State University, Springfield, MO 65897 (United States)

    2014-03-15

    The single-phase intermetallic compounds of refractory metal Nb doped Dy{sub 2}Fe{sub 17−x}Nb{sub x} were prepared by arc melting. The substitution of Nb in the Dy{sub 2}Fe{sub 17} compound was found to have an important effect on their structure and magnetic properties. The Rietveld analysis of X-ray diffraction data shows that Dy{sub 2}Fe{sub 17−x}Nb{sub x} (x=0–1.5) solid solutions crystallize with the Th{sub 2}Ni{sub 17} structure. The lattice parameters obtained from Rietveld refinement show that the unit cell volume of Dy{sub 2}Fe{sub 17−x}Nb{sub x} increases linearly with increasing Nb concentration up to x=1. The solubility of Nb was found to be limited to x∼1. The substitutional Nb atoms occupied all four sites in the order 12j>12k>6g>4f of a Th{sub 2}Ni{sub 17} structure. The Curie temperature (T{sub c}) was found to be Nb content dependent. The T{sub c} first increased and then decreased with increasing Nb content x, attaining a maximum value of 460 K at around x=1, which is 78 K higher than that of Dy{sub 2}Fe{sub 17}. The saturation magnetization decreased linearly with increasing Nb content from 69 emu/g for x=0 to 38 emu/g for x=1.5. {sup 57}Fe Mössbauer spectra show the presence of DyFe{sub 3} and NbFe{sub 2} phases at a higher Nb content x≥1. The hyperfine field values of 4f site first increased up to x=1 and then decreased at higher Nb content. - Highlights: • Nb is used to suppress the free alpha iron in 2:17 intermediates. At higher concentration x>1, Nb forms paramagnetic phase with alpha iron, NbFe{sub 2}. • The low level of Nb doping (x<1) in Dy{sub 2}Fe{sub 17−x}Nb{sub x} brings in ∼21% increase in the Curie temperature. • In Al, Si or Ga doped 2:17 intermatallics, similar improvement is observed in T{sub c} at a much higher doping concentration at the cost of reduction in net magnetization. • The maximum Curie temperature, 460 K, is observed for x∼1 Nb doping.

  16. Matrix-type effect on the magnetotransport properties of Ni–AlO and Ni–NbO composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Stognei, O. V., E-mail: sto@sci.vrn.ru; Maliki, A. J.; Grebennikov, A. A.; Semenenko, K. I.; Bulovatskaya, E. O.; Sitnikov, A. V. [Voronezh State Technical University (Russian Federation)

    2016-06-15

    The effect of the insulating-matrix material on the electronic and magnetic properties of nanocomposites is investigated in the Ni{sub x}(Al{sub 2}O{sub 3}){sub 100–x} metal–insulator system and the Ni{sub x}(Nb{sub 2}O{sub 5}){sub 100–x} metal–semiconductor system. It is established that the characteristics of composites determined by electron transport through the matrix (the electrical resistivity, the position of the electrical percolation threshold, the magnetoresistance effect) depend on the material type. Replacement of the matrix from Al{sub 2}O{sub 3} to Nb{sub 2}O{sub 5} results in a decrease in the electrical resistivity by two–three orders of magnitude, a decrease in the magnetic resistivity by more than an order of magnitude, and in displacement of the percolation threshold from 40 to 30 at % of Ni. In this case, the magnetic properties of the composites are independent of the type of matrix: the concentration of the magnetic percolation threshold is identical in the two systems (~45 at % of Ni), and the coercive force of the samples occurring beyond the percolation threshold is close in magnitude (5–8 and 12–18 Oe) in the Ni{sub x}(Nb{sub 2}O{sub 5}){sub 100–x} and Ni{sub x}(Al{sub 2}O{sub 3}){sub 100–x} composites, respectively.

  17. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  18. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  19. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  20. Superstructure formation in PrNi_2Al_3 and ErPd_2Al_3

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The intermetallic phase ErPd_2Al_3 was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd_2Al_3 was refined from X-ray diffraction data and revealed a superstructure of PrNi_2Al_3 - a CaCu_5 derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F"2 values, 48 variables). The same superstructure was subsequently found for PrNi_2Al_3 (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F"2 values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T_2Al_3]"δ"-, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi_2Al_3 type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  1. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  2. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni{sub 2}In-type intermetallics of the Ni–In–Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-01-15

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (“Ni

  3. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  4. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  5. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    Science.gov (United States)

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  6. Hydrogenation and crystal structures of the Nd(Ni1-xCux)(In1-yAly) intermetallics and their hydrides

    International Nuclear Information System (INIS)

    Riabov, A.B.; Denys, R.V.; Sato, Masashi; Delaplane, R.G.; Yartys, V.A.

    2005-01-01

    The crystal structure of NdNiInD 1.2 contains D-D pairs with the shortest known D...D separation of 1.56-bar A. This work was aimed on studies of the factors influencing the formation and the length of such a pair. We have studied the NdNiIn-based alloys, in which Ni or In are partially substituted by the chemically related elements, Cu or Al, respectively. Three equiatomic intermetallics, NdNiIn, NdCuIn and NdNiAl, are isostructural and crystallise with the ZrNiAl type of structure. In the NdNi 1-x Cu x In (x=0; 0.02; 0.05; 0.25; 0.50; 0.75 and 1.00) quaternary system a complete solid solubility range has been found. In contrast, in the Al-containing NdNiIn 1-x Al x alloys the range of a solid solution is limited to the region NdNiIn-NdNiIn 0.75 Al 0.25 . The substitutions result in regular changes in V, a, c and c/a of the hexagonal unit cells. Small substitutions by Cu and Al (x,y-bar 0.05) do not lead to significant changes in H content and types of the crystal structures formed (PND data). However, a decrease in the stability of the hydrides is observed. In NdNi 1-x Cu x In, Cu has a strong preference for the occupation of the 1b CuIn 6 trigonal prisms. An increase of the Cu content is accompanied by a decrease of the D/Nd(Ni 1-x Cu x )In ratio and a distinct growth of the distance between Ni(Cu) and D (from 1.51 to 1.84-bar A). H...H pairing is very sensitive to the content of both Al and Cu. When the level of substitution exceeds Cu/Ni(Al/In)>1/9, H pairing becomes unstable and H atoms favour other types of ordering in the metal sublattice

  7. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-11-01

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  8. Processing and characterization of AlCoFeNiXTi{sub 0,5} (X = Mn, V) high entropy alloys; Processamento e caracterizacao de ligas de alta entropia AlCoFeNixTi{sub 0,5} (X = Mn, V)

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, C., E-mail: carlos.triveno@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais; Lopes, E.S.N.; Caram, R. [Universidade Estadual de Campinas (FEM/DEMA/UNICAMP), Campinas, SP (Brazil); Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi{sub 0,5} and AlCoFeNiVTi{sub 0,5} alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi{sub 0,5} alloy showed better mechanical properties than the AlCoFeNiMnTi{sub 0,5} alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  9. State diagram of U-Al-Si as a basis for analysis of the processes in nuclear fuel compositions based on U(Al, Si)3 and U3Si compounds

    International Nuclear Information System (INIS)

    Chebotarev, N.T.; Konovalov, L.N.; Zhmak, V.A.; Chebotarev, Ya.N.

    1996-01-01

    Results of studies into the Al-UAl 3 -USi 3 -Si of the U-Al-Si ternary system are presented. It is established that phase equilibrium between the intermetallic compound U(Al, Si) 3 and the aluminium-silicon alloys may be presented in form of conodes on the isothermal cross-section of the state diagram. It is shown that the U(Al, Si) 3 intermetallic compound, containing up to 6.5 at.% silicon, interacts both with liquid and solid aluminium with the U(Al, Si) 4 phase formation [ru

  10. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  11. The Al-rich region of the Al-Mn-Ni alloy system. Part II. Phase equilibria at 620-1000 oC

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M.

    2011-01-01

    Research highlights: → Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 deg. C by means of SEM, TEM, powder XRD and DTA. → Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P63/mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P63/m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P1121/a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (basecentered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. → The existence of a thermodynamically stable R-phase of stoichiometry Al 60 Mn 11 Ni 4 , reported earlier in literature, was not confirmed in the present study. - Abstract: Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 o C. Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P6 3 /mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P6 3 /m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P112 1 /a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (base-centered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. Their physicochemical behaviour in the Al-Mn-Ni alloy system was studied.

  12. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  13. Review of the physical and mechanical properties and potential applications of the B2 compound NiAl: Unabridged version of a paper published in International materials review

    Science.gov (United States)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1992-01-01

    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range.

  14. Structural and Mössbauer spectroscopy characterization of bulk and nanostructured TiFe{sub 0.5} Ni{sub 0.5}/graphite compounds and their hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, M. A. R., E-mail: fisicorodriguez@gmail.com; André-Filho, J.; Félix, L. L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C. [Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada (Brazil); Mestnik-Filho, J. [Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2015-06-15

    The structural and hyperfine properties of bulk TiFe{sub 0.5}Ni{sub 0.5} intermetallic and ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite compounds and their hydrides have been studied. The bulk and nanostructured TiFe{sub 0.5}Ni{sub 0.5} compounds crystallize in the cubic crystal structure of CsCl (B2). After hydrogenation, the formation of hydrogen-poor phase (∝-phase) and hydride phase (β-phase) have been determined for the bulk compound. However, the formation of the ∝-phase and the hydrogen-richest phase (γ-phase) and other secondary phases have been determined for the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample. It has been determined that the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample presents a large amount of the γ-phase which indicates that the presence of graphite nearby nanostructured intermetallic grains enhances the absorption of hydrogen. Mossbauer results are consistent with the structural results. Meanwhile, no significant changes in the isomer shift (IS) value has been determined for the α-phase with respect to the intermetallic compound, a strong increase in the IS value has been determined for the β- and γ-phases with respect to the ∝-phase. That increase indicates a decrease of the s-electron density at the Fe nuclei due to the charge transfer from the metal to the nearby hydrogen atoms.

  15. Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3

    International Nuclear Information System (INIS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.

    2001-01-01

    The crystallization kinetics of Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature

  16. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  17. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction

  18. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    of flux with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction.

  19. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results

    International Nuclear Information System (INIS)

    Ghosh, G.; Olson, G.B.

    2007-01-01

    An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nb-based superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al 2 O 3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L2 1 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L2 1 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al 2 O 3 passivation. However, the oxidation study of a Nb-Hf-Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb-Al alloys, at 1300 deg. C shows the presence of a mixed oxide layer of NbAlO 4 and HfO 2 exhibiting parabolic growth

  20. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy; Analise comparativa da adicao de NB e TI nas ligas Cu-11,8Al-0,5Be e Cu-11,8Al-3,0Ni passiveis do efeito memoria de forma

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, M.Q. da; Oliveira, G.D. de, E-mail: manoel.quirino@ufersa.edu.br [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)

    2014-07-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  1. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    Science.gov (United States)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  2. Effect of Carbon Content on the Microstructure and Mechanical Properties of NbC-Ni Based Cermets

    Directory of Open Access Journals (Sweden)

    Shuigen Huang

    2018-03-01

    Full Text Available The aim of this work was to correlate the overall carbon content in NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo starting powders with the resulting microstructure, hardness, and fracture toughness of Ni-bonded NbC cermets. A series of NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo cermets with different carbon content were prepared by conventional liquid phase sintering for 1 h at 1420 °C in vacuum. Microstructural analysis of the fully densified cermets was performed by electron probe microanalysis (EPMA to assess the effect of carbon and VC or Mo additions on the NbC grain growth and morphology. A decreased carbon content in the starting powder mixtures resulted in increased dissolution of Nb, V, and Mo in the Ni binder and a decreased C/Nb ratio in the NbC based carbide phase. The Vickers hardness (HV30 and Palmqvist indentation toughness were found to decrease significantly with an increasing carbon content in the Mo-free cermets, whereas an antagonistic correlation between hardness and toughness was obtained as a function of the Mo-content in Mo-modified NbC cermets. To obtain optimized mechanical properties, methods to control the total carbon content of NbC-Ni mixtures were proposed and the prepared cermets were investigated in detail.

  3. Microstructures and phase relationships in the Ti3Al + Nb system

    International Nuclear Information System (INIS)

    Kestner-Weykamp, H.T.; Kaufman, M.J.

    1989-01-01

    Alloys based on the α 2 -Ti 3 Al compound (hexagonal) DO 19 are currently experiencing limited use as advanced aerospace materials. To date, the alloys with the most desirable properties contain additions of β stabilizers, such as Nb, Mo and V, which promote the formation of a two-phase mixture of α 2 +β or α 2 +B2 (where B2 refers to the ordered CsCl structure). Unfortunately, the phase relationships in these systems have not been established in sufficient detail to allow their more widespread application. Recently, there has been a series of investigations aimed at alleviating this deficiency in the ternary Ti-Al-Nb system. These studies have clearly indicated the existence of the ordered B2 phase, which, in the higher Nb alloys, can be retained at room temperature by rapid cooling from the liquid or solid state. The authors describe (TiNb) 3 Al alloys (from 0 to 30 at. pct. Nb) were studies after conventional and nonequilibrium (i.e., rapid solidification) processing with an emphasis on providing further insight into the transformation sequences and phase equilibria in these alloys

  4. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  5. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  6. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A. [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States); Bei, H. [Oak Ridge National Laboratory, Material Science and Technology Division, Oak Ridge, TN 37831 (United States); Russell, A.M. [Iowa State University, Department of Materials Science and Engineering, Ames, IA 50011 (United States); Agnew, S.R., E-mail: sra4p@virginia.edu [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2010-04-15

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction ({approx}5-20 vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  7. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A.; Bei, H.; Russell, A.M.; Agnew, S.R.

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (∼5-20 vol.%) of second phases (M 2 R intermetallics and R 2 O 3 oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  8. Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

  9. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  10. A nano lamella NbTi–NiTi composite with high strength

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Jiang, Daqiang [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); School of Mechanical and Chemical Engineering, The University of Western Australia, WA 6009 (Australia); Hao, Shijie; Yu, Cun; Zhang, Junsong [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Ren, Yang [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lu, Deping; Xie, Shifang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); Cui, Lishan, E-mail: lishancui63@126.com [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China)

    2015-05-01

    A hypereutectic Nb{sub 60}Ti{sub 24}Ni{sub 16} (at%) alloy was prepared by vacuum induction melting, and a nano lamellae NbTi–NiTi composite was obtained by hot-forging and wire-drawing of the ingot. Microscopic analysis showed that NbTi and NiTi nano lamellae distributed alternatively in the composite, and aligned along the wire axial direction, with a high volume fraction (~70%) of NbTi nano lamellae. In situ synchrotron X-ray diffraction analysis revealed that stress induced martensitic transformation occurred upon loading, which would effectively weaken the stress concentration at the interface and avoid the introduction of defects into the nano reinforced phase. Then the embedded NbTi nano lamellae exhibited a high elastic strain up to 2.72%, 1.5 times as high as that of the Nb nanowires embedded in a conventional plastic matrix, and the corresponding stress carried by NbTi was evaluated as 2.53 GPa. The high volume fraction of NbTi nano lamellae improved the translation of high strength from the nano reinforced phase into bulk properties of the composite, with a platform stress of ~1.7 GPa and a fracture strength of ~1.9 GPa.

  11. AC loss time constant measurements on Nb3Al and NbTi multifilamentary superconductors

    International Nuclear Information System (INIS)

    Painter, T.A.

    1988-03-01

    The AC loss time constant is a previously univestigated property of Nb 3 Al, a superconductor which, with recent technological developments, shows some advantages over the more commonly used superconductors, NbTi and Nb 3 Sn. Four Nb 3 Al samples with varying twist pitches and one NbTi sample are inductively measured for their AC loss time constants. The measured time constants are compared to the theoretical time constant limits imposed by the limits of the transverse resistivity found by Carr [5] and to the theoretical time constants found using the Bean Model as well as to each other. The measured time constants of the Nb 3 Al samples fall approximately halfway between the theoretical time constant limits, and the measured time constants of the NbTi sample is close to the theoretical lower time constant limit. The Bean Model adequately accounts for the variance of the permeability of the Nb 3 Al superconductor in a background magnetic field. Finally, the measured time constant values of the Nb 3 Al samples vary approximately according to the square of their twist pitch. (author)

  12. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  13. Reactive synthesis of NbAl3 matrix composites

    International Nuclear Information System (INIS)

    Lu, L.; Kim, Y.S.; Gokhale, A.B.; Abbaschian, R.

    1990-01-01

    NbAl 3 matrix composites were synthesized in-situ via reactive hot compaction (RHC) of elemental powders. It was found that the simultaneous application of pressure during synthesis was effective in attaining a near-theoretical density matrix at relatively low temperatures and pressures. Using this technique, two types of composites were produced: matrices containing a uniform dispersion of second phase particles (either Nb 3 Al or Nb 2 Al with an Nb core or Nb 2 Al) and matrices reinforced with coated or uncoated ductile Nb filaments. It was found that a limited amount of toughening is obtained using the first approach, while composites containing coated Nb filaments exhibited a significant increase in the ambient temperature fracture toughness. In this paper, various aspects of RHC processing of NbAl 3 matrix composites, the effect of initial stoichiometry and powder size on the microstructure, as well as the mechanical behavior of the composites are discussed

  14. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    Science.gov (United States)

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  15. Lattice anisotropy in uranium ternary compounds: UTX

    International Nuclear Information System (INIS)

    Mašková, S.; Adamska, A.M.; Havela, L.; Kim-Ngan, N.-T.H.; Przewoźnik, J.; Daniš, S.; Kothapalli, K.; Kolomiets, A.V.; Heathman, S.; Nakotte, H.; Bordallo, H.

    2012-01-01

    Highlights: ► Compressibility and thermal expansion of several U-based compounds were established. ► The direction of the U–U bonds is the “soft” crystallographic direction. ► Highest coefficient of linear thermal expansion is in the direction of the U–U bonds. ► The closer the U atoms are together the better they can be compressed together. - Abstract: Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure type a common pattern emerges. The direction of the U–U bonds with participation of the 5f states is distinctly the “soft” crystallographic direction, exhibiting also the highest coefficient of linear thermal expansion. The finding leads to an apparent paradox: the closer the U atoms are together in a particular direction the better they can be additionally compressed together by applied hydrostatic pressure.

  16. Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer

    International Nuclear Information System (INIS)

    Honarpisheh, M.; Asemabadi, M.; Sedighi, M.

    2012-01-01

    Highlights: ► We studied explosive-welded Al/Cu/Al multilayer. ► We investigated heat treatment influence on the bond properties of Al/Cu/Al. ► Intermetallic compounds were studied using the SEM, OM and EDS analysis. ► Variations of hardness in the thickness were investigated using micro-hardness. ► Intermetallic phases such as AlCu 3 and Al 2 C create at the interface of Al/Cu/Al. -- Abstract: In this study, an Al/Cu/Al multilayer sheet was fabricated by explosive welding process and the effects of annealing temperature on the interfacial properties of explosively bonded Al/Cu bimetal have been investigated. For this purpose, hardness changes along the thickness of the samples have been measured, and the thickness and type of intermetallic compounds formed at the joining interface have been explored by means of optical microscopy (OM), scanning electron microscopy (SEM) and also energy dispersive spectroscopy (EDS). The obtained results indicate that, with the increase of the annealing temperature, the thickness of intermetallic compounds has increased and the amount of hardness along the thickness of the joining interface has diminished. In the annealed sample at 400 °C for 30 min, it was observed that intermetallic layers have formed at the interface of Al/Cu bimetals. These layers consist of the intermetallic compounds AlCu 3 , Al 2 Cu and AlCu, and their thickness gets to about 5 μm at some points. The examinations performed by the SEM, following the Vickers micro-hardness test, indicated the existence of a number of microcracks at the top and bottom interface of the sample annealed at 400 °C. This shows the formation of brittle intermetallic compounds at the joining interface, and also indicates the low ductility of these compounds.

  17. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  18. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  19. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  20. PRECIPITATION BEHAVIOR OF Co PHASES IN B2-ORDERED(Ni,Co)Al COMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; A.L. Fan; M. Nemoto

    2002-01-01

    The precipitation behavior of Co phases in B2-ordered (Ni, Co)Al has been investigatedin terms of transmission electron microscopy. Fine precipitation off cc-Co occurs in(Ni, Co)Al by aging at temperature over 973K. The orientation relationship betweenthe fcc-Co precipitates and the B2-(Ni, Co)Al matrix follows the Kurdjumow-Sachs(K-S) orientation relation. But when the aging temperature is under 873K the Coprecipitates have a hcp crystal structure. The orientation relationship between thehcp-Co precipitates and the B2-(Ni, Co)Al matrix follows the Burgers orientation re-lation. (Ni, Co)Al is hardened appreciably by the fine precipitation of both the fcc-Coand hcp-Co phases. The temperature dependence of the yield strength of precipitate-containing B2-ordered (Ni, Co)Al was investigated by compression tests over the rangeof 298-1273K. The fine precipitation of Co phases enhances greatly the low and in-termediate temperature yield strength. When the deformation temperature was over873K, the strength of precipitate-containing (Ni, Co)Al is comparable to ternary dual-phase (Ni, Co)Al+Ni3Al alloy.

  1. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  2. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  3. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  4. Thermochemical investigations on intermetallic UMe3 compounds (Me=Ru,Rh,Pd)

    International Nuclear Information System (INIS)

    Wijbenga, G.

    1981-10-01

    The subject of this thesis is the determination of the thermodynamic properties of the intermetallic compounds of uranium with the light platinum metals, ruthenium, rhodium and palladium. These intermetallics are formed as very stable compounds during fission in nuclear fuel by the reaction of the fission products Ru, Rh and Pd with the matrix. Methods for the preparation of URu 3 , URh 3 and UPd 3 , experiments showing the chemical reactivities of these compounds, and studies of the stoichiometry of hexagonal UPd 3 by X-ray diffraction of solubility experiments of UN and palladium in UPd 3 , are described. Thermodynamic properties of the UMe 3 compounds have been obtained using several experimental thermodynamic techniques: fluorine bomb calorimetry, low-temperature cryogenic calorimetry, high-temperature drop calorimetry and EMF measurements of reversible cells. (Auth.)

  5. Comparative study of the magnetic properties of La3Ni2B‧O9 for B‧ = Nb, Taor Sb

    Science.gov (United States)

    Chin, Chun-Mann; Battle, Peter D.; Blundell, Stephen J.; Hunter, Emily; Lang, Franz; Hendrickx, Mylène; Paria Sena, Robert; Hadermann, Joke

    2018-02-01

    Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (μSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B‧ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B‧O9 (B‧ = Nb or Ta) at 5 K although in each case μSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.

  6. Fiscal 1990 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments (Development of methane fueled aeroengine); 1990 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Research efforts went on for the development of advanced materials, that is, intermetallic compounds and fiber reinforced intermetallic compound composite materials. Activities were conducted in the four fields of (1) high specific strength intermetallic compounds, (2) high melting point intermetallic compounds, (3) fiber reinforced intermetallic compound composite materials, and (4) a comprehensive survey. In Field (1), ternary phase diagrams (Mo, Nb) were prepared for Ti-Al-X (X=metal) systems, and studies were conducted of systematic methods for developing Ti-Al based high specific strength intermetallic compound materials. In Field (2), work was started to prepare binary phase diagrams for Nb-Al systems, and studies were conducted about their basic characteristics and characteristic governing factors. A powder manufacturing tester was designed and built, and basic tests were started for powder manufacturing. In Field (3), a success was attained in fabricating a low oxygen fiber rendered infusible by electron beam irradiation, and the infusible fiber was found to be high in quality. Studies were started of coatings for the fiber to achieve still higher performance. In Field (4), technical trends were surveyed, coordination was effected between various technology developing activities, and the results were put to proper management and then disseminated. (NEDO)

  7. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  8. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Mohamad, Azizan Bin; Suzuki, Ryo [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Okagawa, Keigo [Department of Electrical and Electronics Engineering, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi ohi, Shinagawa-ku, Tokyo 140-0011 (Japan)

    2016-08-15

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in parts of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.

  9. Structure of MeCrAlY + AlSi coatings deposited by Arc-PVD method on CMSX4 single crystal alloy

    International Nuclear Information System (INIS)

    Swadzba, L.; Hetmanczyk, M.; Mendala, B.; Saunders, S.R.J.

    2002-01-01

    Investigations of depositing high temperature resistant coatings on the Ni base superalloys by Arc-PVD method using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C in vacuum, NiAl diffusion coating containing 21% at. Al and 50 μm thick were obtained. In the next stage coatings with more complex chemical composition - MeCrAlY were formed. The MeCrAlY coatings were made from two targets. Good correlation between the chemical composition of the targets and a uniform distribution of elements in the coatings was shown. Then the surface was also covered with aluminium by the Arc-PVD method . In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation of NiAl intermetallics of high Co, Cr, Y content was initiated. The final heat treatment of coatings was conducted in vacuum at 1323 K. Strong segregation of yttrium into the oxide scale in the specimens heated in the air was shown. It was possible to form NiAl and intermetallics phase coatings modified by Co, Cr and Y by the Arc-PVD method. The coatings were formed on a single crystal CMSX-4. The structure, morphology and phase composition of coatings was carried out. (author)

  10. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  11. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  12. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  13. On ternary intermetallic aurides. CaAu{sub 2}Al{sub 2}, SrAu{sub 2-x}Al{sub 2+x} and Ba{sub 3}Au{sub 5+x}Al{sub 6-x}

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Frank [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Mineralogie, Kristallographie und Materialwissenschaften, Universitaet Leipzig (Germany); Zhang, Yuemei; Fokwa, Boniface P.T. [Department of Chemistry, University of California, Riverside, CA (United States); Bartsch, Manfred; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms-Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Janka, Oliver [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Chemie, Carl von Ossietzky Universitaet Oldenburg (Germany)

    2017-11-17

    The intermetallic compound CaAu{sub 2}Al{sub 2}, and the members of the solid solutions SrAu{sub 2-x}Al{sub 2+x} (0 ≤ x ≤ 0.33) and Ba{sub 3}Au{sub 5+x}Al{sub 6-x} (x = 0, 0.14, 0.49) were synthesized from the elements in sealed tantalum ampoules. The Ca compound crystallizes with the orthorhombic ThRu{sub 2}P{sub 2} type structure, whereas the targeted SrAu{sub 2}Al{sub 2} was found to form a solid solution according to SrAu{sub 2-x}Al{sub 2+x}. For the Ba system no ''BaAu{sub 2}Al{sub 2}'' was found, however, Ba{sub 3}Au{sub 5+x}Al{sub 6-x} was discovered to crystallize in the monoclinic space group C2/c with its own structure type. The samples were investigated by powder X-ray diffraction and their crystal structures were refined on the basis of single-crystal X-ray diffraction data. All compounds were characterized furthermore by susceptibility measurements. The crystallographic aluminum sites of CaAu{sub 2}Al{sub 2} and Ba{sub 3}Au{sub 5}Al{sub 6} can be differentiated by {sup 27}Al solid state NMR spectra on the basis of their different electric field gradients, in agreement with theoretical calculations. The electron transfer from the alkaline earth metals and the aluminum atoms onto the gold atoms was investigated by X-ray photoelectron spectroscopy (XPS) classifying these intermetallics as aurides, in full agreement with the calculated Bader charges. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Reactive diffusion and superconductivity of Nb3Al multilayer films

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Hong, M.; Hamm, R.A.; Gurvitch, M.

    1985-01-01

    Thin films of A15 Nb 3 Al have been prepared by reactive diffusion of sputter-deposited Nb/Al multilayers. The diffusion reactions were studied by in situ annealing x-ray diffraction in the temperature range 50--950 0 C. Initially the Nb and Al sublayers react to form the phase NbAl 3 . This interface reaction prevents the formation of the sigma-phase Nb 2 Al, frequently found as a second phase in A15 Nb 3 Al materials; NbAl 3 reacts with the remaining Nb to form the A15 phase. The highest T/sub c/, 16.2 K measured resistively and 15.2 K inductively, was found in a Nb/Al multilayer with an A15 cell parameter a 0 = 5.195 A which corresponds to approx.20 at. % Al. From a comparison with previous investigations of the T/sub c/ dependence on Al concentration and A15 cell parameter, it is concluded that a small amount of the A15 phase has a higher composition of 22--23 at. % Al

  15. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  17. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  18. Alpha and beta stabilizer character of Al in Zr-Nb-Al alloys

    International Nuclear Information System (INIS)

    Peruzzi Bardella, A.; Bolcich, J.C.

    1987-01-01

    The T β/α+β of Zr5Nb and Zr5Nb2Al (weight %) were determined in order to observe the alpha-stabilizer character of Al in ternary Zr-Nb-Al alloys. Techniques employed were change of resistivity with temperature in dynamic experiences, and metallography of samples quenched to room temperature after isothermal annealings. The T β/α+β of the ternary resulted 17 ± 8 deg C higher than that of the binary alloy. In addition, taking into account the results of previous investigations of the transformation of beta on quenching Zr-Nb-Al alloys from the beta field to room temperature, it is concluded that the beta-stabilizer character of Nb is stronger than the alpha-stabilizer character of Al in these Zr alloys, and that the Al can have important influence on the mechanical properties by the appearance of TRIP effect. (Author) [es

  19. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  20. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  1. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification

    International Nuclear Information System (INIS)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P.

    2003-01-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  2. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    Science.gov (United States)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-12

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  3. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  4. PTA hardfacing of Nb/Al coatings Revestimentos Nb/Al depositados por PTA

    Directory of Open Access Journals (Sweden)

    Karin Graf

    2012-06-01

    Full Text Available Hardfacing is widely applied to components yet the majority of the welding techniques available restrain the variety of hard alloys that can be deposited. Plasma Transferred Arc hardfacing offsets this drawback by using powdered feedstock offering the ability to tailor the chemical composition of the coating and as a consequence its properties. The high strength and chemical inertia of aluminide alloys makes them very suitable to protect components. However, the strong interaction with the substrate during hardfacing requires analysis of each alloy system to optimize its properties and weldability. This work analyzed coatings processed with a cast and ground Nb40wt%Al alloy and the effect of Fe and C on the coatings features. It confirmed that sound Nb aluminide coatings can be processed by plasma Transferred arc hardfacing and will have a strong interaction with the substrate, which determines the final microstructure and properties of coatings. Final remarks point out that during Nb-Al coating tailoring the interaction with the substrate has to be considered at the early stages of design process.Revestimentos soldados são amplamente usados para proteger componentes mecânicos entretanto a maioria das técnicas de soldagem disponíveis restringe a variedade de ligas de alta resistência que podem ser depositadas. O processo de plasma por arco transferido permite ultrapassar esta limitação ao utilizar material de adição na forma de pó, oferecendo a possibilidade de se customizar a composição dos revestimentos e em consequências as suas propriedades. A elevada resistência mecânica e inercia química das ligas de aluminetos tornam estas ligas atrativas para a proteção de componentes diversos. Entretanto a grande interação com o substrato que ocorre quando do processamento exige que para a otimização das propriedades e soldabilidade seja realizada uma a análise de cada sistema liga e substrato. Neste trabalho foram processados e

  5. Influence of Ni content on physico-chemical characteristics of Ni, Mg, Al-Hydrotalcite like compounds

    Directory of Open Access Journals (Sweden)

    Alexandre Carlos Camacho Rodrigues

    2003-12-01

    Full Text Available The physico-chemical properties of a series of Ni,Mg,Al-HTLC with Al/(Al+Mg+Ni = 0.25 and low Ni/Mg ratios were studied by means of X-ray diffraction (XRD, thermogravimetric (TGA and thermodifferential (DTA analysis, N2 physissorption and temperature programmed reduction (TPR. The as-synthesized materials were well-crystallized, with XRD patterns typical of the HTLCs in carbonate form. Upon calcination and dehydration the dehydroxilation of the layers with concurrent decomposition of carbonate anions produced mixed oxides with high surface area. XRD analysis indicated that the different nickel and aluminum oxides species are well-dispersed in a poor-crystallized MgO periclase-type phase. As observed by TPR, the different Ni species showed distinct interactions with Mg(AlO phase, which were influenced by both nickel content and calcination temperature. Regardless of the the nickel content, the reduction of nickel species was not complete as indicated by the presence of metallic dispersions.

  6. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    Science.gov (United States)

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  7. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  8. Directional solidification and characterization of the Al Nb2 - Al3 Nb eutectic system

    International Nuclear Information System (INIS)

    Trevisan, Eduardo A.O.; Andreotti, Fabio; Caram, Rubens

    1996-01-01

    The manufacturing of components to operate at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000 deg C. An interesting alternative is the use of directionally solidified eutectic alloys. The eutectic alloy solidification makes possible the production of 'in situ' composite. A potentially useful system for manufacturing structural materials is the Al-Nb eutectic system. The aim of this work is to present the directional solidification of the Al-Nb eutectic alloy. (author)

  9. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Asnis, E.A.; Piskun, N.V.; Statkevich, I.I. [The E.O. Paton Electric Welding Institute, 11 Bozhenko str., 03680 Kyiv (Ukraine); Gorshenkov, M.V.; Tcherdyntsev, V.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-05

    Highlights: • Fist application of LaB{sub 6} additive in TiAl-based intermetallics casting. • Pilot synthesis/casting and study of selected TiAl(Nb,Cr,Zr)B,La alloys set. • Dual effect observed: phase structure refinement and oxygen impurity removal. • Co-precipitation of TiB and La{sub 2}O{sub 3} in melt: 2LaB{sub 6} + 12Ti + 3O → 12TiB↓ + La{sub 2}O{sub 3}↓. • Features of structure refinement and oxygen gettering mechanisms reported. -- Abstract: The work is aimed at the study of the formation and refinement of microstructure appearing in the solidifying refractory TiAl-based intermetallics being inoculated with precise boron addition. The novelty of research consists in test application of lanthanum hexaboride (LaB{sub 6}) ligature within semi-continuous electron beam casting process of selected alloys. Two ingots with nominal compositions Ti–44Al–5Nb–2Cr–1.5Zr–0.4B–0.07La and Ti–44Al–5Nb–1Cr–1.5Zr–1B–0.17La (at.%) have been synthesized and cast along with the reference alloy Ti–44Al–5Nb–3Cr–1.5Zr. Their comparative examination suggests (i) essential microstructural phase refinement effect coupled with (ii) threefold/fourfold decrease of background content of undesirable residual oxygen impurity in both alloys containing LaB{sub 6}. This advanced dual activity (i–ii) of LaB{sub 6} is explained by its complete dissolution, dissociation and following re-precipitation of effective Ti-based monoboride nucleants of orthorhombic B27 structure, those being accompanied by strong internal gettering of dissolved oxygen from the melt and from boride-inoculated solid α{sub 2}-Ti{sub 3}Al phase with liberated elemental lanthanum. The phase composition and structure of cast alloys; state and characterization of newly precipitated TiB boride; features of La{sub 2}O{sub 3} micro/nano-dimensional precipitation and oxygen gettering mechanism are reported and discussed.

  10. Influence of Nickel Thickness and Annealing Time on the Mechanical Properties of Intermetallic Compounds Formed between Cu-Sn Solder and Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yiseul; Kwon, Jeehye; Yoo, Dayoung; Park, Sungkyu; Lee, Dajeong; Lee, Dongyun [Pusan National University, Busan (Korea, Republic of)

    2017-03-15

    Intermetallic compounds (IMCs) developed on the interface between a solder alloy and its bonding pads are an important factor in the failure of electronic circuits. In this study, the mechanical behaviors of the IMCs formed in the Cu-Ni-Sn ternary alloy system are investigated. Presumably, Ni can act as a diffusion barrier to Cu and Sn to form the IMCs. Detailed analysis of the microstructure is conducted using an electron probe micro-analyzer (EPMA). The addition of Ni softened the IMCs, which is determined based on the fracture toughness increasing (from 0.71 to 1.55 MPa√m) with the Ni layer thickness. However, above a critical amount of Ni involved in the Cu-Sn IMCs, the softening effect is diminished, and this could result from the segregation of Ni inside the IMCs. Therefore, the optimized condition must be determined in order to obtain a positive Ni effect on enhancing the reliability of the electronic circuits.

  11. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  12. Boron-substitution and defects in B2-type AlNi compound: Site-preference and influence on structural, thermodynamic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Capaz, Rodrigo B. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); ElMassalami, M., E-mail: massalam@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Terrazos, L.A. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB 58175-000 (Brazil); Elhadi, M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Takeya, H. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Ghivelder, L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2016-06-05

    Using a combination of theoretical (first-principles total-energy and electronic structure calculations) as well as experimental (structural, thermodynamics) techniques, we systematically investigated the influence of B incorporation on the structural, electronic and thermodynamic properties of a series of technologically-important B-containing AlNi matrix. Special attention was paid to calculating the energy cost of placing B at various sites within the cubic unit cell. The most energetically favorable defects were identified to be, depending on initial stoichiometry, substitutional B at Al site (B{sub Al}), Ni vacancy (V{sub Ni}), or Ni antisite (Ni{sub Al}). We show that the induced variation in the lattice parameters can be correlated with the type and concentration of the involved defects: e.g. the surge of V{sub Ni} defects leads to a stronger lattice-parameter reduction, that of Ni{sub Al} ones to a relatively weaker reduction while that of B{sub Al} defects to a much weaker influence. Both electronic band structure calculations as well as thermodynamics measurements indicate that the 3d bands of Ni are fully occupied and magnetically unpolarized and that the resulting N(E{sub F}) is very small: all studied compounds are normal conductors with no trace of superconductivity or magnetic polarization.

  13. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  14. Determination of γ′+γ / γ Phase Boundary in Ni-Al-Cr System Using DTA Thermal Analysis

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2016-03-01

    Full Text Available Mechanical properties at elevated temperature, in modern alloys based on intermetallic phase Ni3Al are connected with phase composition, especially with proportion of ordered phase γ′ (L12 and disordered phase γ (A1. In this paper, analysis of one key systems for mentioned alloys - Ni-Al-Cr, is presented. A series of alloys with chemical composition originated from Ni-rich part of Ni-Al-Cr system was prepared. DTA thermal analysis was performed on all samples. Based on shape of obtained curves, characteristic for continuous order-disorder transition, places of course of phase boundaries γ′+γ / γ were determined. Moreover, temperature of melting and freezing of alloys were obtained. Results of DTA analysis concerning phase boundary γ′+γ / γ indicated agreement with results obtained by authors using calorimetric solution method.

  15. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  16. Ion-beam mixing and thermal annealing of Al--Nb and Al--Ta thin films

    International Nuclear Information System (INIS)

    Rai, A.K.; Bhattacharya, R.S.; Mendiratta, M.G.; Subramanian, P.R.; Dimiduk, D.M.

    1988-01-01

    Ion-beam mixing and thermal annealing of thin, alternating layers of Al and Nb, as well as Al and Ta, were investigated by selected area diffraction and Rutherford backscattering. The individual layer thicknesses were adjusted to obtain the overall compositions as Al 3 Nb and Al 3 Ta. The films were ion mixed with 1 MeV Au + ions at a dose of 1 x 10 16 ions cm/sup -2/ . Uniform mixing and amorphization were achieved for both Al--Nb and Al--Ta systems. Equilibrium crystalline Al 3 Nb and Al 3 Ta phases were formed after annealing of ion mixed amorphous films at 400 0 C for 6 h. Unmixed films, however, remained unreacted at 400 0 C for 1 h. Partial reaction was observed in the unmixed film of Al--Nb at 400 0 C for 6 h. After annealing at 500 0 C for 1 h, a complete reaction and formation of Al 3 Nb and Al 3 Ta phases in the respective films were observed. The influence of thermodynamics on the phase formation by ion mixing and thermal annealing is discussed

  17. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    Science.gov (United States)

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the

  18. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  19. Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 °C

    Directory of Open Access Journals (Sweden)

    González-Rodríguez, J. G.

    2012-12-01

    Full Text Available The corrosion behavior of Fe3Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO2+N2 at 900 °C for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe3AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage.Se estudió el comportamiento a la corrosión a alta temperatura de intermetálicos tipo Fe3Al con adición de 1at. % de cerio, litio y níquel. Las diferentes aleaciones fueron expuestas bajo un ambiente compuesto de 2,5 % SO2+N2 a 900 °C durante 48 h. Para todos los intermetálicos ensayados, la cinética de corrosión presentó un comportamiento parabólico. La aleación que mostró la menor velocidad de corrosión fue el intermetálico Fe3AlNi, siendo el intermetálico Fe3AlCeLi el de mayor velocidad de corrosión. Los análisis mediante espectroscopía de dispersión de rayos X, EDS, sobre la costra formada identificaron únicamente aluminio, oxígeno y trazas de hierro y cerio, lo que sugiere la formación de alúmina como el componente principal. Los intermetálicos mostraron agrietamiento y desprendimiento de la costra de óxido. La composición química de los intermetálicos tuvo un papel importante en la definición de la morfología del óxido formado y el grado de daño.

  20. 60Co, 63Ni and 94Nb soil-to-plant transfer in pot experiments

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Mohamad, S.A.; Mueck, K.; Horak, O.

    1995-01-01

    Soil-to-plant transfer factors for 60 Co, 63 Ni and 94 Nb were obtained via pot experiments with a Dystric Cambisol and a Calcic Chernozem, both from Lower Austria. Investigated plants were greenrape (Brassica napus oleifera L.), bean (Phaseolus vulgaris L.) and winter wheat (Triticum aestivum L.). The soil-to-plant transfer factors decreased from 63 Ni to 60 Co and 94 Nb. Mean values from all experiments ranged from 1.12 ( 63 Ni) to 0.0045 ( 94 Nb). The transfer values obtained for 60 Co and 63 Ni are comparable to literature values, but 94 Nb-transfer seems to be lower than previous estimates. All radionuclides showed differences between plant species and plant organs. Transfer values were also dependent on the soil type. (author)

  1. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  2. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  3. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  4. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: leandro.bolzoni@brunel.ac.uk; Nowak, M.; Hari Babu, N.

    2015-07-15

    Cast Al alloys are important structural materials for the lightweighting of cars and, consequently, reduction of greenhouse gases emission and pollution. The microstructure and properties of cast Al alloys could be further improved by means of grain refinement, practise which cannot efficiently be performed with common Al–Ti–B grain refiners used for wrought Al alloys. In this work we proposed the employment of Nb+B inoculation as an alternative for the refinement of the primary α-Al dendrites of cast Al–Si alloy by studying the grain refinement induced by the Nb+B inoculants as a function of key aspects such as cooling rate, fading behaviour and simulated recyclability tests. It is found that the grain size of the Nb+B inoculated material is noticeably less sensitive to the cooling rate. Nb+B inoculants are still present and promote the refinement of the Al–12Si alloy even after few hours of contact time, although some fading is detected. Furthermore, Nb+B inoculants are also still effective for enhancing heterogeneous nucleation after three remelting of the inoculated alloy. The fading behaviour and ability to retain grain refining potency after remelting are highly relevant to industrial scale applications. - Highlights: • The influence of Nb+B inoculation on Al–12SSi is assessed. • The grain size decreases along with the amount of Nb+B compounds. • Nb+B inoculation makes the grain size less sensitive from the cooling rate. • Grain refinement is obtained via heterogeneous nucleation.

  5. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy

    International Nuclear Information System (INIS)

    Bolzoni, L.; Nowak, M.; Hari Babu, N.

    2015-01-01

    Cast Al alloys are important structural materials for the lightweighting of cars and, consequently, reduction of greenhouse gases emission and pollution. The microstructure and properties of cast Al alloys could be further improved by means of grain refinement, practise which cannot efficiently be performed with common Al–Ti–B grain refiners used for wrought Al alloys. In this work we proposed the employment of Nb+B inoculation as an alternative for the refinement of the primary α-Al dendrites of cast Al–Si alloy by studying the grain refinement induced by the Nb+B inoculants as a function of key aspects such as cooling rate, fading behaviour and simulated recyclability tests. It is found that the grain size of the Nb+B inoculated material is noticeably less sensitive to the cooling rate. Nb+B inoculants are still present and promote the refinement of the Al–12Si alloy even after few hours of contact time, although some fading is detected. Furthermore, Nb+B inoculants are also still effective for enhancing heterogeneous nucleation after three remelting of the inoculated alloy. The fading behaviour and ability to retain grain refining potency after remelting are highly relevant to industrial scale applications. - Highlights: • The influence of Nb+B inoculation on Al–12SSi is assessed. • The grain size decreases along with the amount of Nb+B compounds. • Nb+B inoculation makes the grain size less sensitive from the cooling rate. • Grain refinement is obtained via heterogeneous nucleation

  6. Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study

    Directory of Open Access Journals (Sweden)

    H.L. Chen

    2015-09-01

    Full Text Available Electronic structure and elastic properties of Al2Y, Al3Y, Al2Gd and Al3Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT. The ground state energy and elastic constants of each phase were calculated, the formation enthalpy (ΔH, bulk modulus (B, shear modulus (G, Young's modulus (E, Poisson's ratio (ν and anisotropic coefficient (A were derived. The formation enthalpy shows that Al2RE is more stable than Al3RE, and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics. The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases, it may lead to the similar performance when deforming due to their similar elastic constants. The total and partial electron density of states (DOS, Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases. Finally, phonon calculation was conducted, and the thermodynamic properties were obtained and further discussed.

  7. Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires

    International Nuclear Information System (INIS)

    Borza, F.; Lupu, N.; Dobrea, V.; Chiriac, H.

    2015-01-01

    Ferromagnetic Fe-Ni-Co-Al-(Ta,Nb)-B microwires with diameters from 170 μm to 50 μm, which possess both superelastic and good magnetic properties, have been prepared by rapid quenching from the melt using the in rotating water spinning technique followed by cold-drawing and ageing. The cold-drawing and annealing processes lead to the initialization of premartensitic phases as confirmed by the X-ray diffraction and scanning transmission electron microscopic investigations, more significantly in the 50 μm cold-drawn microwires. An increase in the coercive field and in the saturation magnetization has been obtained by annealing, more importantly in the case of Nb-containing alloy. Ageing by thermal or current annealing led to the initialization of the superelastic effect. High values of strain of up to 1.8%, very good repeatability under successive loading, and values of superelastic effect of up to 1.2% have been achieved. The structural analysis coupled with the stress-strain data suggests that these materials annealed at 800 °C have superelastic potential at reduced ageing times. The magnetic behavior was found to be easily tailored through both thermal and thermomagnetic treatments with changes in the magnetic parameters which can be contactless detected. The results are important for future applications where both mechanical and magnetic properties matter, i.e., sensing/actuating systems

  8. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  9. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  10. Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Leshchinsky, E.; Sobiesiak, A.; Maev, R.

    2018-02-01

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat insulating topcoat. They possess the desired low thermal conductivity, but at the same time they are very brittle and sensitive to thermal shock and thermal cycling due to the inherently low coefficient of thermal expansion. Recent research activities are focused on the developing of multilayer TBC structures obtained using cold spraying and following annealing. Aluminum intermetallics have demonstrated thermal and mechanical properties that allow them to be used as the alternative TBC materials, while the intermetallic layers can be additionally optimized to achieve superior thermal physical properties. One example is the six layer TBC structure in which cold sprayed Al-based intermetallics are synthesized by annealing in nitrogen atmosphere. These multilayer coating systems demonstrated an improved thermal fatigue capability as compared to conventional ceramic TBC. The microstructures and properties of the coatings were characterized by SEM, EDS and mechanical tests to define the TBC material properties and intermetallic formation mechanisms.

  11. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    International Nuclear Information System (INIS)

    Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L.

    2011-01-01

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film (∼5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl 2 and Cu 9 Al 4 are 60.66 kJ mol -1 and 75.61 kJ mol -1 , respectively. During IMC development, Cu 9 Al 4 emerges as a second layer and grows together with the initial CuAl 2 . When Al is completely consumed, CuAl 2 transforms to Cu 9 Al 4 , which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 o C for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  12. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  13. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  14. Superstructure formation in PrNi{sub 2}Al{sub 3} and ErPd{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-09-01

    The intermetallic phase ErPd{sub 2}Al{sub 3} was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd{sub 2}Al{sub 3} was refined from X-ray diffraction data and revealed a superstructure of PrNi{sub 2}Al{sub 3} - a CaCu{sub 5} derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F{sup 2} values, 48 variables). The same superstructure was subsequently found for PrNi{sub 2}Al{sub 3} (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F{sup 2} values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T{sub 2}Al{sub 3}]{sup δ-}, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi{sub 2}Al{sub 3} type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  15. In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg

    Energy Technology Data Exchange (ETDEWEB)

    Wollmershauser, J.A. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States); Kabra, S. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Agnew, S.R. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States)], E-mail: sra4p@virginia.edu

    2009-01-15

    The internal stress developments of B2 compounds NiAl, CuZn, and CeAg are examined using in situ neutron diffraction. CeAg is a representative of a newly discovered class of fully ordered and ductile B2 compounds. Using polycrystal plasticity modeling to interpret the results, it is revealed that the internal stress evolution of CeAg is nearly identical to that of NiAl, indicating that they share a common primary mechanism of plastic deformation, i.e., <1 0 0>{l_brace}0 1 1{r_brace} 'cube' slip. This result reinforces the dilemma previously observed for rare-earth alloys CuY, AgY, and CuDy, since cube slip provides insufficient independent slip systems to accommodate large-scale homogenous polycrystalline deformation. There is no evidence in the diffraction data of either mechanical twinning or stress-induced phase transformation. The activity of bcc-type <1 1 1>{l_brace}11-bar0{r_brace} slip at high stresses is confirmed and a lower bound for the critical resolved shear stress is quantified.

  16. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.

  17. Fiscal 1992 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments (Development of methane fueled aeroengine); 1992 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Research and development was carried out for intermetallic compounds and fiber reinforced intermetallic compound composite materials for use as advanced materials at high temperatures. Activities were conducted in the four fields of (1) high specific strength intermetallic compounds, (2) high melting point intermetallic compounds, (3) fiber reinforced intermetallic compound composite materials, and (4) a comprehensive survey. In Field (1), Mo, Nb, and Cr were added to Ti-Al systems and ternary phase diagrams were prepared for them, and isostatic forging was combined with heat treatment for the collection of basic data for achieving an optimum microstructure. Basic technologies were established for the manufacture of sheets by isothermal rolling. In Field (2), Ti, Ta, and W were added to Nb-Al systems and partial ternary phase diagrams were prepared for them. Specimen materials were subjected to a high-temperature compression test, when a specimen containing 10% of W recorded 230MPa at 1,600 degrees C. In Field (3), a silicon carbide based fiber was developed and it demonstrated the excellence of low oxygen fibers with respect to thermal properties after being rendered infusible by electron beam irradiation. (NEDO)

  18. Moessbauer Spectroscopy Studies of Some Intermetallics in the Zr-Nb-Fe System

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    2002-01-01

    Samples with the following compositions: Zr 62 Nb 14 Fe 24 , Zr 65 Nb 10 Fe 25 and Zr 52 Nb 10 Fe 38 were studied by Moessbauer spectroscopy. All of them showed a ternary cubic Ti 2 Ni-type phase (QS: 0.30±0.02, IS: -0.14±0.01) and traces of Zr 2 Fe phase (QS: 0.86±0.03, IS: -0.29±0.01). Zrβ phase (QS: 0.22±0.01, IS: -0.11±0.01) was also detected except in the case of the richer Fe sample. In addition to these expected phases, a hexagonal MgZn 2 -type phase was determined. The assigned parameters for this phase are: QS: 0.38±0.04, IS: -0.28±0.02. These results suggest a revision of the diagram.

  19. Fabrication and performance characterization of Al/Ni multilayer energetic films

    Science.gov (United States)

    Yang, Cheng; Hu, Yan; Shen, Ruiqi; Ye, Yinghua; Wang, Shouxu; Hua, Tianli

    2014-02-01

    Al/Ni multilayer bridge films, which were composed of alternate Al and Ni layers with bilayer thicknesses of 50, 100 and 200 nm, were prepared by RF magnetron sputtering. In each bilayer, the thickness ratio of Al to Ni was maintained at 3:2 to obtain an overall 1:1 atomic composition. The total thickness of Al/Ni multilayer films was 2 μm. XRD measurements show that the compound of AlNi is the final product of the exothermic reactions. DSC curves show that the values of heat release in Al/Ni multilayer films with bilayer thicknesses of 50, 100 and 200 nm are 389.43, 396.69 and 409.92 J g-1, respectively. The temperatures of Al/Ni multilayer films were obviously higher than those of Al bridge film and Ni bridge film. Al/Ni multilayer films with modulation of 50 nm had the highest electrical explosion temperature of 7000 K. The exothermic reaction in Al/Ni multilayer films leads to a more intense electric explosion. Al/Ni multilayer bridge films with modulation period of 50 nm explode more rapidly and intensely than other bridge films because decreasing the bilayer thickness results in an increased reaction velocity.

  20. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  1. Oxidation characteristics of Ti-14Al-21Nb alloy at high temperature in purified oxygen; Ti-14Al?-21Nb gokin no sansochu ni okeru koon sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Akai, M; Taniguchi, S; Shibata, T [Osaka University, Osaka (Japan). Faculty of Engineering

    1994-10-20

    The Ti-14Al-21Nb alloy called Super {alpha}{sub 2} is an alloy which has been improved of plastic transformation ability by adding Nb into Ti3Al with high specific strength, and is used for member materials in aircraft engines. In order to identify its oxidation characteristics, this paper discusses the oxidation characteristics under purified oxygen and atmospheric pressure in temperatures ranging from 1000 K to 1300 K. The experiment made a button-formed ingot with a diameter of 50 mm and a thickness of about 10 mm by melting and thermal refining, and used a thermobalance. Main conclusion thus obtained may be summarized as follows: the amount of increase due to oxidation after 100 ks oxidation at 1000 K is very small; oxidation between 1100 K and 1200 K follows nearly the parabolic rate laws; the scale consisted mainly of rutile, but a thin alumina concentration layer is formed; Nb is concentrated in the rutile-alumina mixed layer, and local fracture and regeneration are repeated at temperatures higher than 1300 K. 21 refs., 8 figs., 2 tabs.

  2. Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Shen, Huajun, E-mail: shenhuajun@ime.ac.cn; Tang, Yidan; Bai, Yun; Liu, Xinyu [Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Xufang [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wu, Yudong; Liu, Kean [Zhuzhou CSR Times Electric Co., Ltd, ZhuZhou 412001 (China)

    2015-01-14

    Low resistivity Ni/Ti/Al ohmic contacts on p-type 4H-SiC epilayer were developed, and their thermal stabilities were also experimentally investigated through high temperature storage at 600 °C for 100 h. The contact resistance of the Al/Ti/Ni/SiC contacts degraded in different degrees, and the contact morphology deteriorated with the increases of the average surface roughness and interface voids. X-ray spectra showed that Ni{sub 2}Si and Ti{sub 3}SiC{sub 2}, which were formed during ohmic contact annealing and contributed to low contact resistivity, were stable under high temperature storage. The existence of the TiAl{sub 3} and NiAl{sub 3} intermetallic phases was helpful to prevent Al agglomeration on the interface and make the contacts thermally stable. Auger electron spectroscopy indicated that the incorporation of oxygen at the surface and interface led to the oxidation of Al or Ti resulting in increased contact resistance. Also, the formation of these oxides roughened the surface and interface. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism dominates the current transport for contacts before and after the thermal treatment. It suggests that the Ni/Ti/Al composite ohmic contacts are promising for SiC devices to be used in high temperature applications.

  3. Statistical thermodynamics -- A tool for understanding point defects in intermetallic compounds

    International Nuclear Information System (INIS)

    Ipser, H.; Krachler, R.

    1996-01-01

    The principles of the derivation of statistical-thermodynamic models to interpret the compositional variation of thermodynamic properties in non-stoichiometric intermetallic compounds are discussed. Two types of models are distinguished: the Bragg-Williams type, where the total energy of the crystal is taken as the sum of the interaction energies of all nearest-neighbor pairs of atoms, and the Wagner-Schottky type, where the internal energy, the volume, and the vibrational entropy of the crystal are assumed to be linear functions of the numbers of atoms or vacancies on the different sublattices. A Wagner-Schottky type model is used for the description of two examples with different crystal structures: for β'-FeAl (with B2-structure) defect concentrations and their variation with composition are derived from the results of measurements of the aluminum vapor pressure, the resulting values are compared with results of other independent experimental methods; for Rh 3 Te 4 (with an NiAs-derivative structure) the defect mechanism responsible for non-stoichiometry is worked out by application of a theoretical model to the results of tellurium vapor pressure measurements. In addition it is shown that the shape of the activity curve indicates a certain sequence of superstructures. In principle, there are no limitations to the application of statistical thermodynamics to experimental thermodynamic data as long as these are available with sufficient accuracy, and as long as it is ensured that the distribution of the point defects is truly random, i.e. that there are no aggregates of defects

  4. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH

  5. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  6. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  7. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  8. Microstructural characterization of HIP consolidated NiTi–nano Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Farvizi, M., E-mail: mmfarvizi@yahoo.com [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Ebadzadeh, T. [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Vaezi, M.R. [Nanotechnology and Advanced Materials Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Yoon, E.Y.; Kim, Y-J. [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Simchi, A. [Department of Materials Science and Engineering and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Highlights: • NiTi–6 wt.% nano α-Al{sub 2}O{sub 3} composites have been produced using a HIP method. • Both elemental and prealloyed powders were used for the fabrication of composites. • Generation of mismatch stress and intermetallics affected martensitic transformation. • Nanoparticles partially inhibited thermally induced martensitic transformation. • An interwoven austenite–martensite structure was observed in the composite samples. - Abstract: The microstructure and phase transformational behavior of NiTi-based composites reinforced with 6 wt.% of α-alumina nanoparticles have been investigated. Two kinds of starting materials, elemental Ni–Ti and prealloyed austenitic NiTi, were used to prepare the composites. The samples were consolidated using a hot isostatic pressing method. The X-ray diffraction results showed that while unreinforced NiTi mainly contained B2 phase at room temperature, martensitic B19′ phase appeared in the microstructure after addition of the α-alumina nanoparticles. The differential scanning calorimetry measurements indicated that the martensitic transformation temperatures were elevated in the composite samples, but the transformational enthalpy was reduced in comparison with the NiTi sample. It is believed that the generation of thermal mismatch stress during the sintering and the formation of small contents of NiTi{sub 2}/Ni{sub 3}Ti intermetallics in the composite samples are responsible for this increment of the martensitic transformation temperatures. Also, due to the nanometric size of α-Al{sub 2}O{sub 3}, a larger fraction of the matrix is disturbed by the presence of the nanoparticles, which yields the formation of effective barriers to the thermally induced martensitic transformation in the nanocomposite samples. The high-resolution transmission electron microscopy studies of the samples confirmed the higher defect density and partial microplastic deformation in the composite samples.

  9. Method for preparation of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barber, A.C.; McDougall, I.L.

    1975-07-10

    The invention deals with a method to prepare a superconductor consisting of a superconducting compound of at least two elements. It especially deals with superconductors which surround a superconducting intermetallic compounds of at least two elements, examples of which are Nb/sub 2/Sn and Nb/sub 3/Al.

  10. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  11. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  12. Moessbauer Spectroscopy Studies of Some Intermetallics in the Zr-Nb-Fe System

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. [CNEA-UNSAM, Comision Nacional de Energia Atomica, Instituto de Tecnologia J. Sabato (Argentina); Saragovi, C. [Comision Nacional de Energia Atomica, Departamento de Fisica (Argentina); Granovsky, M.; Arias, D. [Comision Nacional de Energia Atomica, Departamento de Materiales (Argentina)

    2002-03-15

    Samples with the following compositions: Zr{sub 62}Nb{sub 14}Fe{sub 24}, Zr{sub 65}Nb{sub 10}Fe{sub 25} and Zr{sub 52}Nb{sub 10}Fe{sub 38} were studied by Moessbauer spectroscopy. All of them showed a ternary cubic Ti{sub 2}Ni-type phase (QS: 0.30{+-}0.02, IS: -0.14{+-}0.01) and traces of Zr{sub 2}Fe phase (QS: 0.86{+-}0.03, IS: -0.29{+-}0.01). Zr{beta} phase (QS: 0.22{+-}0.01, IS: -0.11{+-}0.01) was also detected except in the case of the richer Fe sample. In addition to these expected phases, a hexagonal MgZn{sub 2}-type phase was determined. The assigned parameters for this phase are: QS: 0.38{+-}0.04, IS: -0.28{+-}0.02. These results suggest a revision of the diagram.

  13. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  14. Study of microstructure and superconducting properties of Nb3Al-tapes, obtained by heat treatment of three-layer and multilayer composites Nb/AlCu

    International Nuclear Information System (INIS)

    Korzhov, Valeriy P.

    2012-01-01

    The structure and superconductivity of three- and multilayer composite tapes of Nb/AlCu after high- temperature heating at 1750-1850 0 C for 1-3 seconds were investigated. Three-layer composites of Nb/AlCu/Nb with thickness of 50 microns were obtained by applying a vacuum rolling at 400-450 0 C and subsequent rolling at room temperature. Multilayer lengthy composites of Nb/AlCu obtained by extrusion with subsequent flattening by rolling of complex blank, collected in a special way. The effect of copper on the structure and properties of three-layer tapes was investigated. Copper increased the critical current of the superconductor. The critical current density in multilayered Nb 3 Al-tape reaches the value 8.10 4 A/cm 2 in magnetic field 14 T. The critical bending radius of the tape is 7 mm. Key words: multilayer composite tape, extrusion, rolling, superconducting Nb 3 Al-tape, high- temperature heat treatment, critical current density

  15. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  16. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  17. Microstructure of two phases alloy Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}; Microestructura de una aleacion de dos fases Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C; Rosas, G; Perez, R [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The titanium-aluminium system presents three intermetallic compounds from those Al{sub 3}Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al{sub 3}Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al{sub 2}Ti phase over Al{sub 3}Ti intermetallic compound increases its ductility. (Author)

  18. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  19. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  20. Changes of structure and properties of cast steels GX10NiCrNb32-20 and GX10NiCrNb3-25 after long-term tempering at 600-1000 C

    International Nuclear Information System (INIS)

    Gommans, R.; Schrijen, H.; Sundermann, J.; Steinkusch, W.; Hering, W.

    2001-01-01

    Low-alloy cast steels of type GX 10NiCrNb 32.20 are commonly used for the outlet section of reformer and cracker tubes for the temperature range of 600-1000 C. There was a lack of data on the ductility of the 25%Cr alloyed cast steel GX10NiCrNb 35.25 at room temperature after tempering, which was investigated in a joint project of Pose-Marre and DSM. Mechanical tests were carried out at room temperature and at elevated temperatures. Apart from light microscopy, also SEM/EDX, SAM and TEM analyses were carried out. The 25% alloy has lower ductility than the 20% alloy, owing primarily to the more pronounced development of M 6 C carbide from primary NbC carbide, which takes up Ni and Si during tempering. The microstructure and composition of the M 6 C carbide wre not fully clarified. Information is presented on the potential application of low-carbon materials of the type GX10NiCrNb35.25 [de

  1. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  2. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    Elenbaas, R.A.

    1980-01-01

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  3. Real structure and selected properties of the superconducting intermetallic compound V3Si

    International Nuclear Information System (INIS)

    Kleinstueck, K.; Kraemer, U.; Paufler, P.; Ullrich, H.J.

    1980-01-01

    Plasticity and electro-plastic effects have been detected at temperatures above 1200 0 C in the intermetallic compound V 3 Si which can not plastically be deformed under normal conditions. The mechanisms of plastic deformation were elucidated. The critical temperature and the critical current density could be altered by plastic deformation. It was found that the mechanisms of plastic deformation as well as the alteration of the critical parameters are dependent on the chemical composition of the intermetallic compound within the range of homogeneity. For measuring such alterations Kossel's interference method was used. Intense plastic deformation of crystals resulted in an influence on the martensite transformation

  4. Comparison Between Nb3Al and Nb3Sn Strands and Cables for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Barzi, E.; Chlachidze, G.; Rusy, A.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Velev, V.; Wake, M.; Zlobin, A.V.; /Fermilab

    2010-01-01

    The Nb{sub 3}Al small racetrack magnet, SR07, has been successfully built and tested to its short sample limit beyond 10 Tesla without any training. Thus the practical application of Nb{sub 3}Al strands for high field accelerator magnets is established. The characteristics of the representative F4 strand and cable, are compared with the typical Nb{sub 3}Sn strand and cable. It is represented by the OST high current RRP Nb{sub 3}Sn strand with 108/127 configuration. The effects of Rutherford cabling to both type strands are explained and the inherent problem of the Nb{sub 3}Sn strand is discussed. Also the test results of two representative small racetrack magnets are compared from the stand point of Ic values, and training. The maximum current density of the Nb{sub 3}Al strands is still smaller than that of the Nb{sub 3}Sn strands, but if we take into account of the stress-strain characteristics, Nb{sub 3}Al strands become somewhat favorable in some applications.

  5. Amperometric glucose sensor based on the Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode obtained from a thin Ni{sub 3}Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Magdalena, E-mail: jarosz@chemia.uj.edu.pl [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow (Poland); Jóźwik, Paweł [Faculty of Advanced Technology and Chemistry, Military University of Technology, Kaliskiego 2, 00908 Warsaw (Poland); Sulka, Grzegorz D. [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland)

    2017-06-30

    Highlights: • Chemical etching of Ni{sub 3}Al alloy in an acidic mixture was performed. • Electrochemical activity of samples was achieved by their oxidation in NaOH. • Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode showed electrochemical activity towards glucose. • Synthesized material is characterized by high sensitivity and short response time. - Abstract: In this report, we present a facile and relatively fast method to roughen the surface of Ni{sub 3}Al–based intermetallic foil, and test it as an amperometric non-enzymatic glucose sensor. The alloy samples underwent chemical etching in a H{sub 3}PO{sub 4}:CH{sub 3}COOH (HAc):HNO{sub 3}:H{sub 2}O (24:1:1:7 in volume) solution in order to achieve a high surface area with more electroactive sites. The Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode was fabricated using potential cycling technique in a highly concentrated alkaline solution. The electrodes were tested electrochemically for oxidation of glucose. We have demonstrated that Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrodes exhibit high sensitivity towards glucose detection (796 μAmM{sup -1}cm{sup -2}) and short response time (3 s) upon successive addition of glucose. Moreover, as for a non-nanometric material, prepared electrodes show a relatively good linear correlation between current density and glucose concentration (0.025–0.45 mM) and limit of detection (47.6 μM). For more in-depth characterization of presented material, electrodes were examined using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  6. RHQT Nb3Al 15-Tesla magnet design study

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

  7. Quench tests of Nb3Al small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; Fermilab; NIMC, Tsukuba; KEK, Tsukuba

    2007-01-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed

  8. Quench tests of Nb3Al small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  9. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  10. Core-level XPS studies of Ce and La intermetallic compounds and their implications for the 4f levels of Ce compounds

    International Nuclear Information System (INIS)

    Freiburg, C.; Fuggle, J.C.; Hillebrecht, F.U.; Zolnierek, Z.; Laesser, R.

    1983-01-01

    The 3d core hole X-ray photoelectron spectra (XPS) of approximately 30 intermetallic compounds of La and Ce are reported. Transitions to final states with approximately f 0 , f 1 and f 2 character are observed in some Ce compounds (f 0 and f 1 for La compounds). The results are discussed in terms of the current ideas of the influence of f-counts and f-levels hybridization on core level lineshapes. We cannot find an explanatoin of the observed spectra consisted with the ''promotial model'' where the 4f-count varies and 4f electron was thought to be entirely promoted to the Ce 5d6s valence bands in some compounds. There may be some small charge transfer from the f level, however. In conjunction with ideas on screening processes in XPS the observed lineshapes suggest coupling of the 4f electrons to other states is strongest in those compounds previously thought to have f 0 character. This coupling increases despite a large increase in the Ce-Ce distance when Ce is diluted with Ni or Pd. Thus it cannot be due to direct f-f interaction and must be attributed to coupling with the other valence electrons; possibly those centred on the partner sites. (orig./EZ) [de

  11. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  12. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2015-03-05

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300°C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90% of their original intrinsic activity was retained after 50h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane.

  13. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  14. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  15. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    Science.gov (United States)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  16. Mechanical properties of steel 8 CrMoNiNb 9 10 in dependence on the microstructural condition

    International Nuclear Information System (INIS)

    Fabritius, H.; Schnabel, E.

    1976-01-01

    Tension tests at room temperature to 600 0 C and creep-rupture tests at 500 to 600 0 C lasting up to about 75,000 h on two casts of steel 8 CrMoNiNb 9 10 with about 0.08% C, 0.3% Si, 0.7% Mn, 0.012% N, 0.005% Al, 2.34% Cr, 0.95% Mo, 0.8% Nb and 0.64% Ni in bainitic and ferritic microstructural condition. Influence of annealing at 650 to 800 0 C on the properties in the tension test. Influence of aging at 500 to 600 0 C lasting up to 30,000 h with and without mechanical stress on the properties in the tension test at aging temperature and on the toughness behaviour in the notched bar impact bend test at room temperature. (orig.) [de

  17. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    Energy Technology Data Exchange (ETDEWEB)

    Thömmes, A., E-mail: thoemmes.alexander@gmail.com; Shevtsova, L. I., E-mail: edeliya2010@mail.ru; Laptev, I. S., E-mail: ilya-laptev-nstu@mail.ru; Mul, D. O., E-mail: ddariol@yandex.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show as clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.

  18. Structural stability and electronic properties of AlCu3, AlCu2Zr in AlZr3: Stabilnost strukture in elektronske lastnosti AlCu3, AlCu2Zr in AlZr3:

    OpenAIRE

    Cheng, Rong; Wu, Xiao-Yu

    2013-01-01

    First-principles calculations were performed to study the alloying stability and electronic structure of the Al-based intermetallic compounds AlCusub3, AlCusub{2}Zr and AlZrsub3. The results show that the lattice parameters obtained after the full relaxation of the crystalline cells are consistent with the experimental data, and these intermetallics have a strong alloying ability and structural stability due to their negative formation energies and their cohesive energies. A further analysis ...

  19. Spin polarization in rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Steenwijk, F.J. van

    1976-01-01

    In this thesis the results of Moessbauer experiments performed on a series of intermetallic compounds of europium and gadolinium are reported. For each of these compounds the magnetic hyperfine field, the electric field gradient at the nuclear site and the isomer shift were determined. For most of the compounds the magnetic ordering temperature was also measured. For some of the europium compounds (e.g. EuAu 5 , EuAg 5 , and EuCu 5 ) it could be derived from the measurements that the easy direction of magnetization falls along the crystallographic c-axis. In a number of compounds (e.g. EuCu 5 , EuZn 5 , EuAu 2 and GdCu 5 ), the various contributions to the magnetic hyperfine field were disentangled by the investigation of suitable pseudobinary compounds that are dilute in Eu. The neighbour contribution Hsub(N) and the paramagnetic Curie temperature thetasub(p) were compared with each other in terms of the RKKY model for EuCu 5 and GdCu 5 . Since the correspondence was found to be poor it was concluded that the magnetic behaviour in these compounds cannot be described by a simple free electron picture as is the basis for the RKKY model

  20. Untitled

    Indian Academy of Sciences (India)

    of passivity-inducing elements Ti, Zr, V, Nb, Ta, Cr, Mo, W, Si and Ni to FeAl on the thermomechanical ... Microstructural studies of the alloyed intermetallics revealed that when the ... over, an alloy development philosophy to produce ductile.

  1. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  2. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Makise, Kazumasa; Terai, Hirotaka [Advanced ICT Research Institute, National Institute of Information and Communications Technology (Japan); Zhang, Lu [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Wang, Zhen, E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Tech University, Shanghai 201210 (China)

    2016-06-15

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{sup 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  3. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    International Nuclear Information System (INIS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-01-01

    Ni 3 V bulk intermetallic compounds with ordered D0 22 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D0 22 structure of Ni 3 V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D0 22 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation

  4. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  5. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  6. Electric quadrupole and magnetic dipole interactions at {sup 181}Ta impurity in Zr{sub 2}Ni{sub 7} intermetallic compound: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dey, C.C., E-mail: chandicharan.dey@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Srivastava, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)

    2013-10-15

    Electric quadrupole interactions at {sup 181}Ta impurity in the intermetallic compound Zr{sub 2}Ni{sub 7} have been studied by perturbed angular correlation technique. It has been found that there are two electric field gradients (EFG) at the {sup 181}Ta site due to two different crystalline configurations in Zr{sub 2}Ni{sub 7}, while contradictory results were reported from previous investigations. The values of EFG at room temperature have been found to be V{sub zz}=7.9×10{sup 17} V/cm{sup 2} and 7.1×10{sup 17} V/cm{sup 2} corresponding to present experimental values of quadrupole frequencies and asymmetry parameters for the two sites: ω{sub Q}{sup 1}=70.7(1) Mrad/s, η=0.28(1), δ=0.8(2)% (site fraction 84%) and ω{sub Q}{sup 2}=63(1) Mrad/s, η=0.35(5), δ∼0 (site fraction 9%). Electric field gradients and asymmetry parameters have been computed from the complementary first-principles density functional theory (DFT) to compare with present experimental results. Our calculated values of EFG are found to be in close agreement with the experimental results. No magnetic interactions in Zr{sub 2}Ni{sub 7} have been observed at 298 and 77 K which implies that there is no ferromagnetic ordering in this material down to 77 K. This observation is corroborated by theoretical calculations, wherein no magnetic moment or hyperfine field is found at any atomic site.

  7. Distribution of oxides in a Zr-Cu-Ni-Al-Nb-Si bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Jochen; Busch, Ralf [Chair of Metallic Materials, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany); Mueller, Frank; Huefner, Stefan [Chair of Experimental Physics, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany)

    2010-07-01

    The course of oxide presence with distance from the sample surface and bonding partner was studied for the bulk metallic glass with the nominal composition Zr{sub 57.9}Cu{sub 15.4}Ni{sub 12.7}Al{sub 10.2}Nb{sub 2.8}Si{sub 1} (at%) by X-ray photoelectron spectroscopy (XPS). Investigated specimens are taken from vacuum quench-cast rods subjected to oxidation at room temperature and atmosphere. Binding energies were determined in various depths using ion beam ablation of up to 100 nanometers. XPS spectra confirm oxidation primarily of the pure zirconium and aluminum constituents, all other peaks correspond to metallic bonds. While the surface area shows a passivating zirconia layer a few nanometers thick, oxygen is bonded predominantly with aluminum inside the bulk. Since the concentration of oxygen is a crucial factor in the crystallization behavior of bulk metallic glass forming liquids on basis of oxygen affine metals, so far only high purity materials were thought to be suitable. The findings in this study, however, are promising for alloys with industrial grade elements with sufficient glass forming ability. Comparisons of the alloy with differing oxygen content support the conclusion that aluminum acts as an appropriate scavenger for both adsorbed and large amounts of intrinsic oxygen in zirconium based amorphous metals.

  8. Effect of isothermal annealing on the compressive strength of a ZrAlNiCuNb metallic glass

    International Nuclear Information System (INIS)

    Song Min; He Yuehui

    2011-01-01

    Research highlights: → Only structural relaxation happens during annealing at the temperature below T g . → Nanocrystallization happens during annealing at the temperature above T g . → The compressive strength increases with annealing time up to 20 min. → The compressive strength decreases with annealing time after 20 min. - Abstract: The effects of isothermal annealing on the microstructures and compressive strength of a Zr 56 Al 10.9 Ni 4.6 Cu 27.8 Nb 0.7 bulk metallic glass (BMG) have been studied using X-ray diffraction, scanning electron microscopy and compression tests. It has been shown that only structural relaxation happens during annealing at the temperature below T g (glass transition temperature), while both structural relaxation and nanocrystallization happen during annealing at the temperature above T g . Compression tests indicated that the strength of the BMG increases with annealing time at 437 deg. C up to 20 min, after which the strength starts to decrease. The strength evolution of the BMG with the annealing time is due to combined effects of the variations of the free volume and nanocrystals.

  9. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  10. Formation of nickel-tantalum compounds in tantalum fluoride halide melts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Zalkind, O.A.; Kuznetsov, B.Ya.; Orlov, V.M.; Sukhorzhevskaya, S.L.

    2001-01-01

    Interaction of nickel with NaCl-K 2 TaF 7 melt (14 mol.%) at 750 deg C was studied, the composition of intermetallic compounds formed in Ni-Ta system being analyzed, using the methods of chemical and X-ray phase analyses, IR spectroscopy. It was ascertained that composition of intermetallic compounds (Ni 3 Ta, Ni 2 Ta) depends on K 2 TaF 7 concentration in the melt, metallic tantalum additions, nickel substrate thickness and experiment duration. The mechanism of currentless deposition of tantalum on nickel was considered and the assumption was made that disproportionation reaction lies in the basis of the process [ru

  11. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  12. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  13. Steam reforming of different biomass tar model compounds over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Artetxe, Maite; Alvarez, Jon; Nahil, Mohamad A.; Olazar, Martin; Williams, Paul T.

    2017-01-01

    Highlights: • Order of reactivity: anisole > furfural > indene > phenol > toluene > methyl naphthalene. • Higher coke deposition for oxygenates (1.5–2.8%) than for aromatics (0.5–0.8%). • Amorphous coke is deposited for oxygenates and filamentous carbon for aromatics. • Ni content of 20 wt.% shows the higher conversion (90%) and H_2 potential (63%). - Abstract: This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al_2O_3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H_2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H_2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%).

  14. Metallurgy, fabrication, and superconducting properties of multifilamentary Nb3Al composites

    International Nuclear Information System (INIS)

    Hafstrom, J.W.

    1976-01-01

    The control of metallurgical structure during fabrication that will improve the superconducting properties of multifilamentary, aluminium-stabilized, Nb 3 Al composites is described. Composites are fabricated by placing niobium rods in an aluminum matrix, and then drawing to wire. Nb 3 Al is formed at temperatures exceeding 1800 0 C for about 5 s and ordered at 750 0 C for 48 h. A critical current, J/sub c/(H), in excess of 10 5 A/cm 2 (F/sub p/ approximately equal to 7 x 10 8 dynes/cm 3 ) at 7 T and a T/sub c/ to 18.2 K are obtained. Attempts to improve J/sub c/(H) by controlling the grain size in the Nb 3 Al diffused layer are discussed. Precipitates, arising from the addition of carbon during Nb 3 Al layer growth, do not appear to be effective as grain-boundary or flux pinners. When 1 percent Zr is added to the Nb, the growth of the Nb 3 Al layer is accelerated, T/sub c/ is lowered and J/sub c/(H) is not significantly improved. J/sub c/(H) rapidly decreases with an increase in Nb 3 Al or (Nb-Zr) 3 Al layer thickness, d. J/sub c/(H) is independent of d in composites with d greater than or approximately equal to 1.5 μm. In general, the Nb 3 Al grain size appears comparable to d for d less than or equal to 1 μm. Significant improvement of J/sub c/(H) for Nb 3 Al superconducting composites reacted at temperatures above 1800 0 C (to achieve T/sub c/ greater than 17 K) is achieved only by maintaining the layer thickness well below d approximately equal to 1.0 μm

  15. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system

    International Nuclear Information System (INIS)

    Toffolon, C.

    2000-01-01

    The Framatome M5 TM Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the α/β transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of βNb and intermetallic phases in the α phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O∼1200 ppm) system. (author)

  16. Representation of the properties 10 CrMoNiNb 9 10

    International Nuclear Information System (INIS)

    Dette, M.; Hahn, H.; Nieuwland, H.C.D.; Tichler, J.W.

    The high-temperature ferritic steal 10 CrMoNiNb 9 10 is used as structural material in nuclear steam generators. It is exposed to loads within the creep range. In order to resist safety also loads caused by incidents after long temperature stress, the time-independent stability parameters must not fall below specified minimum values. The material is characterised by the stability degree Nb/C+N and the niobium excess δ Nb. (orig.) [de

  17. Structure, hardness and fracture features of nanostructural materials

    International Nuclear Information System (INIS)

    Noskova, N.I.; Korznikov, A.V.; Idrisova, S.R.

    2000-01-01

    A study is made into nanocrystalline metals Cu and Mo, nanocrystalline intermetallic compound Ni 3 Al produced using severe plastic deformation; nanophase alloys Fe 73.5 Cu 1 Nb 3 Si 1.35 B 9 and Pd 81 Cu 7 Si 12 produced by crystallization from amorphous state as well as nanophase materials TiN and Al 2 O 3 produced by nano powder compacting in the temperature range of 273-573 K. Methods of transmission and scanning electron microscopy, X-ray diffraction analysis, mechanical testing and microhardness measurement are applied to study structure, internal elastic stress, phase composition, hardness, strength and plastic properties, surface fracture mode of nanostructural materials [ru

  18. Fast diffusion in the intermetallics Ni3Sb and Fe3Si: a neutron scattering study

    International Nuclear Information System (INIS)

    Randl, O.G.

    1994-02-01

    We present the results of neutron scattering experiments designed to elucidate the reason for the extraordinarily fast majority component diffusion in two intermetallic alloys of DO 3 structure, Fe 3 Si and Ni 3 Sb: We have performed diffraction measurements in order to determine the crystal structure and the state of order of both alloys as a function of composition and temperature. The results on Fe 3 Si essentially confirm the classical phase diagram: The alloys of a composition between 16 and 25 at % Si are DO 3 -ordered at room temperature and disorder at high temperatures. The high-temperature phase Ni 3 Sb also crystallizes in the DO 3 structure. Vacancies are created in one Ni sublattice at Sb contents beyond 25 at %. In a second step the diffusion mechanism in Ni 3 Sb has been studied by means of quasielastic neutron scattering. The results are reconcileable with a very simple NN jump model between the two different Ni sublattices. Finally, the lattice dynamics of Fe 3 Si and Ni 3 Sb has been studied by inelastic neutron scattering in dependence of temperature (both alloys) and alloy composition (Fe 3 Si only). The results on Fe 3 Si indicate clearly that phonon enhancement is not the main reason for fast diffusion in this alloy. In Ni 3 Sb no typical signs of phonon-enhanced diffusion have been found either. As a conclusion, fast diffusion in DO 3 intermetallics is explained by extraordinarily high vacancy concentrations (several atomic percent) in the majority component sublattices. (author)

  19. The effect of graphite precipitates in Ni3Al/C composite on tribological properties

    Directory of Open Access Journals (Sweden)

    A. Janas

    2010-01-01

    Full Text Available The study shows the results of investigations of the tribological properties of cast Ni3Al/C composite and compares them with the properties of pure intermetallic phases of the Ni3Al type. An inspiration to these studies was a surprising similarity observed between the microstructure of iron-carbon alloys, and specifically of different cast iron grades, and the microstructure of, absolutely different in terms of the chemical composition, nickel-aluminium alloy. Because of carbon present in the alloy, an attempt was made to determine what effect the presence of graphite (acting as a lubricant might have on the abrasive wear behaviour of alloy during lubricated friction test. Tests were made on a Miller apparatus, used for active testing of the abrasive wear resistance. The specimen loss of mass was determined in function of time.

  20. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y11Ni60C6.

    Science.gov (United States)

    Guo, Yiming; Fredrickson, Daniel C

    2016-10-17

    Intermetallic carbides provide excellent model systems for exploring how frustration can shape the structures and properties of inorganic materials. Combinations of several metals with carbon can be designed in which the formation of tetrahedrally close-packed (TCP) intermetallics conflicts with the C atoms' requirement of trigonal prismatic or octahedral coordination environments, as offered by the simple close-packings (SCP) of equally sized spheres. In this Article, we explore the driving forces that lead to the coexistence of these incompatible arrangements in the Yb 11 Ni 60 C 6 -type compound Y 11 Ni 60 C 6 (cI154), as well as potential consequences of this intergrowth for the phase's physical properties. Our focus begins on the structure's SCP regions, which appear as C-stuffed versions of a AuCu 3 -type YNi 3 phase that is not observed on its own in the Y-Ni system. DFT-Chemical Pressure (DFT-CP) calculations on this hypothetical YNi 3 phase reveal large negative pressures within the Ni sublattice, as it is stretched to accommodate the size requirements of the Y atoms. In the Y 11 Ni 60 C 6 structure, two structural mechanisms for addressing these CP issues appear: the incorporation of interstitial C atoms, and the presence of interfaces with CaCu 5 -type domains. The relative roles of these two mechanisms are investigated with the CP analysis on a hypothetical YNi 3 C x series of C-stuffed AuCu 3 -type phases, the Y-Ni sublattice of Y 11 Ni 60 C 6 , and finally the full Y 11 Ni 60 C 6 structure. Through these calculations, the C atoms appear to play the roles of relieving positive Y CPs and supporting relaxation at the AuCu 3 -type/CaCu 5 -type interfaces, where the cancellation occurs between opposite CPs experienced by the Y atoms in the two parent structures (following the epitaxial stabilization mechanism). The CP analysis of Y 11 Ni 60 C 6 also highlights a sublattice of Y and Ni atoms with large negative CPs (and thus the potential for soft

  1. The influence of the surface distribution of Al6(MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions

    International Nuclear Information System (INIS)

    Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1998-01-01

    In this paper the behaviour against pitting corrosion of different samples of AA5083 aluminium alloy has been studied. A correlation between the microstructure of the samples and their susceptibility to pitting has been established. Metallographic analysis combined with SEM and EDS techniques have allowed us to detect three intermetallic compounds in the samples. The particle size distribution and surface density of each intermetallic phase have been evaluated for the three AA5083 alloy samples coming from different suppliers. Significant differences in the microstructure of the three samples have been found. Full immersion test carried out in 3.5% aerated aqueous solutions showed that pitting starts at the locations of the Al 6 (MnFe) intermetallic particles. As a consequence of this, the samples with higher Al 6 (MnFe) content showed a higher pit density on its surface. The results of cyclic polarisation tests showed also a good correlation with the microstructural parameters. (orig.)

  2. Fracture toughness of intermetallics using a micro-mechanical probe

    International Nuclear Information System (INIS)

    Gerberich, W.W.; Venkataraman, S.K.; Hoehn, J.W.; Marsh, P.G.

    1993-01-01

    A novel technique for determining the fracture toughness of brittle intermetallics is presented, wherein very small samples are used and multiple tests are easily conducted on a flat polished surface. The fracture toughness of single crystal NiAl and polycrystalline Al 3 Sc are evaluated with this continuous microscratch technique at scratch rates ranging from 0.5 to greater than 100 μm s - . For comparison, small compact tension samples of (100) NiAl are evaluated at applied stress intensity rates ranging from 1.5 to 5,400 MPa-m 1/2 s -1 . Good comparison of microscratch toughness to compact tension K Ic values are obtained in this study for (001) NiAl, 10.6 vs. 10.0 MPa-m 1/2 , from the literature for (001) , 13.5 vs. 12.2 MPa-m 1/2 , and from the literature for polycrystalline Al 3 Sc, 3.5 vs. 3.1 MPa-m 1/2 . Also, the fracture toughness of both NiAl and Al 3 Sc are found to be strongly dependent on strain rate at room temperature with toughness dropping by an order of magnitude over a decade increase in rate. Possible reasons and implications to improving low temperature brittleness are discussed

  3. Influences of precursor constitution and processing speed on microstructure and wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2009-01-01

    The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr 3 C 2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions

  4. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  5. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  6. Effects of Be additions on microstructures of TiAl intermetallic compounds

    International Nuclear Information System (INIS)

    Nonaka, Katsuhiko; Tanosaki, Kazuo; Kawabata, Takeshi; Nakajima, Hideo

    1997-01-01

    TiAl-0.1-3.0 mol%Be alloys made by the argon arc melting method were investigated to characterize microstructures in cast and annealed conditions using optical microscopy, SEM, EPMA and X-ray diffractometer. The addition of Be to TiAl resulted in a decrease of α 2 phase, thereby coarsening grains and a shift of γ/(γ+α 2 ) phase boundary to Ti-rich side. Two types of Be compound were observed: one was a few micron size of particles which contain a large amount of oxygen and the other was a coarse and eutectic-like phase (θ) which has an atomic ratio of Ti:Al:Be=41:30:29. The solubility limit of Be in TiAl was less than 0.1 mol%. In the (γ+θ) two phase and (γ+α 2 +θ) three phase regions, an increase of Be addition beyond the solubility limit resulted in a small increase of Ti/Al compositional ratio in γ phase. A volume fraction of lamellar structure in TiAl-Be ternary alloys was smaller in the cast structure but was larger in the annealed structure than that in TiAl binary alloys which have nearly the same Ti/Al ratio as that in the ternary alloys, because the Be addition may increase the stacking fault energy and will stabilize the lamellar twin boundaries, respectively. (author)

  7. Magnetic phenomena in UNi1-xRhxAl compounds

    International Nuclear Information System (INIS)

    Andreev, A.V.; Dremov, R.V.; Uwatoko, Y.; Mushnikov, N.V.; Goto, T.; Shiokawa, Y.; Homma, Y.; Hagmusa, I.H.; Klaasse, J.C.P.

    1999-01-01

    We report on structure investigation and magnetization study of UNi 1-x Rh x Al solid solutions between an antiferromagnet UNiAl and a ferromagnet URhAl. The ZrNiAl-type hexagonal crystal structure of the parent compounds is preserved in the whole concentration range. Magnetization was measured as a function of magnetic field, temperature and external hydrostatic pressure. The observed complex evolution of magnetic phenomena with Rh substitution for Ni is discussed in terms of effects of the varying 5f-ligand hybridization. A tentative magnetic phase diagram is proposed. (orig.)

  8. Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds

    International Nuclear Information System (INIS)

    Ivanova, T.I.; Nikitin, S.A.; Tskhadadze, G.A.; Koshkid’ko, Yu.S.; Suski, W.; Iwasieczko, W.; Badurski, D.

    2014-01-01

    Highlights: • The Al influence on magnetic properties of the Ho (Co 1-x Al x ) 2 compounds is analyzed. • The first-order magnetic transition appears in sample with Al concentrations x ≤ 0.06. • The MCE and Curie temperature TC demonstrate complex Al concentration dependences. • The magnetoresistance for sample with Al concentration x = 0.06 (58%) is maximum. • High magnetic fields changes the Curie temperature T c of the Ho (Co 1−x Al x ) 2 compounds. - Abstract: The magnetization, magnetoresistivity and magnetocaloric effect (MCE) of the Ho (Co 1−x Al x ) 2 Laves phase intermetallic compounds for x ⩽ 0.2 have been investigated. Complex measurements have been carried out in order to determine the influence of substitution in the Co sublattice by Al on the Co moment, type of the magnetic transition and related properties of these compounds. A comparative analysis of the magnetic, transport and magnetocaloric properties of Ho (Co 1−x Al x ) 2 alloys under various Al concentration is represented. Substitutions at the Co site by Al are found to result in the appearance of itinerant electron metamagnetism (IEM) at the small Al concentrations and in positive magnetovolume effect, leading to an initial increase in the ordering temperature; on the other hand the magnetic phase transition temperature as well as ΔT (MCE) do not depend in direct way on the Al concentration. The 16% increase of magnetocaloric effect for the alloy with x = 0.02 is detected in relation to maternal HoCo 2 . A giant value of magnetoresistivity (58%) is observed for the alloy with the same Al concentration

  9. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  10. Caracterización microestructural del compuesto intermetálico AI7Cu4Ni

    Directory of Open Access Journals (Sweden)

    Herrera, R.

    2004-04-01

    Full Text Available A study of the microstructural characterization of the intermetallic compound Al7Cu4Ni was carried out. The intermetallic compound was fabricated using the melting and casting process followed by a homogenization treatment at 750 °C for 240 h. The structural evolution during homogenizing was analyzed by X-ray diffraction. The microstructure of intermetallic compound was also characterized by scanning electron and transmission electron microscopies. Additionally, the microhomogeneity of this compound was studied by the Energy Dispersive and Wavelength Dispersive Spectroscopy. The results of this work showed that it was possible to obtain the intermetallic compound with the crystalline structure and at the composition reported in the literature. Besides, this compound showed a good chemical microhomogeneity, which makes it a possible candidate as a material reference for either microanalysis or hardness testing.

    Se llevó a cabo un estudio de caracterización microestmctural del compuesto intermetálico AI7Cu4Ni, que se fabricó por fusión y moldeo y un posterior recocido de homogeneización a 750 °C, durante 480 h. La evolución estructural durante el recocido de homogeneización se siguió por difracción de rayos X. La microestructura se caracterizó por microscopía electrónica de barrido y transmisión. Asimismo, se estudió la microhomogeneidad química del compuesto intermetálico, utilizando las técnicas de microanálisis de dispersión de energía y de longitud de onda de rayos X. Los resultados verificaron que es posible obtener el compuesto intermetálico AI7Cu4Ni con la estructura cristalina y en la composición reflejada en la literatura. Además, su buena microhomegeneidad química sugiere su posible aplicación como un material de referencia para la técnica de microanálisis o el ensayo de dureza.

  11. Hot stage nanoindentation in multi-component Al-Ni-Si alloys: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Department of Engineering, University of Applied Sciences Wildau (Berlin), Bahnhofstrasse 1, Wildau 15745 (Germany)], E-mail: asta.richter@tfh-wildau.de; Chen, C.-L. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Smith, R.; McGee, E. [Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU (United Kingdom); Thomson, R.C. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Kenny, S.D. [Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2008-10-25

    The mechanical properties of individually pure and intermetallic phases of typical Al-Ni-Si piston alloys are investigated at different temperatures using hot stage nanoindentation. The hardness and the indentation modulus of a number of phases are determined at room temperature, 500 K and 650 K. Both, hardness and reduced modulus drop with increasing temperature in different ratios for the various phases. Increasing Ni content in the grains improves the mechanical stability of the material at elevated temperatures in general. The indentation patterns are studied using atomic force microscopy with particular reference to the indentation depths and pile-up effects. Site-specific samples from the material surrounding the nanoindents are prepared using a focussed ion beam field emission gun for examination in the transmission electron microscope. This allows direct observation of material changes as a result of the indentation process in the different phases within the alloy system. Corresponding linked atomistic finite element calculations have been carried out for Si and Ni-Al systems as a function of increasing Ni content at various temperatures. The results show only a small difference in the mechanical behaviour of Si between 300 K and 650 K as observed in the experiments. Large differences for Al at both temperatures studied result in an increase of plasticity with rising temperature and atomic motion that changes from slip in well-defined planes to a viscous fluid-like behaviour. The formation of dislocations and slip bands during indentation for the Ni-Al systems is studied.

  12. Temperature behavior of SNS-like Nb/Al-AlO x/Nb Josephson junctions

    International Nuclear Information System (INIS)

    Lacquaniti, V.; Andreone, D.; Maggi, S.; Rocci, R.; Sosso, A.; Steni, R.

    2006-01-01

    Overdamped Nb/Al-AlO x /Nb Josephson junctions are an intermediate state between the SIS and SNS Josephson junctions. Stable and reproducible non-hysteretic current-voltage characteristics have been obtained with a proper choice of the fabrication parameters, featuring critical current densities J c up to 25 kA/cm 2 and characteristic voltages up to 450 μV. While these values make the junctions interesting for RSFQ electronic circuits, their response to an RF signal at 70 GHz has demonstrated their suitability for both programmable and ac voltage standard. In these work we analyse the temperature behavior of these junctions up to T/T c = 1, T c being the niobium critical temperature, which gives relevant information on the junction structure and, especially, on the oxide insulator/metallic film barrier, which is the key for the reproducible transition from an hysteretic to a non-hysteretic behavior. The results are also compared with other data of hysteretic and overdamped junctions

  13. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  14. Molecular dynamics simulation of radiation-induced amorphization of the ordered compound NiZr2

    International Nuclear Information System (INIS)

    Devanathan, R.; Meshii, M.

    1992-12-01

    We have studied the electron irradiation-induced amorphization of the ordered intermetallic compound NiZr 2 by molecular dynamics simulations in conjunction with embedded-atom potentials. Randomly chosen Frenkel pairs and chemical disorder were introduced into the system in separate processes. In both cases, the energy and volume of the system rose above the corresponding levels of a quenched liquid and the calculated diffraction patterns indicated the occurrence of a crystalline-to-amorphous transition. In addition, the average shear elastic constant fell to about 50% of its value in the perfect crystal and the system became elastically isotropic. These results indicate that NiZr 2 can be amorphized by chemical disorder as well as Frenkel pairs and are in good agreement with experimental observations

  15. A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures

    International Nuclear Information System (INIS)

    Semenova, Olga; Krachler, Regina

    2008-01-01

    Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films

  16. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    Science.gov (United States)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-09-01

    LaNi3 exhibited a metallic antiferromagnetic property with T N = 30 K. La(Ni1-x Cox )3 with x = 0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x . La(Ni1-2z Coz Cuz )3 with z = 0.015 exhibited a ferromagnetic property with a small T C. A La(Ni1-y Cuy )3 sample with y = 0.01 exhibited a Pauli-paramagnetic property; those with y = 0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y = 0.05 exhibited a ferromagnetic property. The gradual metamagnetic M -H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one.

  17. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites

    International Nuclear Information System (INIS)

    Price, Richard D.; Jiang Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2011-01-01

    Research highlights: → Residual Al improves the mechanical properties of Ti-Al 3 Ti MIL composites. → Residual Al can eliminate intermetallic centerline delaminations in MILs. → Low levels of residual Al increase fracture toughness in MIL composites. → MIL stiffness, strength, and fracture toughness can be optimized at low Al levels. - Abstract: Metal-intermetallic laminate (MIL) composites consisting of alternating layers of Ti, Al, and the intermetallic Al 3 Ti have been fabricated by reactive foil sintering in open air. Six initially identical stacks of alternating Ti-3Al-2.5 V and 1100-Al foils were processed for different lengths of time, yielding specimens with different metal and intermetallic volume fractions. Their mechanical properties have been investigated with an emphasis on the effect of residual Al at the intermetallic centerline on composite strength and fracture toughness, as well as fracture and failure modes. Samples were cut from each composite plate (in layer orientations parallel and perpendicular to the intended load direction) for mechanical testing in compression and four-point bending under quasi-static and high-rate loading conditions. Examination of the damaged specimens and their fracture surfaces by optical and scanning electron microscopy was performed to establish a correlation between the failure mechanisms present, composite strength, and microstructure. Results indicated that regardless of loading direction, cracks always initiated in the intermetallic region, rarely at the centerline, and crack propagation and failure were heavily influenced by the thickness of the residual aluminum layers. There is an ideal residual aluminum volume fraction that represents the amount of ductile reinforcement that maximizes the combined properties of strength, toughness and stiffness.

  18. Design study of 15-Tesla RHQT Nb3Al block type dipole magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that it can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.

  19. Scaleup of powder metallurgy processed Nb-Al multifilamentary wire

    International Nuclear Information System (INIS)

    Thieme, C.; Foner, S.; Otubo, J.; Pourrahimi, S.; Schwartz, B.; Zhang, H.

    1983-01-01

    Power metallurgy processed Nb-Al superconducting wires were fabricated from billets up to 45 mm o.d. with nominal areal reduction ratios, R, up to 2 X 10 5 , Nb powder sizes from 40 to 300 μm from various sources, Al powder sizes from 9 to 75 μm, Al concentrations from 3 to 25 wt % Al and with a wide range of heat treatments. All the compacts used tap density powder in a Cu tube and swaging and/or rod rolling and subsequent wire drawing. Both single strand and bundled wires were made. Overall critical current densities, J /SUB c/, of 2 X 10 4 A/cm 2 at 14 T and 10 4 A/cm 2 at 16 T were achieved for 6 to 8 wt % Al in Nb

  20. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface