WorldWideScience

Sample records for intermetallic compounds ni-ti

  1. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  2. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  3. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  4. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  5. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  6. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  7. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  8. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  9. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    International Nuclear Information System (INIS)

    Sabochick, M.J.

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After ∼0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing ∼0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs

  10. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  11. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials

    International Nuclear Information System (INIS)

    He, P.; Liu, D.

    2006-01-01

    The formation of brittle intermetallic compounds at the interfaces of diffusion bonds is the main cause which leads to poor bond strength. Therefore, it is very important to study and establish the formation and growth model of intermetallic compounds at the interfaces for the control process of diffusion bonding. In this paper, according to the diffusion kinetics and the thermodynamics, the principle of formation of intermetallic compounds at interfaces in the multi-component diffusion couple, the flux-energy principle, is put forward. In the light of diffusion theory, the formation capacity of the phase at the interfaces is determined by specific properties of the composition in the diffusion couple and the composition ratio of the formed phase is in agreement with the diffusion flux. In accordance with the flux-energy principle, the microstructure of the Ni/TC4 interface is Ni/TiNi 3 /TiNi/Ti 2 Ni/TC4, the microstructure of the TC4/00Cr18Ni9Ti interface is 00Cr18Ni9Ti/TiFe 2 /TiFe/Ti 2 Fe/TC4, and the microstructure of the TiAl/40Cr interface is 40Cr/TiC/Ti 3 Al + FeAl + FeAl 2 /TiAl. Multi-intermetallic compounds with the equivalent flux-energy can be formed at the interfaces at the same time

  12. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  13. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  14. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (NiTi

  15. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  16. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  17. Containerless automated processing of intermetallic compounds and composites

    Science.gov (United States)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  18. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  19. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  20. Structural and Mössbauer spectroscopy characterization of bulk and nanostructured TiFe{sub 0.5} Ni{sub 0.5}/graphite compounds and their hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, M. A. R., E-mail: fisicorodriguez@gmail.com; André-Filho, J.; Félix, L. L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C. [Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada (Brazil); Mestnik-Filho, J. [Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2015-06-15

    The structural and hyperfine properties of bulk TiFe{sub 0.5}Ni{sub 0.5} intermetallic and ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite compounds and their hydrides have been studied. The bulk and nanostructured TiFe{sub 0.5}Ni{sub 0.5} compounds crystallize in the cubic crystal structure of CsCl (B2). After hydrogenation, the formation of hydrogen-poor phase (∝-phase) and hydride phase (β-phase) have been determined for the bulk compound. However, the formation of the ∝-phase and the hydrogen-richest phase (γ-phase) and other secondary phases have been determined for the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample. It has been determined that the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample presents a large amount of the γ-phase which indicates that the presence of graphite nearby nanostructured intermetallic grains enhances the absorption of hydrogen. Mossbauer results are consistent with the structural results. Meanwhile, no significant changes in the isomer shift (IS) value has been determined for the α-phase with respect to the intermetallic compound, a strong increase in the IS value has been determined for the β- and γ-phases with respect to the ∝-phase. That increase indicates a decrease of the s-electron density at the Fe nuclei due to the charge transfer from the metal to the nearby hydrogen atoms.

  1. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  2. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  3. Liquid phase interaction in TiC0,5N0,5-TiNi-Mo and TiC0,5N0,5-TiNi-Ti-Mo

    International Nuclear Information System (INIS)

    Askarova, L.Kh; Grigorov, I.G.; Zajnulin, Yu.G.

    1998-01-01

    Using the methods of X ray diffraction analysis, electron microscopy and X ray spectrum microanalysis a study was made into specific features of phase and structure formation in alloys TiC 0,5 N 0,5 -TiNi-Mo and TiC 0,5 N 0,5 -TiNi-Mo in the presence of a liquid phase at temperatures of 1380-1600 deg C. It is revealed that the physical and chemical processes taking place during the liquid-phase sintering result in the formation of a three-phase alloy consisting of nonstoichiometric titanium carbonitride TiC 0.5-x N 0.5-x , a molybdenum base solid solution of titanium, nickel and carbon Mo(Ti, Ni, C) and one of two intermetallic compounds, either TiNi or Ni 3 Ti. Metallic element concentration in individual phase constituents of the alloy is determined by means of X ray spectrum microanalysis

  4. Microstructure and tribological properties of Ti–Cu intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo, Chun; Zhou, Jiansong; Yu, Youjun; Wang, Lingqian; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    Highlights: ► Ti–Cu coating has been synthesized on pure Ti substrate by laser cladding. ► Microstructure and tribological properties of Ti–Cu coating were analyzed. ► The prepared Ti–Cu intermetallic compound coating has excellent wear resistance. -- Abstract: Ti–Cu intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using copper powder as the precursor. It has been found that the prepared coating mainly contains of TiCu, TiCu 3 , Ti 3 Cu, and Ti phases. The transmission electron microscopy results conform further the existence of Ti–Cu intermetallic compound in the fabricated coating. Tribological properties of the prepared Ti–Cu intermetallic compound coating were systematically evaluated. It was found that normal loads and sliding speeds have a strong influence on the friction coefficient and wear rate of Ti–Cu intermetallic compound coating. Namely, the friction coefficient of the Ti–Cu intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the Ti–Cu intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  5. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  6. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  7. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  8. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  9. Intermetallic compound development for the 21st century

    International Nuclear Information System (INIS)

    Munroe, P.R.

    2000-01-01

    lntermetallic compounds have been vigorously researched for the past twenty years. As a result of these studies the fundamental behaviour of a number of transition metal aluminides and suicides is now well understood, and a number of alloys with commercially acceptable properties have been developed. Future challenges for these alloys, for example Ni 3 AI, TiAI and Fe 3 AI, are focused on the development of large-scale production routes. However, there remain a number of other intermetallic compounds, such as Laves phases, which exhibit some promising properties, but little is presently known about their intrinsic behaviour. For compounds such as these more fundamental studies are required

  10. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  11. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  12. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  14. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  15. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites

    Science.gov (United States)

    Gu, Dongdong; Ma, Chenglong

    2018-05-01

    Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.

  16. Diffusion mechanisms in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)

    1992-08-01

    Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.

  17. Reaction of intermetallic compounds of the ScT composition (T=Ag, Cu, Zn, Ni) with hydrogen

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.; Tarasov, B.P.

    1995-01-01

    Reaction of intermetallic compounds of ScT composition (T=Ag, Cu, Zn, Ni), crystallized in CsCl structural type, with hydrogen at 0.2-10 MPa pressure and 293-673 K temperature is studied by chemical, x-ray phase and complex thermogravimetry analysis methods. It is shown that under such conditions hydrogen absorption by ScAg and ScCu is accompanied by the decay of their source matrices into scandium dihydride and metal silver and copper respectively. For ScZn a fine-dispersion mixture of scandium dihydride with zinc and hydride phase of a new zinc-containing intermetallic compound appears to be the finite reaction product. In case of ScNi a hydride phase of ScNiH 2.6 composition is produced, which is crystallized in a rhombic syngony with the lattice periods: a=0.5281±0.0007, b=0.7393±0.0009 and c=0.3327±0.0004 nm. 9 refs.; 2 tabs

  18. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  19. Radiation-induced amorphization of intermetallic compounds: A molecular-dynamics study of CuTi and Cu4Ti3

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.; Sabochick, M.J.

    1991-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu 4 Ti 3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed. 25 refs., 4 figs

  20. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In

    International Nuclear Information System (INIS)

    Lapolli, Andre Luis

    2006-01-01

    Systematic behavior of magnetic hyperfine field (B hf ) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B hf were carried out at the rare earth atom and in sites using the nuclear probes 140 Ce and 11 '1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from 140 Ce probe as well as at in sites obtained from 111 Cd probe for each series of compounds were extrapolated to zero Kelvin B hf (T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B hf comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B hf (T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with 111 Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the 111 Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  1. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  2. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.

    Science.gov (United States)

    Oliynyk, Anton O; Mar, Arthur

    2018-01-16

    probabilities. Major results include the discovery of RhCd, the first new binary AB compound to be found in over 15 years, with a CsCl-type structure; the connection between "ambiguous" prediction probabilities and the phenomenon of polymorphism, as illustrated in the case of TiFeP (with TiNiSi- and ZrNiAl-type structures); and the preparation of new predicted Heusler phases MRu 2 Ga and RuM 2 Ga (M = first-row transition metal) that are not obvious candidates. Second, how can the search for materials with desired properties be accelerated? One particular application of strong current interest is thermoelectric materials, which present a particular challenge because their optimum performance depends on achieving a balance of many interrelated physical properties. Making use of a recommendation engine developed by Citrine Informatics, we have identified new candidates for thermoelectric materials, including previously unknown compounds (e.g., TiRu 2 Ga with Heusler structure; Mn(Ru 0.4 Ge 0.6 ) with CsCl-type structure) and previously reported compounds but counterintuitive candidates (e.g., Gd 12 Co 5 Bi). An important lesson in these investigations is that the machine-learning models are only as good as the experimental data used to develop them. Thus, experimental work will continue to be necessary to improve the predictions made by machine learning.

  3. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  4. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  5. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  6. Diffusion of titanium and nickel in B2 NiTi

    Czech Academy of Sciences Publication Activity Database

    Divinski, S.V.; Stloukal, Ivo; Král, Lubomír; Herzig, Ch.

    289-292, - (2009), s. 377-382 ISSN 1012-0386. [DIMAT 2008, International Conference on Diffusion in Materials /7./. Lanzarote, Canary Islands , 28.10.2008-31.10.2008] Institutional research plan: CEZ:AV0Z20410507 Keywords : intermetallic compound NiTi * nickel nad titanium diffusion * diffusion mechanism Subject RIV: BJ - Thermodynamics http://www.scientific.net/DDF.289-292.377/

  7. Failure Analysis and Recovery of a 50-mm Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis

    2016-01-01

    Ball bearings used inside the ISS Distillation Assembly centrifuge require superior corrosion and shock resistance to withstand acidic wastewater exposure and heavy spacecraft launch related loads. These requirements challenge conventional steel bearings and provide an ideal pathfinder application for 50-mm bore, deep-groove ball bearings made from the corrosion immune and highly elastic intermetallic material 60NiTi. During early ground testing in 2014 one 60NiTi bearing unexpectedly and catastrophically failed after operating for only 200 hr. A second bearing running on the same shaft was completely unaffected. An investigation into the root cause of the failure determined that an excessively tight press fit of the bearing outer race coupled with NiTi's relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully replicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  8. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  9. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motemani, Y. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Nili-Ahmadabadi, M. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of); Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mmjtan@ntu.edu.sg; Bornapour, M.; Rayagan, Sh. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of)

    2009-02-05

    TiNi alloy is a well-known shape memory alloy and has been widely used for bio-medical, mechanical and electrical applications. In this study, a Ni-rich NiTi alloy was prepared by vacuum arc melting in a water-cooled copper crucible. Three samples of this alloy were heated to 1000 deg. C and cooled in three media: furnace, water, and dry-ice bath. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), hardness measurement and tensile test were carried out to investigate the effect of cooling rate on transformation temperature and mechanical properties. The results show that Ni{sub 3}Ti intermetallic compounds have a great influence on martensitic phase transformation temperature. These tests clearly showed the correlation between cooling rate and properties of the alloy.

  10. Pseudo-elasticity and shape memory effect on the TiNiCoV alloy

    International Nuclear Information System (INIS)

    Hsu, S.E.; Yeh, M.T.; Hsu, I.C.; Chang, S.K.; Dai, Y.C.; Wang, J.Y.

    2000-01-01

    Unlike most of the structural intermetallic compound, TiNi is an exceptional case of inherent ductility. Besides its amusing behavior of high damping capacity due to martensitic transformation, the duel properties of shape memory and pseudo-elasticity co-exhibited in the same V and Co-modified TiNi-SMA at various temperature will attract another attention in modern manufacturing technology. The objective of this paper is to investigate the pseudo-elasticity and strain rate effect on TiNiCoV-SMA. The presence of dual behavior of super-elasticity and shape memory effect is technological significant for application of advanced materials on the structural component. An illustration of application of TiNiCoV shape memory alloy on the face of golf club head will be presented in this paper. (orig.)

  11. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  12. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  13. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  14. Failure Analysis and Recovery of a 50 MM Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis E., III

    2016-01-01

    The ISS Distillation Assembly centrifuge is the pathfinder application for 50mm bore, deep-groove ball bearings made from the highly elastic intermetallic material 60NiTi. Superior corrosion and shock resistance are required to withstand the acidic wastewater exposure and heavy spacecraft launch related loads that challenge conventional steel bearings. During early ground testing one bearing unexpectedly and catastrophically failed after operating for only 200 hours of run time. A second bearing running on the same shaft was completely unaffected. A thorough investigation into the root cause of the failure determined that an excessively tight press-fit of the bearing outer race coupled with NiTis relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully duplicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  15. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  16. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  17. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  18. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  19. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  20. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  1. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  2. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  3. Void formation in NiTi shape memory alloys by medium-voltage electron irradiation

    International Nuclear Information System (INIS)

    Schlossmacher, P.; Stober, T.

    1995-01-01

    In-situ electron irradiation experiments of NiTi shape memory alloys, using high-voltage transmission electron microscopes, result in amorphization of the intermetallic compound. In all of these experiments high-voltages more than 1.0 MeV had to be applied in order to induce the crystalline-to-amorphous transformation. To their knowledge no irradiation effects of medium-voltage electrons of e.g. 0.5 MeV have been reported in the literature. In this contribution, the authors describe void formation in two different NiTi shape memory alloys, resulting from in-situ electron irradiation, using a 300 kV electron beam in a transmission electron microscope. First evidence is presented that void formation is correlated with the total oxygen content of the alloys

  4. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  5. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  6. FY 1992 Report on the survey results. Surveys on trends of research and development of advanced materials for severe environments (Intermetallic compounds); 1992 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu (kinzokukan kagobutsu) ni kakawaru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The trends of the ongoing researches on intermetallic compounds are surveyed through interviews and inquiries, in order to evaluate the results of the projects and research and development of the advanced materials for severe environments, and also to survey the research trends. The survey results are pigeonholed into 4 general categories; (1) research trends in the USA, UK and Germany, (2) notable topics of recent progress in intermetallic research and development, (3) evaluation of the projects, and (4) lists of the results of the researches on the Al-Ti and Al-Nb intermetallic compounds. The ongoing projects include those for intermetallic compounds of high specific strength and of high melting point, the former being represented by Al-Ti compounds and the latter by Al-Nb compounds, for aircraft and space development purposes. The projects are evaluated, viewed from materials and purposes/targets pursued by the projects, R and D organizations, and degree of attention the projects are attracting. The intermetallic compounds are extensively studied and attracting attention in various countries, but possibilities of achieving the set targets are rather pessimistic. (NEDO)

  7. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  8. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  9. Microstructural analyses of intermetallic TiAl(Nb)-compounds prepared by arc melting and by powder metallurgy

    International Nuclear Information System (INIS)

    Chen, S.

    1988-01-01

    Intermetallic compounds based on TiAl with Nb or V as alloying additions prepared by powder metallurgy (P/M) and arc melting (A/M) techniques have been investigated with respect to their potential as new high temperature materials. All the alloys with nominal Al-concentrations 34-36 wt% contain two phases, γ-TiAl and α 2 -Ti 3 Al, but significant differences in the distribution of γ and α 2 were found between the P/M and A/M materials. The role of impurities during processing and the microstructural stability in the planned service temperature range 700-1000 0 C are discussed. In the P/M TiAl alloys two carbide precipitates have been found, which are the cubic Perovskite-AlTi 3 C phase in the γ-matrix and the hexagonal H-AlTi 2 (C, N) phase at grain boundaries. At high temperatures the AlTi 3 C phase dissolves and is replaced by more stable H-phase, and therefore no longer contributes to the high temperature strength of the material. Mechanical properties of both the P/M and A/M alloys are compared in association with the processing methods and the resulting microstructures. (orig.) With 71 figs., 22 tabs [de

  10. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction

  11. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    of flux with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction.

  12. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  13. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  14. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  15. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  16. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    International Nuclear Information System (INIS)

    Cao, J.; Song, X.G.; Wu, L.Z.; Qi, J.L.; Feng, J.C.

    2012-01-01

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni 3 (AlTi) layer, a Ni 2 AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi 3 layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al 3 Ni and Al 3 Ni 2 phases. The reaction sequence of the Al/Ni multilayers was Al 3 Ni → Al 3 Ni 2 → AlNi → AlNi 3 and the final products were AlNi and AlNi 3 phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: ► Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. ► The reaction sequence of the Al/Ni multilayers was Al 3 Ni → Al 3 Ni 2 → AlNi → AlNi 3 . ► The interfacial microstructure of the joint was clarified. ► The application of Al/Ni multilayers improved the joining quality.

  17. Prediction of intermetallic compounds

    International Nuclear Information System (INIS)

    Burkhanov, Gennady S; Kiselyova, N N

    2009-01-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  18. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Pecharsky, A.O.; Pecharsky, V.K.

    2004-01-01

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from ∼3 to ∼350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature ( 2 , Er 3 Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K

  19. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  20. Micromechanisms of fracture and fatigue in Ti3Al based and TiAl based intermetallics

    International Nuclear Information System (INIS)

    James, A.W.; Chave, R.A.; Hippsley, C.A.; Bowen, P.

    1993-01-01

    Micromechanisms of fracture and fatigue crack growth resistance in specific Ti 3 Al based and TiAl based intermetallics are reviewed. Effects of test temperature, environment and microstructure on crack growth resistance are considered in detail for several Ti 3 Al and Ti'Al based intermetallic systems under development. The implications of these studies for the structural reliability of these materials is also addressed briefly. (orig.)

  1. The Ni3Al and NiAl alloys: a class of intermetallics which can replace the Ni-base superalloys for the aerospace high temperature structural applications

    International Nuclear Information System (INIS)

    Lucaci, M.; Vidu, C.D.; Vasile, E.

    2001-01-01

    The paper presents the results obtained in synthesizing Ni-base refractory intermetallics from elemental powder mixes. In view of this, four mixes were made for the Ni 3 Al intermetallics and five mixes for the NiAl ones. The compound synthesis was made at T = 660 o C under vacuum by the SHS method, in the thermo-explosion mode. The variable parameters were the compacting pressure and the aluminum amount in the mixes. The obtained materials were then characterized by the microstructure and by the physical properties. The product synthesis degree was followed as well as their influence on the types of microstructures obtained. The reaction products were evidenced by x-ray diffraction and by quantitative chemical microanalysis. The obtained results revealed the formation of the Ni 3 Al compound having a primitive cubic crystal lattice with a 0 = 3,564 Aa and the formation of the NiAl compound, of a bcc lattice having a 0 = 2,86 Aa. Those obtained prove the ample influences of the powder homogeneity degree and of the powder purity on the possibility to produce an adequate synthesis, as well as the influence of the amount liquid appeared in the system on the synthesis degree, on the reaction rate and on the porosity of materials obtained. (author)

  2. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Wang, W.; Yang, K.; Bliznuk, V.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles, and coupled with a genetic optimization scheme, is presented. The method is applied to the design of new ultra-high-strength maraging stainless steels strengthened by Ni 3 Ti intermetallics. In the first design round, the alloy composition is optimized on the basis of precipitate formation at a fixed ageing temperature without considering other steps in the heat treatment. In the second round, the alloy is redesigned, applying an integrated model which allows for the simultaneous optimization of alloy composition and the ageing temperature as well as the prior austenitization temperature. The experimental characterizations of prototype alloys clearly demonstrate that alloys designed by the proposed approach achieve the desired microstructures.

  3. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  4. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  5. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  6. An experimental study of praseodymium intermetallic compounds at low temperatures

    International Nuclear Information System (INIS)

    Greidanus, F.J.A.M.

    1982-01-01

    In this thesis the author studies the low temperature properties of praseodymium intermetallic compounds. In chapter 2 some of the techniques used for the experiments described in the subsequent chapters are discussed. A set-up to perform specific-heat experiments below 1 K and a technique for performing magnetic susceptibility measurments below 1 K, using a superconducting quantum interference device (SQUID) are described. Chapter 3 is devoted to the theory of interacting Pr 3+ ions. Both bilinear and biquadratic interactions are dealt with in a molecular-field approximation. It is shown that first as well as second-order phase transitions can occur, depending on the nature of the ground state, and on the ratio of magnetic to crystal-field interactions. In chapters 4, 5, 6 and 7 experimental results on the cubic Laves phase compounds PrRh 2 , PrIr 2 , PrPt 2 , PrRu 2 and PrNi 2 are presented. From inelastic neutron scattering experiments the crystalline electric field parameters of the above compounds are determined. In chapters 5 and 6 susceptibility, neutron-diffraction, hyperfine specific-heat, low-field magnetization, pulsed-field magnetization, specific-heat and resistivity measurements are presented. In chapter 7 the specific heat and differential susceptibility of PrNi 2 below 1 K are studied. Finally, in chapter 8 praseodymium intermetallic compounds with low-symmetry singlet ground states, and cubic compounds with magnetic doublet ground states are studied. (Auth.)

  7. The role of intermetallic precipitates in Ti-62222S

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D J [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Broderick, T F [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Woodhouse, J B [UES Inc, Dayton, OH (United States); Hoenigman, J R [Wright State Univ., Dayton, OH (United States). Research Inst.

    1996-08-15

    Samples of Ti-62222-0.23wt.%Si were heat treated and aged at temperatures ranging from 1150 F to 1500 F with the view of effecting selective precipitation of {alpha}{sub 2} precipitates and silicides (i.e. Ti{sub x}Zr{sub 5-x}Si{sub 3}). The effect of these intermetallic precipitates on the mechanical properties and fracture morphology was assessed via three separate microstructural conditions: Ti-62222S with {alpha}{sub 2} precipitates, Ti-62222S with {alpha}{sub 2} and silicide precipitates, and Ti-62222S with silicide precipitates. Both types of intermetallic precipitate appear to lower the fracture toughness, however {alpha}{sub 2} promotes intergranular fracture while silicides lead to transgranular failure and dimpling. The combined presence of the {alpha}{sub 2} and silicides leads to mixed mode failure. Further, since {alpha}{sub 2} is present in the {alpha} phase and silicides precipitate out in the {beta} phase, it appears that the effect of each of these intermetallics in Ti-62222S is additive rather than synergistic. (orig.)

  8. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  9. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  10. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    International Nuclear Information System (INIS)

    Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-01-01

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  11. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J., E-mail: cao_jian@hit.edu.cn [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Song, X.G. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Wu, L.Z. [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Qi, J.L.; Feng, J.C. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-02-29

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni{sub 3}(AlTi) layer, a Ni{sub 2}AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi{sub 3} layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al{sub 3}Ni and Al{sub 3}Ni{sub 2} phases. The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3} and the final products were AlNi and AlNi{sub 3} phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: Black-Right-Pointing-Pointer Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. Black-Right-Pointing-Pointer The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3}. Black-Right-Pointing-Pointer The interfacial microstructure of the joint was clarified. Black-Right-Pointing-Pointer The application of Al/Ni multilayers improved the joining quality.

  12. Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel

    Science.gov (United States)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2013-12-01

    The unique properties of NiTi alloy, such as its shape memory effect, super-elasticity and biocompatibility, make it ideal material for various applications such as aerospace, micro-electronics and medical device. In order to meet the requirement of increasing applications, great attention has been given to joining of this material to itself and to other materials during past few years. Laser welding has been known as a suitable joining technique for NiTi shape memory alloy. Hence, in this work, a comparative study on laser welding of NiTi wire to itself and to AISI 304 austenitic stainless steel wire has been made. Microstructures, mechanical properties and fracture morphologies of the laser joints were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), Vickers microhardness (HV0.2) and tensile testing techniques. The results showed that the NiTi-NiTi laser joint reached about 63% of the ultimate tensile strength of the as-received NiTi wire (i.e. 835 MPa) with rupture strain of about 16%. This joint also enabled the possibility to benefit from the pseudo-elastic properties of the NiTi component. However, tensile strength and ductility decreased significantly after dissimilar laser welding of NiTi to stainless steel due to the formation of brittle intermetallic compounds in the weld zone during laser welding. Therefore, a suitable modification process is required for improvement of the joint properties of the dissimilar welded wires.

  13. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  14. The constitution of the ternary system Ti-Ni-C; Die Konstitution des Dreistoffes Ti-Ni-C

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, J.C.; Du, Y. [Technische Univ., Vienna (Austria). Inst. fuer Physikalische Chemie

    1998-12-31

    The system Ti-Ni-C was completely re-examined taking a new approach applying XRD, DTA, SEM-EDX and light microscopy, for elaboration of a complete thermodynamic description of the system. The carbon solubility in the binary Ti-Ni compounds is of significance only in the Ti{sub 2}Ni phase, and was found to be 4 at% at 900 C. The thermodynamic description thus achieved enables precise determination of the solubilities of Ti and C in solid or liquid nickel. (orig./CB) [Deutsch] Das System Ti-Ni-C wurde mittels XRD, DTA, SEM-EDX und Lichtmikroskopie umfassend neu untersucht mit dem Ziel, eine komplette thermodynamische Beschreibung zu ermoeglichen. Die Kohlenstoffloeslichkeit in den binaeren Ti-Ni Verbindungen ist nur fuer die Phase Ti{sub 2}Ni signifikant. Bei 900 C betrug sie 4 at% C. Die erarbeitete thermodynamische Beschreibung erlaubt eine praezise Darstellung der Ti- und C-Loeslichkeiten in festem und fluessigem Nickel. (orig.)

  15. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  16. Corrosion Behavior of Ni3(Si,Ti in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The corrosion behaviour of the intermetallic compounds Ni3(Si,Ti (L12: single phase, has been investigated using an immersion test, electrochemical method, scanning electron microscope in 0.5 kmol/m3 HCl at 303 K. In addition, the corrosion behaviour of austenitic stainless steel type 304 and C276 was studied under the same experimental conditions as references. It was found that the intergranular attack was observed for Ni3(Si,Ti in the immersion test. From the immersion test and polarization curves, Ni3(Si,Ti had the moderate corrosion resistance, while the corrosion resistances of C 276 and type 304 were the highest and the lowest. Ni3(Si,Ti and type 304 were difficult to form a stable passive film, but not for C276. A further experiment must be conducted to clarify the stability of film for Ni3(Si,Ti in detail.

  17. Ni{sub 5}TiO{sub 7}” is Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, V.B.

    2017-05-15

    It is shown that the compound known as Ni{sub 5}TiO{sub 7} and considered as a promising catalyst and oxidation product of alloys does not exist and its XRD pattern actually corresponds to Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} - Graphical abstract: XRD pattern of “Ni{sub 5}TiO{sub 7}” (top) is identical to that for Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} (bottom) based on single-crystal structural data. - Highlights: • Popular catalyst known as Ni{sub 5}TiO{sub 7} is actually Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}. • B{sub 2}O{sub 3} came from the flux used for crystal growth. • Some authors reporting this phase did not use any boron compounds.

  18. The characteristics of precipitates in 18% Cr/30% Ni cast steel with additions of Nb and Ti

    International Nuclear Information System (INIS)

    Piekarski, B.

    1995-01-01

    The microstructure of austenitic cast steel with approx. 0.3%C, 4.37%Si, 0.69%Mn, 17.8%Cr, 29.3%Ni, 1.47%Nb and 1.07%Ti have been examined after ageing at 900 C for 300 h. There was found five precipitates: M 23 C 6 , MnS, Ni 3 Fe, (Ti,Nb)C and an intermetallic Ni-Nb-S phase. Ni, Nb, Si-rich precipitate could have been formed in as cast condition. (author)

  19. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  20. Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Molecular dynamics (MD) has been applied to simulate the radiation damage created in displacement cascades in D0 19 Ti 3 Al structural intermetallics. Collision cascades formed by the recoil of either Al or Ti primary knock-on atoms (PKA) with energy E PKA = 5, 10, 15 or 20 keV were considered in Ti 3 Al single crystals at T = 100, 300, 600 and 900 K. At least 24 different cascades for each (E PKA , T, PKA type) set were simulated. A comprehensive treatment of the modelling results has been carried out. We have evaluated the number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA ,T, PKA type). Preferred formation of both Al vacancies and self-interstitial atoms in D0 19 Ti 3 Al exposed to irradiation has been detected

  1. Synthesis and electrochemistry of cubic rocksalt Li-Ni-Ti-O compounds in the phase diagram of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianqi; Noguchi, Hideyuki; Li, Decheng; Muta, Takahisa; Wang, Xiaoqing; Yoshio, Masaki [Department of Applied Chemistry, Saga University, Saga 840-8052 (Japan); Taniguchi, Izumi [Department of Chemical Engineering, Tokyo Institute of Technology, 12-1, Ookayama-2, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-10-15

    On the basis of extreme similarity between the triangle phase diagrams of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} and LiNiO{sub 2}-LiMnO{sub 2}-Li[Li{sub 1/3}Mn{sub 2/3}]O{sub 2}, new Li-Ni-Ti-O series with a nominal composition of Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li-Ni-Ti-O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi{sub 1/2}Ti{sub 1/2}O{sub 2} and Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} (high temperature form). Charge-discharge tests showed that Li-Ni-Ti-O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g{sup -1} for 0.2 {<=} z {<=} 0.27) at room temperature in the voltage range of 4.5-2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g{sup -1} for 0 {<=} z {<=} 0.27), cycleability and rate capability at an elevated temperature of 50 C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li{sup +}. A preliminary electrochemical comparison between Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) and Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2} indicated that charge-discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} while +3 in Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2}. Reduction of Ti{sup 4+} at a plateau of around 2.3 V could be clearly detected in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} with 0.27 {<=} z {<=} 0.5 at 50 C after a deep charge associated with charge compensation from oxygen ion during initial cycle

  2. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  3. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  4. Influence of low Co substitution on magnetoelastic properties of HoFe11Ti intermetallic compound

    International Nuclear Information System (INIS)

    Motevalizadeh, L.; Tajabor, N.; Sanavi Khoshnoud, D.; Fruchart, D.; Pourarian, F.

    2012-01-01

    The thermal expansion and magnetostriction of HoFe 11−x Co x Ti (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77–590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriction shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed. - Highlights: ► Magnetostriction of HoFe 11−x Co x Ti have been measured by using strain gauge method. ► The measurement was carried in 77–590 K under applied magnetic fields up to 1.5 T. ► Spontaneous volume magnetostriction and Invar effect decrease with Co substitution. ► Ho sublattice has negative contribution to spontaneous volume magnetostriction. ► Absolute values of anisotropic magnetostriction decrease slightly with Co content.

  5. Effect of Ta substitution method on the mechanical properties of Ni3(Si,Ti) intermetallic alloy

    International Nuclear Information System (INIS)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki

    2013-01-01

    In this study, Ta was added to an L1 2 -type Ni 3 (Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1 2 phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1 2 phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1 2 single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si

  6. Crystal structure of the binder phase in a model HfC-TiC-Ni material

    International Nuclear Information System (INIS)

    Heiligers, Christiane; Neethling, Johannes H.

    2008-01-01

    The crystal structure of the binder phase in a model HfC-TiC-Ni sample produced by hot pressing is investigated. The nature of the binder depends on the amount of Hf and Ti that remains in solution with Ni after cooling. Four different crystal structures are identified by analysis of electron diffraction patterns obtained using transmission electron microscopy techniques and the composition of the phases determined by energy dispersive X-ray spectrometry. Three of the phases are cubic; Ni, Ni 3 (Ti,Hf) and Ni 23 (Ti,Hf) 6 with lattice parameters of 3.52 ± 0.05, 3.52 ± 0.03 and 10.70 ± 0.40 A, respectively. The hexagonal phase is an intermetallic Ni 3 Ti phase, with lattice parameters of a = b = 5.00 ± 0.20 A and c = 8.16 ± 0.20 A. The crystal structures are confirmed by simulations of the electron diffraction patterns using JEMS software

  7. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  8. The possibility to use TiAl intermetallics for high temperature applications

    International Nuclear Information System (INIS)

    Molotkov, A.V.

    1993-01-01

    Titanium aluminide TiAl is the promising heat resisting structural material with operation temperature up to 850-900 deg C. This intermetallic compound is characterized by low density and high specific values of elasticity moduli and heat resistance properties in wide temperature range, as compared to known heat resisting titanium, iron and nickel base alloys. Test batch of pressed blades was manufactured of TiAl with the use of powder technology. Results of testing showed, that endurance strength of blades exceeded by 30% the strength, required for operation. The calculations showed, that the use of such blades in gas-turbine cagines could provide 30-40% decrease of mass of compressor blading

  9. Hydrogen in intermetallic phases: the system titanium--nickel--hydrogen. Wasserstoff in intermetallischen phasen am beispiel des systems titan-nickel-wasserftoff

    Energy Technology Data Exchange (ETDEWEB)

    Buchner, H.; Gutjahr, M. A.; Beccu, K. D.; Saeufferer, H.

    1972-07-01

    The intermetallic phases Ti/sub 2/-Ni (E9/sub 3/-type) and TiNi (B2-type) are able to absorb great amounts of hydrogen interstitially. The E9/sub 3/-structure forms four isotypic hydrogen phases, the lattice parameters of which increase with increasing hydrogen contents (..delta..d/sub max/ = 5.3%). The stoichiometric formulas are: Ti/sub 2/NiH/sub 0/./sub 5/; Ti/sub 2/NiH; Ti/sub 2/NiH/sub 2/; Ti/sub 2/NiH/sub 2/./sub 5/. The lattice parameter of the B2-structure increases from 3.01 A to 3.10 A (..delta..d = 3%), thus forming the stoichiometric TiNiH phase. The TiNiH structure possesses an eight-fold superlattice having a B2 type cell. The positions of hydrogen in the two intermetallic phases Ti/sub 2/Ni and TiNi are discussed from the geometrical point of view. Neutron diffraction diagrams verify these positions for only two hydrogen phases (Ti/sub 2/NiH/sub 0/./sub 5/; Ti/sub 2/NiH). Because of extreme experimental difficulties, the exact hydrogen positions in the phases Ti/sub 2/NiH/sub 2/; Ti/sub 2/NiH/sub 2/./sub 5/; TiNiH are still unknown.

  10. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  11. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  12. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  13. Fabrication and AE characteristics of TiNi/A16061 shape memory alloy composite

    International Nuclear Information System (INIS)

    Park, Young Chul; Lee, Jin Kyung

    2004-01-01

    TiNi/A16061 Shape Memory Alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which underwent pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/A16061 SMA composite

  14. The Application of 40Ti-35Ni-25Nb Filler Foil in Brazing Commercially Pure Titanium

    Directory of Open Access Journals (Sweden)

    Shan-Bo Wang

    2018-03-01

    Full Text Available The clad ternary 40Ti-35Ni-25Nb (wt % foil has been applied in brazing commercially pure titanium (CP-Ti. The wavelength dispersive spectroscope (WDS was utilized for quantitative chemical analyses of various phases/structures, and electron back scattered diffraction (EBSD was used for crystallographic analyses in the brazed joint. The microstructure of brazed joint relies on the Nb and Ni distributions across the joint. For the β-Ti alloyed with high Nb and low Ni contents, the brazed zone (BZ, consisting of the stabilized β-Ti at room temperature. In contrast, eutectoid decomposition of the β-Ti into Ti2Ni and α-Ti is widely observed in the transition zone (TZ of the joint. Although average shear strengths of joints brazed at different temperatures are approximately the same level, their standard deviations decreased with increasing the brazing temperature. The presence of inherent brittle Ti2Ni intermetallics results in higher standard deviation in shear test. Because the Ni content is lowered in TZ at a higher brazing temperature, the amount of eutectoid is decreased in TZ. The fracture location is changed from TZ into BZ mixed with α and β-Ti.

  15. Formation of Ni-Ti intermetallics during reactive sintering at 500-650 degrees C

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Pokorný, P.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Čapek, J.; Karlík, M.; Kopeček, Jaromír

    2015-01-01

    Roč. 155, Apr (2015), s. 113-121 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : intermetallic compounds * powder metallurgy * electron microscopy * microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.101, year: 2015

  16. Effect of Ta substitution method on the mechanical properties of Ni{sub 3}(Si,Ti) intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki, E-mail: takasugi@mtr.osakafu-u.ac.jp

    2013-12-20

    In this study, Ta was added to an L1{sub 2}-type Ni{sub 3}(Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1{sub 2} phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1{sub 2} phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1{sub 2} single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si.

  17. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  18. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  19. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  20. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  1. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  2. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  3. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  4. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  5. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  6. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  7. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  8. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  9. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  10. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  11. A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, H; Ramirez, A P; Kaefer, W; Fess, K; Thurner, Ch; Kloc, Ch; Bucher, E

    1997-07-01

    TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

  12. Computer simulations of disordering and amorphization kinetics in intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Victoria, M.

    1995-01-01

    Molecular dynamics computer simulations on three intermetallic compounds, Cu 3 Au, Ni 3 Al and NiAl, have been performed to investigate the kinetics of the disordering and amorphization processes. These systems were chosen because reliable embedded atom potentials were developed for the constituent species and their alloys, and also because extended experimental results are available for them. Previous simulations of collision cascades with 5 keV Cu and Ni primary knock-out atom (PKA) showed a significant difference between the evolution of the short range order (SRO) and the crystalline order (CO) parameters in all of the intermetallics: a complete loss of the crystalline structure and only partial chemical disorder in the core of the cascade [T. Diaz de la Rubia et al., Phys. Rev. B 47 (1993) 11483; M. Spaczer et al., Phys. Rev. B 50 (1994) 13204]. The present paper deals with the simulation of the amorphization process in NiAl by 5 and 15 keV Ni PKAs. The kinetic energy of the atoms in the simulated systems was removed on different time scales to mimic strong or weak coupling between electrons and phonons. No evidence of amorphization was found at the end of the cascades created by the 5 keV recoils. However, the 15 keV PKA events showed that (i) in the no-coupling case the system evolved to a highly disordered state, (ii) an amorphous region with about 100 non-lattice atoms was found in the case of weak coupling, (iii) the locally melted and recrystallized region collapsed to a small dislocation loop when medium coupling was used and (iv) a highly ordered state resulted in the case of strong coupling. (orig.)

  13. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  14. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  15. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  16. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  17. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  18. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  19. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  20. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  1. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  2. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites

    International Nuclear Information System (INIS)

    Price, Richard D.; Jiang Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2011-01-01

    Research highlights: → Residual Al improves the mechanical properties of Ti-Al 3 Ti MIL composites. → Residual Al can eliminate intermetallic centerline delaminations in MILs. → Low levels of residual Al increase fracture toughness in MIL composites. → MIL stiffness, strength, and fracture toughness can be optimized at low Al levels. - Abstract: Metal-intermetallic laminate (MIL) composites consisting of alternating layers of Ti, Al, and the intermetallic Al 3 Ti have been fabricated by reactive foil sintering in open air. Six initially identical stacks of alternating Ti-3Al-2.5 V and 1100-Al foils were processed for different lengths of time, yielding specimens with different metal and intermetallic volume fractions. Their mechanical properties have been investigated with an emphasis on the effect of residual Al at the intermetallic centerline on composite strength and fracture toughness, as well as fracture and failure modes. Samples were cut from each composite plate (in layer orientations parallel and perpendicular to the intended load direction) for mechanical testing in compression and four-point bending under quasi-static and high-rate loading conditions. Examination of the damaged specimens and their fracture surfaces by optical and scanning electron microscopy was performed to establish a correlation between the failure mechanisms present, composite strength, and microstructure. Results indicated that regardless of loading direction, cracks always initiated in the intermetallic region, rarely at the centerline, and crack propagation and failure were heavily influenced by the thickness of the residual aluminum layers. There is an ideal residual aluminum volume fraction that represents the amount of ductile reinforcement that maximizes the combined properties of strength, toughness and stiffness.

  3. Study of microstructural evolution of X4CrNiSiTi14-7 during thermal aging; Untersuchung der mikrostrukturellen Entwicklung von X4CrNiSiTi14-7 waehrend thermischer Alterung

    Energy Technology Data Exchange (ETDEWEB)

    Sakhawat, Shahroz; Falahati, Ahmad [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Domankova, Maria [MTF STU Trnava (Slovakia). Inst. of Materials Science

    2010-09-15

    Microstructural evolution during aging treatment in a high tensile precipitation hardening stainless steel (X4CrNiSiTi14-7) has been investigated. Matrix consists of martensitic structure and the combined addition of Si and Ti causes an intermetallic phase type Ni{sub 16}Ti{sub 6}Si{sub 7} that precipitates with-in grains and enhance precipitation strengthening. This material shows a good combination of high strength and ductility. Light-Optical microscopy, electron back scattered diffraction, transmission electron microscopy and X-ray diffraction analysis have been used to study the microstructural evolution during aging. It has been found that precipitations of various kinds are taking place during aging treatments including nm-scaled G-phase and various carbides. Higher aging temperatures lead to reverse transformation of martensite to austenite. (orig.)

  4. Deposition of Chitosan Layers on NiTi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kowalski P.

    2015-04-01

    Full Text Available The NiTi shape memory alloys have been known from their application in medicine for implants as well as parts of medical devices. However, nickel belongs to the family of elements, which are toxic. Apart from the fact that nickel ions are bonded with titanium into intermetallic phase, their presence may cause allergy. In order to protect human body against release of nickel ions a surface of NiTi alloy can be modified with use of titanium nitrides, oxides or diamond-like layers. On the one hand the layers can play protective role but on the other hand they may influence shape memory behavior. Too stiff or too brittle layer can lead to limiting or completely blocking of the shape recovery. It was the reason to find more elastic covers for NiTi surface protection. This feature is characteristic for polymers, especially, biocompatible ones, which originate in nature. In the reported paper, the chitosan was applied as a deposited layer on surface of the NiTi shape memory alloy. Due to the fact that nature of shape memory effect is sensitive to thermo and/or mechanical treatments, the chitosan layer was deposited with use of electrophoresis carried out at room temperature. Various deposition parameters were checked and optimized. In result of that thin chitosan layer (0.45µm was received on the NiTi alloy surface. The obtained layers were characterized by means of chemical and phase composition, as well as surface quality. It was found that smooth, elastic surface without cracks and/or inclusions can be produced applying 10V and relatively short deposition time - 30 seconds.

  5. Microstructure of two phases alloy Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}; Microestructura de una aleacion de dos fases Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C; Rosas, G; Perez, R [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The titanium-aluminium system presents three intermetallic compounds from those Al{sub 3}Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al{sub 3}Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al{sub 2}Ti phase over Al{sub 3}Ti intermetallic compound increases its ductility. (Author)

  6. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  7. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  8. Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Shen, Huajun, E-mail: shenhuajun@ime.ac.cn; Tang, Yidan; Bai, Yun; Liu, Xinyu [Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Xufang [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wu, Yudong; Liu, Kean [Zhuzhou CSR Times Electric Co., Ltd, ZhuZhou 412001 (China)

    2015-01-14

    Low resistivity Ni/Ti/Al ohmic contacts on p-type 4H-SiC epilayer were developed, and their thermal stabilities were also experimentally investigated through high temperature storage at 600 °C for 100 h. The contact resistance of the Al/Ti/Ni/SiC contacts degraded in different degrees, and the contact morphology deteriorated with the increases of the average surface roughness and interface voids. X-ray spectra showed that Ni{sub 2}Si and Ti{sub 3}SiC{sub 2}, which were formed during ohmic contact annealing and contributed to low contact resistivity, were stable under high temperature storage. The existence of the TiAl{sub 3} and NiAl{sub 3} intermetallic phases was helpful to prevent Al agglomeration on the interface and make the contacts thermally stable. Auger electron spectroscopy indicated that the incorporation of oxygen at the surface and interface led to the oxidation of Al or Ti resulting in increased contact resistance. Also, the formation of these oxides roughened the surface and interface. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism dominates the current transport for contacts before and after the thermal treatment. It suggests that the Ni/Ti/Al composite ohmic contacts are promising for SiC devices to be used in high temperature applications.

  9. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  10. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  11. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  12. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  13. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  14. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  15. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  16. Influences of precursor constitution and processing speed on microstructure and wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2009-01-01

    The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr 3 C 2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions

  17. Fracture toughness of ordered intermetallic compounds exhibiting limited ductility and mechanical properties of ion-irradiated polycrystalline NiAl. Final report, July 1, 1986 - June 30, 1997

    International Nuclear Information System (INIS)

    Ardell, A.J.

    1997-09-01

    The focus of the research performed under the auspices of this grant changed several times during the lifetime of the project. The initial activity was an investigation of irradiation-induced amorphization of ordered intermetallic compounds, using energetic protons as the bombarding species. Two significant events stimulated a change of direction: (1) the proton accelerating facility that the authors had been using at the California State University at Los Angeles became unavailable late in 1988 because of a personnel matter involving the only individual capable of operating the machine; (2) they learned that disordering and amorphization of intermetallic compounds produced interesting effects on their mechanical properties. Loss of access t the local accelerator prompted a collaboration with Dr. Droa Pedraza of the Oak Ridge National Laboratory (ORNL), enabling access to the accelerator at ORNL. The influence of disordering and amorphization on mechanical properties ultimately stimulated the development of a miniaturized disk-bend testing (MDBT) facility, the intent of which was to provide semiquantitative and even quantitative measures of the mechanical behavior of ion-irradiated ordered intermetallic alloys. The second phase of the project involved the perfection and usage of the MDBT, and involved exploratory experiments on unirradiated materials like amorphous alloy ribbons and brittle grain boundaries in Ni 3 Al. This report is a brief summary of the research highlights of the project, organized according to the activity that was emphasized at the time

  18. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  19. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  20. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  1. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  2. The effect of boron additions on irradiation-induced order changes in Ni3Al intermetallic compounds

    International Nuclear Information System (INIS)

    Njah, N.; Gilbon, D.; Dimitrov, O.

    1995-01-01

    The effects of boron additions (0.1 wt%) on the kinetics of atomic order changes in a Ni 76 Al 24 intermetallic compound, under 1 MeV electron irradiation, were investigated at temperatures of 293 K and 410 K and displacement rates of 0.09 x 10 -3 to 4.7 x 10 -3 dpa.s -1 . In these irradiation conditions, a state of residual order was obtained for long irradiation times, characterized by a steady state order parameter S∞; it corresponds to a competition between two opposite features: irradiation disordering and thermal reordering enhanced by irradiation. Boron additions did not affect the efficiency of irradiation-induced disordering: the disordering cross-section (or, equivalently, the number of replacements per displacement var-epsilon) were comparable with and without a boron addition. By contrast, the S∞ values at 293 K were much lower in the alloy containing boron. Since boron does not change the disordering rate, the large difference between the values obtained in undoped and in boron-doped alloys shows that the reordering rate is strongly reduced by the presence of boron. Thus, boron modifies the mobility of the defects responsible for the irradiation-enhanced diffusion. The data on dislocation-loop size and the reordering kinetics suggest that vacancies are trapped by boron at low temperatures and immobilized, probably by the formation of a boron-vacancy complex. The effect becomes weaker at higher displacement rates and higher temperatures, probably due to the boron-vacancy complexes becoming unstable. It is proposed that two different reordering mechanisms may be operative at 293 K, according to the presence of boron: reordering is promoted by vacancy migration in the Ni 76 Al 24 alloy, whereas in the Ni 76 Al 24 (0.1 wt%B) alloy, it is promoted by the migration of split-interstitials or/and of low-mobility vacancy-boron complexes

  3. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  4. Effects of Be additions on microstructures of TiAl intermetallic compounds

    International Nuclear Information System (INIS)

    Nonaka, Katsuhiko; Tanosaki, Kazuo; Kawabata, Takeshi; Nakajima, Hideo

    1997-01-01

    TiAl-0.1-3.0 mol%Be alloys made by the argon arc melting method were investigated to characterize microstructures in cast and annealed conditions using optical microscopy, SEM, EPMA and X-ray diffractometer. The addition of Be to TiAl resulted in a decrease of α 2 phase, thereby coarsening grains and a shift of γ/(γ+α 2 ) phase boundary to Ti-rich side. Two types of Be compound were observed: one was a few micron size of particles which contain a large amount of oxygen and the other was a coarse and eutectic-like phase (θ) which has an atomic ratio of Ti:Al:Be=41:30:29. The solubility limit of Be in TiAl was less than 0.1 mol%. In the (γ+θ) two phase and (γ+α 2 +θ) three phase regions, an increase of Be addition beyond the solubility limit resulted in a small increase of Ti/Al compositional ratio in γ phase. A volume fraction of lamellar structure in TiAl-Be ternary alloys was smaller in the cast structure but was larger in the annealed structure than that in TiAl binary alloys which have nearly the same Ti/Al ratio as that in the ternary alloys, because the Be addition may increase the stacking fault energy and will stabilize the lamellar twin boundaries, respectively. (author)

  5. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  6. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  7. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  8. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  9. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  10. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model

    International Nuclear Information System (INIS)

    Hou Hua; Zhao Yuhong; Zhao Yuhui

    2009-01-01

    With the microscopic phase-field model, atomic-scale computer simulation programs for the precipitation mechanism of the ordered intermetallic compound γ' in binary Ni-15.5 at.%Al alloy, θ and γ' in ternary Ni 75 Al x V 25-x alloys were worked out based on the microscopic diffusion equation and non-equilibrium free energy. The simulation can be applied to the whole precipitation process and composition range. A prior assumptions on the new phase structure or transformation path was unnecessary, the possible non-equilibrium phases, atomic clustering and ordering could be described automatically, and atomic images, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence of θ and γ' in complicated system with ordering and clustering simultaneously. Through the simulated atomic images and chemical order parameters of precipitates, we can explain the complex precipitation mechanisms of θ (Ni 3 V) and γ' (Ni 3 Al) ordered phases. For the binary alloy, the precipitation mechanism of γ' phase has the characteristic of both non-classical nucleation and growth (NCNG) and congruent ordering and spinodal decomposition (COSD). For the ternary alloys, the precipitation characteristic of γ' phase transforms from NCNG to COSD gradually, otherwise, the precipitation characteristic of θ phase transforms from COSD to NCNG mechanism gradually

  11. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  12. Large positive magnetoresistance in intermetallic compound NdCo2Si2

    Science.gov (United States)

    Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.

    2018-04-01

    The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.

  13. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  14. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  15. Oxygen stabilized rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Dariel, M.P.; Malekzadeh, M.; Pickus, M.R.

    1975-10-01

    A new, oxygen-stabilized intermetallic compound was identified in sintered, pre-alloyed rare-earth iron powder samples. Its composition corresponds to formula R 12 Fe 32 O 2 and its crystal structure belongs to space group Im3m. The presence of these compounds was observed, so far, in several R--Fe--O systems, with R = Gd, Tb, Dy, Ho, Er, and Y

  16. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  17. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni2In-type intermetallics of the Ni–In–Sn system

    International Nuclear Information System (INIS)

    Ramos de Debiaggi, S.; González Lemus, N.V.; Deluque Toro, C.; Fernández Guillermet, A.

    2015-01-01

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G m ) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni 2 In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni) 1 (Ni,Va) 1 (In,Ni) 1 and (Ni,Va) 1 (Ni,Va) 1 (In,Ni,Sn) 1 , respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G m for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni) 1 (Ni) 1 (In) 1 , which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni 2 In”), Ni:Ni:Ni (i.e., “Ni 3 ”), Ni:Ni:Sn (“Ni 2 Sn”), Ni:Va:In (i.e., “NiIn”), Ni:Va:Ni (i

  18. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  19. Sn and Ti influences on intermetallic phases damage in hot dip galvanizing

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2012-10-01

    Full Text Available Protection against metallic materials corrosion is one of the most important means to reduce both maintenance costs and environmental impact. In the last years new studies on chemical baths compositions and fluxes have been performed in order to improve processes, corrosion resistance and mechanical behavior of Zn based coatings. Chemical bath composition is often improved by the Sn addition which increases the fluidity of the melt. Ti addition makes the coatings to change color under appropriate heat treatment. In this work a comparative microstructural analysis, in Zn-Sn and Zn-Ti coatings, is performed to evaluate intermetallic phases formation kinetics and the influence of intermetallic microstructure on coating damage under constant bending deformation.

  20. Effect of TiC Additions on the Formation and Microstructural Evolution of Zr66.7Ni33.3Amorphous Alloys%TiC掺杂对Zr66.7Ni33.3非晶形成及结构演化影响的研究

    Institute of Scientific and Technical Information of China (English)

    耿浩然; 王艳; 王英姿; 夏琳燕

    2012-01-01

    We used Zr66.7 Ni33.3 binary alloys as base alloys and selected the intermetallic compound TiC as additional particles. The influence of TiC addition on the microstructural evolution induced by mechanical alloying has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The experimental results show that the proper addition of TiC (5wt%) not only shortens the starting time of the amarphization reaction, but also improves the glass forming ability (GFA) of Zr-Ni alloy powders and greatly enhances the mechanical stability of the amorphous composites. Based upon the EDX analysis, we have found that the diffusion of TiC among the atoms of Zr and Ni is inhomogeneous, leading to the increase of the disorder degree of atoms in local regions. Therefore, the TiC addition improves the GFA and stability of the Zr-Ni alloys. The DSC results demonstrate that the effect of the addition of 3 wt% TiC is better than that of the addition of 5 wt% TiC on the improvement of thermal stability of the amorphous phase, suggesting that there is no correlation between thermal stability and mechanical stability of MA induced Zr-Ni-based amorphous alloys.%利用机械合金化法,以Zr66.7Ni33.3合金粉末作为基体,选择TiC作为掺杂物,研究其对机械合金化诱导合金粉末显微结构演化行为的影响.研究发现,掺杂适量的TiC粉末可使Ti和C原子在Zr-Ni间发生不均匀扩散,导致局域范围内原子排列的无序度增大,从而提高非晶形成能力和机械稳定性,其中5wt% TiC的掺杂效果最佳.此外,3wt%TiC掺杂导致非晶相的热稳定性优于5wt%TiC的掺杂效果,说明机械合金化合成Zr-Ni基非晶合金粉末的机械稳定性和其热稳定性之间无相关性.

  1. A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni-Hf-Ti system

    International Nuclear Information System (INIS)

    Li, J H; Dai, X D; Wang, T L; Liu, B X

    2007-01-01

    We propose a two-parameter binomial truncation function for the second-moment approximation of the tight-binding (TB-SMA) interatomic potential and illustrate in detail the procedure of constructing the potentials for binary and ternary transition metal systems. For the ternary Ni-Hf-Ti system, the lattice constants, cohesion energies, elastic constants and bulk moduli of six binary compounds, i.e. L1 2 Ni 3 Hf, NiHf 3 , Ni 3 Ti, NiTi 3 , Hf 3 Ti and HfTi 3 , are firstly acquired by ab initio calculations and then employed to derive the binomial-truncated TB-SMA Ni-Hf-Ti potential. Applying the ab initio derived Ni-Hf-Ti potential, the lattice constants, cohesive energy, elastic constants and bulk moduli of another six binary compounds, i.e. D0 3 NiHf 3 , NiTi 3 HfTi 3 , and B2 NiHf, NiTi, HfTi, and two ternary compounds, i.e. C1 b NiHfTi, L2 1 Ni 2 HfTi, are calculated, respectively. It is found that, for the eight binary compounds studied, the calculated lattice constants and cohesion energies are in excellent agreement with those directly acquired from ab initio calculations and that the elastic constants and bulk moduli calculated from the potential are also qualitatively consistent with the results from ab initio calculations

  2. Structure characterization of Ni/NiO and Ti/TiO2 interfaces

    International Nuclear Information System (INIS)

    Lamine, Brahim

    1983-01-01

    This research thesis reports the structure characterization of Ni-NiO and Ti-TiO 2 interfaces through an in-situ investigation of thin blade oxidation, of oxide germination and growth, and through a determination of mutual metal/oxide orientation relationships. Thin films of TiO 2 have also been characterized and the study of the influence of vacuum annealing on TiO 2 layer structure and morphology has been attempted. The examination of metal-oxide interface reveals a duplex structure of NiO and TiO 2 layers, and a preferential grain boundary oxidation of the underlying metal [fr

  3. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  4. The martensitic transformation in Ti-rich TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Lin, H.C.; Wu, S.K.; Lin, J.C.

    1994-01-01

    The martensitic (Ms) transformation temperatures and their ΔH values of Ti 51 Ni 49 and Ti 50.5 Ni 49.5 alloys are higher than those of equiatomic or Ni-rich TiNi alloys. The Ti-rich TiNi alloys exhibit good shape recovery in spite of a great deal of second phase Ti 2 Ni or Ti 4 Ni 2 O existing around B2 grain boundaries. The nearly identical transformation temperatures indicate that the absorbed oxygen in Ti-rich TiNi alloys may react with Ti 2 Ni particles, instead of the TiNi matrix, to form Ti 4 Ni 2 O. Martensite stabilization can be induced by cold rolling at room temperature. Thermal cycling can depress the transformation temperatures significantly, especially in the initial 20 cycles. The R-phase transformation can be promoted by both cold rolling and thermal cycling in Ti-rich TiNi alloys due to introduced dislocations depressing the Ms temperature. The strengthening effects of cold rolling and thermal cycling on the Ms temperature of Ti-rich TiNi alloys are found to follow the expression Ms = To - KΔσ y . The K values are affected by different strengthening processes and related to the as-annealed transformation temperatures. The higher the as-annealed Ms (or As), the larger the K value. (orig.)

  5. Phase transformations in the reaction cell of TiNi-based sintered systems

    Science.gov (United States)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  6. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  7. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  8. Synthesis, Characterization, and NIR Reflectance of Highly Dispersed NiTiO3 and NiTiO3/TiO2 Composite Pigments

    Directory of Open Access Journals (Sweden)

    Yuping Tong

    2016-01-01

    Full Text Available The highly dispersed nanostructured NiTiO3 pigments and NiTiO3/TiO2 composite pigments can be synthesized at relative low temperature. The activation energy of crystal growth of NiTiO3 during calcinations via salt-assistant combustion method is 9.35 kJ/mol. The UV-vis spectra results revealed that the absorbance decreased with the increasing of calcinations temperature due to small size effect of nanometer particles. The optical data of NiTiO3 nanocrystals were analyzed at the near-absorption edge. SEM showed that the obtained NiTiO3 nanocrystals and NiTiO3/TiO2 nanocomposite were composed of highly dispersed spherical-like and spherical particles with uniform size distribution, respectively. The chromatic properties and diffuse reflectance of samples were investigated. The obtained NiTiO3/TiO2 composite samples have higher NIR reflectance than NiTiO3 pigments.

  9. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  10. Severe plastic deformation of melt-spun shape memory Ti2NiCu and Ni2MnGa alloys

    International Nuclear Information System (INIS)

    Pushin, Vladimir G.; Korolev, Alexander V.; Kourov, Nikolai I.; Kuntsevich, Tatiana E.; Valiev, Eduard Z.; Yurchenko, Lyudmila I.; Valiev, Ruslan Z.; Gunderov, Dmitrii V.; Zhu, Yuntian T.

    2006-01-01

    This paper describes the influence of severe plastic deformation (SPD) on the structure, phase transformations, and physical properties of melt-spun Ti 2 NiCu-based and Ni 2 MnGa-based shape memory intermetallic alloys. It was found that the SPD by high pressure torsion (HPT) at room temperature can be effectively used for the synthesis of bulk nanostructured states in these initially submicro-grained or amorphized alloys obtained by melt-spinning method in the form of a ribbon. The subsequent low-temperature annealing of HPT-processed alloys leads to formation of homogeneous ultrafine nano-grained structure. This is connected with a very high degree and high homogeneity of deformation at SPD in the whole volume of deformed samples. (author)

  11. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  12. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni{sub 2}In-type intermetallics of the Ni–In–Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-01-15

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (“Ni

  13. Anomalous magnetic aftereffect in Nd3(Fe,T)29 (T = Ti or Re) intermetallic compounds

    International Nuclear Information System (INIS)

    Collocott, S.J.; Dunlop, J.B.; Gwan, P.B.

    1999-01-01

    Full text: The intermetallic compounds Nd 3 (Fe,Ti) 29 and Nd 3 (Fe,Re) 29 order ferromagnetically with Curie Temperatures, T c , of 430 and 370 K respectively. They have a monoclinic crystal structure, space group A2/m (Nd 3 (Fe,Ti) 29 type) with two rare earth sites and eleven Fe(T) sites, which is an intermediate structure between the rhombohedral Th 2 Zn 17 and tetragonal ThMn 12 structures, and is closely related to hexagonal CaCu 5 . Ferromagnetic materials, depending on their magnetic prehistory, may exhibit a time dependent magnetisation. The term 'magnetic aftereffect' is used to describe this behaviour, which may fall into three categories: 1. Reversible or diffusion aftereffect which is associated with the diffusion of impurity atoms or holes within the ferromagnetic lattice. 2. The irreversible or fluctuation aftereffect, which results in a logarithmic time dependence of magnetisation, J(t)=J(0)+Sln(t+t 0 ), where S is the magnetic viscosity and t 0 a parameter to establish the origin of the time scale measurements. 3. Quantum tunnelling of magnetisation which is observed at very low temperatures. A range of magnetic aftereffects have been observed in both Nd 3 (Fe,Ti) 29 and Nd 3 (Fe,Re) 29 . Of particular interest is the case where the material is fully saturated by application of a field in the positive direction, the applied field is then reversed to trace out part of the major demagnetisation curve into the third quadrant, and thence along a recoil curve, such that in zero applied field the magnetisation is zero (H=0, J=0). (This corresponds to dc field magnetisation.) This magnetic prehistory results in two interesting effects; spontaneous remagnetisation e.g. remagnetisation without application of an external field, and thermal remagnetisation e.g. an increase in magnetisation as the temperature is increased. Additionally, the behaviour of the magnetic viscosity has been explored on the major demagnetisation curve as a function of temperature

  14. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  15. Microstructural and Mechanical Properties of Porous 60NiTi Prepared by Conventional Press-and-sinter Method

    Directory of Open Access Journals (Sweden)

    Khanlari Khashayar

    2017-01-01

    Full Text Available An intermetallic nickel-titanium alloy, 60NiTi, comprised of approximately 60 wt.% Ni and 40 wt.% Ti, contains a broad combination of physical and mechanical properties such as high hardness, low elastic modulus, resistance to aqueous corrosion and good biocompatibility. These unique combinations make this alloy an attractive candidate for medical components such as implants and prosthesis, where biocompatible materials with high hardness and low stiffness are typically used. The conventional press-and-sinter method which represents the least complex, most flexible and economic powder metallurgy method was used to produce porous 60NiTi parts suitable for biomedical applications. The effect of sintering holding time on the microstructure and mechanical properties is investigated. The structure of the as sintered parts is quite porous which is beneficial based on the medical point of view. The ultimate compressive strength of the samples is higher than that of the compact human bone and can, therefore, meet the strength demand of implants for general bone replacement applications.

  16. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  17. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  18. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  19. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni

    International Nuclear Information System (INIS)

    Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.

    2010-01-01

    Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.

  20. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  1. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  2. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  3. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    International Nuclear Information System (INIS)

    Kirievsky, K.; Gelbstein, Y.; Fuks, D.

    2013-01-01

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi 2 Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi 2 Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi 2 Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi 2 Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced

  4. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  5. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  6. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  7. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  8. TEM characterization of plate-shaped L12-(Al,Ag)3Ti precipitates in a Ag-modified TiAl based intermetallics

    International Nuclear Information System (INIS)

    Yuan, Y.; Liu, H.W.; Zhao, X.N.; Meng, X.K.; Liu, Z.G.

    2006-01-01

    L1 2 -(Al,Ag) 3 Ti phase in a L1 0 -TiAl(Ag) intermetallic compound with a nominal composition of Ti-54 at.% Al-4 at.% Ag has been studied by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray (EDX). TEM observations revealed that the alloy aged at 1273 K consists of L1 0 phase and L1 2 phase. The compositions of L1 2 phase and the matrix have been determined. The habit plane of L1 2 phase was analyzed by trace line method. It was revealed that the habit plane changed to one of {1 1 2) planes compared with our previous result. The semi-coherent interface was formed between L1 0 phase and L1 2 phase. HRTEM characterized the interface structure directly. The dislocation loops and ledges at the interphase boundary were observed. The results were discussed in terms of the competition between elastic strain and interfacial energy, ledge mechanism of phase transformation caused by long-range diffusion of the atoms

  9. Microstructure and mechanical properties of new composite structured Ti–V–Al–Cu–Ni alloys for spring applications

    Energy Technology Data Exchange (ETDEWEB)

    Okulov, I.V., E-mail: i.okulov@ifw-dresden.de [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Kühn, U. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Marr, T. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Freudenberger, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Technische Universität Bergakademie Freiberg, Institut für Werkstoffwissenchaft, Gustav-Zeuner-Str. 5, D-09599 Freiberg (Germany); Soldatov, I.V. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Schultz, L. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Oertel, C.-G.; Skrotzki, W. [Technische Universität Dresden, Institut für Strukturphysik, D-01062 Dresden (Germany); Eckert, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-05-01

    New as-cast Ti–V–Cu–Ni–Al alloys with advantageous modulus of resilience and bioperformance were developed. Their microstructure is composed of a dendritic β-Ti phase and in-situ precipitated interdendritic compounds. The tough and ductile β-Ti phase exhibits a relatively low Young's modulus. Ultrafine intermetallics effectively strengthen the alloys. The effect of microstructure on tensile plasticity was studied on strained (in-situ) and fractured (ex-situ) samples in the scanning electron microscope. It was found that the ductility depends on the volume fraction/distribution of the intermetallic phases as well as local segregation. Already in the as-cast state Ti{sub 68.8}V{sub 13.6}Cu{sub 6}Ni{sub 5.1}Al{sub 6.5} exhibits a tensile strength of about 1250 MPa and a ductility of about 4.5%.

  10. Mechanical alloying of TiFe intermetallic for hydrogen storage

    International Nuclear Information System (INIS)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J.; Leal Neto, R.M.

    2016-01-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  11. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  12. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  13. Ni-Ti Alloys for Tribological Applications: The Effects of Serendipity on Research and Development

    Science.gov (United States)

    DellaCorte, Christopher

    2016-01-01

    Novel superelastic materials based upon Nickel-Titanium (NiTi) alloys are an emerging technology that almost escaped recognition. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In 2004, at the request of a small manufacturing firm, Nitinol 60 was assessed as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but its tribological properties were not fully explored. Conventional wisdom in the field of tribology suggests that alloys rich in titanium are poor candidate bearing materials but NiTi, an intermetallic, demonstrates that such thinking can be and often is, wrong. Though early stage tests reveal acceptable friction and wear behavior, extensive materials engineering and processing development was essential in producing the precision microstructures needed for long-life bearings and gears. In the course of exploring this new material system other game-changing and unexpected properties, such as superelastic resilience, were observed. Today, the aerospace community is exploiting the unique characteristics of the NiTi alloy materials to solve problems on earth, underwater and in space. A fortunate decision to acknowledge a single industrial request turned out to be the key to an entirely new technology.

  14. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    Science.gov (United States)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  15. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  17. Effect of TiO2 addition on reaction between SiC and Ni in SiC-Ni cermet spray coatings. Part 2. ; Development of SiC-based cermet spray coatings. SiC-Ni yosha himakuchu no SiC-Ni kaimen hanno ni oyobosu TiO2 tenka no koka. 2. ; SiC-ki sametto yosha himaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kumano Technical College, Mie (Japan); Oki, S; Goda, S [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1992-09-30

    The depression of the reaction between SiC and Ni, by adding TiO2 powder in spraying powder which has caused uniform dispersion in spray coating and reduction of TiO2 by the reaction during spraying, was studied. The mass ratio of the mixed components has been, SiC:Ni:TiO2=3:2:1. The spray coating was examined by electron prove microanalysis as well as X-ray diffractometry, centering mainly to the SiC-metal interface reaction. The formation of Ni-Si compounds have been depressed by the addition of TiO2 to spraying powder and by using plasma gas containing H2. Reason for this has been that the TiC formed in the SiC-Ni interface has depressed the reaction at the SiC-Ni interface. Further, TiO2 is reduced during spraying, and TiC is thought to be formed by the reaction between Ti and SiC or reaction between TiO2 and SiC. 8 refs., 6 figs., 1 tab.

  18. Microstructural evolution and wear behaviors of laser cladding Ti_2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    International Nuclear Information System (INIS)

    Song, R.; Li, J.; Shao, J.Z.; Bai, L.L.; Chen, J.L.; Qu, C.C.

    2015-01-01

    Graphical abstract: - Highlights: • A TiC+TiB reinforced intermetallic matrix coating was fabricated by laser cladding. • The microstructural evolution of the reinforcements was analyzed. • A formula was established in term of wear loss, sliding time and applied load. • Wear behaviors were investigated by in situ continuing tests in different time intervals. • The transformation of wear mechanism at different applied loads was revealed. - Abstract: The Ti_2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements’ microstructure, namely TiC_p+(TiB+TiC)_e, (TiB+TiC)_e and TiB_p+(TiB+TiC)_e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  19. Structure and hardness of TiAl-TiB2 composite prepared by hot isostatic pressing of mechanically alloyed powders. Mekanikaru aroingu funmatsu no HIP shoketsu ni yori sakuseishita TiAl/TiB2 fukugo zairyo no soshiki to kodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Shimakage, K [Muroran Inst. of Technology, Hokkaido (Japan). Faculty of Engineering; Miyakawa, S [Muroran Inst. of Technology, Hokkaido (Japan). Graduate Student

    1992-11-20

    The practical application of Ti-Al system intermetallic compounds is expected as an advanced light heat resistant material. TiAl group out of them, as for the specific strength, has an equivalent maximum working temperature as that of the nickel base alloy, which is utilized as a turbine material for the current aircraft, and moreover it is also said that it is superior in the creep and rupture properties to the latter. In this study, by mechanical alloying (MA) of each mixed powder of Ti-Al and Ti-B, by suing heptane as a grinding aid, each MA powder of the amorphous TiAl containing carbon and extremely fine compound TiB2 were prepared, and subsequently the true density sintering by the hot isostatic pressing (HIP) was performed, and by doing these, the preparation of TiAl/TiB2 system composite material with a high composite ratio of TiO2 was tried. Consequently, by the MA treatment of the mixed powder of Ti and B for more than 50 hours, the compound powder of TiB2 mixed with TiB could be prepared, and its hardness has shown the maximum value Hmv=l200 with a composition of TiAl/25 mol % TiB2. 14 refs., 10 figs., 2 tabs.

  20. Thermochemical investigations on intermetallic UMe3 compounds (Me=Ru,Rh,Pd)

    International Nuclear Information System (INIS)

    Wijbenga, G.

    1981-10-01

    The subject of this thesis is the determination of the thermodynamic properties of the intermetallic compounds of uranium with the light platinum metals, ruthenium, rhodium and palladium. These intermetallics are formed as very stable compounds during fission in nuclear fuel by the reaction of the fission products Ru, Rh and Pd with the matrix. Methods for the preparation of URu 3 , URh 3 and UPd 3 , experiments showing the chemical reactivities of these compounds, and studies of the stoichiometry of hexagonal UPd 3 by X-ray diffraction of solubility experiments of UN and palladium in UPd 3 , are described. Thermodynamic properties of the UMe 3 compounds have been obtained using several experimental thermodynamic techniques: fluorine bomb calorimetry, low-temperature cryogenic calorimetry, high-temperature drop calorimetry and EMF measurements of reversible cells. (Auth.)

  1. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  2. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  3. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  4. Processing and characterization of AlCoFeNiXTi{sub 0,5} (X = Mn, V) high entropy alloys; Processamento e caracterizacao de ligas de alta entropia AlCoFeNixTi{sub 0,5} (X = Mn, V)

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, C., E-mail: carlos.triveno@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais; Lopes, E.S.N.; Caram, R. [Universidade Estadual de Campinas (FEM/DEMA/UNICAMP), Campinas, SP (Brazil); Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi{sub 0,5} and AlCoFeNiVTi{sub 0,5} alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi{sub 0,5} alloy showed better mechanical properties than the AlCoFeNiMnTi{sub 0,5} alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  5. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  6. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  7. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  8. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tao, E-mail: taosun@hotmail.com.hk [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Institute of Microelectronics, Agency for Science, Technology and Research (A-STAR) (Singapore); Wang Langping, E-mail: aplpwang@hit.edu.cn [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (China); Wang Min; Tong Howang [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Lu, William W. [Department of Orthopedics and Traumatology, University of Hong Kong, Sassoon Road (Hong Kong)

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples. - Highlights: Black-Right-Pointing-Pointer PIIID-formed coatings were fabricated on NiTi SMA to improve its biocompatibility. Black-Right-Pointing-Pointer Microstructure, mechanical properties and biocompatibility of coatings were investigated. Black-Right-Pointing-Pointer All PIIID-formed composite coatings were noncytotoxic and cytocompatible.

  9. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation

    International Nuclear Information System (INIS)

    Poli, G.; Sola, R.; Veronesi, P.

    2006-01-01

    The microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator has been simulated numerically and performed with the aim of achieving the highest yields, energy efficiency and process reproducibility. The electromagnetic field modeling of the microwave system allowed to chose the proper experimental set-up and the materials more suitable for the application, minimising the reflected power and the risks of arcing. In all the experimental conditions tested, conversions of 3-5 g 1:1 atomic ratio Ni and Al powder compacts into NiAl ranged from 98.7% to 100%, requiring from 30 to 180 s with power from 500 to 1500 W. The optimisation procedure allowed to determine and quantify the effects of the main process variables on the ignition time, the NiAl yields and the specific energy consumption, leading to a fast, reproducible and cost-effective process of microwave-assisted combustion synthesis of NiAl intermetallics

  10. High temperature cyclic oxidation of Ti-Al based intermetallic in static laboratory air

    International Nuclear Information System (INIS)

    Astuty Amrin; Esah Hamzah; Nurfashahidayu Mohd Badri; Hafida Hamzah

    2007-01-01

    The objective of this study is to investigate the oxidation behaviour of binary γ-Ti Al based intermetallics with composition (at%) of 45A, 48Al and 50 Al, and ternary alloys of Ti-48Al containing 2Cr and 4Cr. Thermal cyclic oxidation was conducted discontinuously at temperatures of 700 degree Celsius and 900 degree Celsius in static laboratory air. Optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and X-ray diffraction (XRD) techniques were employed for the analysis. SEM examination of cross-sectional samples using secondary electron and line-scan analysis after exposure at 700 degree Celsius showed that non-adherent oxides scales formed due to the spallation caused by cyclic condition. For exposure to 900 degree Celsius, only binary alloys exhibited breakaway oxidation whereas the oxide scales formed on the ternary alloys were well-adhered on the substrate alloy. Overall, exposure at 900 degree Celsius resulted in thicker and harder oxide scales and addition of Cr seems to improve oxidation resistance of Ti-Al based intermetallics at higher temperature. (author)

  11. Fabrication, interfacial characterization and mechanical properties of continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuqiang; Lin, Chunfa; Han, Xiaoxiao; Chang, Yunpeng; Guo, Chunhuan, E-mail: guochunhuan@hrbeu.edu.cn; Jiang, Fengchun, E-mail: fengchunjiang@hrbeu.edu.cn

    2017-03-14

    Continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite was fabricated using a vacuum hot pressing (VHP) sintering method and followed by hot isostatic pressing (HIP). The microstructure characteristics of the interfaces between Ti and Al{sub 3}Ti, as well as Al{sub 2}O{sub 3} fiber and Al{sub 3}Ti intermetallic were analyzed by scanning electron microscopy (SEM). Elemental distribution in the interfacial reaction zones were quantitatively examined by energy-dispersive spectroscopy (EDS). The phases in the composite were identified by X-ray diffractometer (XRD). The mechanical properties of the CCFR-MIL composite were measured using compression and tensile tests under quasi-static strain rate. The experimental results indicated that the residual Al was found in Al{sub 3}Ti intermetallic layer of CCFR-MIL composite. The interfacial reactions occurred during HIP and the reaction products were determined to be Al{sub 2}Ti, TiSi{sub 2}, TiO{sub 2} and Al{sub 2}SiO{sub 5} phases. Compared to Ti/Al{sub 3}Ti MIL composite without fiber reinforcement, both the strength and failure strain of CCFR-MIL composite under both compressive and tensile stress states increased due to the contribution of the continuous ceramic Al{sub 2}O{sub 3} fiber.

  12. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si,Ti) alloys

    International Nuclear Information System (INIS)

    Takasugi, T.; Hanada, S.

    1999-01-01

    Some quaternary Ni 3 (Si,Ti) alloyed with transition elements V, Nb, Zr and Hf was prepared beyond their maximum solubility limits to investigate the effect of second-phase dispersion on moisture-induced embrittlement. V-added Ni 3 (Si,Ti) alloy contained ductile fcc-type Ni solid solution as the second-phase, while Nb-, Zr- and Hf-added Ni 3 (Si,Ti) alloys contained hard dispersion compounds as the second-phase. V- and Nb-added Ni 3 (Si,Ti) alloys did not display reduced tensile elongation in air, indicating that their second phases have the effect of suppressing the moisture-induced embrittlement. Possible mechanisms for the beneficial effect by the second phase on the moisture-induced embrittlement of V- and Nb-added Ni 3 (Si,Ti) alloys are discussed in association with hydrogen behavior and deformation property in the constituent phases or at matrix/second-phase interface

  13. Microstructural evolution and wear behaviors of laser cladding Ti{sub 2}Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    Energy Technology Data Exchange (ETDEWEB)

    Song, R.; Li, J., E-mail: jacob_lijun@sina.com; Shao, J.Z.; Bai, L.L.; Chen, J.L.; Qu, C.C.

    2015-11-15

    Graphical abstract: - Highlights: • A TiC+TiB reinforced intermetallic matrix coating was fabricated by laser cladding. • The microstructural evolution of the reinforcements was analyzed. • A formula was established in term of wear loss, sliding time and applied load. • Wear behaviors were investigated by in situ continuing tests in different time intervals. • The transformation of wear mechanism at different applied loads was revealed. - Abstract: The Ti{sub 2}Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements’ microstructure, namely TiC{sub p}+(TiB+TiC){sub e}, (TiB+TiC){sub e} and TiB{sub p}+(TiB+TiC){sub e} (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  14. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    CERN Document Server

    Rhee, J Y

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder -> order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by p...

  15. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  16. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  17. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  18. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  19. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    Science.gov (United States)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-12

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  20. Neutron diffraction study of dense-Kondo compound CeNi2Al5

    International Nuclear Information System (INIS)

    Munoz, A.; Givord, F.; Boucherie, J.X.; Flouquet, J.; Isikawa, Y.; Mizushima, T.; Sakurai, J.; Mori, K.; Oliveira, I.S.

    1993-01-01

    Intermetallic CeNi 2 Al 5 is a dense-Kondo compound with a magnetic transition temperature at 2.6 K. We have carried out a neutron diffraction measurement to study a magnetic structure of CeNi 2 Al 5 using a powder sample and a single crystalline sample. It is found that the magnetic structure is an incommensurate sinusoidal one with a propagation vector k = (0.5, 0.405, 0.083) and that the amplitude of magnetic moment is 1.54 μ Β and the direction of magnetic moment is declined 8 deg. from the b-axis toward the a-axis. (authors). 3 refs., 2 figs

  1. Lattice anisotropy in uranium ternary compounds: UTX

    International Nuclear Information System (INIS)

    Mašková, S.; Adamska, A.M.; Havela, L.; Kim-Ngan, N.-T.H.; Przewoźnik, J.; Daniš, S.; Kothapalli, K.; Kolomiets, A.V.; Heathman, S.; Nakotte, H.; Bordallo, H.

    2012-01-01

    Highlights: ► Compressibility and thermal expansion of several U-based compounds were established. ► The direction of the U–U bonds is the “soft” crystallographic direction. ► Highest coefficient of linear thermal expansion is in the direction of the U–U bonds. ► The closer the U atoms are together the better they can be compressed together. - Abstract: Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure type a common pattern emerges. The direction of the U–U bonds with participation of the 5f states is distinctly the “soft” crystallographic direction, exhibiting also the highest coefficient of linear thermal expansion. The finding leads to an apparent paradox: the closer the U atoms are together in a particular direction the better they can be additionally compressed together by applied hydrostatic pressure.

  2. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  3. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  4. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications, Report on NASA-Kamatics SAA3-1288

    Science.gov (United States)

    Dellacorte, Christopher; Jefferson, Michael

    2015-01-01

    Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  5. Wetting induced by near-surface Ti-enrichment in the CaF2/In-Ti and CaF2/Cu-Ti systems

    International Nuclear Information System (INIS)

    Froumin, N.; Barzilai, S.; Aizenshtein, M.; Lomberg, M.; Frage, N.

    2008-01-01

    This paper is concerned with the wetting of CaF 2 by liquid Cu and In and with the effect of Ti additions to the melt. According to thermodynamic analysis and to the experimental observations, the significantly decreased contact angle following the addition of Ti to the molten metals is not due to the formation of interfacial fluoride phases, in contrast to previously reported results. Ab initio density functional calculations indicate that preferential Ti adsorption takes place at the near CaF 2 surface. It is suggested that the presence of a Ti-enriched liquid, adjacent to the substrate, gives rise, by means of heterogeneous nucleation, to the formation of a thin intermetallic compound layer that stands behind the experimentally observed enhanced wetting. The suggested wetting mechanism is supported by the notable correlation that has been observed between the temperature dependence of the contact angle and the temperature domains, associated with the presence of intermetallic compounds in both Me-Ti (Me = Cu, In) binary systems

  6. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  7. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-03-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  8. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-05-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  9. Influence of Nickel Thickness and Annealing Time on the Mechanical Properties of Intermetallic Compounds Formed between Cu-Sn Solder and Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yiseul; Kwon, Jeehye; Yoo, Dayoung; Park, Sungkyu; Lee, Dajeong; Lee, Dongyun [Pusan National University, Busan (Korea, Republic of)

    2017-03-15

    Intermetallic compounds (IMCs) developed on the interface between a solder alloy and its bonding pads are an important factor in the failure of electronic circuits. In this study, the mechanical behaviors of the IMCs formed in the Cu-Ni-Sn ternary alloy system are investigated. Presumably, Ni can act as a diffusion barrier to Cu and Sn to form the IMCs. Detailed analysis of the microstructure is conducted using an electron probe micro-analyzer (EPMA). The addition of Ni softened the IMCs, which is determined based on the fracture toughness increasing (from 0.71 to 1.55 MPa√m) with the Ni layer thickness. However, above a critical amount of Ni involved in the Cu-Sn IMCs, the softening effect is diminished, and this could result from the segregation of Ni inside the IMCs. Therefore, the optimized condition must be determined in order to obtain a positive Ni effect on enhancing the reliability of the electronic circuits.

  10. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  11. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  12. Precipitation of Ni4Ti3-variants in a polycrystalline Ni-rich NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bojda, Ondřej; Eggeler, G.; Dlouhý, Antonín

    2005-01-01

    Roč. 53, č. 1 (2005), s. 99-104 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitation * Transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.228, year: 2005

  13. Synthesis of Fe-Al-Ti Based Intermetallics with the Use of Laser Engineered Net Shaping (LENS

    Directory of Open Access Journals (Sweden)

    Monika Kwiatkowska

    2015-04-01

    Full Text Available The Laser Engineered Net Shaping (LENS technique was combined with direct synthesis to fabricate L21-ordered Fe-Al-Ti based intermetallic alloys. It was found that ternary Fe-Al-Ti alloys can be synthesized using the LENS technique from a feedstock composed of a pre-alloyed Fe-Al powder and elemental Ti powder. The obtained average compositions of the ternary alloys after the laser deposition and subsequent annealing were quite close to the nominal compositions, but the distributions of the elements in the annealed samples recorded over a large area were inhomogeneous. No traces of pure Ti were observed in the deposited alloys. Macroscopic cracking and porosity were observed in all investigated alloys. The amount of porosity in the samples was less than 1.2 vol. %. It seems that the porosity originates from the porous pre-alloyed Fe-Al powders. Single-phase (L21, two-phase (L21-C14 and multiphase (L21-A2-C14 Fe-Al-Ti intermetallic alloys were obtained from the direct laser synthesis and annealing process. The most prominent feature of the ternary Fe-Al-Ti intermetallics synthesized by the LENS method is their fine-grained structure. The grain size is in the range of 3–5 μm, indicating grain refinement effect through the highly rapid cooling of the LENS process. The Fe-Al-Ti alloys synthesized by LENS and annealed at 1000 °C in the single-phase B2 region were prone to an essential grain growth. In contrast, the alloys annealed at 1000 °C in the two-phase L21-C14 region exhibited almost constant grain size values after the high-temperature annealing.

  14. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  15. Deformation twinning in metals and ordered intermetallics-Ti and Ti-aluminides

    Science.gov (United States)

    Yoo, M. H.; Fu, C. L.; Lee, J. K.

    1991-06-01

    The role of deformation twinning in the strength and ductility of metals and ordered intermetallic alloys is examined on the basis of crystallography, energetics and kinetics of deformation twinning. A systematic analysis is made by taking Ti, Ti3AI, TiAl, and A13Ti as four model systems. In comparison with profuse twinning in Ti, the intrinsic difficulty of twinning in Ti3A1 is rationalized in terms of the interchange shuffling mechanism. A fault (SISF) dragging mechanism based on the interaction torque explains the physical source for the low mobility of screw superdislocations in TiAl, which may lead to (111) [ 11bar{2}] twin nucleation. In TiAl and A13Ti alloys, the twin-slip (ordinary) conjugate relationship makes an important contribution to the strain compatibility for high-temperature plasticity. Potentially beneficial alloying additions to promote twinning are discussed. Les conséquences de la déformation par maclage sur la fracture et la ductilité des métaux et alliages intermétalliques ordonnés sont étudiées en fonction de la cristallographie, de l'énergie et de la cinétique des déformations par maclage. Une analyse systématique a été faite en considérant Ti, Ti3AI, TiAl et A13Ti comme quatre systèmes modèles. En comparaison avec le nombre important de maclages observés dans Ti, la difficulté intrinsèque des maclages dans Ti3AI est rationalisée en terme de mécanisme d'“interchange shuffling”. Un mécanisme de “dragging fault” basé sur l'interaction “torque” explique l'origine physique de la faible mobilité des superdislocations vissées dans TiAl qui peuvent conduire à la nucléation des macles (111) 112. Dans les alliages tels TiAl et A13Ti, la relation conjuguée entre la macle et le glissement (ordinaire) contribue de façon importante à la compatibilité des contraintes lors de la déformation plastique à haute température. Des effets bénéfiques potentiels liés à des éléments d'addition sur le processus

  16. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot

    International Nuclear Information System (INIS)

    Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama

    2013-01-01

    Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phase

  17. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    Science.gov (United States)

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the

  18. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  19. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites

    International Nuclear Information System (INIS)

    Karantzalis, A.E.; Lekatou, A.; Tsirka, K.

    2012-01-01

    Monolithic Ni 3 Al and Ni–25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution–reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt–particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni 3 Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris–counter surfaces interactions. - Highlights: ► Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. ► Solidification phenomena examination. ► TiC crystal formation and growth mechanisms. ► Sliding wear examination.

  20. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  1. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng

    2014-01-01

    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  3. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    Science.gov (United States)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  4. Isothermal analysis of intermetallic MmNi5-xAlx in air decomposition processes

    International Nuclear Information System (INIS)

    Obregon, S.A.; Andrade Gamboa, J.J.; Esquivel, M.R.

    2012-01-01

    In this paper, it is analyzed the behavior of the degree of reaction as function of time α (t) of a sample of MmNi 4.3 Al 0.7 (Mm mischmetal = La 0.25 Ce 0.52 Nd 0.17 Pr 0.06 ) at different temperatures. The curves were obtained by isothermal calorimetric techniques. As a result of this study, it was observed that the kinetics of intermetallic can be separated into two main stages. At temperatures below 350 o C, the first stage is the oxidation of Mm and Al. At temperatures over 400 o C, the oxidation of Ni is also produced parallel to the above mentioned reactions. But the kinetics of the last one is at least three orders of magnitude slower. It was also observed that no thermal event occurs below 180 o C. It indicates that the intermetallic do not react at temperatures below this temperature value (author)

  5. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    International Nuclear Information System (INIS)

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  6. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    Science.gov (United States)

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  8. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  9. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    Science.gov (United States)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  10. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  11. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    Science.gov (United States)

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  12. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    International Nuclear Information System (INIS)

    Rhee, Joo Yull

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder → order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by presumption that the recrystallization would be realized in such a way that the average atomic spacing would be reduced

  13. Stability of ZrBe17, and NiBe intermetallics during intermediate temperature oxidation

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.; Wadsworth, J.

    1992-01-01

    This paper reports that since the finding of MoSi 2 pest by Fitzer in 1955, a number of intermetallic compounds, e.g., ZrBe 13 , WSi 2 , and NiAl have also been reported to exhibit similar behavior during oxidation in air. For example, Lewis reported that catastrophic failure (total disintegration into powders) occurred in ZrBe 13 when oxidized at 700 degrees C in air. X-ray diffraction analyses revealed that the powders were composed of BeO, ZrO 2 (cubic), Zr 2 Be 17 , and unreacted ZrBe 13 . Regardless of numerous cited incidents of pest in intermetallics, fundamental understanding of pest is very limited. Recently, MoSi 2 pest has been studied in a great detail and fundamental insights to the mechanism of pest have been established. It is found that both single- and ply- crystalline MoSi 2 are susceptible to pest, which leads to the disintegration of test samples into powder consisting of MoO 3 whiskers, SiP 2 clusters, and residual MoSi 2 crystals. Pest is also noted to associate with substantial volume expansion of the samples. Most important, the occurrence of pest is contingent upon the formation of blisters, resulting from volume expansion by oxidation and the evaporation of MoO 3 on the surfaces and grain boundary interfaces

  14. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  15. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  16. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...... crystallographic direction (in the sense of highest compressibility under hydrostatic pressure) must be mutually orthogonal....

  17. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  18. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thin NiTi Films Deposited on Graphene Substrates

    Science.gov (United States)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  20. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  1. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  2. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Asnis, E.A.; Piskun, N.V.; Statkevich, I.I. [The E.O. Paton Electric Welding Institute, 11 Bozhenko str., 03680 Kyiv (Ukraine); Gorshenkov, M.V.; Tcherdyntsev, V.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-05

    Highlights: • Fist application of LaB{sub 6} additive in TiAl-based intermetallics casting. • Pilot synthesis/casting and study of selected TiAl(Nb,Cr,Zr)B,La alloys set. • Dual effect observed: phase structure refinement and oxygen impurity removal. • Co-precipitation of TiB and La{sub 2}O{sub 3} in melt: 2LaB{sub 6} + 12Ti + 3O → 12TiB↓ + La{sub 2}O{sub 3}↓. • Features of structure refinement and oxygen gettering mechanisms reported. -- Abstract: The work is aimed at the study of the formation and refinement of microstructure appearing in the solidifying refractory TiAl-based intermetallics being inoculated with precise boron addition. The novelty of research consists in test application of lanthanum hexaboride (LaB{sub 6}) ligature within semi-continuous electron beam casting process of selected alloys. Two ingots with nominal compositions Ti–44Al–5Nb–2Cr–1.5Zr–0.4B–0.07La and Ti–44Al–5Nb–1Cr–1.5Zr–1B–0.17La (at.%) have been synthesized and cast along with the reference alloy Ti–44Al–5Nb–3Cr–1.5Zr. Their comparative examination suggests (i) essential microstructural phase refinement effect coupled with (ii) threefold/fourfold decrease of background content of undesirable residual oxygen impurity in both alloys containing LaB{sub 6}. This advanced dual activity (i–ii) of LaB{sub 6} is explained by its complete dissolution, dissociation and following re-precipitation of effective Ti-based monoboride nucleants of orthorhombic B27 structure, those being accompanied by strong internal gettering of dissolved oxygen from the melt and from boride-inoculated solid α{sub 2}-Ti{sub 3}Al phase with liberated elemental lanthanum. The phase composition and structure of cast alloys; state and characterization of newly precipitated TiB boride; features of La{sub 2}O{sub 3} micro/nano-dimensional precipitation and oxygen gettering mechanism are reported and discussed.

  3. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  4. High resolution TEM study of Ni4Ti3 precipitates in austenitic Ni51Ti49

    International Nuclear Information System (INIS)

    Tirry, Wim; Schryvers, Dominique

    2003-01-01

    Binary NiTi with a composition of 51 at.% Ni was heat treated to form lens-shaped Ni 4 Ti 3 precipitates that are coherent or semi-coherent with the B2 matrix. High resolution transmission electron microscopy (HRTEM) was used to study the internal structure of the precipitates, precipitate-precipitate and matrix-precipitate interfaces and the deformation of the B2 matrix near a precipitate. Observations were made in the B2 and B2 zones and compared with computer simulated high resolution images. The B2 observations made it possible to study the [0 0 1] H zone orientation of Ni 4 Ti 3 (direction defined according to the hexagonal unit cell of Ni 4 Ti 3 ) which corresponds to the normal of the central plane of the discs. In these images the superperiodicity of the 4:3 ordering is clearly visible confirming the known atomic structure. Close to the precipitate the B2 matrix is deformed, as determined by measuring the interplanar spacing from the HRTEM images. The observed deformations are compared with theoretical models for the stress field

  5. Microstructure and kinetics of a functionally graded NiTi-TiC x composite produced by combustion synthesis

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Moore, John J.

    2007-01-01

    Production of a NiTi-TiC x functionally graded material (FGM) composite is possible through use of a combustion synthesis (CS) reaction employing the propagating mode (SHS). The NiTi-TiC x FGM combines the well-known and understood superelastic and shape memory capabilities of NiTi with the high hardness, wear and corrosion resistance of TiC x . The material layers were observed as functionally graded both in composition and porosity with distinct interfaces, while still maintaining good material interaction and bonding. XRD of the FGM composite revealed the presence of TiC x with equi-atomic NiTi and minor NiTi 2 and NiTi 3 phases. The TiC x particle size decreased with increasing NiTi content. Microindentation performed across the length of the FGM revealed a decrease in hardness as the NiTi content increased

  6. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I; Hoghoj, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  7. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  8. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  9. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files - An In-Vitro SEM study.

    Science.gov (United States)

    Reddy, J M V Raghavendra; Latha, Prasanna; Gowda, Basavana; Manvikar, Varadendra; Vijayalaxmi, D Benal; Ponangi, Kalyana Chakravarthi

    2014-02-01

    Predictable successful endodontic therapy depends on correct diagnosis, effective cleaning, shaping and disinfection of the root canals and adequate obturation. Irrigation serves as a flush to remove debris, tissue solvent and lubricant from the canal irregularities; however these irregularities can restrict the complete debridement of root canal by mechanical instrumentation.Various types of hand and rotary instruments are used for the preparation of the root canal system to obtain debris free canals. The purpose of this study was to evaluate the amount of smear layer and debris removal on canal walls following the using of manual Nickel-Titanium (NiTi) files compared with rotary ProTaperNiTi files using a Scanning Electron Microscope in two individual groups. A comparative study consisting of 50 subjects randomized into two groups - 25 subjects in Group A (manual) and 25 subjects in Group B (rotary) was undertaken to investigate and compare the effects of smear layer and debris between manual and rotary NiTi instruments. Chi square test was used to find the significance of smear layer and debris removal in the coronal, middle and apical between Group A and Group B. Both systems of Rotary ProTaperNiTi and manual NiTi files used in the present study, did not create completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary ProTaperNiTi instruments. Rotary instruments were less time consuming when compared to manual instruments. Instrument separation was not found to be significant with both the groups. Both systems of Rotary ProTaperNiTi and manual NiTi files used did not produce completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary protaper instruments. How to cite the article: Reddy JM, Latha P, Gowda B, Manvikar V, Vijayalaxmi DB, Ponangi KC. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni-Ti files

  10. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    International Nuclear Information System (INIS)

    Vaidyanathan, R.; Dunand, D.C.

    1999-01-01

    Superelastic NiTi (51.0 at.% Ni) specimens reinforced with 0, 10 and 20 vol.% TiC particles were deformed under uniaxial compression while neutron diffraction spectra were collected. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. The evolution of austenite/martensite phase fractions and of elastic strains in the reinforcing TiC particles and the austenite matrix were obtained by Rietveld refinement during the loading cycle as the austenite transforms to martensite (and its subsequent back transformation during unloading). Phase fractions and strains are discussed in terms of load transfer in composites where the matrix undergoes a stress-induced phase transformation. (orig.)

  11. Studies on the Corrosion Behavior of TiCode-12 with the Variation of Environmental Factors and Heat Treatment Conditions

    International Nuclear Information System (INIS)

    Yoon, S. R.; Kim, T. Y.; Lee, K. H.

    1989-01-01

    Corrosion behavior of TiCode-12 (Ti-0.8Ni-0.3Mo) has been studied by means of electrochemical polarization measurements and corrosion morphology examinations in various corrosive environments and different heat treatment conditions of the alloy. 1N H 2 SO 4 at 45 .deg. C was taken as a standard corrosive solution in which Cl - , Fe 3+ and Br - ion were added to investigate their effects. Acid concentration and temperature were also varied. Polarization behaviors of pure Ti, Ni, Mo and Ti 2 Ni were compared with those of heat-treated TiCode-12 specimens to find out how the constituent elements and the intermetallic compound formed during heat treatment of TiCode-12 affect the corrosion of the alloy. Mill-annealed TiCode-12 showed primary and secondary active-passive transition behavior in all the tested H 2 SO 4 solutions. The former behavior was confirmed to be due to Ti and the latter due to Ni and Mo. The passive current densities increased with increased Cl - ion concentration but decreased reversely beyond certain concentration. Fe 3+ ion raised the corrosion potential of TiCode-12 to the passive region, thus reducing the corrosion rate. Br - ion was turned out to be a critical species to induce the pitting of TiCode-12 by some unknown reason. Cathodic polarization behavior of pure Ni and Ti 2 Ni revealed that hydrogen evolution reaction was promoted on these electrodes in acid media. This was ascribed to the cause for sensitization phenomena of TiCode-12 heat-treated in the temperature range in which the eutectoid reaction β→α + Ti 2 Ni occurs. Near pits, observed on a sensitized TiCode-12 specimen immersed in H 2 SO 4 , always found were β crystals in which Ni peak was detected by EDS

  12. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  13. 钛合金表面激光熔覆NiCrBSi(Ti)-TiC涂层%Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy

    Institute of Scientific and Technical Information of China (English)

    孙荣禄; 郭立新; 董尚利; 杨德庄

    2001-01-01

    在TC4合金表面进行了激光熔覆NiCrBSi-TiC,Ti-TiC金属陶瓷复合涂层的试验,对涂层的组织和显微硬度进行了分析和测试.结果表明,NiCrBSi-TiC涂层的组织是在初晶γ-Ni和γ-Ni,Ni3B,M23(CB)6,CrB多元共晶的基底上均匀地分布着TiC颗粒,在激光熔覆过程中TiC颗粒只是边缘发生了溶解或熔化;在Ti-TiC涂层中,TiC颗粒全部溶解或熔化,冷却时以枝晶形式重新析出.NiCrBSi-TiC涂层的显微硬度(HV900~1100)明显高于Ti-TiC的涂层的显微硬度(HV500~700).

  14. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  15. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunwang [Inner Mongolia University of Technology, College of Science, Hohhot (China); Shanghai Maritime University, College of Arts and Sciences, Shanghai (China); Zhao, Shilei; Jin, Yongjun; Hou, Qingyu [Inner Mongolia University of Technology, College of Science, Hohhot (China); Guo, Shaoqiang [Beihang University, Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beijing (China)

    2017-09-15

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni{sub 50}Ti{sub 50-x}Pr{sub x} (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys. (orig.)

  16. Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals

    International Nuclear Information System (INIS)

    Xiong Zhengwei; Sun Weiguo; Wang Xuemin; Jiang Fan; Wu Weidong

    2012-01-01

    Highlights: ► The BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs were successfully fabricated by L-MBE. ► The influence with the various concentrations of Ni nanocrystals embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. ► The BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss compared with the pure BaTiO 3 /SrTiO 3 superlattices. ► The dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory. - Abstract: The self-organized Ni nanocrystals (NCs) were embedded in BaTiO 3 /SrTiO 3 superlattices using laser molecular beam epitaxy (L-MBE). The stress of the composite films was increased with the increasing concentration of embedded Ni NCs, as investigation in stress calculation. The influence with the various concentrations of Ni NCs embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. The internal stress of the films was too strong to epitaxial growth of BaTiO 3 /SrTiO 3 superlattices. Compared with the pure BaTiO 3 /SrTiO 3 superlattices, the BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss. Furthermore, the dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory.

  17. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    International Nuclear Information System (INIS)

    Atli, K C; Karaman, I; Noebe, R D; Bigelow, G; Gaydosh, D

    2015-01-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni 50.3 Ti 29.7 Hf 20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni 49.9 Ti 50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni 50.3 Ti 29.7 Hf 20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g −1 , compared to a maximum value of 0.06 J g −1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni 50.3 Ti 29.7 Hf 20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni 50.3 Ti 29.7 Hf 20 , in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation. (paper)

  18. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  19. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    Elenbaas, R.A.

    1980-01-01

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  20. Real structure and selected properties of the superconducting intermetallic compound V3Si

    International Nuclear Information System (INIS)

    Kleinstueck, K.; Kraemer, U.; Paufler, P.; Ullrich, H.J.

    1980-01-01

    Plasticity and electro-plastic effects have been detected at temperatures above 1200 0 C in the intermetallic compound V 3 Si which can not plastically be deformed under normal conditions. The mechanisms of plastic deformation were elucidated. The critical temperature and the critical current density could be altered by plastic deformation. It was found that the mechanisms of plastic deformation as well as the alteration of the critical parameters are dependent on the chemical composition of the intermetallic compound within the range of homogeneity. For measuring such alterations Kossel's interference method was used. Intense plastic deformation of crystals resulted in an influence on the martensite transformation

  1. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  2. Alloying process of sputter-deposited Ti/Ni multilayer thin films

    International Nuclear Information System (INIS)

    Cho, H.; Kim, H.Y.; Miyazaki, S.

    2006-01-01

    Alloying process of a Ti/Ni multilayer thin film was investigated in detail by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The Ti/Ni multilayer thin film was prepared by depositing Ti and Ni layers alternately on a SiO 2 /Si substrate. The number of each metal layer was 100, and the total thickness was 3 μm. The alloy composition was determined as Ti-51 at.%Ni by electron probe micro analysis (EPMA). The DSC curve exhibited three exothermic peaks at 621, 680 and 701 K during heating the as-sputtered multilayer thin film. In order to investigate the alloying process, XRD and TEM observation was carried out for the specimens heated up to various temperatures with the heating rate same as the DSC measurement. The XRD profile of the as-sputtered film revealed only diffraction peaks of Ti and Ni. But reaction layers of 3 nm in thickness were observed at the interfaces of Ti and Ni layers in cross-sectional TEM images. The reaction layer was confirmed as an amorphous phase by the nano beam diffraction analysis. The XRD profiles exhibited that the intensity of Ti diffraction peak decreased in the specimen heat-treated above 600 K. The peak from Ni became broad and shifted to lower diffraction angle. The amorphous layer thickened up to 6 nm in the specimen heated up to 640 K. The diffraction peak corresponding to Ti-Ni B2 phase appeared and the peak from Ni disappeared for the specimen heated up to 675 K. The Ti-Ni B2 crystallized from the amorphous reaction layer. After further heating above the third exothermic peak, the intensity of the peak from the Ti-Ni B2 phase increased, the peak from Ti disappeared and the peaks corresponding to Ti 2 Ni appeared. The Ti 2 Ni phase was formed by the reaction of the Ti-Ni B2 and Ti

  3. Core-level XPS studies of Ce and La intermetallic compounds and their implications for the 4f levels of Ce compounds

    International Nuclear Information System (INIS)

    Freiburg, C.; Fuggle, J.C.; Hillebrecht, F.U.; Zolnierek, Z.; Laesser, R.

    1983-01-01

    The 3d core hole X-ray photoelectron spectra (XPS) of approximately 30 intermetallic compounds of La and Ce are reported. Transitions to final states with approximately f 0 , f 1 and f 2 character are observed in some Ce compounds (f 0 and f 1 for La compounds). The results are discussed in terms of the current ideas of the influence of f-counts and f-levels hybridization on core level lineshapes. We cannot find an explanatoin of the observed spectra consisted with the ''promotial model'' where the 4f-count varies and 4f electron was thought to be entirely promoted to the Ce 5d6s valence bands in some compounds. There may be some small charge transfer from the f level, however. In conjunction with ideas on screening processes in XPS the observed lineshapes suggest coupling of the 4f electrons to other states is strongest in those compounds previously thought to have f 0 character. This coupling increases despite a large increase in the Ce-Ce distance when Ce is diluted with Ni or Pd. Thus it cannot be due to direct f-f interaction and must be attributed to coupling with the other valence electrons; possibly those centred on the partner sites. (orig./EZ) [de

  4. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  5. Computer simulation of disordering kinetics in irradiated A3B intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; De la Rubia, T.

    1994-01-01

    Molecular dynamics computer simulations of collision cascades on intermetallic Ni 3 Al, Cu 3 Au and NiAl have been performed to study the nature of the disordering processes in the cascade. The evolution of the crystalline and chemical order parameters show different time scales. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the relaxation time and saturation value of the chemical short range order, SRO. A theoretical model for the time evolution of the SRO is given. ((orig.))

  6. The influence of pressure on diffusion leading to intermetallic compounds

    International Nuclear Information System (INIS)

    Adda, Y.; Beyeler, M.; Kirianenko, A.; Pernot, B.

    1961-01-01

    Some investigators A.D. LE CLAIRE, J.L. ZAMBROW, L. CASTLEMAN, have shown that the application of uniaxial pressure parallel to the direction of diffusion may notably modify the kinetics of growth of the intermediate phases which can be formed in this direction. The interpretation of this phenomenon being obscure, an attempt is made to explain it by detailed analysis of the experimental facts. The microscopic studies of the kinetics of growth of the zones formed shows particularly in the couples Uranium-Copper and Uranium-Nickel that it is influenced in a similar manner by a uniaxial pressure and a hydrostatic one. On the other hand the rate of growth of these zones increases as a function of the applied pressure in the systems Uranium-Copper, Uranium-Nickel and Uranium-Aluminium (this effect being particularly marked in Uranium-Aluminium). To determine with precision the limits of the range of stability of the intermetallic compounds, the curves of concentration penetration characteristics of the diffusion have been established by means of the CASTAING electronic microanalyser. The examination of the results indicates that when diffusion takes place without external pressure (couples U-Cu and U-Ni) or with a pressure less than 300 kg/cm 2 (couple U-Al) the concentration varies notably in the compounds obtained, which theoretically are stoichiometric. Thus, when crossing the zone of diffusion of one base metal to another one notes a continual passage of: UCu 4.70 to UCu 5.25 in the couple U-Cu; UNi 4.75 to UNi 5.25 in the couple U-Ni; UAl 2.2 to UAl 3.3 in the couple U-Al. If an uniaxial or hydrostatic pressure above 500 kg/cm 2 is applied to the couples U-Cu and U-Ni, or above 1000 kg/cm 2 for the couple U-Al, the composition is then constant in the zones formed. It corresponds to: UCu 5 in the couple U-Cu; UNi 5 in the couple U-Ni; UAl 3 in the couple U-Al. These results are confirmed by an X-ray diffraction study, mainly in the U-Cu system. Experiments in

  7. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    Science.gov (United States)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  8. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  9. Spin polarization in rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Steenwijk, F.J. van

    1976-01-01

    In this thesis the results of Moessbauer experiments performed on a series of intermetallic compounds of europium and gadolinium are reported. For each of these compounds the magnetic hyperfine field, the electric field gradient at the nuclear site and the isomer shift were determined. For most of the compounds the magnetic ordering temperature was also measured. For some of the europium compounds (e.g. EuAu 5 , EuAg 5 , and EuCu 5 ) it could be derived from the measurements that the easy direction of magnetization falls along the crystallographic c-axis. In a number of compounds (e.g. EuCu 5 , EuZn 5 , EuAu 2 and GdCu 5 ), the various contributions to the magnetic hyperfine field were disentangled by the investigation of suitable pseudobinary compounds that are dilute in Eu. The neighbour contribution Hsub(N) and the paramagnetic Curie temperature thetasub(p) were compared with each other in terms of the RKKY model for EuCu 5 and GdCu 5 . Since the correspondence was found to be poor it was concluded that the magnetic behaviour in these compounds cannot be described by a simple free electron picture as is the basis for the RKKY model

  10. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    Science.gov (United States)

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  11. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    International Nuclear Information System (INIS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-01-01

    Ni 3 V bulk intermetallic compounds with ordered D0 22 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D0 22 structure of Ni 3 V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D0 22 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation

  12. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian

    2015-10-01

    Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

  13. Electric quadrupole and magnetic dipole interactions at {sup 181}Ta impurity in Zr{sub 2}Ni{sub 7} intermetallic compound: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dey, C.C., E-mail: chandicharan.dey@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Srivastava, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)

    2013-10-15

    Electric quadrupole interactions at {sup 181}Ta impurity in the intermetallic compound Zr{sub 2}Ni{sub 7} have been studied by perturbed angular correlation technique. It has been found that there are two electric field gradients (EFG) at the {sup 181}Ta site due to two different crystalline configurations in Zr{sub 2}Ni{sub 7}, while contradictory results were reported from previous investigations. The values of EFG at room temperature have been found to be V{sub zz}=7.9×10{sup 17} V/cm{sup 2} and 7.1×10{sup 17} V/cm{sup 2} corresponding to present experimental values of quadrupole frequencies and asymmetry parameters for the two sites: ω{sub Q}{sup 1}=70.7(1) Mrad/s, η=0.28(1), δ=0.8(2)% (site fraction 84%) and ω{sub Q}{sup 2}=63(1) Mrad/s, η=0.35(5), δ∼0 (site fraction 9%). Electric field gradients and asymmetry parameters have been computed from the complementary first-principles density functional theory (DFT) to compare with present experimental results. Our calculated values of EFG are found to be in close agreement with the experimental results. No magnetic interactions in Zr{sub 2}Ni{sub 7} have been observed at 298 and 77 K which implies that there is no ferromagnetic ordering in this material down to 77 K. This observation is corroborated by theoretical calculations, wherein no magnetic moment or hyperfine field is found at any atomic site.

  14. New intermetallic compounds Ln(Ag, AL)4 (Ln-Y, Gd, Tb, Dy) and their structure

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.

    1990-01-01

    By the methods of X-ray analysis crystal structure of compounds Ln(Ag,Al) 4 , where Ln-Y, Gd, Tb, Dy, posessing rhombic structure, is determined. The intermetallics have been prepared for the first time. Ways of atom distribution and their coordinates in DyAg 0.55 Al 3.45 structure (a=0.4296(1), b=04179(1), c=0.9995(3), R=0.093) are specified. Other compounds are formed in case of LnAgAl 3 compositions. Interatomic distances in Dy(Ag,Al) 4 structure are considered. A supposition is made on the formation in Ln-Ag-Al systems of a greater number of intermetallic compounds

  15. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  16. Disorder trapping in Ni3(Al, Ti) by solidification from the undercooled melt

    International Nuclear Information System (INIS)

    Goetzinger, R.; Kurz, W.

    1997-01-01

    Modelling of rapid solidification predicts disorder trapping in the superlattice structure of Ni 3 Al. However, experimental investigations on this compound suffer from ambiguities concerning the solidification path. There is a phase selection competition between the ordered fcc γ'-phase (Ni 3 Al), the ordered bcc β-phase (NiAl), the disordered fcc γ-phase (Ni), the stable γ'/β eutectic and the metastable γ/β eutectic, and there are subsequent solid state transformations. A replacement of several at.% Al by Ti leads to a stabilization of the γ'-phase and to an avoidance of most of the problems encountered on Ni 3 Al. The experiments on Ni 3 (Al, Ti) presented here clearly show the expected disordered crystallization from the undercooled melt. This was proven by measuring the dendrite growth velocity of electromagnetically levitated droplets and by analysing the data in the framework of dendrite and kinetic growth models. Complementary microstructural investigations were performed on the as-solidified samples. (orig.)

  17. Low-temperature structure and Fermi surface of (La,Ce)TiGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Tobias; Grasemann, Jacob; Uhlarz, Marc; Wosnitza, Jochen [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rosner, Helge; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Loehneysen, Hilbert von [Karlsruhe Institute of Technology, Karlsruhe (Germany); Fritsch, Veronika [Institut fuer Physik, Universitaet Augsburg, Augsburg (Germany)

    2016-07-01

    CeTiGe{sub 3} presents the rare case of a ferromagnetically (T{sub C} ∼ 14 K) ordered Kondo-lattice compound and is probably the first known example of an intermetallic hexagonal perovskite of the BaNiO{sub 3} structure type. LaTiGe{sub 3} may be used as its nonmagnetic reference, since both compounds crystallize in the same crystal structure. To clarify the interplay between structural, localized, and itinerant degrees of freedom an accurate knowledge of the electronic band structure is necessary. Here, we present a detailed electronic-structure study of both compounds applying full potential density functional calculations. Since the Ge's atomic position couples strongly to the band structure at the Fermi energy, a low-temperature, high-resolution structure refinement was made. We attempt to separate the influence of different parameters on the topology of the respective Fermi surfaces and will compare our results with de Haas-van Alphen measurements.

  18. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  19. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  20. Formation of nickel-tantalum compounds in tantalum fluoride halide melts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Zalkind, O.A.; Kuznetsov, B.Ya.; Orlov, V.M.; Sukhorzhevskaya, S.L.

    2001-01-01

    Interaction of nickel with NaCl-K 2 TaF 7 melt (14 mol.%) at 750 deg C was studied, the composition of intermetallic compounds formed in Ni-Ta system being analyzed, using the methods of chemical and X-ray phase analyses, IR spectroscopy. It was ascertained that composition of intermetallic compounds (Ni 3 Ta, Ni 2 Ta) depends on K 2 TaF 7 concentration in the melt, metallic tantalum additions, nickel substrate thickness and experiment duration. The mechanism of currentless deposition of tantalum on nickel was considered and the assumption was made that disproportionation reaction lies in the basis of the process [ru

  1. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  2. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    Science.gov (United States)

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  3. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  4. Characteristics and in vitro biological assessment of (Ti, O, N)/Ti composite coating formed on NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Sun Tao; Wang Langping; Wang Min; Tong, Ho-Wang; Lu, William W.

    2011-01-01

    In this investigation, plasma immersion ion implantation and deposition (PIIID) was used to fabricate a (Ti, O, N)/Ti coating on NiTi shape memory alloy (SMA) to improve its long-term biocompatibility and wear resistance. The surface morphology, composition and roughness of uncoated and coated NiTi SMA samples were examined. Energy dispersive X-ray elemental mapping of cross-sections of (Ti, O, N)/Ti coated NiTi SMA revealed that Ni was depleted from the surface of coated samples. No Ni was detected by X-ray photoelectron spectroscopy on the surface of coated samples. Furthermore, three-point bending tests showed that the composite coating could undergo large deformation without cracking or delamination. After 1 day cell culture, SaOS-2 cells on coated samples spread better than those on uncoated NiTi SMA samples. The proliferation of SaOS-2 cells on coated samples was significantly higher at day 3 and day 7 of cell culture.

  5. Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures

    Science.gov (United States)

    Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.

  6. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  7. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    Science.gov (United States)

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  8. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  9. Fast diffusion in the intermetallics Ni3Sb and Fe3Si: a neutron scattering study

    International Nuclear Information System (INIS)

    Randl, O.G.

    1994-02-01

    We present the results of neutron scattering experiments designed to elucidate the reason for the extraordinarily fast majority component diffusion in two intermetallic alloys of DO 3 structure, Fe 3 Si and Ni 3 Sb: We have performed diffraction measurements in order to determine the crystal structure and the state of order of both alloys as a function of composition and temperature. The results on Fe 3 Si essentially confirm the classical phase diagram: The alloys of a composition between 16 and 25 at % Si are DO 3 -ordered at room temperature and disorder at high temperatures. The high-temperature phase Ni 3 Sb also crystallizes in the DO 3 structure. Vacancies are created in one Ni sublattice at Sb contents beyond 25 at %. In a second step the diffusion mechanism in Ni 3 Sb has been studied by means of quasielastic neutron scattering. The results are reconcileable with a very simple NN jump model between the two different Ni sublattices. Finally, the lattice dynamics of Fe 3 Si and Ni 3 Sb has been studied by inelastic neutron scattering in dependence of temperature (both alloys) and alloy composition (Fe 3 Si only). The results on Fe 3 Si indicate clearly that phonon enhancement is not the main reason for fast diffusion in this alloy. In Ni 3 Sb no typical signs of phonon-enhanced diffusion have been found either. As a conclusion, fast diffusion in DO 3 intermetallics is explained by extraordinarily high vacancy concentrations (several atomic percent) in the majority component sublattices. (author)

  10. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  11. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y11Ni60C6.

    Science.gov (United States)

    Guo, Yiming; Fredrickson, Daniel C

    2016-10-17

    Intermetallic carbides provide excellent model systems for exploring how frustration can shape the structures and properties of inorganic materials. Combinations of several metals with carbon can be designed in which the formation of tetrahedrally close-packed (TCP) intermetallics conflicts with the C atoms' requirement of trigonal prismatic or octahedral coordination environments, as offered by the simple close-packings (SCP) of equally sized spheres. In this Article, we explore the driving forces that lead to the coexistence of these incompatible arrangements in the Yb 11 Ni 60 C 6 -type compound Y 11 Ni 60 C 6 (cI154), as well as potential consequences of this intergrowth for the phase's physical properties. Our focus begins on the structure's SCP regions, which appear as C-stuffed versions of a AuCu 3 -type YNi 3 phase that is not observed on its own in the Y-Ni system. DFT-Chemical Pressure (DFT-CP) calculations on this hypothetical YNi 3 phase reveal large negative pressures within the Ni sublattice, as it is stretched to accommodate the size requirements of the Y atoms. In the Y 11 Ni 60 C 6 structure, two structural mechanisms for addressing these CP issues appear: the incorporation of interstitial C atoms, and the presence of interfaces with CaCu 5 -type domains. The relative roles of these two mechanisms are investigated with the CP analysis on a hypothetical YNi 3 C x series of C-stuffed AuCu 3 -type phases, the Y-Ni sublattice of Y 11 Ni 60 C 6 , and finally the full Y 11 Ni 60 C 6 structure. Through these calculations, the C atoms appear to play the roles of relieving positive Y CPs and supporting relaxation at the AuCu 3 -type/CaCu 5 -type interfaces, where the cancellation occurs between opposite CPs experienced by the Y atoms in the two parent structures (following the epitaxial stabilization mechanism). The CP analysis of Y 11 Ni 60 C 6 also highlights a sublattice of Y and Ni atoms with large negative CPs (and thus the potential for soft

  12. Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy

    Science.gov (United States)

    Lentzaris, K.; Poulia, A.; Georgatis, E.; Lekatou, A. G.; Karantzalis, A. E.

    2018-04-01

    Α Co1.5CrFeNi1.5Ti0.5 high-entropy alloy (HEA) of the well-known family of CoCrFeNiTi has been designed using empirical parameters. The aim of this design was the production of a HEA with fcc structure that gives ductile behavior and also high strength because of the solid solution effect. The VEC calculations (8.1) supported the fcc structure while the δ factor calculations (4.97) not being out of the limit values, advised a significant lattice distortion. From the other hand, the ΔΗ mix calculations (- 9.64 kJ/mol) gave strong indications that no intermetallic would be formed. In order to investigate its potential application, the Co1.5CrFeNi1.5Ti0.5 HEA was prepared by vacuum arc melting and a primary assessment of its surface degradation response was conducted by means of sliding wear testing using different counterbody systems for a total sliding distance of 1000 m. An effort to correlate the alloy's wear response with the microstructural characteristics was attempted. Finally, the wear behavior of the Co1.5CrFeNi1.5Ti0.5 HEA was compared with that of two commercially used wear-resistant alloys. The results obtained provided some first signs of the high-entropy alloys' better wear performance when tested under sliding conditions against a steel ball.

  13. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  14. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  15. Microstructural characterization of HIP consolidated NiTi–nano Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Farvizi, M., E-mail: mmfarvizi@yahoo.com [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Ebadzadeh, T. [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Vaezi, M.R. [Nanotechnology and Advanced Materials Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Yoon, E.Y.; Kim, Y-J. [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Simchi, A. [Department of Materials Science and Engineering and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Highlights: • NiTi–6 wt.% nano α-Al{sub 2}O{sub 3} composites have been produced using a HIP method. • Both elemental and prealloyed powders were used for the fabrication of composites. • Generation of mismatch stress and intermetallics affected martensitic transformation. • Nanoparticles partially inhibited thermally induced martensitic transformation. • An interwoven austenite–martensite structure was observed in the composite samples. - Abstract: The microstructure and phase transformational behavior of NiTi-based composites reinforced with 6 wt.% of α-alumina nanoparticles have been investigated. Two kinds of starting materials, elemental Ni–Ti and prealloyed austenitic NiTi, were used to prepare the composites. The samples were consolidated using a hot isostatic pressing method. The X-ray diffraction results showed that while unreinforced NiTi mainly contained B2 phase at room temperature, martensitic B19′ phase appeared in the microstructure after addition of the α-alumina nanoparticles. The differential scanning calorimetry measurements indicated that the martensitic transformation temperatures were elevated in the composite samples, but the transformational enthalpy was reduced in comparison with the NiTi sample. It is believed that the generation of thermal mismatch stress during the sintering and the formation of small contents of NiTi{sub 2}/Ni{sub 3}Ti intermetallics in the composite samples are responsible for this increment of the martensitic transformation temperatures. Also, due to the nanometric size of α-Al{sub 2}O{sub 3}, a larger fraction of the matrix is disturbed by the presence of the nanoparticles, which yields the formation of effective barriers to the thermally induced martensitic transformation in the nanocomposite samples. The high-resolution transmission electron microscopy studies of the samples confirmed the higher defect density and partial microplastic deformation in the composite samples.

  16. Molecular dynamics simulation of radiation-induced amorphization of the ordered compound NiZr2

    International Nuclear Information System (INIS)

    Devanathan, R.; Meshii, M.

    1992-12-01

    We have studied the electron irradiation-induced amorphization of the ordered intermetallic compound NiZr 2 by molecular dynamics simulations in conjunction with embedded-atom potentials. Randomly chosen Frenkel pairs and chemical disorder were introduced into the system in separate processes. In both cases, the energy and volume of the system rose above the corresponding levels of a quenched liquid and the calculated diffraction patterns indicated the occurrence of a crystalline-to-amorphous transition. In addition, the average shear elastic constant fell to about 50% of its value in the perfect crystal and the system became elastically isotropic. These results indicate that NiZr 2 can be amorphized by chemical disorder as well as Frenkel pairs and are in good agreement with experimental observations

  17. Effect of boron on the properties of ordered Ni-Mo alloys

    International Nuclear Information System (INIS)

    Tawancy, H.M.

    1994-01-01

    Ordered alloys and intermetallic compounds have long been known to possess a number of technologically useful properties, however, their structural applications is limited by relatively poor ductility. Efforts to improve the mechanical strength of these materials have led to the recognition that small additions of B improve the ductility of intermetallic compounds, based upon the L1 2 , superlattice such as Ni 3 Al and Ni 3 Si. Also it has been demonstrated that small additions of B improve the ductility of binary ordered Ni-Ni 4 Mo alloys. The objective of this study is to demonstrate that critical additions of B to selected Ni-Mo alloys could significantly improve their ductility and corrosion properties in the ordered state while maintaining a similar level of other properties, particularly, weldability. The effect of B on the ordered microstructure was emphasized

  18. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  19. A Review of Selective Laser Melted NiTi Shape Memory Alloy

    Science.gov (United States)

    Khoo, Zhong Xun; Shen, Yu Fang

    2018-01-01

    NiTi shape memory alloys (SMAs) have the best combination of properties among the different SMAs. However, the limitations of conventional manufacturing processes and the poor manufacturability of NiTi have critically limited its full potential applicability. Thus, additive manufacturing, commonly known as 3D printing, has the potential to be a solution in fabricating complex NiTi smart structures. Recently, a number of studies on Selective Laser Melting (SLM) of NiTi were conducted to explore the various aspects of SLM-produced NiTi. Compared to producing conventional metals through the SLM process, the fabrication of NiTi SMA is much more challenging. Not only do the produced parts require a high density that leads to good mechanical properties, strict composition control is needed as well for the SLM NiTi to possess suitable phase transformation characteristics. Additionally, obtaining a good shape memory effect from the SLM NiTi samples is another challenging task that requires further understanding. This paper presents the results of the effects of energy density and SLM process parameters on the properties of SLM NiTi. Its shape memory properties and potential applications were then reviewed and discussed. PMID:29596320

  20. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    Science.gov (United States)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-09-01

    LaNi3 exhibited a metallic antiferromagnetic property with T N = 30 K. La(Ni1-x Cox )3 with x = 0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x . La(Ni1-2z Coz Cuz )3 with z = 0.015 exhibited a ferromagnetic property with a small T C. A La(Ni1-y Cuy )3 sample with y = 0.01 exhibited a Pauli-paramagnetic property; those with y = 0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y = 0.05 exhibited a ferromagnetic property. The gradual metamagnetic M -H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one.

  1. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  2. Mechanical alloying of TiFe intermetallic for hydrogen storage; Elaboracao mecanica do intermetalico TiFe para armazenagem de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J., E-mail: luis.romero@ppgcem.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Leal Neto, R.M. [Instituto de Pesquisas Energéticas e Nucleares (CCTM/IPEN/CNEN-SP), São Paulo, SP (Brazil). Centro de Ciências e Tecnologia de Materiais

    2016-07-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  3. Computer simulations of disordering kinetics in irradiated intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; Diaz de la Rubia, T.

    1994-01-01

    Molecular-dynamics computer simulations of collision cascades in intermetallic Cu 3 Au, Ni 3 Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni 3 Al and Cu 3 Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given

  4. Isothermal sections of the Co-Ni-Ti system at 950 and 1 000 C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han; Jin, Zhanpeng [Central South Univ., Changsha (China). School of Materials Science and Engineering; Zhou, Peng [Hunan Univ. of Science and Technology, Xiangtan (China). Hunan Provincial Key Defense Lab. of High Temperature Wear Resisting Materials and Preparation Technology; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy

    2018-02-15

    The isothermal sections of the Co-Ni-Ti system at 950 and 1000 C were investigated experimentally. Diffusion couples were measured by electron probe microanalysis to construct the phase relations at 950 C, whereas eleven key alloys annealed at 1000 C were investigated using X-ray diffraction and electron probe microanalysis. The ternary phase, τ-(Co,Ni){sub 3}Ti (hP24-VCo{sub 3}), was observed at both temperatures. At 950 C, continuous solid solutions are formed between CoTi{sub 2} and NiTi{sub 2} as well as between CoTi and NiTi. Eight 3-phase regions, i. e. Ni{sub 3}Ti + (Co,Ni)Ti + τ, Ni{sub 3}Ti + γ-(Co,Ni) + τ, τ + c-Co{sub 2}Ti + (Co,Ni)Ti, τ + c-Co{sub 2}Ti + Co{sub 3}Ti, τ + Co{sub 3}Ti + γ-(Co,Ni), c-Co{sub 2}Ti + h-Co{sub 2}Ti + Co{sub 3}Ti, L + β-(Ti) + (Co,Ni)Ti{sub 2} and L + (Co,Ni)Ti{sub 2} + (Co,Ni)Ti, were constructed at 1000 C. Considerable ternary solubilities in Ni{sub 3}Ti, Co{sub 3}Ti and c-Co{sub 2}Ti were determined.

  5. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  6. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  7. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  8. Novel silver-doped NiTiO3: auto-combustion synthesis ...

    African Journals Online (AJOL)

    ... Ag-NiTiO3 film was directly deposited on top of the TiO2 prepared by electrophoresis deposition method. Furthermore, solar cell result indicates that an inexpensive solar cell could be developed by the synthesized Ag-NiTiO3 nanoparticles. Keywords: Ag-NiTiO3, sol-gel method, semiconductor, photovoltaic, doping ...

  9. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  10. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  11. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2006-01-01

    Diffusion bonding was carried out between commercially pure titanium and 304 stainless steel using nickel interlayer in the temperature range of 800-950 deg. C for 3.6 ks under 3 MPa load in vacuum. The transition joints thus formed were characterized in optical and scanning electron microscopes. TiNi 3 , TiNi and Ti 2 Ni are formed at the nickel-titanium (Ni-Ti) interface; whereas, stainless steel-nickel (SS-Ni) interface is free from intermetallic compounds up to 900 deg. C processing temperatures. At 950 deg. C, Ni-Ti interface exhibits the presence of β-Ti discrete islands in the matrix of Ti 2 Ni and the phase mixture of λ + χ + α-Fe, λ + α-Fe, λ + FeTi + β-Ti and FeTi + β-Ti occurs at the stainless steel-nickel interface. Nickel is able to inhibit the diffusion of Ti to stainless steel side up to 900 deg. C temperature; however, becomes unable to restrict the migration of Ti to stainless steel at 950 deg. C. Bond strength was also evaluated and maximum tensile strength of ∼302 MPa and shear strength of ∼219 MPa were obtained for the diffusion couple processed at 900 deg. C temperature due to better contact of the mating surfaces and failure takes place at the Ni-Ti interface. At higher joining temperature, the formation of Fe-Ti bases intermetallics reduces the bond strength and failure occurs at the SS-Ni interface

  12. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    Science.gov (United States)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  13. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  14. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  15. Estudio de polvos y recubrimientos metaestables de NiTi obtenidos por proyección térmica de plasma

    Directory of Open Access Journals (Sweden)

    Cano, I. G.

    2008-06-01

    Full Text Available NiTi intermetallic is widely known for its shape memory effect and pseudoelasticity. Due to its high corrosion resístanse (biocompatibility, most of the studies carried out deal with its use for medical applications. With regard to surface technologies, many reported investigations focus on Vacuum Thermal Spray to provide NiTi coatings with minimal oxide content.The Thermal Spray Center has attempted to obtain metastable NiTi powders and coatings by means of Atmospheric Plasma Spraying with a liquid nitrogen cooling system. Starting from two different Ni-45wt%Ti feedstock powders. One powder is a blend of Ti and Ni particles, whereas the other has been alloyed by gas atomization. Both powders were sprayed obtaining better results starting from the gas atomized powder resulting in a final deposit where NiTi was the main phase with minimal oxidation. Different spraying parameters were tested and microstructural characterization was performed by SEM-EDS. XRD patterns showed some peak broadening; that seems to be produced by structural metastability of the coatings.

    El compuesto intermetálico de NiTi es conocido por su capacidad de memoria de forma así como por su pseudoelasticidad. Debido, además, a su alta resistencia a corrosión (biocompatiblidad, la gran mayoría de estudios se centran en su uso para aplicaciones médicas. Dentro del conjunto de las tecnologías de superficie, las investigaciones actuales utilizan la técnica de Proyección Térmica de Plasma al Vacío para producir recubrimientos de NiTi con contenidos mínimos de porosidad y de óxidos.El Centro de Proyección Térmica se planteó como objetivo la obtención de polvos y recubrimientos metaestables de NiTi a través de la técnica de Proyección de Plasma acoplado a un sistema de refrigeración con nitrógeno líquido. Se estudiaron dos polvos con diferentes características, pero de la misma composición nominal (Ni-45 % peso Ti. Uno de ellos, es el resultado de

  16. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    Science.gov (United States)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the {110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of {011} or {010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for

  17. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    International Nuclear Information System (INIS)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-01-01

    LaNi 3 exhibited a metallic antiferromagnetic property with T N =30 K. La(Ni 1-x Co x ) 3 with x=0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x. La(Ni 1-2z Co z Cu z ) 3 with z=0.015 exhibited a ferromagnetic property with a small T C . A La(Ni 1-y Cu y ) 3 sample with y=0.01 exhibited a Pauli-paramagnetic property; those with y=0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y=0.05 exhibited a ferromagnetic property. The gradual metamagnetic M-H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  19. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  20. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  1. Crystal structure and magnetic state of pseudo-binary intermetallic compounds Ho(Cosub(1-x)Nisub(x))sub(5)

    International Nuclear Information System (INIS)

    Chuev, V.V.; Kelarev, V.V.; Pirogov, A.N.; Sidorov, S.K.; Koryakova, V.S.

    1983-01-01

    In the range of 1.8-1000 K intermetallic compounds Ho(Cosub(1-x)Nisub(x))sub(5) have been investigated neutronographically and roentgenographically. Crystal structure of two series of samples: HoCosub(5.5-5.5x)Nisub(5x) and HoCosub(5-5x)Nisub(5x) is studied. It is shown that Ni atoms mainly occupy positions 2c, Co atoms - positions 3g; coordinates of atoms and position occupation of TbCu 7 type structure are specified. Analysis of magnetic structure is made, angles of magnetic momenta orientation as to crystallographic axes are determined. Magnetic phase diagram is built. Concentrational dependences of sublattice magnetization: Msub(Ho)(x), Mdsub(2c)(x), Mdsub(3g)(x) are determined

  2. Characterization and tribocorrosion behavior of sputtered NiTi coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XiaoMin; Gao, Lizhen [Taiyuan University of Technology (China). College of Environmental Science and Engineering; Wang, Hefeng [Taiyuan University of Technology (China). College of Mechanics; Liu, Erqiang [Taiyuan University of Technology (China). Inst. of Applied Mechanics and Biomedical Engineering

    2016-02-15

    In this study, NiTi coatings were deposited onto AISI 316L stainless steel substrates by closed field unbalanced magnetron sputtering. The microstructure and properties of the coatings were characterized by means of X-ray diffraction, scanning electron microscopy, and nano-indentation. The tribocorrosion resistance and corrosion behavior of the stainless steel substrates and NiTi coatings were investigated in Hanks' solution. The experimental results indicated the NiTi coatings show higher corrosion polarization resistance and a more stable corrosion potential in the Hanks' solution than the uncoated stainless steel substrate. The NiTi coatings also exhibited excellent wear resistance and chemical stability in sliding tests with an Si{sub 3}N{sub 4} ball in the Hanks' solution. The tested samples showed different wear mechanisms in the sliding tests. Compared to the SS substrates, the NiTi coatings were more compatible with the Si{sub 3}N{sub 4} ball.

  3. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy

    Science.gov (United States)

    Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai

    2017-01-01

    TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.

  4. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    Science.gov (United States)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  5. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  6. Effects of HVEM irradiation on ordered phases in Ni-Ti

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1983-01-01

    Various ordered phases in the Ni-Ti system were subjected to electron irradiation in the Berkeley HVEM. Austenitic NiTi (B2 structure) disorders and turns amorphous with room-temperature irradiations at accelerating potentials between 1 and 1.5 MeV. Total doses for the onset of amorphiticity range between 0.7 x 10 22 and 3 x 10 22 e.cm -2 (0.4 to 1.0dpa). At 90K the dose requirement decreases to 4 x 10 20 e.cm -2 (approx. 10 -2 dpa). Martensitic NiTi (distorted monoclinic structure) readily detwins and transforms to austenite when irradiated for short times (approx. 10 seconds). Vapor-deposited amorphous films were crystallized to produce NiTi, Phase X (ordered nickel-rich phase with unknown structure) and Ni 3 Ti (DO 24 structure). Upon electron irradiation, NiTi and Phase X disorder and become amorphous, while Ni 3 Ti disorders but does not turn amorphous with doses up to 4 x 10 22 e.cm -2 at 90K. These results are discussed in terms of the requirement of a critical concentration of defects and their relative mobilities. Brimhall's solubility criteria for amorphization of ordered alloys by ion bombardment is apparantly applicable to electron-induced crystalline to amorphous transitions in this alloy

  7. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  8. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    Science.gov (United States)

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  9. Electron energy-loss spectroscopy study of NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Schryvers, D.

    2008-01-01

    Electron energy loss spectroscopy (EELS) investigations were carried out on NiTi shape memory alloys. The composition of lens-shaped precipitates is determined to be Ni 4 Ti 3 by model-based EELS quantification, and the Ni-depleted zone in the B2 matrix surrounding the Ni 4 Ti 3 precipitates was quantified. The Young's modulus Y m of the B2 matrix with 51 at.% Ni and the Ni 4 Ti 3 precipitates was evaluated to be about 124 and 175 GPa, respectively. The intensity of the Ni L 3 edge for the precipitate is slightly higher than that for the B2 phase

  10. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  11. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  12. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  13. Solidification Rate Dependence of Microstructures and Transformation Behavior of Ti-Ni-Hf Alloys.

    Science.gov (United States)

    Kim, Dong-Jo; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    The microstructures and transformation behavior of Ti-49Ni-20Hf, Ti-49.5Ni-20Hf and Ti-50.3Ni- 20Hf alloys, when prepared by conventional casting, were investigated and compared with the properties of the alloys prepared by melt spinning. The area fraction of (Ti,Hf)2Ni in Ti-Ni-Hf alloys decreased to 3.9% from 9.4% as Ni content rose to 50.3 at% from 49 at%. Several cracks were observed in the hot-rolled Ti-49Ni-20Hf alloy sheet but none were found in the Ti-50.3Ni-20Hf alloy sheet. The B2-B19' transformation start temperature (Ms) decreased to 476 K from 580 K as Ni content increased to 50.3 at% from 49 at%. All the as-spun ribbons were amorphous, and the activation energy for crystallization ranged from 167.8 kJ/mol to 182.7 kJ/mol based on Ni content. When annealing temperature ranged from 810 K to 873 K, crystalline Ti-Ni-Hf alloys without (Ti,Hf)2Ni particles were obtained. At annealing temperatures higher than 873 K, very fine (Ti,Hf)2Ni particles, less than 20 nm in size, were found embedded in a crystalline matrix.

  14. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  15. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  16. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  17. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Magnetic properties and magnetocaloric effect in the HoNi1−xCuxIn (x=0, 0.1, 0.3, 0.4) intermetallic compounds

    International Nuclear Information System (INIS)

    Mo, Zhao-Jun; Shen, Jun; Yan, Li-Qin; Tang, Cheng-Chun; He, Xiao-Nan; Zheng, Xinqi; Wu, Jian-Feng; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    The magnetic properties and magnetocaloric effect (MCE) in HoNi 1−x Cu x In (x=0, 0.1, 0.3, 0.4) compounds have been investigated. With the substitution of Cu for Ni, the Ho magnetic moment will cant from the c-axis, and form a complicated magnetic structure. These compounds exhibit two successive magnetic transitions with the increase in temperature. The large reversible magnetocaloric effects have been observed in HoNi 1−x Cu x In compounds around T ord , with no thermal and magnetic hysteresis loss. The large reversible isothermal magnetic entropy change (−ΔS M ) is 20.2 J/kg K and the refrigeration capacity (RC) reaches 356.7 J/kg for field changes of 5 T for HoNi 0.7 Cu 0.3 In. Especially, the value of −ΔS M (12.5 J/kg K) and the large RC (132 J/kg) are observed for field changes of 2 T for HoNi 0.9 Cu 0.1 In. Additionally, the values of RC are improved to 149 J/K for the field changes of 2 T due to a wide temperature span for the mix of HoNi 0.9 Cu 0.1 In and HoNi 0.7 Cu 0.3 In compounds with the mass ratio of 1:1. These compounds with excellent MCE are expected to have effective applications in magnetic refrigeration around 20 K. - Highlights: • For magnetic-field changes of 2 T, the values of RC are improved to 149 J/K. • MCEs of these compounds show no thermal and magnetic hysteresis. • Compounds show two successive magnetic transitions with the increase in temperature. • With the substitution of Cu for Ni, compounds form a complicated magnetic structure

  19. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations

    International Nuclear Information System (INIS)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-01

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni 7 Zr 2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni 7 Zr 2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni 7 Zr 2 alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni 7 Zr 2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s −1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s −1

  20. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  1. Advances in developing TiNi nanoparticles

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2006-01-01

    The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure

  2. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  3. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  4. Process for the manufacture of a superconductor with an intermetallic compound

    International Nuclear Information System (INIS)

    Wilhelm, M.

    1980-01-01

    A superconductor with a superconducting intermetallic compound consisting of at least two elements can be manufactured by producing a conductor preproduct with a first component containing one element of the compound and a second component consisting of a carrier metal and the remaining element or elements of the alloy containing the compound, and by heat treating the conductor preproduct, so that the compound is formed by the reaction of the element of the first compound with the remaining element or elements of the second compound. In such a superconductor, one tries to increase the effective current density and critical current. The invention states that the heat treatment should be carried out in a hydrogen atmosphere. Superconductors produced by this process can be used for superconductor devices whose magnetic fields have a flux density above 10 Tesla. (orig.) [de

  5. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  6. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  7. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  8. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  9. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  10. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-01-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  11. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-03-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  12. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  13. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  14. The corrosion resistance of HVOF sprayed coatings with intermetallic phases in aggressive environments

    OpenAIRE

    B. Formanek; J. Cizner; B. Szczucka-Lasota; R. Przeliorz

    2006-01-01

    Purpose: The cyclic corrosion behavior of coatings with intermetallic matrix ( FeAl, NiAl and FeAl-TiAl) was investigated in aggressive gases.Design/methodology/approach: The composite coatings strengthened by a fine dispersive Al2O3 and other ceramic phases were thermally sprayed by HVOF method in Jet Kote 2 system. A kinetics test was carried out by periodic method for exposure times of up to 500 hours. Mass changes of the studied coatings during the corrosion test are presented. The surfac...

  15. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    Directory of Open Access Journals (Sweden)

    Sonia A. Barczak

    2018-03-01

    Full Text Available TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  16. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  17. Machining NiTi micro-parts by micro-milling

    International Nuclear Information System (INIS)

    Weinert, K.; Petzoldt, V.

    2008-01-01

    The machinability of NiTi by milling has been examined using solid carbide end milling cutters. First results were obtained from machining simple slots applying TiAlN-coated tools with a diameter of 0.4 mm. The machining process was evaluated in terms of tool wear, cutting forces and machining quality. The tool wear and work piece quality was analysed with a scanning electron microscope and a white-light confocal microscope. Despite the poor machinability of NiTi good results concerning tool wear and shape accuracy of the milled slots were achieved. Essential for a good machining result is the application of minimum quantity lubrication. This clearly reduces NiTi adherences compared to dry machining. Work piece quality is improved and tool life is extended. Based on these results different structures could be produced by micro-milling

  18. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  19. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  20. Preparation of TiC/Ni3Al Composites by Upward Melt Infiltration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiC/Ni3Al composites have been prepared using upward infiltration method. The densificstion was performed by both Ni3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni3Al has been evidenced by finding Ni3(Al,Ti)C after fast cooling in the TiC/Ni3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni3Al composite processed by upward infiltration had a flexural strength of 1476 Mpa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 Mpa(m). Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.

  1. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  2. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  3. Influence of SLM on compressive response of NiTi scaffolds

    Science.gov (United States)

    Shayesteh Moghaddam, Narges; Saedi, Soheil; Amerinatanzi, Amirhesam; Jahadakbar, Ahmadreza; Saghaian, Ehsan; Karaca, Haluk; Elahinia, Mohammad

    2018-03-01

    Porous Nickel-Titanium shape memory alloys (NiTi-SMAs) have attracted much attention in biomedical applications due to their high range of pure elastic deformability (i.e., superelasticity) as well as their bone-level modulus of elasticity (E≈12-20 GPa). In recent years, Selective Laser Melting (SLM) has been used to produce complex NiTi components. The focus of this study is to investigate the superelasticity and compressive properties of SLM NiTi-SMAs. To this aim, several NiTi components with different level of porosities (32- 58%) were fabricated from Ni50.8Ti (at. %) powder via SLM PXM by Phenix/3D Systems, using optimum processing parameter (Laser power-P=250 W, scanning speed-v=1250mm/s, hatch spacing-h=120μm, layer thickness-t=30μm). To tailor the superelasticity behavior at body temperature, the samples were solution annealed and aged for 15 min at 350°C. Then, transformation temperatures (TTs), superelastic response, and cyclic behavior of NiTi samples were studied. As the porosity was increased, the irrecoverable strain was observed to be higher in the samples. At the first superelastic cycle, 3.5%, 3.5%, and 2.7% strain recovery were observed for the porosity levels of 32%, 45%, and 58%, respectively. However, after 10 cycles, the superelastic response of the samples was stabilized and full strain recovery was observed. Finally, the modulus of elasticity of dense SLM NiTi was decreased from 47 GPa to 9 GPa in the first cycle by adding 58% porosity.

  4. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  5. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs: A computational investigation

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-06-01

    Full Text Available A comprehensive computational engineering analysis is carried out in order to assess suitability of the Ti/TiAl3 metal/intermetallic laminated composites (MILCs for use in both structural and add-on armor applications. This class of composite materials consists of alternating sub-millimeter thick layers of Ti (the ductile and tough constituent and TiAl3 (the stiff and hard constituent. In recent years, this class of materials has been investigated for potential use in light-armor applications as a replacement for the traditional metallic or polymer-matrix composite materials. Within the computational analysis, an account is given to differing functional requirements for candidate materials when used in structural and add-on ballistic armor. The analysis employed is of a transient, nonlinear-dynamics, finite-element character, and the problem investigated involves normal impact (i.e. under zero obliquity angle of a Ti/TiAl3 MILC target plate, over a range of incident velocities, by a fragment simulating projectile (FSP. This type of analysis can provide more direct information regarding the ballistic limit of the subject armor material, as well as help with the identification of the nature and the efficacy of various FSP material-deformation/erosion and kinetic-energy absorption/dissipation phenomena and processes. The results obtained clearly revealed that Ti/TiAl3 MILCs are more suitable for use in add-on ballistic, than in structural armor applications.

  6. Crystallization and Martensitic Transformation Behavior of Ti-Ni-Si Alloy Ribbons Prepared via Melt Spinning.

    Science.gov (United States)

    Park, Ju-Wan; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    Ti-(50-x)Ni-xSi (at%) (x = 0.5, 1.0, 3.0, 5.0) alloy ribbons were prepared via melt spinning and their crystallization procedure and transformation behavior were investigated using differential scanning calorimtry, X-ray diffraction, and transmission electron microscopy. Ti-Ni-Si alloy ribbons with Si content less than 1.0 at% were crystalline, whereas those with Si content more than 3.0 at% were amorphous. Crystallization occurred in the sequence of amorphous →B2 → B2 → Ti5Si4 + TiNi3 → B2 + Ti5Si4 + TiNi3 + TiSi in the Ti-47.0Ni-3.0Si alloy and amorphous →R → R + Ti5Si4 + TiNi3 → R + Ti5Si4 + TiNi3 + TiSi in the Ti-45.0Ni-5.0Si alloy. The activation energy for crystallization was 189 ±8.6 kJ/mol for the Ti-47Ni-3Si alloy and 212±8.6 kJ/mol for the Ti-45Ni-5Si alloy. One-stage B2-R transformation behavior was observed in Ti-49.5Ni-0.5Si, Ti-49.0Ni-1.0Si, and Ti-47.0Ni- 3.0Si alloy ribbons after heating to various temperatures in the range of 873 K to 1073 K. In the Ti-45.0Ni-5.0Si alloy, one-stage B2-R transformation occurred after heating to 893 K, two-stage B2-R-B19' occurred after heating to 973 K, and two-stage B2-R-B19' occurred on cooling and one-stage B19'-B2 occurred on heating, after heating to 1073 K.

  7. Shock response of Ni/Al reactive inter-metallic composites

    Science.gov (United States)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    2014-03-01

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~41 million atom) molecular dynamics simulations of shock-induced chemistry in porous, polycrystalline, lamellar Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse, leading to substantial inhomogeneity in the local stress states of the material. We describe the importance of pores as sites of initiation, where local temperatures can rise to several thousands of degrees, and chemical mixing is accelerated by vortex formation and jetting in the pore. We also follow the evolution of the chemistry after the shock passage by allowing the sample to ``cook'' under the shock induced pressures and temperatures for up to 0.5 ns. Multiple ``tendril-like'' reaction fronts, born in the cauldron of the pores, propagate rapidly through the sample, consuming it within a nanosecond. US Defense Threat Reduction Agency, Contract No. HDTRA1-10-1-0119.

  8. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  9. Static magnetic susceptibility of radiopaque NiTiPt and NiTiEr

    Science.gov (United States)

    Chovan, Drahomír; Gandhi, Abbasi; Butler, James; Tofail, Syed A. M.

    2018-04-01

    Magnetic properties of metallic alloys used in biomedical industry are important for the magnetic resonance imaging (MRI). If the alloys were to be used for long term implants or as guiding devices, safety of the patient as well as the medical staff has to be ensured. Strong response to the external magnetic field can cause mechanical damage to the patients body. In this paper we present magnetic susceptibility of nickel rich, ternary NiTiPt and NiTiEr to static magnetic field. We show that the magnetic susceptibility of these radiopaque alloys has values in low paramagnetic region comparable to the binary nickel-titanium. Furthermore, we studied the effect of the thermal and mechanical treatments on magnetic properties. Despite deviation from linear M (H) treated samples spanning small region around H = 0 , the linearity of the M (H) and χ =d M /d H values suggest that these ternary alloys are safe to use under MRI conditions.

  10. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  11. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-08-01

    surface coating developed during the NiTi deposition or anneal that is relatively resistant to the wet etch. Fig. 2 SEMs after the NiTi wet -etch...SEMs of NiTi devices after the 600 °C anneal , wet -etch patterning of the NiTi. A 120-nm Au capping layer was also sputtered. Figure 3a shows a 200-nm...Ni50Ti50 Cantilever 2 3. Results and Discussion 3 3.1 Wet -Etch Patterning NiTi 3 3.2 Dry-Etch Release of NiTi Devices 5 3.3 Thermal Actuation of

  12. Cutting NiTi with Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-01-01

    Full Text Available Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow nonthermal processing of materials by ablation. The effect of processing parameters on machining depth was studied, and material removal rates were computed. Surfaces produced were analyzed under SEM which shows a resolidified thin layer with minimal heat affected zones. However, for high cutting speeds, that is, for short interaction times, this layer was not observed. A depletion of Ni was seen which may be beneficial in biomedical applications since Ni is known to produce human tissue reactions in biophysical environments.

  13. Diffusion characteristics in the Cu-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Laik, Arijit; Kale, Gajanan Balaji [Bhabha Atomic Reseach Centre, Mumbai (India). Materials Science Div.; Bhanumurthy, Karanam [Bhabha Atomic Reseach Centre, Mumbai (India). Scientific Information Resource Div.; Kashyap, Bhagwati Prasad [Indian Institute of Technology Bombay, Mumbai (India). Dept. of Metallurgical Engineering

    2012-06-15

    The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720 - 860 C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu-Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu{sub 4}Ti, Cu{sub 4}Ti{sub 3} and CuTi{sub 2}. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu{sub 4}Ti, CuTi and Cu{sub 4}Ti{sub 3} and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol{sup -1} respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol{sup -1} to 247.5 kJ mol{sup -1} with increasing concentration of Ti, in the range 0.5 - 4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established. (orig.)

  14. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Arafat, M.M., E-mail: arafat_mahmood@yahoo.com; Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  15. Investigation of oxidation resistance of Ni-Ti film used as oxygen diffusion barrier layer

    International Nuclear Information System (INIS)

    Liu, B.T.; Yan, X.B.; Zhang, X.; Zhou, Y.; Guo, Y.N.; Bian, F.; Zhang, X.Y.

    2009-01-01

    Ni-Ti films prepared at 10 W and 70 W by rf magnetron sputtering are investigated as the oxygen diffusion barrier layer, it is found that crystallinity of Ni-Ti film does not greatly depend on the deposition power. X-ray photoelectron spectroscopy indicates that Ni is still in the form of metallic state from the binding energies of both Ni 2p 3/2 and Ni 2p 1/2 spectra for the sample with 10 W prepared Ni-Ti, however, Ni is oxidized for 70 W prepared Ni-Ti film. Moreover, the (La 0.5 Sr 0.5 )CoO 3 /Pb(Zr 0.40 Ti 0.60 )O 3 /(La 0.5 Sr 0.5 )CoO 3 capacitor grown on high power prepared Ni-Ti film is leaky, however, the capacitor on low power prepared Ni-Ti film possesses very promising physical properties (i.e. remnant polarization of ∼27 μC/cm 2 at 5 V and maximum dielectric constant of 940). Leakage current density of the capacitor grown on low power prepared Ni-Ti film is further investigated, it meets ohmic behavior ( 1.0 V).

  16. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  17. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Hongo, Toshifumi; Edalati, Kaveh; Arita, Makoto; Matsuda, Junko; Akiba, Etsuo; Horita, Zenji

    2015-01-01

    Mg 2 Ni intermetallics are processed using three different routes to produce three different microstructural features: annealing at high temperature for coarse grain formation, severe plastic deformation through high-pressure torsion (HPT) for nanograin formation, and HPT processing followed by annealing for the introduction of stacking faults. It is found that both grain boundaries and stacking faults are significantly effective to activate the Mg 2 Ni intermetallics for hydrogen storage at 423 K (150 °C). The hydrogenation kinetics is also considerably enhanced by the introduction of large fractions of grain boundaries and stacking faults while the hydrogenation thermodynamics remains unchanged. This study shows that, similar to grain boundaries and cracks, stacking faults can act as quick pathways for the transportation of hydrogen in the hydrogen storage materials

  18. Effect of load deflection on corrosion behavior of NiTi wire.

    Science.gov (United States)

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  19. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  20. Microstructure of NiTi orthodontic wires observations using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    J. Ferčec

    2014-10-01

    Full Text Available This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM. Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Microstructure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.

  1. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    Science.gov (United States)

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  2. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  3. The permeation behavior of deuterium through 1Cr18Ni9Ti stainless steel with TiN+TiC-TiN multiple films

    International Nuclear Information System (INIS)

    Xiong, Y.; Song, J.; Luo, D.; Lei, Q.; Chen, C.

    2015-01-01

    The prevention of tritium losses via permeation through structure components is an important issue in fusion technology. The production of thin layers on materials with low diffusivity and/or low surface recombination constants (so-called permeation barriers) seems to be the most practical method to reduce or hinder the permeation of tritium through materials. TiN+TiC+TiN multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel by ion-beam assisted deposition technology. The characteristics of films are tested by XPS ASEM and XRD, which shows that the film are compact and uniform with a thickness of about 15 μm, and have a good adherence with the substrate below 773 K. The diffraction peaks in the XRD patterns for TiC and TiN are broadened, implying that the multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel. Meanwhile, the C-H bonded CH 4 -appears in the infrared spectra of multiple films, suggesting that the CH 4 - is in a static state, so hydrogen atom cannot migrate from the site bonded with carbon to a neighboring site. The measured deuterium permeability in 1Cr18Ni9Ti stainless steel coated with multiple films is 2-3 orders of magnitude lower than that of pure 1Cr18Ni9Ti stainless steel substrate from 473 K to 773 K. However, this barrier is partly destroyed above 773 K

  4. Martensitic transformation and shape memory effect in polycomponent TiNi-based alloys

    International Nuclear Information System (INIS)

    Khachin, V.N.; Voronin, V.P.; Sivokha, V.P.; Pushin, V.G.

    1995-01-01

    The results of martesitic transformation (MT) and shape memory effect (SME) in quaternary Ti 50 (NiCoCu) 50 , Ti 50 (NiFeCu) 50 and (TiAl) 50 (NiCu) 50 alloys studies are generalized in this paper. On alloying TiNi simultaneously by two elements, their individual effect on MT and SME is conserved. Martensitic transformations B2→R and B2→B19' are almost simultaneously realizing in a binary TiNi. One can selectively control each of two MT channels by selecting property of alloying elements. As a result, the alloys having any sequences of MT and their realizations temperatures, including simultaneous realization of two MTs at low temperatures, which was not observed earlier, can be produced. (orig.)

  5. Solid-state reaction in Ti/Ni multilayered films studied by using magneto-optical spectroscopy

    CERN Document Server

    Lee, Y P; Kim, K W; Kim, C G; Kudryavtsev, Y V; Nemoshkalenko, V V; Szymanski, B

    2000-01-01

    A comparative study of the solid-state reaction (SSR) in a series of Ti/Ni multilayered films (MLDs) with bilayer periods of 0.65-22.2 nm and a constant Ti to Ni sublayer thickness ratio was performed by using experimental and computer-simulated magneto-optical (MO) spectroscopy based on different models of MLFs, as well as x-ray diffraction (XRD). The spectral and sublayer thickness dependences of the MO properties of the Ti/Ni MLFs were explained on the basis of the electromagnetic theory. The existence of a threshold nominal Ni-sublayer thickness of about 3 nm for the as-deposited Ti/Ni MLF to observe of the equatorial Kerr effect was explained by a solid-state reaction which formed nonmagnetic alloyed regions between pure components during the MLF deposition. The SSR in the Ti/Ni MLFs, which was caused by the low temperature annealing, led to the formation of an amorphous Ti-Ni alloy and took place mainly in the Ti/Ni MLFs with ''thick'' sublayers. For the caes of Ti/Ni MLFs, the MO approach turned out to...

  6. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  7. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.

  8. 3D flexible NiTi-braided elastomer composites for smart structure applications

    International Nuclear Information System (INIS)

    Heller, L; Vokoun, D; Šittner, P; Finckh, H

    2012-01-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain. (paper)

  9. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  10. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance

  11. Evolution of microstructure and property of NiTi alloy induced by cold rolling

    International Nuclear Information System (INIS)

    Li, Y.; Li, J.Y.; Liu, M.; Ren, Y.Y.; Chen, F.; Yao, G.C.; Mei, Q.S.

    2015-01-01

    We investigated the combination effect of plastic deformation and phase transformation on the evolution of microstructure and property of NiTi alloy. Samples of Ni 50.9 Ti 49.1 alloy were deformed by cold rolling to different strains/thickness reductions (4%–56%). X-ray diffraction, transmission electronic microscopy (TEM) and microhardness measurements were applied for characterization of the microstructure and property of the cold-rolled samples. Experimental results indicated the non-monotonic variations of microstructure parameters and mechanical property with strain, indicating the different processes in microstructure and property evolution of NiTi subjected to cold rolling. TEM observations further showed the dominating mechanisms of microstructure evolution at different strain levels, leading to the gradual reduction of grain size of NiTi to the nanoscale by cold rolling. The results were discussed and related to deformation of martensite, forward and reverse martensitic transformations and dynamic recrystallization. The present study provided experimental evidences for the enhanced formation of nanograins in NiTi by plastic deformation coupled with phase transformation. - Highlights: • Cold rolling of NiTi to thickness reductions from 4% to 56%. • Fluctuation behaviors in microstructure and property evolutions of NiTi. • Deformation coupled with phase transformation enhanced nanocrystallization of NiTi.

  12. Oxidation behaviors of the TiNi/Ti_2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    International Nuclear Information System (INIS)

    Lv, Y.H.; Li, J.; Tao, Y.F.; Hu, L.F.

    2016-01-01

    The TiNi/Ti_2Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti_2Ni as the matrix and TiC/TiB_2/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB_2 and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm"−"2 h"−"1 in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg"2 cm"−"4 h"−"1 in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm"−"2, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO_2, Al_2O_3, and a small amount of NiO, Cr_2O_3 and SiO_2. Moreover, Ta_2O_5 was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser cladding. • Effect of TaC addition on microstructural evolution of the coatings was

  13. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  14. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  16. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  17. Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate

    International Nuclear Information System (INIS)

    Li, Guang Jie; Li, Jun; Luo, Xing

    2014-01-01

    Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni 3 Ti; some unknown rich Ni- and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni 3 Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni 3 Ti phase with increasing temperature. A large number of fine equiaxed Cr 23 C 6 particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance. - Highlights: • TiC + WC reinforced intermetallic compound matrix composite coatings were produced. • The formation mechanism of the reinforcements was analyzed. • Two precipitates were generated at elevated temperature. • Cracking susceptibility and microhardness of the coatings were improved

  18. The Influence of NiO Addition in TiO2 Structure and Its Photoactivity

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Purwanti, P. D.; Munawaroh, H.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The synthesis of TiO2 together with the TiO2-NiO composite using various annealing temperatures has been studied. The synthesis of TiO2 was performed by sol gel method using Titanium Tetra Isopropoxide (TTIP) precursor, whereas the synthesis of TiO2-NiO composite was done by wet impregnation method using NiNO3.6H2O precursor. This study aims to determine the influence of NiO addition in its structure and photoactivity. The diffraction of synthesized TiO2 at 400 °C temperature shows anatase TiO2 peak at 2θ = 25.35 °. The addition of NiO dopant to the synthesis of TiO2 process is carried out by annealing at 300 °C, 400 °C, 500 °C, 600 °C, and 700 °C, respectively. The TiO2-NiO composite has been prepared and shows the diffraction peak of NiO at 2θ=43° about 33.08 to 36.68%. The optimum result of Rhodamine B photodegradation with TiO2 was 43.15%, while the optimum result of Rhodamine B degradation with TiO2-NiO composite was 92.85%.

  19. Diffusion in intermetallic compounds studied using short-lived radioisotopes

    CERN Multimedia

    Diffusion – the long range movement of atoms – plays an important role in materials processing and in determining suitable applications for materials. Conventional radiotracer methods for measuring diffusion can determine readily how distributions of radioactive probe atoms in samples evolve under varying experimental conditions. It is possible to obtain limited information about atomic jump rates and pathways from these measurements; however, it is desirable to make more direct observations of the atomic jumps by using experimental methods that are sensitive to atomic scale processes. One such method is time-differential perturbed $\\gamma$–$\\gamma$-angular correlation spectroscopy (PAC). Two series of PAC experiments using $^{111m}$Cd are proposed to contribute to fundamental understanding of diffusion in intermetallic compounds. The goal of the first is to determine the dominant vacancy species in several Li$_{2}$-structured compounds and see if the previously observed change in diffusion mechanism th...

  20. Spontaneous growth of whiskers on RE-bearing intermetallic compounds of Sn-RE, In-RE, and Pb-RE

    International Nuclear Information System (INIS)

    Liu Meng; Xian Aiping

    2009-01-01

    A phenomenon of the whiskers growth on the bulk rare earth (RE)-intermetallic compounds of NdSn 3 , NdIn 3 , and LaPb 3 is reported. The whiskers formed spontaneously on all of the RE-intermetallic compounds after exposed to room ambience (21-28 deg. C/20-56% RH, relative humidity) for several days. Among the samples, the propensity of whisker growth for NdSn 3 is the strongest, on which the tin whiskers were flourishing and covered all of the surfaces after exposed to room ambience for 22 days; while LaPb 3 is the secondary and NdIn 3 is the last one. Observed by SEM, the whiskers were exhibited as different morphology, size, and number density. The XRD analysis confirms the existence of RE(OH) 3 after whiskers formed, also, the weight gain curve of the samples exposed to room ambience supports that a spontaneous chemical reaction of the RE-intermetallic compounds with water in room ambience takes place. In discussion, it is proposed that the fresh metal atoms released by the chemical reaction could be causative to result in nucleation and spontaneous growth of the whiskers, while the anisotropy of crystal structure could be a reason to understand the difference of the whisker growth behaviors between Sn and Pb.

  1. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  2. Effect on strength of ternary alloying additions in L12 intermetallics

    International Nuclear Information System (INIS)

    Wu Yuanpang.

    1991-01-01

    The thermodynamic properties of {111} antiphase boundaries (APBs) as well as the site preference of ternary additions in an A 3 B intermetallic with L1 2 structure are studied, using a thermodynamic model. A survey of the results from a variety of ternary alloying additions to Ni 3 Al has shown that there is a conflict in the actual role which solid solution strengthening plays in the athermal increment of yield strength. For instance, a good quantitative agreement with linear concentration law is observed only in alloys with stoichiometric compositions but not in the general case of non-stoichiometric alloys. In the light of the possibility that micro-segregation could explain the experimental discrepancy, the author extends the binary solid solution strengthening theory to the ternary system in an L1 2 structure for the four real systems of Ni-Al-Si, Ni-Al-Ti, Ni-Al-Hf, and Ni-Al-V. It is found that ternary site preference plays an important role in the ternary solid solution strengthening theory with L1 2 structure. Good quantitative agreement was found between the calculated and experimentally measured strength for both stoichiometric and nonstoichiometric alloys

  3. In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications

    Directory of Open Access Journals (Sweden)

    Hamdy Ibrahim

    2018-03-01

    Full Text Available NiTi alloys possess distinct functional properties (i.e., shape memory effect and superelasticity and biocompatibility, making them appealing for bone fixation applications. Additive manufacturing offers an alternative method for fabricating NiTi parts, which are known to be very difficult to machine using conventional manufacturing methods. However, poor surface quality, and the presence of impurities and defects, are some of the major concerns associated with NiTi structures manufactured using additive manufacturing. The aim of this study is to assess the in vitro corrosion properties of additively manufactured NiTi structures. NiTi samples (bulk and porous were produced using selective laser melting (SLM, and their electrochemical corrosion characteristics and Ni ion release levels were measured and compared with conventionally fabricated NiTi parts. The additively manufactured NiTi structures were found to have electrochemical corrosion characteristics similar to those found for the conventionally fabricated NiTi alloy samples. The highest Ni ion release level was found in the case of 50% porous structures, which can be attributed to their significantly higher exposed surface area. However, the Ni ion release levels reported in this work for all the fabricated structures remain within the range of most of values for conventionally fabricated NiTi alloys reported in the literature. The results of this study suggest that the proposed SLM fabrication process does not result in a significant deterioration in the corrosion resistance of NiTi parts, making them suitable for bone fixation applications.

  4. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  5. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  6. Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl{sub 3} during spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Haley, J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Kulkarni, K. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, UP (India); Aindow, M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Lavernia, E.J., E-mail: lavernia@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States)

    2015-11-05

    The synthesis of γ-TiAl from elemental metals via solid-state reactive diffusion processing routes involves multiple reaction steps with the formation of various intermediate intermetallic compounds, starting with TiAl{sub 3} because this phase is favored kinetically. To understand the processes by which the TiAl{sub 3} intermediate is eliminated during synthesis of γ-TiAl alloy via spark plasma sintering (SPS), the reaction between Ti and TiAl{sub 3} during SPS was studied with emphasis on the effects of the applied electric current and starting TiAl{sub 3} microstructure on the reaction kinetics and the underlying diffusion mechanisms. The intermediate intermetallic phases Ti{sub 3}Al, TiAl and TiAl{sub 2} were formed between the Ti and TiAl{sub 3} upon SPS processing at 900 °C. The applied electric current did not alter the character of the phases formation in the Ti/TiAl{sub 3} system, but thermodynamic calculations suggest that the activation energy for the nucleation of TiAl{sub 2} is reduced significantly with an electric current flowing. Moreover, the kinetics of the reactions between Ti and TiAl{sub 3} were enhanced when the starting TiAl{sub 3} microstructure was refined. The electric field also had a more significant influence on the grain growth kinetics for TiAl{sub 2} and TiAl in powder blend compacts with refined microstructures. - Highlights: • Reaction between Ti and TiAl{sub 3} during spark plasma sintering was studied. • Refined starting TiAl{sub 3} microstructure enhanced the reactions kinetics. • The nucleation barrier of TiAl{sub 2} was reduced by the applied electric field. • The applied electric field restrained the grain growth of TiAl and TiAl{sub 2}.

  7. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    Science.gov (United States)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  8. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  9. Spark plasma sintering of TiNi nano-powders for biological application

    International Nuclear Information System (INIS)

    Fu, Y Q; Gu, Y W; Shearwood, C; Luo, J K; Flewitt, A J; Milne, W I

    2006-01-01

    Nano-sized TiNi powder with an average size of 50 nm was consolidated using spark plasma sintering (SPS) at 800 deg. C for 5 min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H 2 O 2 ) solution at 60 deg. C followed by heat treatment at 400 deg. C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi

  10. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  11. NiTi bonded space regainer/maintainer

    Directory of Open Access Journals (Sweden)

    Negi K

    2010-06-01

    Full Text Available Early orthodontic interventions are often initiated in the developing dentition to promote favorable developmental changes. Interceptive orthodontic can eliminate or reduce the severity of a developing malocclusion, the complexity of orthodontic treatment, overall treatment time and cost. Premature loss of deciduous tooth or teeth can often destroy the integrity of normal occlusion. There are many space regaining and maintaining devices mentioned in literature. In this article, I present a simple space regaining method by a piece of nickel titanium (NiTi wire bonded between the teeth in active loop form, and the unique shape memory property of NiTi wire will upright or move the teeth and the lost space can be regained easily.

  12. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  13. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A. [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States); Bei, H. [Oak Ridge National Laboratory, Material Science and Technology Division, Oak Ridge, TN 37831 (United States); Russell, A.M. [Iowa State University, Department of Materials Science and Engineering, Ames, IA 50011 (United States); Agnew, S.R., E-mail: sra4p@virginia.edu [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2010-04-15

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction ({approx}5-20 vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  14. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A.; Bei, H.; Russell, A.M.; Agnew, S.R.

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (∼5-20 vol.%) of second phases (M 2 R intermetallics and R 2 O 3 oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  15. Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments

    Science.gov (United States)

    Stanford, Malcolm K.

    2018-01-01

    The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.

  16. Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card

    Science.gov (United States)

    Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo

    2007-01-01

    This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).

  17. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions

    International Nuclear Information System (INIS)

    Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H.

    2014-01-01

    Highlights: • Characterization on the precipitation of Ni- and Zr-based intermetallics. • High temperature tensile properties of 354 alloy containing Zr and Ni below 0.5%. • Quality index charts as a function of heat treatment. • Yield strength and ductility color contours as a function of aging temperature and aging time. - Abstract: The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy

  18. Microstructure Development During Sintering of TiC-Ni3A1 Cermets

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    2001-01-01

    TiC-Ni(sub 3)Al cermets are under development for application in diesel engines because of desirable physical properties and wear resistance. Powder compacts with binder contents from 30-50 vol.% were fabricated by pressureless sintering under vacuum followed by low gas pressure isostatic pressing. Increasing the Ni(sub 3)Al content improved densification when using prealloyed powders as expected. However, when the Ni(sub 3)Al was formed by in-situ reaction synthesis of Ni and NiAl, densification decreased with higher binder contents. The final microstructure consisted of a ''core-rim'' structure with TiC cores surrounded by (Ti,W)C rims. In some cases, Ni and Al were also observed in the peripheral region of the rim structure. Grain sizes of the TiC increased with binder content and temperature. Preferred orientation of the Ni(sub 3)Al binder phase was observed due to very large grain sizes on the order of millimeters

  19. Characterization of intermetallic compounds in Cu-Al ball bonds: layer growth, mechanical properties and oxidation

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1 st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  20. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  1. Structure and properties of intermetallic ternary rare earth compounds

    International Nuclear Information System (INIS)

    Casper, Frederick

    2008-01-01

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  2. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick

    2008-12-17

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  3. Properties of vacancies type defects in intermetallic compounds of the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, M.I; Fernandez, J.R; Monti, A.M

    2006-01-01

    There are five intermetallic compounds in the Al-Mo system that are stable at low temperatures. Of these, the richest phases in some of the two components are the compounds Al 12 Mo and AlMo 3 , whose Pearson symbols are cI26 and cP8, respectively. In both structures, the atoms of the minority component occupy positions bcc and each one of them is surrounded by 12 atoms first neighbors of the other component. These 13 atoms form icosahedron shaped units or heaps. Unlike what occurs in Al 12 Mo, the AlMo 3 heaps are superposed by sharing atoms from the majority component. The neighboring environment of the majority component is mixed but differs considerably in one or another intermetallic. In each structure, the sites occupied by any given species are crystallographically equivalent, that is, they can self generate from one of the positions and from the crystalline structure's elements of symmetry. This work studies the energy of vacancies and antisites in both compounds and the atomic-jump processes to vacant sites. Computer simulation techniques were used based on minimizing the system's energy. Many-body embedded-atom potentials were used to represent the atomic interactions. The potential mixture used resulted in an adjustment to the crystalline structure of the AlMo 3 phase at low temperatures and to its formation energy (cw)

  4. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  5. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    Science.gov (United States)

    Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.

    2018-05-01

    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.

  6. Morphological evolution of primary TiC carbide in laser clad TiC reinforced FeAl intermetallic composite coating

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 王华明

    2003-01-01

    The novel rapidly solidified TiC/FeAl composite coatings were fabricated by laser cladding on the substrate of 1Cr18Ni9Ti stainless steel, particular emphasis has been placed on the growth morphologies of TiC carbide and its growth mechanism under a constant solidification conditions. Results show that the growth morphology of TiC carbide strongly depends upon the nucleation process and mass transportation process of TiC forming elements in laser melt pool. With increasing amount of titanium and carbon in melt pool, the growth morphology of TiC carbide changes from block-like to star-like and well-developed dendrite. As the amount of titanium and carbon increases further, TiC carbide particles are found to be irregular polyhedral block. Although the growth morphologies of TiC are various,their advancing fronts are all faceted, illustrating that TiC carbide grows by the mechanism of lateral ledge growth.

  7. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  8. Hydrothermal fabrication of Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composite films on Ni anode and application in photoassisted water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongbo; Chen, Aiping, E-mail: apchen@ecust.edu.cn; Lv, Hui; Dong, Haijun; Chang, Ming; Li, Chunzhong

    2013-10-15

    Highlights: •Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube photocatalysts were synthesized on Ni by hydrothermal method. •Structure of Ni{sub 3}S{sub 2} wrapped by TiO{sub 2} nanotubes improves remarkably stability of Ni{sub 3}S{sub 2}. •Ni{sub 3}S{sub 2}/TiO{sub 2} film on Ni has better H{sub 2} production performance than TiO{sub 2}-modified anode. -- Abstract: Nanostructured films of rhombohedral Ni{sub 3}S{sub 2} were hydrothermally synthesized on Ni and TiO{sub 2} nanotube layer, as substrates. A possible mechanism is proposed to explain the formation of rhombohedral Ni{sub 3}S{sub 2} nanostructures. The results of UV–vis spectrophotometric studies indicate that optical absorption spectrum of Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composites could be extended to the visible region. As-synthesized Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composite films on Ni substrate had better (by about 40%) hydrogen production performance under the visible light irradiation, in comparison with the Ni anode modified by TiO{sub 2} nanotubes.

  9. The Thermodynamic Characterization of ZrCo–H, HfCo−H, HfNi−H and Zr{sub 1–x}HfxNi(Co) Alloy–H Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Ted B., E-mail: ted.flanagan@uvm.edu; Noh, Hak; Luo, Suifang

    2016-08-25

    ZrCo and HfCo intermetallic compounds have the same cubic (CsCl-type) structure and their ternary (Zr{sub 1−x}Hf{sub x})Co alloys are also cubic. ZrNi and HfNi intermetallic compounds have the orthorhombic structure (CrB-type) and the ternary (Zr{sub 1−x}Hf{sub x})Ni alloys also have this structure. Thermodynamic data for hydride formation and decomposition in ZrCo, HfCo and HfNi intermetallic compounds have been determined from reaction calorimetry and from pressure-composition isotherms. Thermodynamic data have been determined for the three ternary alloys: (Zr{sub 0.75}Hf{sub 0.25})Co, (Zr{sub 0.50}Hf{sub 0.50})Co, and (Zr{sub 0.25}Hf{sub 0.75})Co and the four ternary alloys: (Zr{sub 0.875}Hf{sub 0.125})Ni, (Zr{sub 0.75}Hf{sub 0.25})Ni, (Zr{sub 0.50}Hf{sub 0.50})Ni, and (Zr{sub 0.25}Hf{sub 0.75})Ni. This offers the opportunity to learn how the thermodynamic properties of the ternary alloy-H systems change with the stoichiometry of alloys with the same structure. - Highlights: • Calorimetric enthalpies determined for H absorption by ZrCo, HfCo, HfNi are determined. • Ternary alloys, e.g., Zr{sub 1−x}Hf{sub x}Ni, prepared and characterized by x-ray diffraction. • Isotherms for the ternary alloys give thermodynamic parameters for H solution.

  10. Ni-Ti Next Generation Bearings for Space Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2018-01-01

    NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.

  11. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  12. Effect of Flux onto Intermetallic Compound Formation and Growth

    Directory of Open Access Journals (Sweden)

    Idris Siti Rabiatull Aisha

    2016-01-01

    Full Text Available In this study, the effect of different composition of no-clean flux onto intermetallic compound (IMC formation and growth was investigated. The solder joint between Sn-3Ag-0.5Cu solder alloy and printed circuit board (PCB was made through reflow soldering. They were further aged at 125°C and 150°C for up to 1000 hours. Results showed that fluxes significantly affect the IMC thickness and growth. In addition, during aging, the scallop and columnar morphology of IMC changed to a more planar type for both type of flux during isothermal aging. It was observed that the growth behavior of IMC was closely related to initial soldering condition.

  13. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  14. Velcro-like fasteners based on NiTi micro-hook arrays

    International Nuclear Information System (INIS)

    Vokoun, D; Pilch, J; Majtás, D; Šittner, P; Sedlák, P; Frost, M

    2011-01-01

    A recently developed Velcro-like fastener utilizes superelastic deformation of two interlocked NiTi hooks when pulled apart. This work focuses on experimental analysis (evaluation of normal detachment force at different temperatures) and modeling (simulation by a finite element implemented SMA model) of the unhooking process. It is claimed that nonlinear superelastic deformation of NiTi leads to unique properties of the NiTi hook fasteners such as high strength (∼15 000 kg m −2 ), a significant increase of strength with increasing temperature, absorption of impact loads, damping of mechanical vibrations, forceless contact or silent release and better functioning in dirty environments compared to conventional Velcro fasteners

  15. Spontaneous growth of whiskers on RE-bearing intermetallic compounds of Sn-RE, In-RE, and Pb-RE

    Energy Technology Data Exchange (ETDEWEB)

    Liu Meng [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xian Aiping, E-mail: ap.xian@imr.ac.c [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China)

    2009-11-03

    A phenomenon of the whiskers growth on the bulk rare earth (RE)-intermetallic compounds of NdSn{sub 3}, NdIn{sub 3}, and LaPb{sub 3} is reported. The whiskers formed spontaneously on all of the RE-intermetallic compounds after exposed to room ambience (21-28 deg. C/20-56% RH, relative humidity) for several days. Among the samples, the propensity of whisker growth for NdSn{sub 3} is the strongest, on which the tin whiskers were flourishing and covered all of the surfaces after exposed to room ambience for 22 days; while LaPb{sub 3} is the secondary and NdIn{sub 3} is the last one. Observed by SEM, the whiskers were exhibited as different morphology, size, and number density. The XRD analysis confirms the existence of RE(OH){sub 3} after whiskers formed, also, the weight gain curve of the samples exposed to room ambience supports that a spontaneous chemical reaction of the RE-intermetallic compounds with water in room ambience takes place. In discussion, it is proposed that the fresh metal atoms released by the chemical reaction could be causative to result in nucleation and spontaneous growth of the whiskers, while the anisotropy of crystal structure could be a reason to understand the difference of the whisker growth behaviors between Sn and Pb.

  16. Self-Organized Ni Nanocrystal Embedded in BaTiO3 Epitaxial Film

    Directory of Open Access Journals (Sweden)

    Ge FF

    2010-01-01

    Full Text Available Abstract Ni nanocrystals (NCs were embedded in BaTiO3 epitaxial films using the laser molecular beam epitaxy. The processes involving the self-organization of Ni NCs and the epitaxial growth of BaTiO3 were discussed. With the in situ monitoring of reflection high-energy electron diffraction, the nanocomposite films were engineered controllably by the fine alternation of the self-organization of Ni NCs and the epitaxial growth of BaTiO3. The transmission electron microscopy and the X-ray diffraction characterization confirmed that the composite film consists of the Ni NCs layers alternating with the (001/(100-oriented epitaxial BaTiO3 separation layers.

  17. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    Science.gov (United States)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  18. Intermetallics: past, present and future

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2005-12-01

    Full Text Available Intermetallics have seen extensive world-wide attention over the past decades. For the most part these studies have examined multi-phase aluminide based alloys, because of their high stiffness, combined with reasonable strength and ductility, good structural stability and oxidation resistance, and attempted to improve current Ni-base superalloys, Ti-base alloys, or Fe-base stainless steels for structural aerospace applications. The current status of development and application of such materials is briefly reviewed. Future developments are taking intermetallics from the realm of "improved high-temperature but low-ductility metallic alloys" into the realm of "improved aggressive-environment, high-toughness ceramic-like alloys". Such evolution will be outlined.

    Durante los últimos décadas ha habido un desarrollo de los intermetálicos, sobre todo por aplicaciones estructurales a alta temperatura en aplicaciones aeroespaciales, donde, por su rigidez alta, en combinación con una resistencia mecánica y ductilidad razonable, su buena estabilidad estructural y resistencia a la oxidación, han sido vistos como versiones avanzadas y mejoradas de las aleaciones metálicas como, por ejemplo, las superaleaciones a base de nitrógeno y las aleaciones de titanio. Se discute el desarrollo importante durante las últimas décadas, y también los nuevos desarrollos probables durante los próximos años. Se podrían ver los intermetálicos como versiones mejoradas de los cerámicos.

  19. RF magnetron sputtered TiNiCu shape memory alloy thin film

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun

    2003-01-01

    Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super-elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at a high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the free-standing film was heated and cooled, a 'two-way' shape-memory effect can be clearly observed

  20. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  1. Oxidation behaviors of the TiNi/Ti{sub 2}Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y.H.; Li, J., E-mail: jacob_lijun@sina.com; Tao, Y.F.; Hu, L.F.

    2016-09-15

    The TiNi/Ti{sub 2}Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti{sub 2}Ni as the matrix and TiC/TiB{sub 2}/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB{sub 2} and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm{sup −2} h{sup −1} in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg{sup 2} cm{sup −4} h{sup −1} in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm{sup −2}, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO{sub 2}, Al{sub 2}O{sub 3}, and a small amount of NiO, Cr{sub 2}O{sub 3} and SiO{sub 2}. Moreover, Ta{sub 2}O{sub 5} was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser

  2. Dielectric property of NiTiO3 doped substituted ortho-chloropolyaniline composites

    Directory of Open Access Journals (Sweden)

    Mohana Lakshmi

    2013-11-01

    Full Text Available Ortho-chloropolyaniline (OCP-NiTiO3 composites have been synthesized via in-situ polymerization of ortho-chloroaniline with various weight percentages of NiTiO3. Fourier Transform Infrared spectroscopic studies of Ortho-chloropolyaniline and its composites indicated the formation of composites as a result of Vander Waal's interaction between OCP and NiTiO3 particles. Surface morphology of OCP and OCP-NiTiO3 composites were studied using Scanning Electron Microscope (SEM. The SEM micrographs indicated a modified morphology after the composite formation. Dielectric properties and electric modulus of OCP and OCP-NiTiO3 composites have been investigated in the frequency range of 50 Hz – 5 MHz. It has been noticed that electrical resistance decreases with increase in weight percentage of NiTiO3 particles in polymer matrix as well as with applied frequency. The display of semicircular arcs in Cole-Cole plots indicates the formation of series resistor and capacitor in network causing a decrease in the relaxation time and as a result conductivity enhances in these composites. The facile and cost effective synthesis process and excellent dielectric and conductivity response of these materials makes them promising materials for practical applications.

  3. Study of structure and surface morphology of two-layer contact Ti/Al metallization

    Directory of Open Access Journals (Sweden)

    Kirill D. Vanyukhin

    2016-06-01

    Full Text Available Ti/Al/Ni/Au metallization widely used in the technology of GaN base devices have a very important imperfection i.e. rough surface. There are different opinions about the causes of this imperfection: balling-up of molten aluminum or the appearance of intermetallic melt phases in the Au–Al system. To check the effect of the former cause, we have studied the formation of rough surface after annealing of Ti/Al metallization which is used as a basis of many metallization systems for GaN. The substrates were made from silicon wafers covered with Si3N4 films (0.15 μm. On these substrates we deposited the Ti(12 nm/Al(135 nm metallization system. After the deposition the substrates were annealed in nitrogen for 30 s at 850 °С. The as-annealed specimens were tested for metallization sheet resistivity, appearance and surface morphology. We have shown that during annealing of the Ti/Al metallization system, mutual diffusion of the metals and their active interaction with the formation of intermetallic phases occur. This makes the metallization system more resistant to subsequent annealing, oxidation and chemical etching. After annealing the surface of the Ti/Al metallization system becomes gently matted. However, large hemispherical convex areas (as in the Ti/Al/Ni/Au metallization system do not form. Thus, the hypothesis on the balling-up of molten aluminum on the surface of the Ti/Al metallization system has not been confirmed.

  4. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  5. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  6. Fabrication, microstructure and stress effects in sputtered TiNi thin films

    International Nuclear Information System (INIS)

    Grummon, D.S.

    2000-01-01

    Sputtered thin films of equiatomic TiNi and TiNiX ternary alloys have excellent mechanical properties and exhibit robust shape-memory and transformational superelasticity. Furthermore, the energetic nature of the sputter deposition process allows the creation of highly refined microstructures that are difficult to achieve by melt-solidification. The present paper will present recent work on the relationship between processing, microstructure and properties of binary TiNi thin films, focusing primarily on residual stresses, kinetics of stress-relaxation and crystallization, and fine grain sizes achievable using hot-substrate direct crystallization. (orig.)

  7. Neutron, x-ray scattering and TEM studies of Ni-Ti multilayers

    International Nuclear Information System (INIS)

    Keem, J.E.; Wood, J.; Grupido, N.; Hart, K.; Nutt, S.; Reichel, D.G.; Yelon, W.B.

    1988-01-01

    The authors present an analysis of Ni-Ti multilayer neutron reflectors and supermirrors undertaken to identify the causes of the lower than expected observed scattering power and critical angle enhancement of Ni-Ti supermirrors. Results of these investigations focus attention on cusp formation in the Ni-Ti bilayers as probable cause for the reduced neutron scattering power. Grazing angle x-ray and neutron scattering, wide angle neutron diffraction and analytical cross sectional TEM have been used. The multilayers were produced by magnetron sputtering and ion-beam deposition on float glass substrates and silicon wafers

  8. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang; Li, Jishuai; Li, Xinyue

    2015-10-25

    NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr{sub 2}) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr{sub 5}Si{sub 4} and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and during the growth of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}, the consumption of Zr atoms at the lateral interface of liquid/Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. • Reinforced phases significantly improve wear resistance of the coating.

  9. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  10. X-ray diffraction studies of NiTi shape memory alloys

    OpenAIRE

    E. Łągiewka; Z. Lekston

    2007-01-01

    Purpose: The purpose of this paper is to present the results of the investigations of phase transitions of TiNiCo and Ni-rich NiTi shape memory alloys designed for medical applications.Design/methodology/approach: Temperature X-ray diffraction (TXRD), differential scanning calorimetry (DSC), electrical resistivity (ER) and the temperature shape recovery measurements in three-point bending ASTM 2082-01 tests were used.Findings: It has been found in this work that ageing after solution treatme...

  11. A first-principles study of Pt–Ni bimetallic cluster adsorption on the anatase TiO{sub 2} (1 0 1) surface: Probing electron effect of Ni in TiO{sub 2} (1 0 1)-bimetallic cluster (Pt–Ni) on the adsorption and dissociation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feila, E-mail: liufeila@u.washington.edu [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Xiao, Peng, E-mail: xiaopeng@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Uchaker, Evan, E-mail: uchaker@u.washington.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); He, Huichao, E-mail: hehuichao985@gmail.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Zhou, Ming, E-mail: Zhoumingcqu2007@163.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Zhou, Xin, E-mail: zhoux@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Yunhuai, E-mail: xp2031@163.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Condensed Fukui function is used to predict the regioselectivity of clusters. • Pt–Ni alloy and TiO{sub 2} can effectively oxidize methanol compared with pure Pt. • The methanol dehydrogenation over Pt{sub 3}Ni/TiO{sub 2} is an optimal reaction pathway. • The alloying of Ni can effectively alleviate CO poisoning. - Abstract: A density functional theory (DFT) based method in conjunction with the projector augmented wave and pseudopotential methods have been applied to investigate the adsorption of Pt{sub 4} and Pt{sub 3}Ni on the anatase TiO{sub 2} (1 0 1) surface. Two stable Pt{sub 3}Ni adsorptions with considerable adsorption energies on the anatase TiO{sub 2} (1 0 1) surface were identified. Analysis of the partial density (PDOS) of states and Bader charge suggest that the electronic structure of Pt is modified by Ni due to the electron transfer from Ni to Pt atoms in the Pt{sub 3}Ni clusters. The 2cO (3cO)-PtNi-5cTi conformation of the adsorbed Pt{sub 3}Ni on the anatase TiO{sub 2} (1 0 1) surface provides a more feasible model for electron injection through the Pt{sub 3}Ni/TiO{sub 2} interface. The reactivity of Pt{sub 3}Ni/TiO{sub 2} is superior to Pt{sub 4}/TiO{sub 2} and effectively manifests itself in the eased decomposition of O-H bonds derived by methanol and alleviative CO adsorption.

  12. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  13. Special cases of martensite compatibility: A near single-variant habit-plane and the martensite of nanocrystalline NiTi

    Directory of Open Access Journals (Sweden)

    Petersmann Manuel

    2015-01-01

    Full Text Available Lattice parameters measured near the high temperature (~1000°C bcc α to hcp β transformation in an intermetallic Mo-containing γ-TiAl based alloy indicate a middle valued eigenvalue of the corresponding deformation gradient near 1. Habit-planes calculated under the assumption of a simple slip as lattice invariant shear, agree with experimentally determined orientations of the lens like plates recorded via electron backscattering. By contrast, twinning as invariant lattice shear has been investigated in nanocrystalline NiTi. Here the grain size causes the formation mechanism of the martensite to change from a “herring-bone” morphology faciliting a habit-plane between two twinned laminates and the austenite to a single laminate, which in the nonlinear theory formally cannot form a habit-plane with the austenite. Since this might cause high accommodation strains, the effectiveness of stress accommodation of martensite formed in neighboring grains of a polycrystal is investigated. Subsequent numerical microstructural modeling is outlined. The resulting energetically most favorable transformation sequence yields the transformation kinetics.

  14. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara (Romania); Ercuţa, Aurel [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara and Department of Physics, West University Timisoara (Romania)

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  15. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    Science.gov (United States)

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  16. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    Directory of Open Access Journals (Sweden)

    Lidia Benea

    2016-04-01

    Full Text Available This research work describes the effect of dispersed titanium carbide (TiC nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM. The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX. X-ray diffractometer (XRD has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  17. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    Science.gov (United States)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-04-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  18. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    Science.gov (United States)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-03-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  19. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  20. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.