WorldWideScience

Sample records for intermediate reactors

  1. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  2. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  3. Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate

    DEFF Research Database (Denmark)

    Christensen, Kim Müller; Pedersen, Michael Jønch; Dam-Johansen, Kim

    2012-01-01

    -batch operation, are reduced impurity formation and the use of much lower reactor volumes (factor of 1000 based on the laboratory reactor) and less solvent consumption (from 5.8 to 2.3L/kg reactant). Added challenges include handling of continuous solid powder feeding, stable pumping of reactive slurries......A novel filter reactor system for continuous production of selected pharmaceutical intermediates is presented and experimentally verified. The filter reactor system consists of a mixed flow reactor equipped with a bottom filter, to retain solid reactant particles, followed by a conventional plug...... in tetrahydrofuran solvent. The use of the filter reactor design was explored by examining the transferability of a synthesis step in a present full-scale semi-batch pharmaceutical production into continuous processing. The main advantages of the new continuous minireactor system, compared to the conventional semi...

  4. The production of refined intermediate fuels with high temperature reactors

    International Nuclear Information System (INIS)

    Nowacki, P.J.

    1977-01-01

    The present energy demands are covered chiefly by liquid fuel, coal and lignite, hydro power and increasingly by nuclear fuel. It is accepted that the building of nuclear energy plants is a necessity for today and for the future. A further necessity is to utilize the primary energy resources in a multiple way, i.e. to supply electricity and to produce other fuels for process heat. These man-made fuels all contain hydrogen. The paper investigates process heat in the form of hydrogen and its compounds, by evaluating their present and future production, based on the utilization of natural gas, oil, coal, water and the nuclear heat of helium, available in a closed circuit as primary coolant in a high temperature, helium-cooled reactor. The paper deals in more detail with the following applications of nuclear heat: hydrogasification, direct reduction of ores - mainly iron ore - ammonia synthesis, methanol synthesis, hydrocracking, long-distance transfer of process heat (chemical heat pipe), hydrogenation of coal, Fischer-Tropsch synthesis, oxosynthesis, coal gasification, coal liquefaction, water splitting (thermolysis) and electrolysis. The various chemical reactions are discussed. (author)

  5. The production of refined intermediate fuels with high temperature reactors

    International Nuclear Information System (INIS)

    Nowacki, P.J.

    1977-01-01

    Power plants can be divided into conventional steam plants, fueled with hard coal, lignite or liquid fuel, hydroelectric plants and nuclear plants, their chief use was or is the production of electric energy and - in certain cases only - of production of process heat, using steam or hot water for process heat in industry and district heating for residential and commercial purposes. The part played by electricity in the whole energy demand is of the order of 10% to 25% the total demand, the rest is necessary for supplying process heat below 200 0 C or above 200 0 C, up to some 1500 0 C. The present distribution of energy demands is covered chiefly by liquid fuel, coal and lignite, water energy and increasing steps by nuclear fuel. It is well known that the erection of nuclear energy plants is a necessity for today and for the future. There is another necessity, i.e. to utilize the primary energy resources in a complex way i.e. to supply electricity as energy vector and other fuels as process heat as new energy vectors. These manmade fuels - whether in a gaseous or liquid phase - contain hydrogen, and one can believe, the world is entering a new energy civilisation in utilizing hydrogen and its compounds as second energy vector. The author has taken up the task to investigate this new problem of process, heat in the form of hydrogen and its compounds, by evaluating their present and future production, based on the utilization of natural gas, oil coal, water and the nuclear heat of helium, available in a closed circuit as primary coolant in a High - Temeprature Helium cooled reactor, which is symbolized in the paper as HTR. The paper deals in more detail with the following application of Nuclear Heat: hydrogasification, direct reduction of ore, mainly iron ores, ammonia synthesis, methanol synthesis Hydrocracking, long distance transfer of process heat (chemical heat pipe), hydrogenation of coal, Fischer - Tropsch synthesis, oxosynthesis, coal gasification, coal

  6. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  7. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  8. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  9. Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment

    International Nuclear Information System (INIS)

    Choubey, Sandhya; Petcov, S.T.; Piai, M.

    2003-01-01

    We discuss the physics potential of intermediate L∼20-30 km baseline experiments at reactor facilities. Assuming that the solar neutrino oscillation parameters Δm · 2 and θ · lie in the high LMA solution region, we show that such an intermediate baseline reactor experiment can determine both Δm · 2 and θ · with a remarkably high precision. We perform also a detailed study of the sensitivity of the indicated experiment to Δm atm 2 , which drives the dominant atmospheric ν μ (ν-bar μ ) oscillations, and to θ--the neutrino mixing angle limited by the data from the CHOOZ and Palo Verde experiments. Irrespective of the actual values of Δm · 2 , we find that this experiment can improve the bounds on sin 2 θ, and, if the value of sin 2 θ is large enough, sin 2 θ > or approx. 0.02, the energy resolution of the detector is sufficiently good and if the statistics is relatively high, it can determine with extremely high precision the value of Δm atm 2 . We also explore the potential of the intermediate baseline reactor neutrino experiment for determining the type of the neutrino mass spectrum, which can be with normal or inverted hierarchy, assuming Δm · 2 to lie in the high LMA solution region. We show that the conditions under which the type of neutrino mass hierarchy can be determined are quite challenging, but are within the reach of the experiment under discussion

  10. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments

    International Nuclear Information System (INIS)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y.

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2 [fr

  11. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  12. Chemical conditions in the repository for low- and intermediate-level reactor waste

    International Nuclear Information System (INIS)

    Snellman, M.; Uotila, H.

    1984-01-01

    The chemical conditions in the proposed repositories for low- and intermediate-level reactor waste at Haestholmen (IVO) and Olkiluoto (TVO) have been discussed with respect to materials introduced into the repository, their possible long-term changes and interaction with groundwater flowing into the repository. The main possible groundwater-rock interactions have been discussed, as well as the role of micro-organisms, organic acids and colloids in the estimation of the barrier integrity. Experimental and theoretical studies have been performed on the basis of the natural groundwater compositions expected at the repository sites. Main emphasis is put on the chemical parameters which might influence the integrity of the different barriers in the repository as well as on the parameters which might effect the release and transport of radionuclides from the repository

  13. Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Holm, Thomas; Rahbek, Jesper P.

    2013-01-01

    A reactor setup consisting of two reactors in series has been implemented for a full-scale, heterogeneous Grignard alkylation. Solutions pass from a small filter reactor into a static mixer reactor with multiple side entries, thus combining continuous stirred tank reactor (CSTR) and plug flow...

  14. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  15. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  16. Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Han, Ji Woong; Eoh, Jae Hyuk; Kim, Seong O

    2010-01-01

    The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX

  17. n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine

    KAUST Repository

    Wang, Zhandong

    2017-10-03

    This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR.The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.

  18. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  19. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hampton, L.V.; Spalaris, C.N.; Roy, P.

    1980-04-01

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted

  20. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor

    KAUST Repository

    Tao, Tao

    2018-03-20

    Acetaldehyde is an observed emission species and a key intermediate produced during the combustion and low-temperature oxidation of fossil and bio-derived fuels. Investigations into the low-temperature oxidation chemistry of acetaldehyde are essential to develop a better core mechanism and to better understand auto-ignition and cool flame phenomena. Here, the oxidation of acetaldehyde was studied at low-temperatures (528–946 K) in a jet-stirred reactor (JSR) with the corrected residence time of 2.7 s at 700 Torr. This work describes a detailed set of experimental results that capture the negative temperature coefficient (NTC) behavior in the low-temperature oxidation of acetaldehyde. The mole fractions of 28 species were measured as functions of the temperature by employing a vacuum ultra-violet photoionization molecular-beam mass spectrometer. To explain the observed NTC behavior, an updated mechanism was proposed, which well reproduces the concentration profiles of many observed peroxide intermediates. The kinetic analysis based on the updated mechanism reveals that the NTC behavior of acetaldehyde oxidation is caused by the competition between the O-addition to and the decomposition of the CHCO radical.

  1. Current issues in the management of low- and intermediate-level radioactive wastes from Ontario Hydro's CANDU reactors

    International Nuclear Information System (INIS)

    Krasznai, J.P.; Vaughan, B.R.; Williamson, A.S.

    1990-01-01

    Nuclear generating stations (NGSs) in Canada are operated by utilities in Ontario, Quebec, and New Brunswick. Ontario Hydro, with a committed nuclear program of 13,600 MW(electric) is the major producer of CANDU pressurized heavy-water reactor (PHWR) low- and intermediate-level radioactive wastes. All radioactive wastes with the exception of irradiated fuel are processed and retrievably stored at a centralized facility at the Bruce Nuclear Power Development site. Solid-waste classifications and annual production levels are given. Solid-waste management practices at the site as well as the physical, chemical, and radiochemical characteristics of the wastes are well documented. The paper summarizes types, current inventory, and estimated annual production rate of liquid waste. Operation of the tritium recovery facility at Darlington NGS, which removes tritium from heavy water and produces tritium gas in the process, gives rise to secondary streams of tritiated solid and liquid wastes, which will receive special treatment and packaging. In addition to the treatment of radioactive liquid wastes, there are a number of other important issues in low- and intermediate-level radioactive waste management that Ontario Hydro will be addressing over the next few years. The most pressing of these is the reduction of radioactive wastes through in-station material control, employee awareness, and improved waste characterization and segregation programs. Since Ontario Hydro intends to store retrievable wastes for > 50 yr, it is necessary to determine the behavior of wastes under long-term storage conditions

  2. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  3. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  4. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E < 20 MeV) from the p(1200 MeV) + 208 Pb reaction and of spallation residues from the p(1000 MeV) + 208 Pb reaction. The investigation of neutron multiplicity from proton-induced fission of 232 Th up to 85 MeV showed that it was being overestimated by CRISP model; on the other hand, fission cross section were being underestimated. This behavior is due to limitations of the intranuclear cascade model for low-energies (around 50 MeV). The p(1200 MeV) + 208 Pb reaction was selected for the study of a spallation neutron source. High-energy neutrons (E > 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  5. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  6. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  7. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Taddei, Maria Helena Tirollo

    2013-01-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as 60 Co and 137 Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  8. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  10. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  11. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    OpenAIRE

    Isah Yakub Mohammed; Feroz Kabir Kazi; Suzana Yusup; Peter Adeniyi Alaba; Yahaya Muhammad Sani; Yousif Abdalla Abakr

    2016-01-01

    The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ...

  12. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  13. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  14. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  15. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    Directory of Open Access Journals (Sweden)

    Isah Yakub Mohammed

    2016-03-01

    Full Text Available The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ratio was evaluated with respect to pyrolysis oil yield and composition. Increasing the catalyst loading from 0.5 to 1.0 wt % showed no significant decrease in the bio-oil yield, particularly, the organic phase and thereafter decreased at catalyst loadings of 2.0 and 3.0 wt %. Standard analytical methods were used to establish the composition of the pyrolysis oil, which was made up of various aliphatic hydrocarbons, aromatics and other valuable chemicals and varied greatly with the surface acidity and pore characteristics of the individual catalysts. This study has demonstrated that pyrolysis oil with high fuel quality and value added chemicals can be produced from pyrolysis of Napier grass over acidic zeolite based catalysts.

  16. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    Science.gov (United States)

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  17. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  18. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  19. The management of intermediate level wastes in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.

    1980-01-01

    A brief overview of current practices and research in Sweden on the management of intermediate level wastes is given. Intermediate level wastes include spent resins, filters and core components from the six power reactors in operation; radioactive wastes from nuclear fuel development at Studsvik and from non-nuclear applications are a minor contribution. (Auth.)

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  1. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  2. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  3. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  4. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  5. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  6. PNGMDR - Characterisation of intermediate-level long-lived wastes

    International Nuclear Information System (INIS)

    2014-12-01

    This document presents the status of the characterization of intermediate-level long-lived wastes which are warehoused on exploited EDF sites or which will be produced during the deconstruction of first-generation reactors. It addresses aspects related to characterisation and packaging of wastes produced before 2015. More specifically, it addresses aspects related to contamination and to activation. Contamination is assessed by measurements whereas activation assessment is based on numerical simulations associated with measurements performed during parcel production. After having mentioned the concerned reactors, the document presents the methodology adopted for these assessments, and reports the progress status of the characterization process for these intermediate-level long-lived wastes

  7. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  8. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  9. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  10. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  11. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  12. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  13. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  14. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...

  15. an intermediate moisture meat

    African Journals Online (AJOL)

    Bunmi

    Matured leaves of Ocimum gratissimum were harvested and the extracts used to cure. Suya (an intermediate moisture meat). O. gratissimum leaves were collected from. Oyo state south west region of Nigeria, rinsed in distilled water and squeezed to extract the fluid. The meat used was Semi membranosus muscle from beef ...

  16. Heat exchanger with intermediate evaporating and condensing fluid

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes

  17. Heat exchanger with intermediate evaporating and condensing fluid

    Science.gov (United States)

    Fraas, Arthur P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes.

  18. FBR type reactors

    International Nuclear Information System (INIS)

    Maemoto, Junko.

    1985-01-01

    Purpose: To moderate abrupt temperature change near the inner walls of a suspended body thereby prevent thermal shocks and thermal deformations to structural materials. Constitution: High temperature coolants during ordinary operation of the nuclear reactor flow from the reactor core through the flow holes of the suspended body and from the upper plenum into an intermediate heat exchanger. The temperature of the coolants is lowered with heat exchanging effect with secondary coolants in the heat exchange and the coolants are then flow through the lower plenum into the reactor core and heated again. Upon generation of reactor scram, the temperature of the coolants at the exit of the reactor core is reduced abruptly and the flow rate is lowered due to the pump coast down. However, mixing of the coolants in the suspended body is accelerated by the coolants at high temperature flowing out of the flow holes and the coolants at the low temperature flowing from the flow hole group, to reduce the temperature difference and moderate the stratification flow forming an abrupt temperature slope. (Yoshihara, H.)

  19. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  1. Reactor Neutrinos

    OpenAIRE

    Kim, Soo-Bong; Lasserre, Thierry; Wang, Yifang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  2. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  3. Reactor vessel

    NARCIS (Netherlands)

    Makkee, M.; Kapteijn, F.; Moulijn, J.A.

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and

  4. VHTR engineering design study: intermediate heat exchanger program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes.

  5. VHTR engineering design study: intermediate heat exchanger program. Final report

    International Nuclear Information System (INIS)

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes

  6. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  7. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  8. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  9. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  10. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  11. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Nagatomi, Shozo.

    1976-01-01

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  12. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  13. Method of reactor operation

    International Nuclear Information System (INIS)

    Nakajima, Takeshi

    1988-01-01

    Purpose: To minimize the power change due to the increase in xenone and power distribution after reaching the rated power in the case of using fresh fuels no requiring conditioning operation thereby starting the nuclear reactor in a short period of time and stably. Method: When control rods are entirely inserted only with a purpose for the compensation of the reactivity in a xenon-unsaturated state such as upon starting of the nuclear reactor, peaking is generated in the lower portion of the reactor core. Therefore, it is necessary to insert control rods for additionally suppressing the peaking in the lower portion of the reactor core to a relatively shallow level. In view of the above, a plurality of control rods are divided into a first control rod group finally inserted in the rated power state and a second control rod group other than the above. Then, the power is once elevated to the rated power level by means of such an intermediate control rod pattern that the ratio of the total extraction amount between the first control rod group and the second control rod group is made constant. Then, the control rods are extracted stepwise while setting the ratio of the total extraction amount constant in accordance with the change of the accumulating amount of xenone, to thereby obtain the purpose. (kamimura, M.)

  14. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  15. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  16. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  17. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor; Determinacao de fatores de escala para estimativa do inventario de radionuclideos em rejeitos de media e baixa atividades do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Maria Helena Tirollo

    2013-07-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as {sup 60}Co and {sup 137}Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  19. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  1. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption

  2. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  3. Information acquisition and financial intermediation

    OpenAIRE

    Boyarchenko, Nina

    2012-01-01

    This paper considers the problem of information acquisition in an intermediated market, where the specialists have access to superior technology for acquiring information. These informational advantages of specialists relative to households lead to disagreement between the two groups, changing the shape of the intermediation-constrained region of the economy and increasing the frequency of periods when the intermediation constraint binds. Acquiring the additional information is, however, cost...

  4. Intermediate inputs and economic productivity.

    Science.gov (United States)

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  5. SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Evans, D.J.R.; Downs, W.E.

    1974-01-01

    The SLOWPOKE reactor is described, which is a small pool type with thermal neutron fluxes ranging from 10 11 -10 12 n cm -2 sec -1 . It differs in many ways from conventional pool type, namely small critical mass, beryllium reflector and a closed reactor container. The reactor is designed as small and simply as possible, and consistently with safety and good operating practice. Access to the present model is via pneumatic irradiation tubes only, which limits the use of the facility to activation analysis, tracer production and training. (Mori, K.)

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  7. Melting of metallic intermediate level waste

    International Nuclear Information System (INIS)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva

    2013-08-01

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety

  8. Treatment of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Hoehlein, G.

    1978-05-01

    The methods described of low and intermediate level waste treatment are based exclusively on operating experience gathered with the KfK facilities for waste management, the Karlsruhe Reprocessing Plant (WAK), the ALKEM fuel element fabrication plant, the MZFR, KNK and FR 2 reactors as well as at the Karlsruhe Nuclear Research Center and at the state collecting depot of Baden-Wuerttemberg. The processing capacities and technical status are similar to that in 1976. With an annual throughput of 10000 m 3 of solid and liquid raw wastes, an aggregate activity of 85000 Ci, 500 kg of U and 2 kg of Pu, final waste in the amount of 500 m 3 was produced which was stored in the ASSE II salt mine. (orig.) [de

  9. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)

    2013-08-15

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  10. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  11. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  12. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  13. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  14. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  15. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  16. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  17. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  18. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    Roumailhac, J.; Desir, D.

    1975-01-01

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  19. Dismantling of large components from the PHENIX reactor

    International Nuclear Information System (INIS)

    Roux, A.

    2013-01-01

    The PHENIX reactor was shut down in 2009. The cleaning and dismantling preparation operations are underway. These operations include dealing with large removable components such as primary coolant pumps, intermediate heat exchanger and heat exchanger blanking device (DOTE). This presentation describes the waste transformation operations performed on a large component, from its extraction from the reactor core until transformation to waste for disposal

  20. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  1. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  2. Reactor application of an improved bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW

  3. Historical Developments of Pyrolysis Reactors : A Review

    NARCIS (Netherlands)

    Garcia-Nunez, J. A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. E.; Fonts, I.; Abrego, J.; Westerhof, R. J.M.; Garcia Perez, M.

    2017-01-01

    This paper provides a review of pyrolysis technologies, focusing on reactor designs and companies commercializing these technologies. The renewed interest in pyrolysis is driven by the potential to convert lignocellulosic materials into bio-oil and biochar and the use of these intermediates for the

  4. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  5. Reactor utilization

    International Nuclear Information System (INIS)

    Zecevic, V.

    1963-01-01

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  6. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  7. Thermonuclear reactor

    International Nuclear Information System (INIS)

    Araki, Takao; Saito, Yasushi.

    1987-01-01

    Purpose: To reduce the seismic wave responsivity of an exhaust duct shields thereby preventing the release of tritium in an evacuating device due to failures upon earthquakes. Constitution: The ends on the cutting side of upper outer exhaust duct shields of a thermonuclear reactor are connected with a plurality of support beams. In a case where seismic vibrations are exerted to such a thermonuclear reactor, since the ends on the cutting side are coupled with the support beams, vibrations of the upper outer exhaust duct shields are greatly restricted. Thus, since there is no more such a possibility, for example, that an exhaust duct connected to the upper portion of a reactor main body is greatly distorted due to the seismic response of the upper outside exhaust duct shields to result in the failure of the connection portion with a vacuum pump, the release of tritium due to failure of the evacuating device can be prevented. (Yoshino, Y.)

  8. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1979-01-01

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  9. Vitrification of reactor wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Sussmilch, J. [Nuclear Research Institut, Rez (Czech Republic)

    1993-12-31

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs.

  10. Vitrification of reactor wastes

    International Nuclear Information System (INIS)

    Jouan, A.

    1993-01-01

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs

  11. Evaluation of Next Generation Nuclear Power Plant (NGNP) Intermediate Heat Exchanger (IHX) Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    E. A. Harvego

    2006-04-01

    This report summarizes results of a preliminary evaluation to determine the operating conditions for the Next Generation Nuclear Plant (NGNP) Intermediate Heat Exchanger (IHX) that will transfer heat from the reactor primary system to the demonstration hydrogen production plant(s). The Department of Energy is currently investigating two primary options for the production of hydrogen using a high temperature reactor as the power source. These options are the High Temperature Electrolysis (HTE) and Sulfur-Iodine (SI) thermochemical hydrogen production processes. However, since the SI process relies entirely on process heat from the reactor, while the HTE process relies primarily on electrical energy with only a small amount of process heat required, the design of the IHX is dictated by the SI process heat requirements. Therefore, the IHX operating conditions were defined assuming 50 MWt is available for the production of hydrogen using the SI process. Three configurations for the intermediate loop were evaluated, including configurations for both direct and indirect power conversion systems. The HYSYS process analysis software was used to perform sensitivity studies to determine the influence of reactor outlet temperatures, intermediate loop working fluids (helium and molten salt), intermediate loop pressures, and intermediate loop piping lengths on NGNP performance and IHX operating conditions. The evaluation of NGNP performance included assessments of overall electric power conversion efficiency and estimated hydrogen production efficiency. Based on these evaluations, recommended IHX operating conditions are defined.

  12. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  13. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  14. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  16. Phenix reactor: a review of 35 year long operating life

    International Nuclear Information System (INIS)

    Martin, L.; Dall'Ava, D.; Rochwerger, D.; Goux, D.; Guidez, J.; Martin, Ph.; Seran, J.L.; Sauvage, J.F.; Prele, G.; Guihard, J.; Bernardin, B.; Vanier, M.; Zaetta, A.; Latge, Ch.; Fontaine, B.; Jolly, J.A.; Gros, J.; Pepe, D.; Pelletier, M.; Pillon, S.; Escaravage, C.; Gelineau, O.; Dupraz, R.; Dirat, J.F.; Giraud, M.; Michaille, P.

    2009-01-01

    Phenix reactor that was commissioned in 1973, had its final shutdown during the beginning of 2009. This series of articles presents the main contributions of Phenix over its 35 years of operating life in material sciences, the handling of sodium, the design of fast reactors, core physics and reactor safety. Other articles recall the feedback experience on particular components like sodium pumps, steam generators or intermediate heat exchangers and about reactor maintenance. This power plant was first an experimental reactor that, with its hot cells, has performed important irradiation programs concerning mainly fast reactor technology and transmutation as a tool for burning actinides. One article reviews the environmental impact of this reactor over its operating life in terms of waste production and dosimetry. (A.C.)

  17. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  18. Gravity with Intermediate Goods Trade

    Directory of Open Access Journals (Sweden)

    Sujin Jang

    2017-12-01

    Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.

  19. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer...... transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural...... the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness....

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  2. Reactor container

    International Nuclear Information System (INIS)

    Otsuka, Hiroaki; Yoshida, Takashi.

    1979-01-01

    Purpose: To prevent rain water falling along the outer wall of the container during the construction work of an atomic power plant from making ingress into the inner part of a reactor container through a large size material carry-in port. Constitution: A weir for preventing the ingress of rain water is provided on the border between the foot floor of a large material carry-in port provided on the side surface at the bottom part of the reactor container and the floor surface of the building. This weir is of a semi-circular plate shape, and formed so that the lower semi-circular part of the carry-in port is tightly closed. (Kamimura, M.)

  3. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  4. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  6. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  7. Heavy Section Steel Technology Program. Part II. Intermediate vessel testing

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1975-01-01

    The testing of the intermediate pressure vessels is a major activity under the Heavy Section Steel Technology Program. A primary objective of these tests is to develop or verify methods of fracture prediction, through the testing of selected structures and materials, in order that a valid basis can be established for evaluating the serviceability and safety of light-water reactor pressure vessels. These vessel tests were planned with sufficiently specific objectives that substantial quantitative weight could be given to the results. Each set of testing conditions was chosen so as to provide specific data by which analytical methods of predicting flaw growth, and in some cases crack arrest, could be evaluated. Every practical effort was made to assure that results would be relevant to some aspect of real reactor pressure vessel performance through careful control of material properties, selection of test temperatures, and design of prepared flaws. 5 references

  8. Intermediate Infrastructure Analyst | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The incumbent conducts research on technologies and tools that might enhance service delivery and where appropriate, makes recommendations to management. The Intermediate Infrastructure System Analyst provides leadership and direction to junior team members and functional direction to consultants and ...

  9. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  13. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  14. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  15. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  16. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  17. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  18. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Reactor container

    International Nuclear Information System (INIS)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-01-01

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.)

  20. Reactor container

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-09-07

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.).

  1. Reactor monitor

    International Nuclear Information System (INIS)

    Takada, Tamotsu.

    1992-01-01

    The device of the present invention monitors a reactor so that each of the operations for the relocation of fuel assemblies and the withdrawal and the insertion of control rods upon exchange of fuel assemblies and control rods in the reactor. That is, when an operator conducts relocating operation by way of a fuel assembly operation section, the device of the present invention judges whether the operation indication is adequate or not, based on the information of control rod arrangement in a control rod memory section. When the operation indication is wrong, a stop signal is sent to a fuel assembly relocating device. Further, when the operator conducts control rod operation by way of a control rod operation section, the device of the present invention judges in the control rod withdrawal judging section, as to whether the operation indication given by the operator is adequate or not by comparing it with fuel assembly arrangement information. When the operation indication is wrong, a stop signal is sent to control rod drives. With such procedures, increase of nuclear heating upon occurrence of erroneous operation can be prevented. (I.S.)

  2. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  3. NEUTRONIC REACTOR

    Science.gov (United States)

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  5. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  6. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  7. ESL intermediate/advanced writing

    CERN Document Server

    Munoz Page, Mary Ellen; Jaskiewicz, Mary

    2011-01-01

    Master ESL (English as a Second Language) Writing with the study guide designed for non-native speakers of English. Skill-building lessons relevant to today's topics help ESL students write complete sentences, paragraphs, and even multi-paragraph essays. It's perfect for classroom use or self-guided writing preparation.DETAILS- Intermediate drills for improving skills with parallel structure, mood, correct shifting errors & dangling participles- Advanced essay drills focusing on narrative, descriptive, process, reaction, comparison and contrast- Superb preparation for students taking the TOEFL

  8. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  9. Survey of research reactors

    International Nuclear Information System (INIS)

    Boek, H.; Villa, M.

    2004-06-01

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  10. Multiple microprocessor based nuclear reactor power monitor

    International Nuclear Information System (INIS)

    Lewis, P.S.; Ethridge, C.D.

    1979-01-01

    The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a 3 He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection

  11. Intermediate neutron detection by thermoluminescence

    International Nuclear Information System (INIS)

    Santos, E.N. dos; Muccillo, R.

    1979-01-01

    Thermoluminescent (TL) studies were carried out in cold-pressed CaSO 4 :Dy + Dy 2 O 3 + KCl and CaF 2 + Dy 2 O 3 + KCl polycrystalline samples exposed to mixed neutron-gamma fields, for the detection of intermediate neutrons which is based on the evaluation of the TL signal of the specimens stored for 24 hours after being exposed to a mixed neutron-gamma field and thermally annealed to erase the total radiation-induced TL. The addition of Dy 2 O 3 to CaSO 4 :Dy in the proportion 1:2 increased the neutron response by a factor of 160 relative to that of CaSO 4 :Dy. 180 mg of CaSO 4 :Dy + Dy 2 O 3 + KCl in the proportion 2:1:3 showed to be an appropriate detector of intermediate neutrons; the minimum detectable fluence was estimated to be 3.5 x 10 5 neutrons/cm 2 . (Author) [pt

  12. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  13. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  14. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  16. Reactor container

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo; Yanai, Ryoichi.

    1976-01-01

    Object: To provide a reactor container which is free from water shock action or condensing vibrations and cannot be readily broken by a missile from a pump impeller, pipe whipping, steam jet reaction, etc., and which also quickly condenses issuing steam and possesses a large vibration-proof strength. Structure: A high pressure containment vessel accommodating a pressure container includes a plurality of pressurized water tanks arranged along its inner periphery, and a pneumatic valve is provided in a lower portion of each of these pressurized water tanks. If an accident occurs, vapor is caused to issue from the pressure container into the vessel. When a certain value is reached, the pneumatic valves are opened, whereby the gas within the pressurized water tanks causes pressurized water to flow through the pipe and be ejected from spray nozzles to cause condensation of water within the vessel. Further, water of a pool within the container is circulated to allow heat release to the outside. (Horiuchi, T.)

  17. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...

  18. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  19. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Kugeler, K.; Kugeler, M.; Petersen, K.; Decken, C.B. von der.

    1983-01-01

    This construction of a container, which is pressure-relieved by axial-central tensioning cables or reinforcing cables distributed over the circumference, makes a reduction of the wall thickness for the floor and roof, which was previously 2.5 metres by about 40% possible, and thus reduce manufacturing and cost problems. This is achieved by an appreciable increase of the prestressing exerted by the tensioning cables as this is taken up, not by the elasticity of the roof and floor, but instead by an intermediate part of pressure-resisting material. Such a container consists of a vertical cylindrical jacket of, for example, 20 metres diameter and 18 metres height, of a roof and floor of, for example, 1.50 metres thickness each and the intermediate part, which keeps the spacing of floor and roof as a central piece. This intermediate part which is taken through seals through the container can be imagined as a double tube of outside tube diameter of, for example, 4 metres and inside tube diameter of 2 metres with both tubes having thick walls. 4 tensioning cables displaced vertically by 900 run in the cylindrical annulus between the outer and inner tubes which are brought to the required pretension, e.g. 80,000 tonnes by nuts situated on the outside. The inner tube projects through the floor and roof. Its openings act as manholes and for the introduction of pipelines. These can, for example, carry a cooling medium for a reactor core via further ducts into the inside of the container. Container wall, floor and roof and the intermediate part in the form of a double tube are made up of cast steel segments or sectors in several layers. (RW)

  20. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  1. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  2. Intermediate processes in nuclear reactions

    International Nuclear Information System (INIS)

    Petrovici, M.

    1983-01-01

    The main results presented here cannot be interpreted in terms of the direct reaction model or the statistical models and one can more or less explicitely use some nuclear configurations for their interpretation. The first chapter deals with the so-called second order intermediate structures observed in the elastic and inelastic proton scattering on 66 Zn and 70 Ge targets in the energetic regions of some isobaric analog resonances. A formal theory for their interpretation is developed and the comparison with the experimental data is presented. New experimental results on the resonant structures observed in the elastic and inelastic scattering of 12 C on 24 Mg are presented in the second chapter. Detailed statistical analysis and their interpretation is presented too. Charge equilibration in deep inelastic collisions is the main subject of the third chapter. The experimental results obtained by the 98 Mo + 154 Sm collision at 12 MeV/n, a quantum treatment of a damped harmonic oscillator and the comparison with the experimental data are given. In the last chapter, some results on the existence of two other processes which could candidate to be involved in the main topic are presented. Those processes are: the fast fragmentation and preequilibrium charged particles emission. All these processes originate in the excitation of some simple configurations which can be seen on ''doorway'' states (''Hallway'' in the case of the second intermediate structures). The coupling of these states to other more complicated excitation modes of the nuclei and to outgoing channel=gives the possibility to study the nuclear dynamics. This justifies the interest for their detailed theoretical and experimental investigations. (author)

  3. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  4. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  5. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  6. AERE contracts with DoE on the treatment and disposal of intermediate level wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-06-01

    This document reports work carried out in 1983/84 under 10 contracts between DoE and AERE on the treatment and disposal of intermediate level wastes. Individual summaries are provided for each contract report within the document, under the headings: comparative evaluation of α and βγ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; ceramic waste forms; radionuclide release during leaching; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; fast reactor fuel element cladding; dissolver residues; flowsheeting/systems study. (U.K.)

  7. Design of Continuous Reactor Systems for API Production

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch

    -scale production equipment enabled complete replacement of the existing batch production of this intermediate. The crowning achievement in this work was the realization of continuous laboratory reactor setups capable of manufacturing the entire GMP portion of the synthesis of melitracen HCl at H. Lundbeck A...

  8. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  9. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  10. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  11. RHIZOME AND DISCOURSE OF INTERMEDIALITY

    Directory of Open Access Journals (Sweden)

    Л Н Синельникова

    2017-12-01

    Full Text Available Rhizomaticity is a strategy and a regularity of text creation in a lot of modern commu-nicative discourse practices. What remains urgent is the problem of the systematic interdisciplinary de-scription of texts whose structure and language qualities are determined by the signs of the rhizome - a concept of post-modern philosophy introduced into the scientific field by the French philosopher Gilles Deleuze and the psychotherapist Félix Guattari (Deleuze, Guattari 1996. The rhizome (Fr. rhizome - rootstock, tuber, bulb, mycelium possesses the following qualities: it is non-linear, open and directed towards the unpredictability of discourse transformations through the possibilities of structure development in any direction; there is no centre or periphery in the rhizome, and any discourse element can become ‘a vital structure’ for text-creation. The rhizome does not have non-intersecting boundaries; and in the space of the rhizomatic discourse environment, an increase of reality facets takes place, non-standard associative con-nections appear, multiplication effects are formed, which create new meanings. Rhizomaticity is the quality of texts being organised by the laws of rhizomatic logic (V.F. Sharkov 2007, by the terms of which ‘su-perposition’ of discourses can take place, a transition from one semiotic system to another. The article makes an attempt to correlate the qualities of the rhizome with the signs of the intermedia discourse, which is built on the semiotic interaction of different media. The moving lines of the rhizome, its ‘branch-ing’ qualities can be found in poetic texts, in the evaluating segments of political discourse, in advertising discourse, in internet communications, which represent rhizomorphic environments. An analysis of examples from these spheres has shown that the rhizomatic approach opens new facets of intermediality. The author uses the methods of discourse analysis to prove that the openness and non

  12. Research reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2001-02-01

    This is a textbook on research reactor instrumentation for training purposes, it gives a survey on research reactor instrumentation requirements and eight exercises covering the major aspects of this topic are presented. (author)

  13. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  14. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  15. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  16. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  17. Reactor shutdown method

    International Nuclear Information System (INIS)

    Nishino, Yoshitaka; Sawa, Toshio; Matsumoto, Takayuki; Osumi, Katsumi; Usui, Naoshi.

    1991-01-01

    A device for injecting a hydrogen gas, a chelating agent or a reducing agent is disposed in a reactor water recycling system. Upon reactor shutdown, the hydrogen gas, the chelating agent or the reducing agent is injected to primary coolants. With such a procedure, radioactive ions formed by the dissolution of oxide layers at the surface of pipelines and equipments in a reactor water recycling system and a reactor water cleanup system are removed from the primary coolants by a reactor water cleanup device. Accordingly, since the dose rate at the surface of the pipelines can be reduced, the operator's radiation dose can be reduced upon periodical inspection for a power plant. Further, the inner pressure of the reactor is kept higher than the saturated steam pressure at the reactor water temperature to suppress boiling of the reactor water. This can suppress the peeling of cruds deposited to the surface of the fuel cladding tube. (I.N.)

  18. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  19. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  20. An updated overview of low and intermediate level waste disposal facilities around the world

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Uemura, George; Ferreira, Vinicius Verna M.; Tello, Cledola Cassia O. de, E-mail: vc@cdtn.br, E-mail: george@cdtn.br, E-mail: vvmf@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Malta, Ricardo Scott V. [SEMC Engenharia e Consultoria Ltda., Belo Horizonte, MG (Brazil)

    2011-07-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. Some countries already have these facilities and others are planning theirs. Information about disposal facilities around the world is useful and necessary; however, data on this matter are usually scattered in official reports per country. In order to allow an easier access to this information, this paper aims to provide an overview of disposal facilities for low and intermediate level radioactive waste around the world, as updated as possible. Also, characteristics of the facilities are provided, when possible. Considering that the main source of radioactive waste are the activities of nuclear reactors in research or power generation, the paper will also provide a summarized overview of these reactors around the world, updated until April, 2011. This data collection may be an important tool for researchers, and other professionals in this field. Also, it might provide an overview about the final disposal of radioactive waste. (author)

  1. An updated overview of low and intermediate level waste disposal facilities around the world

    International Nuclear Information System (INIS)

    Cuccia, Valeria; Uemura, George; Ferreira, Vinicius Verna M.; Tello, Cledola Cassia O. de; Malta, Ricardo Scott V.

    2011-01-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. Some countries already have these facilities and others are planning theirs. Information about disposal facilities around the world is useful and necessary; however, data on this matter are usually scattered in official reports per country. In order to allow an easier access to this information, this paper aims to provide an overview of disposal facilities for low and intermediate level radioactive waste around the world, as updated as possible. Also, characteristics of the facilities are provided, when possible. Considering that the main source of radioactive waste are the activities of nuclear reactors in research or power generation, the paper will also provide a summarized overview of these reactors around the world, updated until April, 2011. This data collection may be an important tool for researchers, and other professionals in this field. Also, it might provide an overview about the final disposal of radioactive waste. (author)

  2. On financial equilibrium with intermediation costs

    DEFF Research Database (Denmark)

    Markeprand, Tobias Ejnar

    2008-01-01

    This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...... correspondence. Finally, we prove that when intermediation costs approach zero, unbounded volume of asset trades is a necessary and sufficient condition, provided that, there is no financial equilibrium without intermediation costs....

  3. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  4. Decree from August 27, 1996 authorizing Electricite de France to modify in order to keep under surveillance and in an intermediate dismantling state the basic nuclear installation named Chinon A 3 (reactor definitely decommissioned) on the Chinon nuclear site of the Avoine town (Indre-et-Loire)

    International Nuclear Information System (INIS)

    Juppe, A.; Borotra, F.; Lepage, C.

    1996-01-01

    This decree from the French prime minister, the minister of environment and the minister of industry and postal services gives permission to Electricite de France (EdF) to modify and keep under surveillance the partially dismantled Chinon A 3 reactor which will be renamed Chinon A 3D. The modification consist in confining the internal structures and heat exchangers inside their buildings with the plugging of all apertures. Primary and auxiliary circuits will be dismantled. The decree describes the installation and summarizes the technical rules which must be applied concerning the works schedule, the quality assurance, the confinement and protection against risks of radioactivity dissemination, the personnel and public protection against ionizing radiations, the control of environmental pollution with liquid and gaseous effluents, the reduction of volume and radioactivity of solid wastes, the transport and handling of radioactive materials, the protection against earthquakes and fire, and the personnel training. (J.S.)

  5. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  6. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  7. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  8. Compact Intermediate-Temperature Fuel Cells

    National Research Council Canada - National Science Library

    Sun, Yipeng

    2003-01-01

    In Phase I, we demonstrate the feasibility of making supported electronically insulating, proton conducting inorganic thin films on metal hydride foils for intermediate temperature fuel cell electrolytes...

  9. Spanish experience in managing low and intermediate activity radioactive wastes

    International Nuclear Information System (INIS)

    Granero, J.J.

    1986-01-01

    The Spanish experience in management of low and intermediated level radioactive wastes is presented. The radioactive wastes stored come from research reactors, nuclear power plants, nuclear fuel cycle, scientific research, radiodiagnostic and medical applications. The commonest method is incorporation in cement inside special drums, even though some facilities use processes based on urea formal dehyde and on asphalt. Transport of the wastes is carried out by private undertakings and the Nuclear Energy Board. The sites used for storing are temporary in nature. The wastes produced by nuclear power plants are stored on site, with those processed by the Nuclear Energy Board are taken to a province of Cordoba. The National Company ENRESA for managing of all kinds of wastes was created. The Spanish legislation on this subject and the research being carried out by Spain itself and in cooperation with other States, are described. (Author) [pt

  10. Intermediate-Size Inducer Pump design report. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, T.J.

    1979-06-15

    This report summarizes the mechanical, structural, and hydrodynamic design of the Intermediate-Size Inducer Pump (ISIP). The design was performed under Atomics International's DOE Base Technology Program by the Atomics International and Rocketdyne Divisions of Rockwell International. The pump was designed to utilize the FFTF prototype pump frame as a test vehicle to test the inducer, impeller, and diffuser plus necessary adapter hardware under simulated Large Scale Liquid Metal Fast Breeder Reactor service conditions. The report describes the design requirements including the purpose and objectives, and discusses those design efforts and considerations made to meet the requirements. Included in the report are appendices showing calculative methods and results. Also included are overall assembly and layout drawings plus some details used as illustrations for discussion of the design results and the results of water tests performed on a model of the inducer.

  11. Intermediate probabilistic safety assessment approach for safety critical digital systems

    International Nuclear Information System (INIS)

    Taeyong, Sung; Hyun Gook, Kang

    2001-01-01

    Even though the conventional probabilistic safety assessment methods are immature for applying to microprocessor-based digital systems, practical needs force to apply it. In the Korea, UCN 5 and 6 units are being constructed and Korean Next Generation Reactor is being designed using the digital instrumentation and control equipment for the safety related functions. Korean regulatory body requires probabilistic safety assessment. This paper analyzes the difficulties on the assessment of digital systems and suggests an intermediate framework for evaluating their safety using fault tree models. The framework deals with several important characteristics of digital systems including software modules and fault-tolerant features. We expect that the analysis result will provide valuable design feedback. (authors)

  12. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  13. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  14. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  15. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  16. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  17. The Jules Horowitz reactor

    International Nuclear Information System (INIS)

    2003-01-01

    The Jules Horowitz reactor is the future european reactor for irradiation. It will be used for materials and new fuels irradiation. Experiments for the safety and the validation of neutronics calculation will be also realized. This paper presents the design and the performance of the reactor and the schedule of the remaining design studies. (A.L.B.)

  18. Cement-based processes for the immobilization of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  19. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  20. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  1. Nuclear structure at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  2. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  3. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  4. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  5. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  6. 19 CFR 122.84 - Intermediate airport.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Intermediate airport. 122.84 Section 122.84... Intermediate airport. (a) Application. The provisions of this section apply at any U.S. airport to which an... aircraft arrives at the next airport, the aircraft commander or agent shall make entry by filing the: (1...

  7. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  8. Some Intermediate-Level Violin Concertos.

    Science.gov (United States)

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  9. Automotive Body Repair. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  10. 39 CFR 3001.39 - Intermediate decisions.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL RULES OF PRACTICE AND PROCEDURE Rules of General Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in...

  11. Brazil : Interest Rates and Intermediation Spreads

    OpenAIRE

    World Bank

    2006-01-01

    This study sheds light on the analytical and policy issues regarding the high intermediation spread in Brazil, focusing on its determinants, the reasons for its persistence, and its impact on the real economy, especially on access to finance for Brazilian firms. The key contention of the analysis is that high intermediation spreads are a symptom of underlying problems; as such, spreads constitute ...

  12. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  13. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  14. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  15. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  16. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  17. Low and intermediate level radioactive waste in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.C.; Ortiz, J.R.; Sanchez, S.

    2002-01-01

    Currently, it is necessary to establish, in a few years, a definitive repository for low and intermediate level radioactive waste in order to satisfy the necessities of Mexico for the next 50 years. Consequently, it is required to estimate the volumes of the radioactive waste generated annually, the stored volumes to-date and their projection to medium-term. On this subject, the annual average production of low and intermediate level radioactive waste from the electricity production by means of nuclear power reactors is 250 m 3 /y which consist of humid and dry solid waste from the 2 units of the Laguna Verde Nuclear Power plant having a re-use efficiency of effluents of 95%. On the other hand, the applications in medicine, industry and research generate 20 m 3 /y of solid waste, 280 m 3 /y of liquid waste and approximately 10 m 3 /y from 300 spent sealed radioactive sources. The estimation of the total volume of these waste to the year 2035 is 17500 m 3 corresponding to the 46% of the volume generated by the operation and maintenance of the 2 units of the Laguna Verde Nuclear Power plant, 34% to the decommissioning of these 2 units at the end of their useful life and 20% to the waste generated by applications in medicine, industry and research. (author)

  18. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  19. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  20. Mechanical behaviour of PWR fuel rods during intermediate storage

    International Nuclear Information System (INIS)

    Bouffioux, P.; Dalmas, R.; Bernaudat, C.

    2000-01-01

    EDF, which owns the irradiated fuel coming from its NPPs, has initiated studies regarding the mechanical behaviour of a fuel rod and the integrity of its cladding, in the case where the spent fuel is stored for a significant duration. During the phases following in-reactor irradiation (ageing in a water-pool, transport and intermediate storage), many phenomena, which are strongly coupled, may influence the cladding integrity: - residual power and temperature decay; - helium production and release in the free volume of the rod (especially for MOX fuel); - fuel column swelling; - cladding creep-out under the inner gas pressure of the fuel rod; - metallurgical changes due to high temperatures during transportation. In parallel, the quantification of the radiological risk is based on the definition of a cladding integrity criterion. Up to now, this criterion requires that the clad hoop strain due to creep-out does not exceed 1%. A more accurate criterion is being investigated. The study and modelling of all the phenomena mentioned above are included in a R and D programme. This programme also aims at redefining the cladding integrity criterion, which is assumed to be too conservative. The R and D programme will be presented. In order to predict the overall behaviour of the rod during the intermediate storage phases, the AVACYC code has been developed. It includes the models developed in the R and D programme. The input data of the AVACYC code are provided by the results of in-reactor rod behaviour simulations, using the thermal-mechanical CYRANO3 code. Its main results are the evolution vs. time of hoop stresses in the cladding, rod internal pressure and cladding hoop strains. Chained CYRANO-AVACYC calculations have been used to simulate the behaviour of MOX fuel rods irradiated up to 40 GWd/t and stored under air during 100 years, or under water during 50 years. For such fuels, where the residual power remains high, we show that a large part of the cladding strain

  1. Evaluation of alternative fluids for SFR intermediate loops

    International Nuclear Information System (INIS)

    Brissonneau, L.; Simon, N.; Baque, F.

    2009-01-01

    Among the Generation IV systems, Sodium Fast Reactors (SFR) are promising and benefit of considerable technological experience, but improvements are researched on safety approach and capital cost reduction. One of the main drawback to be solved by the standard SFR design is the proper management of the risk of leakage between the intermediate circuit filled with sodium and the energy conversion system using a water Rankine cycle. The limitation of this risk requires notably an early detection of water leakage to prevent a water-sodium reaction. One innovative solution consists in the replacement of the sodium in the secondary loops by an alternative liquid fluid, not or less reactive with water. This alternative fluid might also allow innovative designs, e.g. intermediate heat exchanger and steam generator grouped in the same component. CEA, Areva NP and EdF have joined in a working group in order to evaluate different 'alternative fluids' that might replace sodium. A first selection retained seven fluids on the basis of 'required properties' as large operating range (low melting point, high boiling point ...), fluid cost and availability, acceptable corrosion at SFR working temperature. These are three bismuth alloys, two nitrate salts, one hydroxide melt and sodium with nanoparticles of nickel. Then, it was decided to evaluate these fluids through a multi-criteria analysis in order to quantify advantages and drawbacks of each fluid and to compare them with sodium. Lack of knowledge, impact on materials, design, working conditions and reactor availability should be emphasized by this analysis, in order to provide sound arguments for a research program on one or two promising fluids. A global note is given to each fluid by evaluating them with respect to 'grand criteria', weighted differently according to their importance. The grand criteria are : thermal properties, reactivity with structures, reactivity with other fluids (air, water, sodium), chemistry control

  2. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    The invention deals with disengaging the coupling of a reactor coolant pump of a nuclear reactor feeding pressurized coolant. The disengaging coupling has two parts joined by bolts, at least one of them containing a driving agent within a bore. This is provided with a speed-depending ignition device in such manner that, if the critical speed is reached, the driving charge is ignited and the coupling is disengaged by destroying the bolts. (UWI) [de

  3. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  4. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  5. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  6. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  7. Refueling system for a nuclear reactor

    International Nuclear Information System (INIS)

    Koschkin, J.N.; Ordynskij, G.V.; Schchijan, C.G.; Schapkin, A.F.; Fadeev, A.I.; Laptev, F.V.; Batjukov, V.I.; Korolkov, K.I.; Borodin, I.V.; Tschernomordik, E.N.

    1979-01-01

    With the refueling system fuel elements are transferred from the intermediate distributing chamber within the fast breeder reactor vessel to the storage tanks for new and irradiated fuel elements outside of the reactor vessel and vice versa. It consists of a hermetic chamber, filled with inert gas, within which the refueling machine, having got a vertical swing pipe, is placed. On the swing pipe there is mounted by means of a bracket a hanging support tube for a tube manipulator that can be moved over the openings to the fuel elements. At the end of the tube manipulator there is a gripping device whose drive mechanism is arranged within the support tube. The swing pipe is moved by means of a drive mechanism outside of the chamber. (DG) [de

  8. Large packages for reactor decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1991-01-01

    This study was carried out jointly by the Atomic Energy Establishment at Winfrith (now called the Winfrith Technology Centre), Windscale Laboratory and Ove Arup and Partners. The work involved the investigation of the design of large transport containers for intermediate level reactor decommissioning waste, ie waste which requires shielding, and is aimed at European requirements (ie for both LWR and gas cooled reactors). It proposes a design methodology for such containers covering the whole lifetime of a waste disposal package. The design methodology presented takes account of various relevant constraints. Both large self shielded and returnable shielded concepts were developed. The work was generic, rather than specific; the results obtained, and the lessons learned, remain to be applied in practice

  9. Nuclear reactor with scrammable part length rod

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A new part length rod is provided. It may be used to control xenon induced power oscillations but to contribute to shutdown reactivity when a rapid shutdown of the reactor is required. The part length rod consists of a control rod with three regions. The lower control region is a longer weaker active portion separated from an upper stronger shorter poison section by an intermediate section which is a relative non-absorber of neutrons. The combination of the longer weaker control section with the upper high worth poison section permits the part length rod of this to be scrammed into the core when a reactor shutdown is required but also permits the control rod to be used as a tool to control power distribution in both the axial and radial directions during normal operation

  10. GENIUS & the Swedish Fast Reactor programme

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2012-01-01

    Concluding remarks: Sweden’s growing fast reactor programme focuses on LFR technology, but we also participate in ASTRID. • An innovative facility for UN fabrication, an LBE thermal hydraulics loop and a lead corrosion facility are operational. • A plutonium fuel fabrication lab is is under installation (this week!) • The government is assessing the construction of ELECTRA-FCC, a centre for Gen IV-system R&D, at a tentative cost of ~ 140±20 M€. • Location: Oskarshamn (adjacent to intermediate repository) • Date of criticality: 2023 (best case) • Swedish participation in IAEA TWG-FR should intensify

  11. Language in use intermediate : classroom book

    CERN Document Server

    Doff, Adrian

    1995-01-01

    ach of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  12. Language in use intermediate : teacher's book

    CERN Document Server

    Doff, Adrian

    1998-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  13. Intermedial Strategies of Memory in Contemporary Novels

    DEFF Research Database (Denmark)

    Tanderup, Sara

    2014-01-01

    , and Judd Morrissey and drawing on the theoretical perspectives of N. Katherine Hayles (media studies) and Andreas Huyssen (cultural memory studies), Tanderup argues that recent intermedial novels reflect a certain nostalgia celebrating and remembering the book as a visual and material object in the age......In her article "Intermedial Strategies and Memory in Contemporary Novels" Sara Tanderup discusses a tendency in contemporary literature towards combining intermedial experiments with a thematic preoccupation with memory and trauma. Analyzing selected works by Steven Hall, Jonathan Safran Foer...... of digital media while also highlighting the influence of new media on our cultural understanding and representation of memory and the past....

  14. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  15. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  16. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  18. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  19. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  20. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    1987-01-01

    A fuel element of a PWR has a deflector projection outside on the intermediate strip of the spacer to avoid hooking up during fuelling and fuel removal, which is placed in the direction of the diagonals of the corner grid mesh between the two outer bars on the intermediate strip and is oblique to the two ends of the intermediate strip in the longitudinal direction of the bars. (orig./HP) [de

  1. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  2. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  3. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  4. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  5. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  6. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  7. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  8. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  9. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  10. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  11. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  12. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  13. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  14. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  15. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  16. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  17. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  18. Intermediate/Advanced Research Design and Statistics

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  19. The deterioration of intermediate moisture foods

    Science.gov (United States)

    Labruza, T. P.

    1971-01-01

    Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.

  20. Proposed changes in intermediate pipe break criteria

    International Nuclear Information System (INIS)

    Schmitz, R.P.

    1984-01-01

    Bechtel Power Corporation proposed to the US NRC in 1983 that the NRC eliminate from their criteria all intermediate breaks. Bechtel's rationale for the proposal and support for their position are presented

  1. MNE Entrepreneurial Capabilities at Intermediate Levels

    DEFF Research Database (Denmark)

    Hoenen, Anne K.; Nell, Phillip Christopher; Ambos, Björn

    2014-01-01

    at intermediate geographical levels differ from local subsidiaries and global corporate headquarters, and why those differences are important. We illustrate our arguments using data on European regional headquarters (RHQs). We find that RHQs' entrepreneurial capabilities depend on their external embeddedness...

  2. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power '2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy...

  3. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor

    International Nuclear Information System (INIS)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC's ''Statement of Policy for the Regulation of Advanced Nuclear Power Plants'' (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC's preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant's research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified

  4. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  5. Intermediality, Architecture, and the Politics of Urbanity

    OpenAIRE

    Tortosa Garrigós, Virgilio

    2011-01-01

    In his article "Intermediality, Architecture, and the Politics of Urbanity" Virgilio Tortosa Garrigós discusses aspects of the exponential development of large cities, the neoliberal economy, and the "spectacle" of architecture in the context of intermediality. With the connivance between land speculators and politicians — which has led not only to the loss of spatial identity but to irreversible pollution and geographic degradation — urbanity is epitomized on the Mediterranean coast line. In...

  6. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  7. Reactor core monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    The device of the present invention provides a various information of a wide adaptability, such as a power distribution, to an operator by determining a reactor core performance of the reactor by a performance calculation with improved accuracy. That is, a calculation means determines a neutron flux distribution of the reactor and coolant temperature based on the neutron flux distribution. A measuring means measures a cooled temperature of a reactor core inlet and a temperature at the exit of a fuel assembly. The result of coolant temperature by the measuring means and the result of the calculation by the calculation means are compared. The result of the calculation for the neutron flux distribution obtained by the calculation means is corrected based on the result of the comparison. The calculation means introduces calculation at higher accuracy by adopting two-dimensional balance in the fuel assembly. Further, a more accurate three-dimensional neutron diffusion calculation model is introduced in an on-line computer. Then, the accuracy of the calculation for the neutron flux distribution, power distribution, temperature distribution, etc. is improved. In view of the above, adaptability of a reactor core monitor is widened. (I.S.)

  8. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  9. Associations of Systemic Diseases with Intermediate Uveitis.

    Science.gov (United States)

    Shoughy, Samir S; Kozak, Igor; Tabbara, Khalid F

    2016-01-01

    To determine the associations of systemic diseases with intermediate uveitis. The medical records of 50 consecutive cases with intermediate uveitis referred to The Eye Center in Riyadh, Saudi Arabia, were reviewed. Age- and sex-matched patients without uveitis served as controls. Patients had complete ophthalmic and medical examinations. There were 27 male and 23 female patients. Mean age was 29 years with a range of 5-62 years. Overall, 21 cases (42%) had systemic disorders associated with intermediate uveitis and 29 cases (58%) had no associated systemic disease. A total of 11 patients (22%) had asthma, 4 (8%) had multiple sclerosis, 3 (6%) had presumed ocular tuberculosis, 1 (2%) had inflammatory bowel disease, 1 (2%) had non-Hodgkin lymphoma and 1 (2%) had sarcoidosis. Evidence of systemic disease was found in 50 (5%) of the 1,000 control subjects. Bronchial asthma was found in 37 patients (3.7 %), multiple sclerosis in 9 patients (0.9%), inflammatory bowel disease in 3 patients (0.3%), and tuberculosis in 1 patient (0.1%). None of the control patients had sarcoidosis or lymphoma. There were statistically significant associations between intermediate uveitis and bronchial asthma (p = 0.0001), multiple sclerosis (p = 0.003) and tuberculosis (p = 0.0005). Bronchial asthma and multiple sclerosis were the most frequently encountered systemic diseases associated with intermediate uveitis in our patient population. Patients with intermediate uveitis should undergo careful history-taking and investigations to rule out associated systemic illness.

  10. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  11. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  12. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  13. Multifrequency tests in the EBR-II reactor plant

    International Nuclear Information System (INIS)

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs

  14. The applications of research reactors. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-08-01

    Owners and operators of many research reactors are finding that their facilities are not being utilized as fully as they might wish. Perhaps the original mission of the reactor has been accomplished or a particular analysis is now performed better in other ways. In addition, the fact that a research reactor exists and is available does not guarantee that users will come seeking to take advantage of the facility. Therefore, many research reactor owners and operators recognize that there is a need to develop a strategic plan for long term sustainability, including the 'marketing' of their facilities. An important first element in writing a strategic plan is to evaluate the current and potential capabilities of the reactor. The purpose of this document is to assist in such an evaluation by providing some factual and advisory information with respect to all of the current applications of research reactors. By reference to this text, each facility owner and operator will be able to assess whether or not a new application is feasible with the reactor, and what will be required to develop capability in that application. Applications fall into four broad categories: human resource development, irradiations, extracted beam work and testing. The human resource category includes public information, training and education and can be accomplished by any reactor. Irradiation applications involves inserting material into the reactor to induce radioactivity for analytical purposes, to produce radioisotopes or to induce radiation damage effects. Almost all reactors can be utilized for some irradiation applications, but as the reactor flux gets higher the range of potential uses gets larger. Beam work usually includes using neutron beams outside of the reactor for a variety of analytical purposes. Because of the magnitude of the fluxes needed at some distance from the core, most beam work can only be performed by the intermediate and higher powered research reactors. Testing nuclear

  15. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  16. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  17. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  18. Reactor cost driving items

    International Nuclear Information System (INIS)

    Spears, W.R.

    1987-01-01

    Assuming that the design solutions presently perceived for NET can be extrapolated for use in a power reactor, and using costing experience with present day fusion experiments and with fission power plants, the major components of the cost of a tokamak fusion power reactor are described. The analysis shows the emphasis worth placing on various areas of plant design to reduce costs

  19. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  20. CAREM 25 nuclear reactor

    International Nuclear Information System (INIS)

    Rossini, A.A.; Ordonez, J.P.; Rajoy, J.E.; Durione, C.

    1990-01-01

    This work describes the CAREM project reactor, its design philosophy, its main characteristics and its advantages with respect to similar reactors. The main objective is to use the nuclear energy at lower costs than those applied up to now. (Author) [es

  1. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  2. International thermal reactor development

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1977-01-01

    The worldwide development of nuclear power plants is reviewed. Charts are presented which show the commitment to light-water reactor capacity construction with breakdown by region and country. Additional charts show the major nuclear research centers which have substantial scope in light water reactor development and extensive international activities

  3. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  4. Advanced converter reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-01-01

    Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U 3 O 8 at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals

  5. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  7. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  8. Nuclear reactor instrumentation method

    International Nuclear Information System (INIS)

    Handa, Hiroyuki; Hayashi, Katsumi; Nemesawa, Shigeki; Nemoto, Yuji; Ohashi, Masahisa.

    1993-01-01

    The present invention can appropriately monitor the state of a reactor core in an FBR type reactor which has a system of storing spent fuel assemblies in a reactor container while reducing the weight and making the structure compact in the reactor. That is, a fuel assembly having a shield lacking portion in upper axial shields is disposed. The shield lacking portion defines neutrons' leaking path from the reactor core. The leakage of neutrons from the path is detected by a neutron monitor disposed just above the fuel assembly. With such a constitution, influence of neutrons from stored spent fuel assemblies disposed to the out side of the radial shields can be reduced by a shielding effect of the existent radial shields around the reactor core. Further, if a shield lacking portion is locally disposed in the region of the upper axial shields just below the neutron monitor, neutrons from the reactor core can be monitored while suppressing excessive neutron leakage. As a result, it is unnecessary to dispose shields on the outer side of the spent fuel assembly disposed in the reactor core. (I.S.)

  9. The role of a small teaching reactor in education and training

    International Nuclear Information System (INIS)

    Bobek, L.M.; Mayer, J.A. Jr.

    1992-01-01

    It cannot be simply concluded that because an undergraduate nuclear engineering program has access to a higher power research reactor that the number of BS graduates will be proportionately larger than a program whose reactor operates at a much lower power level. What can be concluded is that although smaller in size and capability, low-power research reactors and the nuclear engineering programs they serve provide an important role in producing much-needed nuclear engineers and scientists at the undergraduate level. Designed and built by General Electric primarily as a teaching tool for nuclear engineering education, the nuclear reactor at Worcester Polytechnic Institute (WPI) first began operation in 1959. The reactor power level was upgraded from 1 to 10 kW in 1969, and its 20-yr operating license was renewed in 1983. With the support of DOE funds, the reactor was converted to low-enriched fuel in 1988. Under partial funding from the DOE University Reactor Instrumentation Program, the reactor control console will soon be replaced. Since a small research reactor is an ideal tool for providing basic and intermediate nuclear training, the incorporation of nuclear subjects into traditional disciplines will consequently enhance reactor facility usage. With its continued modernization, the WPI nuclear reactor facility will play a key role in meeting nuclear manpower needs while providing excellent and rewarding career opportunities for students in all disciplines for many years to come

  10. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  11. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  12. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  13. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  14. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  15. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  16. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  17. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  18. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  19. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  20. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  1. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  2. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  3. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  4. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1993-01-01

    Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)

  5. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.

    1999-01-01

    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  6. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  7. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  8. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  9. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  10. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  11. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  12. Radiation protection at new reactors

    International Nuclear Information System (INIS)

    Brissaud, A.

    2000-01-01

    The theoretical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  13. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  14. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  15. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  16. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  17. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  18. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  19. Water cooled nuclear reactors

    International Nuclear Information System (INIS)

    Donaldson, A.J.

    1989-01-01

    In order to reduce any loss of primary water coolant from around a reactor core of a water cooled nuclear reactor caused by any failure of a pressure vessel, an inner vessel is positioned within and spaced from the pressure vessel. The reactor core and main portion of the primary water coolant circuit and a heat exchanger are positioned within the inner vessel to maintain some primary water coolant around the reactor core and to allow residual decay heat to be removed from the reactor core by the heat exchanger. In the embodiment shown an aperture at the upper region of the inner vessel is dimensioned configured and arranged to prevent steam from a steam space of an integral pressurised water cooled nuclear reactor for a ship entering the main portion of the primary water coolant circuit in the inner vessel if the longitudinal axis of the nuclear reactor is displaced from its normal substantially vertical position to an abnormal position at an angle to the vertical direction. Shields are integral with the inner vessel. (author)

  20. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  1. Reactor monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1996-01-01

    The device of the present invention monitors the stability of a power of a BWR type reactor by using each of recycling flow rates in addition to a reactor core flow rate to improve monitoring accuracy. Namely, a set value registering means is disposed for registering reactor core flow rate set values corresponding to the number of recycling flow rates not reaching a reference value for each of the recycling flow rates. A reactor flow rate take-out means judges whether each of the recycling flow rates reaches the reference value or not. The set values of the set value registering means are taken out based on the number of each of the recycling flow rate signals not reaching the reference values. The taken out set value and calculated reactor core flow rate value are compared by an abnormal alarm means. When calculated value is smaller than the set value, abnormality is informed. The accuracy for the monitoring is improved by monitoring the reactor power by using each of recycling flow rates in addition to the reactor core flow rate. (I.S.)

  2. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  3. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  4. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  5. Desk top calculation strategies for reactor analysis using Mathematica

    International Nuclear Information System (INIS)

    Kullberg, C.

    1991-01-01

    Mathematics is one of several recently developed equations analysis programs that is particularly well suited for solving a broad range of intermediate engineering problems. The objective of this paper is to demonstrate, using a couple of reactor-related examples, how Mathematica can be exploited as a user-friendly analysis tool to symbolically and numerically handle systems of algebraic and differential equations. 7 refs., 3 figs

  6. The Chemistry of iodine in reactor safety: summary and conclusions: OECD Workshop

    International Nuclear Information System (INIS)

    1996-01-01

    About seventy experts from fourteen OECD member countries attended this Fourth OECD Workshop on the chemistry of iodine in reactor safety, as well as experts from Latvia and the Commission of the European Communities. Thirty four papers were presented, in five sessions: national and international programmes (integral and intermediate-scale experiments), experimental homogeneous phase chemistry, surface processes, thermodynamic and kinetic studies, safety applications. A final session is devoted to a general discussion on remaining research studies relevant to reactor safety

  7. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  8. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  9. Feasibility study of self sustaining capability on water cooled thorium reactors for different power reactors

    International Nuclear Information System (INIS)

    Permana, S.; Takaki, N.; Sekimoto, H.

    2007-01-01

    fertile and fissile nuclides with the contribution from intermediate nuclides such as 2 34U and 2 33Pa. The conversion ratio is evaluated by considering the conversion capability of the reactor to convert the fertile material into fissile material. The fissile accumulation capability for different conditions is investigated for estimating the fissile production capability during operation. The result shows the negative reactivity coefficient, and its feasibility of breeding for different MFR and burnup. The very tight lattice pin of MFR ≤ 0.3 is preferable for obtaining breeding condition for relatively higher burnup. The breeding capability of the reactor increases with increasing power output and decreasing power density. In relation to the self sustaining system, the large power output is easier to reach than the small power output

  10. Inherently safe reactors

    International Nuclear Information System (INIS)

    Maartensson, Anders

    1992-01-01

    A rethinking of nuclear reactor safety has created proposals for new designs based on inherent and passive safety principles. Diverging interpretations of these concepts can be found. This article reviews the key features of proposed advanced power reactors. An evaluation is made of the degree of inherent safety for four different designs: the AP-600, the PIUS, the MHTGR and the PRISM. The inherent hazards of today's most common reactor principles are used as reference for the evaluation. It is concluded that claims for the new designs being inherently, naturally or passively safe are not substantiated by experience. (author)

  11. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  12. Fast breeder reactors

    International Nuclear Information System (INIS)

    1978-01-01

    The subject of this invention is a liquid metal cooled nuclear reactor construction in which a concrete pit is lagged to protect it from the heat radiated from the reactor in normal operation but in which the efficiency of the lagging is reduced in case of emergency to allow the excess heat generated by the reactor to be dissipated throughout the pit. The lagging is in two layers, the first covering the internal surface of the pit wall is impermeable to the liquid metal, whilst the second layer over the first is permeable [fr

  13. Reactor shutdown device

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1983-01-01

    Purpose : To provide a reactor shutdown device suitable to the low temperature shutdown of a heavy water-moderated type nuclear reactor and capable of ensuring an adequate shutdown margin. Constitution : Xenon reactivity is calculated based on the detection signals for reactor neutrons, the temperature reactivity is calculated based on the temperature of the moderators and of the coolants and, further, poisons in the moderators are detected. Injection amount of the poisons is calculated based on the result of the calculation and the detection, and the calculated amount of poisons is injected into the moderators. (Kamimura, M.)

  14. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  15. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  16. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  17. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  18. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  19. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  20. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  1. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  2. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  3. Reactors of the world

    International Nuclear Information System (INIS)

    1971-01-01

    Basic data relating to 127 power reactors in 15 countries which are expected to be in operation at the end of this year, with a total installed electrical generating capacity of 35 340.15 MW(e), and a listing of 361 research reactors in 46 countries are given in the 1971 edition of the IAEA handbook, Power and Research Reactors in Member States, which has just been published. This edition, the fourth, was prepared especially for the Fourth International Conference on the Peaceful Uses of Atomic Energy. (author)

  4. Elmo Bumpy Torus Reactor

    International Nuclear Information System (INIS)

    McAlees, D.G.; Uckan, N.A.; Lidsky, L.M.

    1976-01-01

    In the Elmo Bumpy Torus Reactor (EBTR) study the feasibility of achieving a fusion power plant based on the EBT confinement concept was evaluated. If the present understanding of the physics can be extrapolated to reactor scale devices the reactor could operate at high beta, high power density, and at steady state. The high aspect ratio of the device eases the accessibility, structural design and remote maintenance problems which are common to low aspect ratio machines. A version of the EBTR reference design described here could be constructed with only minor extrapolations in available technology

  5. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  6. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  7. First Algerian research reactor

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    In 1985, both the Algerian Commissariat of New Energies and the Argentine National Atomic Energy Commission plus the firm INVAP S.E., started a series of mutual visits aimed at defining the mechanisms for cooperation in the nuclear field. Within this framework, a commercial contract was undersigned covering the supply of a low-power reactor (RUN), designed for basic and applied research in the fields of reactor physics and nuclear engineering. The reactor may also be used for performing experiences with neutron beams, for the irradiation of several materials and for the training of technicians, scientists and operators [es

  8. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  9. NUCLEAR REACTOR FUEL SYSTEMS

    Science.gov (United States)

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  10. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  11. Governance-Default Risk Relationship and the Demand for Intermediated and Non-Intermediated Debt

    Directory of Open Access Journals (Sweden)

    Husam Aldamen

    2012-09-01

    Full Text Available This paper explores the impact of corporate governance on the demand for intermediated debt (asset finance, bank debt, non-bank private debt and non-intermediated debt (public debt in the Australian debt market. Relative to other countries the Australian debt market is characterised by higher proportions of intermediated or private debt with a lower inherent level of information asymmetry in that private lenders have greater access to financial information (Gray, Koh & Tong 2009. Our firm level, cross-sectional evidence suggests that higher corporate governance impacts demand for debt via the mitigation of default risk. However, this relationship is not uniform across all debt types. Intermediated debt such as bank and asset finance debt are more responsive to changes in governance-default risk relationship than non-bank and non-intermediated debt. The implication is that a firm’s demand for different debt types will reflect its governance-default risk profile.

  12. Phenix reactor: a review of 35 year long operating life; Le reacteur Phenix: bilan de 35 ans de fonctionnement

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.; Dall' Ava, D.; Rochwerger, D.; Goux, D. [CEA Marcoule 30 (France); Guidez, J.; Martin, Ph.; Seran, J.L. [CEA Saclay 91 - Gif sur Yvette (France); Sauvage, J.F.; Prele, G.; Guihard, J. [Electricite de France (EDF), 75 - Paris (France); Bernardin, B.; Vanier, M.; Zaetta, A.; Latge, Ch. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Fontaine, B.; Jolly, J.A.; Gros, J.; Pepe, D. [CEA Marcoule, Centrale Phenix, 30 (France); Pelletier, M.; Pillon, S. [CEA Cadarache, Dept. d' Etudes des Combustibles, 13 - Saint Paul lez Durance (France); Escaravage, C.; Gelineau, O.; Dupraz, R.; Dirat, J.F.; Giraud, M. [AREVA NP, 92 - Paris la Defense (France); Michaille, P. [CEA Dam, DP2I, Mar (France)

    2009-01-15

    Phenix reactor that was commissioned in 1973, had its final shutdown during the beginning of 2009. This series of articles presents the main contributions of Phenix over its 35 years of operating life in material sciences, the handling of sodium, the design of fast reactors, core physics and reactor safety. Other articles recall the feedback experience on particular components like sodium pumps, steam generators or intermediate heat exchangers and about reactor maintenance. This power plant was first an experimental reactor that, with its hot cells, has performed important irradiation programs concerning mainly fast reactor technology and transmutation as a tool for burning actinides. One article reviews the environmental impact of this reactor over its operating life in terms of waste production and dosimetry. (A.C.)

  13. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  14. An isoelectrically trapped enzyme reactor operating in an electric field.

    Science.gov (United States)

    Righetti, P G; Bossi, A

    1998-06-01

    Membrane enzyme reactors constitute an attempt at integrating catalytic conversion, product separation and/or concentration and catalyst recovery into a single operation. Whereas conventional membrane reactors confine an enzyme, in a free form, to one side of a membrane by size exclusion, electrostatic repulsion, or physical or chemical immobilization onto an intermediate support (gel, liposome), the membrane reactor here described is shown to operate under an entirely new principle: enzyme confinement into an isoelectric trap located in a multicompartment electrolyzer operating in an electric field. Two isoelectric membranes, having pI values encompassing both the enzyme pI and the pH of its optimum of activity, act by continuously titrating the enzyme trapped inside, thus preventing it from escaping the reaction chamber. Charged products generated by the enzyme catalysis are continuously electrophoretically transported away from the reaction chamber and collected into other chambers stacked either towards the cathodic or anodic sides. In a urease reactor, ammonia is continuously harvested towards the cathode, thus allowing >95% substrate consumption with maintenance of enzyme integrity over much longer time periods than in a batch reactor. In a trypsin reactor, casein is digested and biologically active peptides are continuously harvested in a pure form into appropriate isoelectric traps. In a third example, pure D-phenylglycine is produced from a racemate mixture, via an acylation reaction onto a cosubstrate (the ester methyl-4-hydroxyphenyl acetate), brought about by the enzyme penicillin G acylase.

  15. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    Jo, Nam Jin

    1993-08-01

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  17. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    2000-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  18. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1998-01-01

    Full text: In 1998 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  19. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1996-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  20. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    Directory of Open Access Journals (Sweden)

    Isaac Skavdahl

    2016-12-01

    Full Text Available Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (Tco and the hot outlet temperature of the intermediate heat exchanger (Tho2 by manipulating the hot-side flow rates of the heat exchangers (Fh/Fh2 responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (Tco only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1 flow rate manipulation; (2 reactor power manipulation; or (3 a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

  1. Control of advanced reactor-coupled heat exchanger system: Incorporation of reactor dynamics in system response to load disturbances

    International Nuclear Information System (INIS)

    Skavdahi, Isaac; Utgikar, Vivek; Christensen, Richard; Chen, Ming Hui; Sun, Xiao Dong; Sabharwall, Piyush

    2016-01-01

    Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co ) and the hot outlet temperature of the intermediate heat exchanger (Th o2 ) by manipulating the hot-side flow rates of the heat exchangers (F h /F h2 ) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (T co ) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change

  2. Control of advanced reactor-coupled heat exchanger system: Incorporation of reactor dynamics in system response to load disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Skavdahi, Isaac; Utgikar, Vivek [Dept. of Chemical and Materials Engineering, University of Idaho, Moscow (United States); Christensen, Richard [Nuclear Engineering Program, University of Idaho, Idaho Falls (United States); Chen, Ming Hui; Sun, Xiao Dong [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus (United States); Sabharwall, Piyush [Idaho National Laboratory, Idaho Falls (United States)

    2016-12-15

    Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T{sub co}) and the hot outlet temperature of the intermediate heat exchanger (Th{sub o2}) by manipulating the hot-side flow rates of the heat exchangers (F{sub h}/F{sub h2}) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (T{sub co}) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

  3. Nuclear reactor container

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1987-01-01

    Purpose: To improve the earthquake proofness and also increase the safety to a nuclear reactor container by preventing bucklings upon earthquake. Constitution: A device for absorbing the deformation exerted from nuclear reactor buildings is disposed to a suppression chamber constituting a reactor container. When a nclear power plant encounters earthquakes, the entire reactor buildings are shaken and deformations of buildings are transmitted by way of building shell walls to a container and the forcive deforming forces are absorbed in the deformation absorbing device. That is, bellows are formed at the base of the container, which are deformed by the deforming forces to absorb the forcive deforming amount to moderate the stresses resulted to the suppression chamber. Thus, the rigidity to the bending of the container can be reduced and allowable displacement to the bucklings can be increased to prevent the buckling, by which earthquake proofness is improved and the safety is increased. (Kamimura, M.)

  4. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  6. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  7. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  8. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  9. Integrated nuclear reactor

    International Nuclear Information System (INIS)

    Pales, I.; Hasko, V.

    1984-01-01

    The reactor is provided with an integrated circuit of primary medium circulation with hydraulic pump drive. The pump drive which is a blade hydraulic facility is placed in the reactor vessel together with the pump. The primary medium flows through the core and enters the inter-tube space of the secondary circuit heat exchanger. The secondary circuit medium is supplied under the bottom tube plate with a supply pipe. From it the flow of secondary medium is directed to the blades of the hydraulic facility, e.g. the turbine. The turbine drives the pump which transports the primary medium to the reactor core. The secondary medium enters the heat exchanger tubes and through their walls receives the heat from the primary medium. This design reduces capital costs of the reactor and increases its safety. (E.S.)

  10. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  11. Inertial thermonuclear reactors

    International Nuclear Information System (INIS)

    Madarame, Haruki; Oomura, Hiroshi; Nakamura, Norio.

    1984-01-01

    Purpose: To improve the durability of the first wall. Constitution: A reactor cavity for performing inertial thermofusion is defined within a vessel of a thermonuclear reactor, and the first wall of a tubular structure flowing coolants for taking out thermonuclear energy generated in the reactor cavity as the heat energy to the outside of the reactor is disposed, in which jet nozzles are disposed to the inside of the first wall that pulse-width jet coolants to form coolant membranes on the inner circumferential surface of the first wall to thereby surround the fire ball by the membrane of the coolants. Thus, the energy of the fire ball can be reduced by the membrane of the coolants, whereby the thermal loads and impact loads to the first wall can be moderated to substantially increase the working life and improve the safety of the first wall for which the greatest stress load is expected. (Yoshihara, H.)

  12. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1978-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction

  13. Pressure tube reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Fujino, Michihira.

    1980-01-01

    Purpose: To equalize heavy water flow distribution by providing a nozzle for externally injecting heavy water from a vibration preventive plate to the upper portion to feed the heavy water in a pressure tube reactor and swallowing up heavy water in a calandria tank to supply the heavy water to the reactor core above the vibration preventive plate. Constitution: A moderator injection nozzle is mounted on the inner wall of a calandria tank. Heavy water is externally injected above the vibration preventive plate, and heavy water in the calandria tank is swallowed up to supply the heavy water to the core reactor above the vibration preventive plate. Therefore, the heavy water flow distribution can be equalized over the entire reactor core, and the distribution of neutron absorber dissolved in the heavy water is equalized. (Yoshihara, H.)

  14. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  15. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  16. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  17. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  18. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  19. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  20. Small reactor operating mode

    International Nuclear Information System (INIS)

    Snell, V.G.

    1997-01-01

    There is a potential need for small reactors in the future for applications such as district heating, electricity production at remote sites, and desalination. Nuclear power can provide these at low cost and with insignificant pollution. The economies required by the small scale application, and/or the remote location, require a review of the size and location of the operating staff. Current concepts range all the way from reactors which are fully automatic, and need no local attention for days or weeks, to those with reduced local staff. In general the less dependent a reactor is on local human intervention, the greater its dependence on intrinsic safety features such as passive decay heat removal, low-stored energy and limited reactivity speed and depth in the control systems. A case study of the design and licensing of the SLOWPOKE Energy System heating reactor is presented. (author)

  1. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  2. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  3. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  4. AERE contracts with DoE on the treatment and disposal of intermediate level wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-11-01

    Reports are presented on work on the following topics concerned with the treatment and disposal of intermediate-level radioactive wastes: comparative evaluation of α and β γ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; α damage in non-reference waste form matrix materials; leaching mechanisms and modelling; inorganic ion exchange treatment of medium active effluents; electrical processes for the treatment of medium active liquid waste; fast reactor fuel element cladding; dissolver residues; effects of radiation on the properties of cemented MTR waste forms; equilibrium leach testing of cemented MTR waste forms; radiolytic oxidation of radionuclides; immobilisation of liquid organic waste; quality control, non-conformances and corrective action. (U.K.)

  5. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  6. Fostering teamwork in an intermediate care unit.

    Science.gov (United States)

    Spence, Heather; Cappleman, Julia

    2011-06-01

    The government has emphasised that, to deliver high quality, integrated care, staff must work across organisational boundaries using a team approach so that everyone works towards the same goals. This article describes how one NHS-managed intermediate care unit has integrated care staff employed by the independent sector.

  7. Essays in corporate finance and financial intermediation

    NARCIS (Netherlands)

    Kempf, Elisabeth

    2016-01-01

    This thesis consists of three chapters in corporate finance and financial intermediation. The first two chapters explore sources of incentives and learning for finance professionals. Specifically, the first chapter studies how the option to go work for an investment bank affects the incentives of

  8. 34 CFR 200.17 - Intermediate goals.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED Improving Basic.... Each State must establish intermediate goals that increase in equal increments over the period covered by the timeline under § 200.15 as follows: (a) The first incremental increase must take effect not...

  9. Trusted intermediating agents in electronic trade networks

    NARCIS (Netherlands)

    T.B. Klos (Tomas); F. Alkemade (Floortje)

    2005-01-01

    htmlabstract Electronic commerce and trading of information goods significantly impact the role of intermediaries: consumers can bypass intermediating agents by forming direct links to producers. One reason that traditional intermediaries can still make a profit, is that they have more knowledge of

  10. Intermediates and Generic Convergence to Equilibria

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical condition...

  11. Financial intermediation with credit constrained agents

    Czech Academy of Sciences Publication Activity Database

    Boháček, Radim

    2007-01-01

    Roč. 29, č. 4 (2007), s. 741-759 ISSN 0164-0704 R&D Projects: GA AV ČR IAA700850602 Institutional research plan: CEZ:AV0Z70850503 Keywords : financial intermediation * occupational choice * general equilibrium Subject RIV: AH - Economics Impact factor: 0.360, year: 2007

  12. What Should be Taught in Intermediate Macroeconomics?

    Science.gov (United States)

    de Araujo, Pedro; O'Sullivan, Roisin; Simpson, Nicole B.

    2013-01-01

    A lack of consensus remains on what should form the theoretical core of the undergraduate intermediate macroeconomic course. In determining how to deal with the Keynesian/classical divide, instructors must decide whether to follow the modern approach of building macroeconomic relationships from micro foundations, or to use the traditional approach…

  13. Interaction between Biomphalaria pfeifferi, the snail intermediate ...

    African Journals Online (AJOL)

    Biological control of snail intermediate host of human schistosome parasites has been suggested. In this study, the effect of Indoplanobis exustus a planorbid snail and possible competitor snail of Biomphalaria pfeifferi on the fecundity and growth rate of the later was evaluated. The results showed a significant difference in ...

  14. Bridge: Intelligent Tutoring with Intermediate Representations

    Science.gov (United States)

    1988-05-01

    Research and Development Center and Psychology Department University of Pittsburgh Pittsburgh, PA. 15260 The Artificial Intelligence and Psychology...problem never introduces more than one unfamiliar plan. Inteligent Tutoring With Intermediate Representations - Bonar and Cunniigbam 4 You must have a... Inteligent Tutoring With ntermediate Representations - Bonar and Cunningham 7 The requirements are specified at four differcnt levels, corresponding to

  15. Intermediality and politics in theatre and performance

    NARCIS (Netherlands)

    Dapp, G.S.

    2013-01-01

    This dissertation applies the concepts of intermediality and politics to five performances by Rimini Protokoll, Christoph Schlingensief, and Igneous, and analyzes the implications that emerge on both a significational and a theoretical level. Based on the specific mediality involved, it argues that

  16. Changes to the Intermediate Accounting Course Sequence

    Science.gov (United States)

    Davidson, Lesley H.; Francisco, William H.

    2009-01-01

    There is an ever-growing amount of information that must be covered in Intermediate Accounting courses. Due to recent accounting standards and the implementation of IFRS this trend is likely to continue. This report incorporates the results of a recent survey to examine the trend of spending more course time to cover this additional material.…

  17. Unraveling Intermediate Filaments : The super resolution solution

    NARCIS (Netherlands)

    Nahidiazar, L.

    2017-01-01

    Intermediate Filaments (IFs) carry out major functions in cells. Several diseases have been associated with malfunctioning IFs in the cells and among them are certain sub types of cancer. To determine the structure and organization of IFs, we have used Single Molecule Localization Microscopy (SMLM)

  18. Intermediate state trapping of a voltage sensor

    DEFF Research Database (Denmark)

    Lacroix, Jérôme J; Pless, Stephan Alexander; Maragliano, Luca

    2012-01-01

    transition pathway determined using the string method. The experimental results and computational analysis suggest that the phenotype of I241W may originate in the formation of a hydrogen bond between the indole nitrogen atom and the backbone carbonyl of R2. This work provides new information on intermediate...... states in voltage-gated ion channels with an approach that produces minimum chemical perturbation....

  19. Intuitionistic Rules : Admissible Rules of Intermediate Logics

    NARCIS (Netherlands)

    Goudsmit, J.P.

    2015-01-01

    In this thesis, we investigate the admissible rules of intermediate logics. On the one hand, one can characterize the admissibility of rules in certain logic, and on the other hand, one can characterize logics through their admissible rules. We take both approaches, and reach new results in both

  20. Intermediate Systems Analyst | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The intermediate Systems Analyst will bring to the System Development Group the necessary skills to understand in depth the architecture of Oracle to allow better design and implementation of new and enhanced information systems and applications. The incumbent will take full responsibility for the ITM division's ...

  1. Software Testing An ISEB Intermediate Certificate

    CERN Document Server

    Hambling, Brian

    2009-01-01

    Covering testing fundamentals, reviews, testing and risk, test management and test analysis, this book helps newly qualified software testers to learn the skills and techniques to take them to the next level. Written by leading authors in the field, this is the only official textbook of the ISEB Intermediate Certificate in Software Testing.

  2. Bismuth phosphates as intermediate temperature proton conductors

    DEFF Research Database (Denmark)

    Huang, Yunjie; Christensen, Erik; Shuai, Qin

    2017-01-01

    Proton conducting electrolyte materials operational in the intermediate temperature range of 200-400 °C are of special interest for applications in fuel cells and water electrolysers. Bismuth phosphates in forms of polycrystalline powders and amorphous glasses are synthesized and investigated...

  3. Decommissioning of the ICI TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Parry, D.R.; England, M.R.; Ward, A.; Green, D.

    2000-01-01

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  4. Safety and environmental advantages of breeding blanketless fusion reactors

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    Next-step reactors will use DT cycle. However, environmental advantage will be the main chance for fusion to compete with other energy sources. The environmental problems of DT cycle due to tritium and neutron activation, are examined. Fusion commercial reactors could be based on alternative fuel cycles like D-He3. Advantages and disadvantages of this fuel cycle are outlined. All the technologies related with the self-breeding of tritium and the concept of breeding blanket itself may be not reactor relevant. In the frame of the Next-step studies, the potential advantages of intermediate DT devices without breeding blanket are discussed. Simplified design, lower cost, higher safety are the main ones. The problem of the source of tritium is examined. (author)

  5. Vessel core seismic interaction for a fast reactor

    International Nuclear Information System (INIS)

    Martelli, A.; Maresca, G.

    1984-01-01

    This report deals with the analysis carried out in collaboration between ENEA and NIRA for optimizing the iterative procedure applied for the evaluation of the effects of the vessel core dynamic interaction for a fast reactor in the case of a earthquake. In fact, as shown in a previous report the convergence of such procedure was very slow for the design solution adopted for the PEC reactor, i.e. with a core restraint plate located close to the top of the core elements. This study, although performed making use of preliminary data (the same of the cited previous report) demonstrates that the convergence is fast if a suitable linear core model is applied in the first iteration linear calculations carried out by NIRA, with an intermediate stiffness with respect to those corresponding to the two limit models previously assumed and increased damping coefficients. Thus, the optimized iterative procedures is now applied in the PEC reactor block seismic verification analysis

  6. K-Reactor readiness

    International Nuclear Information System (INIS)

    Rice, P.D.

    1991-01-01

    This document describes some of the more significant accomplishments in the reactor restart program and details the magnitude and extent of the work completed to bring K-Reactor to a state of restart readiness. The discussion of restart achievements is organized into the three major categories of personnel, programs, and plant. Also presented is information on the scope and extent of internal and external oversight of the efforts, as well as some details on the startup plan

  7. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  8. Alternative breeder reactor technologies

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1978-01-01

    The significance of employing breeder reactors to stretch the world resources of nuclear fuels is briefly discussed, and the various types of breeder concepts are described. General descriptions, advantages, and disadvantages of the liquid metal cooled fast breeder, gas cooled fast breeder, molten salt breeder, thermal breeders, and spectral-shift control reactors are presented. Aspects of safeguarding fissile material connected with breeder operation are examined. 31 references

  9. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  10. KS-150 reactor control

    International Nuclear Information System (INIS)

    Wagner, K.

    1974-01-01

    A thorough description is presented of the control and protection system of the Bohunice A-1 reactor. The system including auxiliary facilities was developed, manufactured and installed at the reactor by the SKODA Works, Plzen. The system parameters are listed and a brief account is also given of the development efforts and of the physical and power start-up of the A-1 nuclear power plant. (L.O.)

  11. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.; Horlock, K.

    2001-01-01

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  12. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  13. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1978-01-01

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  14. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  15. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  16. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  17. Reactor of the XXI century

    International Nuclear Information System (INIS)

    Zhotabaev, Zh.R.; Solov'ev, Yu.A.

    2001-01-01

    The advantages of both molten salt reactors (MSR) and homogenous molten salt reactors (HMSR) are illuminated. It is noted that the MSR possess accident probability A=10 -6 1/reactor.years and the HMSR with integral configuration has A=10 -7 1/reactor.years. The methods for these reactors technological problems solution - tritium removal, salt melt circulation and capacity pick up - are discussed

  18. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  19. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  20. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  1. Reactor power measuring device

    International Nuclear Information System (INIS)

    Ichige, Masayuki; Ishige, Takanori.

    1997-01-01

    The present invention provides a device for measuring a power such as of a nuclear fission reactor or a thermonuclear reactor by utilizing a light emitting phenomenon by radiation rays of gases. Namely, a measuring vessel sealed with a gas scintillator is inserted to the inside of a reactor. The measuring vessel is optically connected to a photoelectric convertor. The photoelectric convertor is electrically connected with a signal processing device. With such a constitution, gases sealed in the measuring vessel are ionized by radiation rays released in proportion to the power of the reactor to cause scintillation emission. The light is converted into electric signals by the photoelectric convertor. Reactor power can be monitored by the signal processing device having the electric signals as an input. According to the present invention, since the gas scintillation detector is used, the device is simplified and time responsiveness can be improved. As a result, the function of the reactor power measuring device can be improved. (I.S.)

  2. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  3. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  4. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  5. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1988-01-01

    Purpose: To inhibit the lowering of the neutron moderation effect due to voids in the upper portion of the reactor core, thereby flatten the axial power distribution. Constitution: Although it has been proposed to enlarge the diameter at the upper portion of a water rod thereby increasing the moderator in the upper portion, since the water rod situates within the channel box, the increase in the capacity thereof is has certain limit. In the present invention, it is designed such that the volume of the region at the outside of the channel box for the fuel assembly to which non-boiling water in the non-boiling water region can enter is made greater in the upper portion than in the lower portion of the reactor core. Thus, if the moderator density in the upper portion of the reactor core should be decreased due to the generation of the voids, the neutron moderating effect in the upper portion of the reactor core is not lowered as compared with the lower portion of the reactor core and, accordingly, the axial power distribution can be flattening more as compared with that in the conventional nuclear reactors. (Takahashi, M.)

  6. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  7. LMFBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1988-01-01

    Purpose: To flatten the power distribution while maintaining the flattening in the axial power distribution in LMFBR type reactors. Constitution: Main system control rods are divided into control rods used for the operation and starting rods used for the starting of the reactor, and the starting rods are disposed in the radial periphery of the reactor core, while the control rods are disposed to the inside of the starting rods. With such a constitution, adjusting rods can be disposed in the region where the radial power peaking is generated to facilitate the flattening of the power distribution even in such a design that the ratio of the number of control rods to that of fuel assemblies is relatively large. That is, in this reactor, the radial power peaking is reduced by about 10% as compared with the conventional reactor core. As a result, the maximum linear power density during operation is reduced by about 10% to increase the thermal margin of the reactor core. If the maximum linear power density is set identical, the number of the fuel assemblies can be decreased by about 10%, to thereby reduce the fuel production cost. (K.M.)

  8. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  9. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  10. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  11. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  12. SM-2 reactor potentialities for investigation of fusion reactor materials

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Samsonov, B.V.; Markina, N.V.; Polyakov, Yu.N.; Sluzhaev, V.I.; Losev, N.P.; Lobanov, G.P.

    1981-01-01

    The possibility of utilization of the SM-2 type reactors for fusion reactor (FR) materials testing is discussed. The measuring and calculational results, while estimating irradiation conditions in the SM-2 reactor channels, are given. The basic characteristics, necessary for correct simulation of FR parameters in fission reactors such as neutron flux density, radiation damage in the shift per atom values, gas accumulation, are considered. The characteristics of existing and tested in the SM-2 reactor investigational methods for studying structural and isolation materials are given. The conclusion about the possibility of SM-2 reactor utilization for the FR materials testing is made [ru

  13. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  14. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  15. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  16. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  17. Sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Guidez, Joel; Andrieux, Catherine; Baque, Francois; Bonin, Bernard; Boullis, Bernard; Cabet, Celine; Carre, Frank; Dufour, Philippe; Gauche, Francois; Grouiller, Jean-Paul; Jeannot, Jean-Philippe; Le Flem, Marion; Le Coz, Pierre; Martin, Laurent; Masson, Michel; Mathonniere, Gilles; Nokhamzon, Jean-Guy; Pelletier, Michel; Rodriguez, Gilles; Saez, Manuel; Seran, Jean-Louis; Varaine, Frederic; Zaetta, Alain; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2014-01-01

    This book first explains the choice of sodium-cooled reactors by outlining the reasons of the choice of fast neutron reactors (fast neutrons instead of thermal neutrons, recycling opportunity for plutonium, full use of natural uranium, nuclear waste optimization, flexibility of fast neutron reactors in nuclear material management, fast neutron reactors as complements of water-cooled reactors), and by outlining the reasons for the choice of sodium as heat-transfer material. Physical, chemical, and neutron properties of sodium are presented. The second part of the book first presents the main design principles for sodium-cooled fast neutron reactors and their core. The third part proposes an historical overview and an assessment of previously operated sodium-cooled fast neutron reactors (French reactors from Rapsodie to Superphenix, other reactors in the world), and an assessment of the main incidents which occurred in these reactors. It also reports the experience and lessons learned from the dismantling of various sodium-cooled fast breeder reactors in the world. The next chapter addresses safety issues (technical and safety aspects related to the use of sodium) and environmental issues (dosimetry, gaseous and liquid releases, solid wastes, and cooling water). Then, various technological aspects of these reactors are addressed: the energy conversion system, main components, sodium chemistry, sodium-related technology, advances in in-service inspection, materials used in reactors and their behaviour, and fuel system. The next chapter addresses the fuel cycle in these reactors: its integrated specific character, report of the French experience in fast neutron reactor fuel processing, description of the transmutation of minor actinides in these reactors. The last chapter proposes an overview of reactors currently projected or under construction in the world, presents the Astrid project, and gives an assessment of the economy of these reactors. A glossary and an index

  18. Opening the Black Box of Intermediation

    DEFF Research Database (Denmark)

    Nowinska, Agnieszka

    ) and at the interfirm level (between partners and within alliances and associations).The tentative results show that both of these levels are important in defining the intermediating firms' business models and in answering their environmental threats and in building up competitive advantage. The paper ends with a short......This paper attempts to answer how external environmental factors affect intermediating firms within the maritime industry - the middlemen that plays a very important role in the sector. The category encompasses firms such as liner and port agencies, freight forwarders and shipbrokers, who link......, by its global character and by volatility. As such, the industry offers an interesting and generalizable environment for research. Moreover, the choice of the middleman, an intermediary in the value chain, as the object of study, offers additional insights into the complex industry and value chain...

  19. Hγ Line Spectrum of Intermediate Polars

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    1998-06-01

    Full Text Available Kim & Beuermann (1995, 1996 have developed a model for the propagation of X-rays from the accreting white dwarf through the infalling material and the re-emission of the energy deposited by photo-absorption in the optical (and UV spectral range. By using this model, we calculate the profiles of the Hγ emission-line spectrum of intermediate polars. Photoabsorption of X-rays by the infalling material is the dominant process in forming the observed energy-dependent rotational modulation of the X-ray flux. X-ray and optical modulations are sensitive to model parameters in different ways. In principle, these dependencies allow us to obtain improved insight into the accretion geometry of the intermediate polars. We present results of our calculations and compare them with the Hβ line spectrum (Kim & Beuermann 1996.

  20. Intermediate storage for the Start accelerator

    International Nuclear Information System (INIS)

    Gaponenko, N.I.; Tkach, Yu.V.; Stepanenko, I.A.; Kozachek, A.S.; Komarov, A.D.; Gadetskij, N.P.

    1988-01-01

    Usage of the chain of series-connected capacitors, placed near the voltage pulse generator (VPG) cascades, as an intermediate storage (IS) has allowed to reduce the inductance of the PG-IS charging circuit and to reduce storage charging time up to 30 ns. In such cases the electrical strength of the IS capacitor insulation is essentially higher, than at dc voltage, it has allowed to reduce the number of capacitors in the chain and to reduce IS self-inductance. Additional ways to reduce the inductance of the VPG-IS charging circuit are considered. Reduction of storage charging time has allowed to stabilize the operation of the commutator, which connects the intermediate storage with the accelerator shaping line

  1. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  2. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Dietrich, K.; Wagner, G.J.; Gregoire, C.; Campi, X.; Silvestre-Brac, B.; Platchkov, S.; Mayer, B.; Abgrall, Y.; Bohigas, O.; Grange, P.; Signarbieux, C.

    1988-01-01

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced [fr

  3. International express student's book : pre-intermediate

    CERN Document Server

    Taylor, Liz

    1996-01-01

    The New Edition of International Express Pre-Intermediate retains all the keys features of this popular and successel four-level course. It combines engaging, up-to-date topics with a time-efficient and student-centred approach to language work, and clearly focused activities that reflect learner's real communicative needs - the ideal course for professional adults who use English for work, travel, and socializing.

  4. Assembly of intermediates for rapid membrane fusion.

    Science.gov (United States)

    Harner, Max; Wickner, William

    2018-01-26

    Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans , as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS ( ho motypic fusion and vacuole p rotein s orting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans -complex, 3) a HOPS:4-SNARE trans -complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans -SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  6. Reactors PMT backlog

    International Nuclear Information System (INIS)

    Olson, H.P.

    1986-01-01

    The overall backlog of action items within the Reactors Priority Maintenance Tracking Systems (PMT) is similar to that resulting from Reactor Incident Reports. At least 1000 open action items are being tracked (excluding procedure revisions); the exact number is not obvious because some items are being tracked in more than one tracking document. About 20 to 25% of the incomplete items are directly related to reactor safety. About 70% of these were initiated within the last two years. A few of the remaining 30% date back to the 1977-1980 time frame. The tracking systems that are in place serve particular needs but they are unconnected and do not provide a means to understand and manage the overall Reactors PMT backlog. Shortcomings are summarized. Several initiatives are in progress or planned by Reactors PMT to facilitate improved tracking of backlog items with computer software systems. Under consideration is the Integrated Living Schedule (ILS) approach to prioritize work items and schedule resources to manage the backlog in the most effective way. ILS systems are being used effectively by a number of nuclear power utilities. 6 refs., 6 figs., 1 tab

  7. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  8. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  9. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  10. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  11. Nuclear reactor apparatus

    International Nuclear Information System (INIS)

    Braun, H.E.; Bonnet, H.P.

    1978-01-01

    The reactor and its containment, instead of being supported on a solid concrete pad, are supported on a truss formed of upper and lower reinforced horizontal plates and vertical walls integrated into a rigid structure. The plates and walls from chambers within which the auxiliary components of the reactor, such as valves, pumping equipment and various tanks, are disposed. Certain of the chambers are also access passages for personnel, pipe chases, valve chambers and the like. In particular the truss includes an annular chamber. This chamber is lined and sealed by a corrosion-resistant liner and contains coolant and serves as a refueling cooling storage tank. This tank is directly below the primary-coolant conductor loops which extend from the reactor above the upper plate. The upper plate includes a sump connected to the tank through which coolant flows into the tank in the event of the occurrence of a loss-of-coolant accident. The truss extends beyond the containment and has chambers in the extending annulus. Pumps for circulating the coolant between the refueling coolant storage tank and the reactor are provided in certain of these chambers. The pumps are connected to the reactor by relatively short coolant conductors. Access to these pumps is readily afforded through hatches in the extending annulus

  12. Reactor power control device

    International Nuclear Information System (INIS)

    Nishiyama, Hiroyuki.

    1991-01-01

    The device of the present invention prevents unnecessary automatic reactor shutdown, without increasing operator's burden by automatic insertion of selected control rods in case if a recycling pump in a BWR reaction should stop. That is, the device of the present invention comprises (1) a means for detecting that at least one recycling pump stops, (2) a means for judging region for inserting the selected control rods based on the reactor power and the recycling flowrate of driving water, and (3) a means for calculating a logic product of output signals sent from both of the means described above and outputting a selected control rod insertion signal. With such a constitution, if at least one recycling pump stops, the means (1) detects it. Further, the means (2) judges the regions for inserting the selected control rods. Then, the means (3) outputs a signal for inserting the selected control rods. As a result, since a group of control rods selected previously are inserted into the reactor rapidly, the reactor power is suppressed, to avoid the automatic reactor shutdown. (I.N.)

  13. Tandem mirror reactors

    International Nuclear Information System (INIS)

    Logan, B.G.; Barr, W.L.; Bender, D.J.

    1978-01-01

    We have made preliminary designs of tandem mirror fusion reactors burning D-T fuel and of fusion-fission (hybrid) tandem mirrors producing both fissile fuel and electricity. For the hybrid reactor, we find that by using stream-stabilized, 2XIIB-like plugs and by injecting 200-keV deuterium beams into a tritium-plasma target confined electrostatically in the solenoid (two-component operation), we obtain a useful Q (fusion power/injection power) near unity. The D-T tandem reactor parameters are optimized to obtain the minimum capital cost per kW(e) net. For $200/kW(e) of 1200-keV neutral beam injection power in the plugs and a solenoid cost of about $3 million per metre length, the optimum Q is near 5. To allow for more expensive injector costs, a higher D-T reactor Q of 10 is obtainable with either increased power output or decreased neutron wall loading. Fokker--Planck calculations show steady-state Q approximately 5 for D-D tandem reactors burning only deuterium fuel and its reaction products, with most of the charged-particle fusion power recovered in a direct converter

  14. Reactor shutdown device

    International Nuclear Information System (INIS)

    Matsumiya, Hirohito; Endo, Hiroshi; Tsuboi, Yasushi.

    1993-01-01

    The present invention concerns a reactor shutdown device capable of suppressing change of a core insertion amount relative to temperature change during normal operation and having a great extension amount due to thermal expansion and high mechanical strength. A control rod main body is contained vertically movably in a guide tube disposed in a reactor core. An extension member extends upward from the upper end of a control rod main body and suspends the control rod main body. A shrinkable member intervenes at a midway of the extension member and is made shrinkable. A temperature sensitive member contains coolants at the inside and surrounds the shrinkable member. Thus, if the temperature of external coolants rises abruptly, the shrinkable member is extended by thermal expansion of the coolants in the temperature sensitive member. Upon usual reactor startup, the coolants in the temperature sensitive member cause no substantial thermal expansion by temperature elevation from a cold shutdown temperature to a rated power operation temperature, and the shrinkable member maintains its original state, so that the control rod main body is not inserted into the reactor core. However, upon abrupt temperature elevation, the control rod main body is inserted into the reactor core. (I.S.)

  15. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  16. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  17. An analysis of system pressure and temperature distribution in self-pressurizer of SMART considering thermal stratification at intermediate cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    Because the pressurizer is in reactor vessel, the heat transfer from primary water would increase the temperatures of fluids in pressurizer to same temperature of hotleg, if no cooling equipment were supplied. Thus, heat exchanger and thermal insulator are needed to minimize heat transferred from primary water and to remove heat in pressurizer. The temperatures in cavities of pressurizer for normal operation are 70 deg C and 74 deg C for intermediate and end cavity, respectively, which considers the solubility of nitrogen gas in water. Natural convection is the mechanism of heat balance in pressurizer of SMART. In SMART, the heat exchanger in pressurizer is placed in lower part of intermediate cavity, so the heat in upper part of intermediate cavity can't be removed adequately and it can cause thermal stratification. If thermal stratification occurred, it increases heat transfers to nitrogen gas and system pressure increases as the result. Thus, proper evaluation of those effects on system pressure and ways to mitigate thermal stratification should be established. This report estimates the system pressure and temperatures in cavities of pressurizer with considering thermal stratification in intermediate cavity. The system pressure and temperatures for each cavities considered size of wet thermal insulator, temperature of upper plate of reactor vessel, parameters of heat exchanger in intermediate cavity such as flow rate and temperature of cooling water, heat transfer area, effective tube height, and location of cooling tube. In addition to the consideration of thermal stratification thermal mixing of all water in intermediate cavity also considered and compared in this report. (author). 6 refs., 60 figs., 2 tabs.

  18. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  19. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  20. The radiation safety assessment of the heating loop of district heating reactors

    International Nuclear Information System (INIS)

    Liu Yuanzhong

    1993-01-01

    The district heating reactors are used to supply heating to the houses in cities. The concerned problems are whether the radioactive materials reach the heated houses through heating loop, and whether the safety of the dwellers can be ensured. In order to prevent radioactive materials getting into the heated houses, the district heating reactors have three loops, namely, primary loop, intermediate loop, and heating loop. In the paper, the measures of preventing radioactive materials getting into the heating loop are presented, and the possible sources of the radioactivity in the water of the intermediate loop and the heating loop are given. The regulatory aim limit of radioactive concentration in the water of the intermediate loop is put forward, which is 18.5 Bq/l. Assuming that specific radioactivity of the water of contaminated intermediate loop is up to 18.5 Bq/l, the maximum concentration of radionuclides in water of the heating loop is calculated for the normal operation and the accident of district heating reactor. The results show that the maximum possible concentration is 5.7 x 10 -3 Bq/l. The radiation safety assessment of the heating loop is made out. The conclusions are that the district heating reactors do not bring any harmful impact to the dwellers, and the safety of the dwellers can be safeguarded completely

  1. High and very high temperature reactor research for multipurpose energy applications (RAPHAEL)

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Fuetterer, Michal; De Groot, Sander; Ruer, Jacques

    2010-01-01

    The sections of the contribution are as follows: Achievements and future R and D needs in baseline technologies (Fuel and fuel cycle; Materials and components - reactor vessel, intermediate heat exchanger, graphite internals; Safety; Computer code qualification; Waste management; Education and training; International dimension of the European R and D); Towards application; and The path forward (P.A.)

  2. Carbon nano-fiber based membrane reactor for selective nitrite hydrogenation

    NARCIS (Netherlands)

    Brunet Espinosa, Roger; Rafieian, D.; Lammertink, Rob G.H.; Lefferts, Leonardus

    2016-01-01

    Catalytic hydrogenation of nitrite in drinking water demands control over the selectivity towards nitrogen, minimizing the formation of ammonia. This selectivity is strongly influenced by the H/N ratio of reaction intermediates at the catalyst surface. Therefore, we fabricated a membrane reactor

  3. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  4. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  5. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  6. Refueling of nuclear reactors

    International Nuclear Information System (INIS)

    Meuschke, R.E.

    1987-01-01

    This patent describes the unrodded refueling of a nuclear reactor having fuel assemblies and upper internals with apparatus including a lifting rig and a lift plate. The upper internals of the reactor are secured to the lifting rig. A method is given of reinserting in the fuel assemblies of the reactor the rods which penetrate into the fuel assemblies, such as control rods and/or coolant-displacement rods. The penetrating rods are connected to drive rods, the drive rods and penetrating rods being suspended from the lift plate, the lift plate and the drive rods and penetrating rods suspended therefrom being supported on a removable support in an upper position on the lifting rig

  7. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  8. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  9. Reactor control device

    International Nuclear Information System (INIS)

    Araki, Takao; Inoue, Toyokazu.

    1981-01-01

    Purpose: To protect the reactor floor by alleviating the shock imparted to the reactor floor by a dropped control rod when a wire rope accidentally breaks. Constitution: A control rod is hung by wire rope from a control rod drive, and shock absorbers are mounted at the upper and lower portions of the control rod. The outer diameter of the upper shock absorber is made larger than the inner diameter of a control rod inserting hole formed in the reactor core. If the control rod drops, the upper absorber is stopped at the upper tapered portion of the inserting hole. Thus, the dropping energy of the control rod can be sufficiently absorbed by the upper and lower shock absorbers. (Kamimura, M.)

  10. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  11. Nuclear reactor risk assessment

    International Nuclear Information System (INIS)

    Higson, D.J.

    1982-01-01

    Experience has shown that reactors can be operated safely. Accidents have occurred, but the probability of physical health detriment to members of the public has been negligible. Methods for the quantitative evaluation of the probabilities of serious accidents are described, and some results are quoted which show that the estimated frequency of harmful effects is small when compared with other risks already accepted by society. Attempts have been made to justify the acceptance of nuclear reactor risks by relating them to the benefits which are derived from reactor operation and comparing them quantitatively with the risks from alternative methods of deriving the same benefits. This approach takes no account of the perceptions which people have of risk

  12. Breazeale Reactor Modernization Program

    International Nuclear Information System (INIS)

    Davison, C. C.

    2003-01-01

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future

  13. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  14. Utilization of research reactors

    International Nuclear Information System (INIS)

    1962-01-01

    About 200 research reactors are now in operation in different parts of the world, and at least 70 such facilities, which are in advanced stages of planning and construction, should be critical within the next two or three years. In the process of this development a multitude of problems are being encountered in formulating and carrying out programs for the proper utilization of these facilities, especially in countries which have just begun or are starting their atomic energy work. An opportunity for scientific personnel from different Member States to discuss research reactor problems was given at an international symposium on the Programing and Utilization of Research Reactors organized by the Agency almost immediately after the General Conference session. Two hundred scientists from 35 countries, as well as from the European Nuclear Energy Agency and EURATOM, attended the meeting which was held in Vienna from 16 to 21 October 1961

  15. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  16. Reactor container facility

    International Nuclear Information System (INIS)

    Saito, Takashi; Nagasaka, Hideo.

    1990-01-01

    A dry-well pool for spontaneously circulating stored pool water and a suppression pool for flooding a pressure vessel by feeding water, when required, to a flooding gap by means of spontaneous falling upto the flooding position, thereby flooding the pressure vessel are contained at the inside of a reactor container. Thus, when loss of coolant accidents such as caused by main pipe rupture accidents should happen, pool water in the suppression pool is supplied to the flooding gap by spontaneously falling. Further, if the flooding water uprises exceeding a predetermined level, the flooding gap is in communication with the dry-well pool at the upper and the lower portions respectively. Accordingly, flooding water at high temperature heated by the after-heat of the reactor core is returned again into the flooding gap to cool the reactor core repeatedly. (T.M.)

  17. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  18. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  19. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  20. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  1. Licensed operating reactors

    International Nuclear Information System (INIS)

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  2. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  3. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  4. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Hoizumi, Atsushi.

    1986-01-01

    Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)

  5. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  6. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  7. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  8. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  9. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  10. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  11. Advanced reactors: A retrospective

    International Nuclear Information System (INIS)

    Starr, C.

    1989-01-01

    The objectives for nuclear power have always emphasized competitive costs, reliability, and public safety. During its initial two decades, the nuclear reactor program was enthusiastically and generously supported by the public, government, and industry. In the subsequent decades this external support was substantially eroded by the growing public fears of catastrophic accidents, poor economic performance of many nuclear plants, regulatory constraints, and a plethora of engineering issues disclosed by plant operations. The technical and institutional histories are discussed with particular relevance to their influence on the framework for future development of the several proposed advance reactors

  12. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1980-01-01

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  13. Reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Suzuki, K.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 3 offers a detailed treatment of the selection criteria and properties of reactor pressure vessel materials. The main attention is directed towards steel and ingot making and the subsequent material processing

  14. Australia's new nuclear reactor

    International Nuclear Information System (INIS)

    Kemeny, L.

    2007-01-01

    On 19 and 20 April 2007, the Australian Nuclear Science and Technology Organisation (ANSTO) celebrated the recent commissioning of its new, world-class, OPAL (Open Pool Australian Lightwater) research reactor at the Lucas Heights. On the 19th, scientists, business leaders and academics were introduced to the reactor and its technical capacity for the manufacture of radiopharmaceuticals, its material science applications, its environmental services and its neutron scattering facilities for business applications. The formal OPAL opening function took place that evening and, on the 20th, Prime Minister John Howard visited ANSTO to be briefed about OPAL and to be shown the work being carried out at Lucas Heights

  15. Netherlands Interuniversity Reactor Institut

    International Nuclear Information System (INIS)

    1978-01-01

    This is the annual report of the Interuniversity Reactor Institute in the Netherlands for the Academic Year 1977-78. Activities of the general committee, the daily committee and the scientific advice board are presented. Detailed reports of the scientific studies performed are given under five subjects - radiation physics, reactor physics, radiation chemistry, radiochemistry and radiation hygiene and dosimetry. Summarised reports of the various industrial groups are also presented. Training and education, publications and reports, courses, visits and cooperation with other institutes in the area of scientific research are mentioned. (C.F.)

  16. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  17. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  18. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  19. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  20. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.