WorldWideScience

Sample records for intermediate filament network

  1. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    Directory of Open Access Journals (Sweden)

    Paul Pawelzyk

    Full Text Available Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1 and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.

  2. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  3. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration

    OpenAIRE

    Gan, Zhuo; Ding, Liya; Burckhardt, Christoph J.; Lowery, Jason; Zaritsky, Assaf; Sitterley, Karlyndsay; Mota, Andressa; Costigliola, Nancy; Starker, Colby G.; Voytas, Daniel F.; Tytell, Jessica; Goldman, Robert D.; Danuser, Gaudenz

    2016-01-01

    Increased expression of vimentin intermediate filaments (VIF) enhances directed cell migration, but the mechanism behind VIF’s effect on motility is not understood. VIF interact with microtubules, whose organization contributes to polarity maintenance in migrating cells. Here we characterize the dynamic coordination of VIF and microtubule networks in wounded monolayers of Retinal Pigment Epithelial cells. By genome editing we fluorescently labelled endogenous vimentin and α-...

  4. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  5. The intermediate filament network protein, vimentin, is required for parvoviral infection

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Nikta; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2013-09-15

    Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM. - Highlights: • MVM infection changes the distribution of the vimentin network to perinuclear regions. • Disrupting the vimentin network with acrylamide decreases MVM replication. • MVM replication is significantly reduced in vimentin-null cells. • Distribution of MVM-containing vesicles is affected in MVM infected vimentin-null cells.

  6. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  7. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain

    NARCIS (Netherlands)

    Block, Johanna; Witt, Hannes; Candelli, Andrea; Peterman, Erwin J. G.; Wuite, Gijs J. L.; Janshoff, Andreas; Koester, Sarah

    2017-01-01

    The mechanical properties of eukaryotic cells are to a great extent determined by the cytoskeleton, a composite network of different filamentous proteins. Among these, intermediate filaments (IFs) are exceptional in their molecular architecture and mechanical properties. Here we directly record

  8. Unraveling Intermediate Filaments : The super resolution solution

    NARCIS (Netherlands)

    Nahidiazar, L.

    2017-01-01

    Intermediate Filaments (IFs) carry out major functions in cells. Several diseases have been associated with malfunctioning IFs in the cells and among them are certain sub types of cancer. To determine the structure and organization of IFs, we have used Single Molecule Localization Microscopy (SMLM)

  9. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  10. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  11. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  12. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    International Nuclear Information System (INIS)

    Chou, Yinghao; Rosevear, E.; Goldman, R.D.

    1989-01-01

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of P i per mol of protein in interphase to 1.9 mol of P i per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of P i per mol of protein to 1.5 mol of P i per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional 32 P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins

  13. Theory of Semiflexible Filaments and Networks

    Directory of Open Access Journals (Sweden)

    Fanlong Meng

    2017-02-01

    Full Text Available We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.

  14. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    Science.gov (United States)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  15. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain

    Science.gov (United States)

    Block, Johanna; Witt, Hannes; Candelli, Andrea; Peterman, Erwin J. G.; Wuite, Gijs J. L.; Janshoff, Andreas; Köster, Sarah

    2017-01-01

    The mechanical properties of eukaryotic cells are to a great extent determined by the cytoskeleton, a composite network of different filamentous proteins. Among these, intermediate filaments (IFs) are exceptional in their molecular architecture and mechanical properties. Here we directly record stress-strain curves of individual vimentin IFs using optical traps and atomic force microscopy. We find a strong loading rate dependence of the mechanical response, supporting the hypothesis that IFs could serve to protect eukaryotic cells from fast, large deformations. Our experimental results show different unfolding regimes, which we can quantitatively reproduce by an elastically coupled system of multiple two-state elements.

  16. Herpesviruses and Intermediate Filaments: Close Encounters with the Third Type

    Directory of Open Access Journals (Sweden)

    Laura Hertel

    2011-07-01

    Full Text Available Intermediate filaments (IF are essential to maintain cellular and nuclear integrity and shape, to manage organelle distribution and motility, to control the trafficking and pH of intracellular vesicles, to prevent stress-induced cell death, and to support the correct distribution of specific proteins. Because of this, IF are likely to be targeted by a variety of pathogens, and may act in favor or against infection progress. As many IF functions remain to be identified, however, little is currently known about these interactions. Herpesviruses can infect a wide variety of cell types, and are thus bound to encounter the different types of IF expressed in each tissue. The analysis of these interrelationships can yield precious insights into how IF proteins work, and into how viruses have evolved to exploit these functions. These interactions, either known or potential, will be the focus of this review.

  17. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  18. Molecular evolution of type VI intermediate filament proteins

    Directory of Open Access Journals (Sweden)

    Vincent Michel

    2007-09-01

    Full Text Available Abstract Background Tanabin, transitin and nestin are type VI intermediate filament (IF proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied. Results To examine the evolutionary history of type VI IF proteins, sequence comparisons, BLAST searches, synteny studies and phylogenic analyses were performed. This study provides new evidence that tanabin, transitin and nestin are indeed orthologous type VI IF proteins. It demonstrates that tanabin, transitin and nestin genes share intron positions and sequence identities, have a similar chromosomal context and display closely related positions in phylogenic analyses. Despite this homology, fast evolution rates of their C-terminal extremity have caused the appearance of repeated motifs with distinct biological activities. In particular, our in silico and in vitro analyses of their tail domain have shown that (avian transitin, but not (mammalian nestin, contains a repeat domain displaying nucleotide hydrolysis activity. Conclusion These analyses of the evolutionary history of the IF proteins fit with a model in which type VI IFs form a branch distinct from NF proteins and are composed of two major proteins: synemin and nestin orthologs. Rapid evolution of the C-terminal extremity of nestin orthologs could be responsible for their divergent functions.

  19. Caveolae in fibroblast-like synoviocytes: static structures associated with vimentin-based intermediate filaments

    DEFF Research Database (Denmark)

    Berg, Kasper; Tamas, Raluca; Riemann, Anne

    2008-01-01

    . Vimentin was identified as the most abundant protein in detergent resistant membranes (DRM's), and by immunogold electron microscopy caveolae were seen in intimate contact with intermediate-size filaments. These observations indicate that vimentin-based filaments are responsible for the spatio...

  20. Developmental pattern of the neuronal intermediate filament inaa in the zebrafish retina.

    Science.gov (United States)

    Liao, Meng-Lin; Peng, Wei-Hau; Kan, Daphne; Chien, Chung-Liang

    2016-12-15

    α-Internexin is a member of the neuronal intermediate filament (nIF) protein family, which also includes peripherin and neurofilament (NF) triplet proteins. Previous studies found that expression of α-internexin precedes that of the NF triplet proteins in mammals and suggested that α-internexin plays a key role in the neuronal cytoskeleton network during development. In this study, we aimed to analyze the expression patterns and function of internexin neuronal intermediate filament protein-alpha a (inaa), the encoding gene of which is a homolog of the mammalian α-internexin, during retinal development in zebrafish. Via in vitro and in vivo studies, we demonstrated that zebrafish inaa is an α-internexin homolog that shares characteristics with nIFs. An immunohistochemical analysis of zebrafish revealed that inaa was distributed dynamically in the developing retina. It was widely localized in retinal neuroepithelial cells at 1 day postfertilization (dpf), and was mainly found in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL) from 3-9 dpf; after 14 dpf, it was restricted to the outer nuclear layer (ONL). Moreover, we demonstrated for the first time that inaa acted distinctively from the cytoskeletal scaffold of zebrafish cone photoreceptors during development. In conclusion, we demonstrated the morphological features of a novel nIF, inaa, and illustrated its developmental expression pattern in the zebrafish retina. J. Comp. Neurol. 524:3810-3826, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study.

    Directory of Open Access Journals (Sweden)

    Norbert Mücke

    Full Text Available Intermediate filament (IF elongation proceeds via full-width "mini-filaments", referred to as "unit-length" filaments (ULFs, which instantaneously form by lateral association of extended coiled-coil complexes after assembly is initiated. In a comparatively much slower process, ULFs longitudinally interact end-to-end with other ULFs to form short filaments, which further anneal with ULFs and with each other to increasingly longer filaments. This assembly concept was derived from time-lapse electron and atomic force microscopy data. We previously have quantitatively verified this concept through the generation of time-dependent filament length-profiles and an analytical model that describes assembly kinetics well for about the first ten minutes. In this time frame, filaments are shorter than one persistence length, i.e. ~1 μm, and thus filaments were treated as stiff rods associating via their ends. However, when filaments grow several μm in length over hours, their flexibility becomes a significant factor for the kinetics of the longitudinal annealing process. Incorporating now additional filament length distributions that we have recorded after extended assembly times by total internal reflection fluorescence microscopy (TIRFM, we developed a Monte Carlo simulation procedure that accurately describes the underlying assembly kinetics for large time scales.

  2. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration.

    Science.gov (United States)

    Tang, Dale D; Gerlach, Brennan D

    2017-04-08

    Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.

  3. The vital role of actin and the intermediate filaments in the ...

    African Journals Online (AJOL)

    The cytoskeleton is a system of structural protein primarily involved in the cellular architectural maintenance, intracellular transport, cell division and movement. The classical major components of the cytoskeleton are microtubules, intermediate filaments and microfilaments. Traditionally the microtubules are involved in ...

  4. Hyperthyreosis effects on the learning and glial intermediate filaments of rat brain

    Directory of Open Access Journals (Sweden)

    S. V. Kyrychenko

    2014-03-01

    Full Text Available The influence of hyperthyreosis on oxidative stress, state of glial intermediate filaments and memotry was investigated. Significant increasing of lipid peroxidation products into both hippocampus and cortex and change for the worse of memory was observed. Analysis of the behavioral reactions of rats in the test of passive avoidance conditioned reflex showed that the acquisition of skills of all groups of animals did not differ by time waiting period (latent period. Time saving memory test conditioned reflex of passive avoidance was excellent in the group of rats treated with thyroxine compared with controls. The change of polypeptide GFAP was observed in hippocampus and cortex. Both soluble and filamentous forms of GFAP increased in hippocampus of rat with hyperthyreosis. In filament fractions, increase in the intensity of 49 kDa polypeptide band was found. In the same fraction of insoluble cytoskeleton proteins degraded HFKB polypeptides with molecular weight in the region of 46–41 kDa appeared. Marked increase of degraded polypeptides was found in the soluble fraction of the brain stem. The intensity of the intact polypeptide (49 kDa, as well as in the filament fraction, significantly increased. It is possible that increasing concentrations of soluble subunits glial filaments may be due to dissociation of own filaments during the reorganization of cytoskeleton structures. Given the results of Western blotting for filament fraction, increased content of soluble intact 49 kDa polypeptide is primarily the result of increased expression of HFKB and only partly due to redistribution of existing filament structures. Calculation and analysis of indicators showed high correlation between the increase in content and peroxidation products of HFKB. These results indicate the important role of oxidative stress in the induction of astroglial reactive response under conditions of hyperthyroidism. This data shows the possibility of the glial cell

  5. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    Directory of Open Access Journals (Sweden)

    David J Bray

    Full Text Available Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1 the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2 new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3 evidence for tri-subdomain partitioning in the head and tail domains; and, (4 identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

  6. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    Science.gov (United States)

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  7. Decidable and undecidable arithmetic functions in actin filament networks

    Science.gov (United States)

    Schumann, Andrew

    2018-01-01

    The plasmodium of Physarum polycephalum is very sensitive to its environment, and reacts to stimuli with appropriate motions. Both the sensory and motor stages of these reactions are explained by hydrodynamic processes, based on fluid dynamics, with the participation of actin filament networks. This paper is devoted to actin filament networks as a computational medium. The point is that actin filaments, with contributions from many other proteins like myosin, are sensitive to extracellular stimuli (attractants as well as repellents), and appear and disappear at different places in the cell to change aspects of the cell structure—e.g. its shape. By assembling and disassembling actin filaments, some unicellular organisms, like Amoeba proteus, can move in response to various stimuli. As a result, these organisms can be considered a simple reversible logic gate—extracellular signals being its inputs and motions its outputs. In this way, we can implement various logic gates on amoeboid behaviours. These networks can embody arithmetic functions within p-adic valued logic. Furthermore, within these networks we can define the so-called diagonalization for deducing undecidable arithmetic functions.

  8. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress.

    Science.gov (United States)

    Soda, Neelam; Gupta, Brijesh K; Anwar, Khalid; Sharan, Ashutosh; Govindjee; Singla-Pareek, Sneh L; Pareek, Ashwani

    2018-03-06

    Cytoskeleton plays a vital role in stress tolerance; however, involvement of intermediate filaments (IFs) in such a response remains elusive in crop plants. This study provides clear evidence about the unique involvement of IFs in cellular protection against abiotic stress in rice. Transcript abundance of Oryza sativa intermediate filament (OsIF) encoding gene showed 2-10 fold up-regulation under different abiotic stress. Overexpression of OsIF in transgenic rice enhanced tolerance to salinity and heat stress, while its knock-down (KD) rendered plants more sensitive thereby indicating the role of IFs in promoting survival under stress. Seeds of OsIF overexpression rice germinated normally in the presence of high salt, showed better growth, maintained chloroplast ultrastructure and favourable K + /Na + ratio than the wild type (WT) and KD plants. Analysis of photosynthesis and chlorophyll a fluorescence data suggested better performance of both photosystem I and II in the OsIF overexpression rice under salinity stress as compared to the WT and KD. Under salinity and high temperature stress, OsIF overexpressing plants could maintain significantly high yield, while the WT and KD plants could not. Further, metabolite profiling revealed a 2-4 fold higher accumulation of proline and trehalose in OsIF overexpressing rice than WT, under salinity stress.

  9. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, Elly M; Pekny, Milos

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  10. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, E.M.; Pekny, M.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  11. Quantum dot labeling and imaging of glial fibrillary acidic protein intermediate filaments and gliosis in the rat neural retina and dissociated astrocytes.

    Science.gov (United States)

    Pathak, Smita; Tolentino, Rosa; Nguyen, Kim; D'Amico, Lorenzo; Barron, Erin; Cheng, Lingyun; Freeman, William R; Silva, Gabriel A

    2009-08-01

    The use of antibody and peptide functionalized semiconductor quantum dots holds considerable potential for specific labeling of target antigens and high resolution optical imaging of biological preparations. Despite this potential, their use in neuroscience is not yet widespread; a number of technical and methodological challenges must still be overcome in order to produce reliable and reproducible labeling protocols. We have optimized and used anti-GFAP functionalized quantum dots for specific labeling of intermediate filaments in astrocyte and Müller glial cells in sections of intact rat neural sensory retina and dissociated primary spinal cord astrocytes. These techniques produced stable and robust imaging of retinal astrocytes and Müller cells with minimal non-specific background labeling and intense fluorescence resulting in a high signal to noise ratio. This resulted in clear and efficient labeling of normal levels of GFAP in the retina and the ability to differentiate it from pathologically high levels of GFAP associated with reactive gliosis in a laser induced injury model. Labeling and imaging of dissociated astrocytes demonstrated the presence of what appeared to be highly complex organizations of fine intermediate filaments that spanned between cells to form intricate networks of filamentous intercellular bridges. The presence of these structures in situ and in vivo as well as any potential functions remain to be determined, but their identification should be greatly facilitated by quantum dot labeling protocols.

  12. Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Lazzari, Maurizio; Franceschini, Valeria

    2005-11-01

    The distribution of intermediate filament molecular markers, glial fibrillary acidic protein (GFAP) and vimentin, has been studied in the central nervous system (CNS) of the adult leopard gecko, Eublepharis macularius. This immunohistochemical study points out the presence of different astroglial cell types. The main pattern is constituted by ependymal radial glia, which have their cell bodies located in the ependymal layer throughout the brain ventricular system. Radial glia proper or radial astrocytes show their cell bodies displaced from the ependymal layer into a periependymal zone and are observed only in the spinal cord. Star-shaped astrocytes are scarce. They are detected in the ventral and lateral regions of the diencephalon and mesencephalon, in the superficial layer of the optic tectum, in the ventral medulla oblongata, and in the ventral and lateral spinal cord. In the different regions of the CNS, the staining intensity appears not to be identical even in the same cellular type. The results reported in the present study show an heterogeneous feature of the astroglial pattern in E. macularius.

  13. Using Data Mining and Computational Approaches to Study Intermediate Filament Structure and Function.

    Science.gov (United States)

    Parry, David A D

    2016-01-01

    Experimental and theoretical research aimed at determining the structure and function of the family of intermediate filament proteins has made significant advances over the past 20 years. Much of this has either contributed to or relied on the amino acid sequence databases that are now available online, and the data mining approaches that have been developed to analyze these sequences. As the quality of sequence data is generally high, it follows that it is the design of the computational and graphical methodologies that are of especial importance to researchers who aspire to gain a greater understanding of those sequence features that specify both function and structural hierarchy. However, these techniques are necessarily subject to limitations and it is important that these be recognized. In addition, no single method is likely to be successful in solving a particular problem, and a coordinated approach using a suite of methods is generally required. A final step in the process involves the interpretation of the results obtained and the construction of a working model or hypothesis that suggests further experimentation. While such methods allow meaningful progress to be made it is still important that the data are interpreted correctly and conservatively. New data mining methods are continually being developed, and it can be expected that even greater understanding of the relationship between structure and function will be gleaned from sequence data in the coming years. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Neuronal intermediate filaments in the developing tongue of the frog Rana esculenta

    Directory of Open Access Journals (Sweden)

    K Zuwala

    2009-06-01

    Full Text Available The expression of several neuronal intermediate filament (NIF proteins was investigated in the tongue of metamorphosing tadpoles (stage 38-45 of Gosner and in adult individuals of the frog, Rana esculenta by means of immunohistochemistry. Results showed that nerve fibres at early stages of tongue development expressed peripherin (a NIF protein usually found in differentiating neurones as well as the light- and medium molecular weight NIF polypeptide subunits (NF-L and NF-M, respectively; in the adult frog, peripherin was still found in nerve fibres reaching the fungiform papilla together with NF-M, but NF-L immunoreactivity was absent therein. Clusters of epithelial cells expressing peripherin were found in the early developing tongue before differentiation of taste organs, and NF-L and NF-H immunoreactivities were present in basal (Merkel cells of the adult frog taste disc. Results indicate that neurones innervating the adult frog’s taste disc maintain a certain plasticity in their cytoskeleton and that neuronal-like cells are present in the undifferentiated and differentiated tongue epithelium possibly playing a role in the developing and mature taste organ.

  15. Encoding mechano-memories in filamentous-actin networks

    Science.gov (United States)

    Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.

    History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.

  16. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein.

    Science.gov (United States)

    Lengerer, Birgit; Pjeta, Robert; Wunderer, Julia; Rodrigues, Marcelo; Arbore, Roberto; Schärer, Lukas; Berezikov, Eugene; Hess, Michael W; Pfaller, Kristian; Egger, Bernhard; Obwegeser, Sabrina; Salvenmoser, Willi; Ladurner, Peter

    2014-02-12

    Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of the animals to adhere. The RNAi

  17. Primitive neuroectodermal tumors of the central nervous system. Patterns of expression of neuroendocrine markers, and all classes of intermediate filament proteins.

    NARCIS (Netherlands)

    Gould, V E; Jansson, D S; Molenaar, W M; Rorke, L B; Trojanowski, J Q; Lee, V M; Packer, R J; Franke, W W

    1990-01-01

    Snap-frozen samples from 22 primitive neuroectodermal tumors (PNETs) primary in the central nervous system were studied with antibodies to synaptophysin, bombesin, somatostatin, substance P, vasoactive intestinal polypeptide, all classes of intermediate filaments, and desmoplakins I and II. Frozen

  18. Regulation of protein phosphorylation of the intermediate-sized filament vimentin in the ciliary epithelium of the mammalian eye

    International Nuclear Information System (INIS)

    Coca-Prados, M.

    1985-01-01

    The intermediate-sized filaments of vimentin-type (Mr = 57,000) have been identified biochemically and immunochemically as a major cytoskeleton component in the ciliary epithelium of the mammalian eye. When human or rabbit ciliary processes, or cultured ciliary epithelial-derived cells were incubated in serum-free medium containing [ 32 P]orthophosphate and any of the following agents: 1) beta-adrenergic agonists (isoproterenol or epinephrine), 2) direct activators of adenylate cyclase (cholera toxin or forskolin), 3) analogs of cyclic AMP (8-Br-cAMP), or 4) prostaglandin E1, the phosphorylation of vimentin was significantly enhanced. The maximal enhancement ranged, in vivo and in vitro, from about 3-fold in human to 5-fold in rabbit, with either 1 mM 8-Br-cAMP or 0.1 microM forskolin. Indirect immunofluorescence microscopy using a monoclonal antibody, anti-vimentin, allowed the localization of vimentin filaments in cultured ciliary epithelial cells. Treatment of these cells in culture with the catecholamine hormone, isoproterenol (1 microM), resulted in a profound reorganization of vimentin filaments. This may be correlated with the enhanced levels of phosphorylated vimentin observed upon increasing cellular cyclic AMP

  19. Regulation of protein phosphorylation of the intermediate-sized filament vimentin in the ciliary epithelium of the mammalian eye

    Energy Technology Data Exchange (ETDEWEB)

    Coca-Prados, M.

    1985-08-25

    The intermediate-sized filaments of vimentin-type (Mr = 57,000) have been identified biochemically and immunochemically as a major cytoskeleton component in the ciliary epithelium of the mammalian eye. When human or rabbit ciliary processes, or cultured ciliary epithelial-derived cells were incubated in serum-free medium containing (TSP)orthophosphate and any of the following agents: 1) beta-adrenergic agonists (isoproterenol or epinephrine), 2) direct activators of adenylate cyclase (cholera toxin or forskolin), 3) analogs of cyclic AMP (8-Br-cAMP), or 4) prostaglandin E1, the phosphorylation of vimentin was significantly enhanced. The maximal enhancement ranged, in vivo and in vitro, from about 3-fold in human to 5-fold in rabbit, with either 1 mM 8-Br-cAMP or 0.1 microM forskolin. Indirect immunofluorescence microscopy using a monoclonal antibody, anti-vimentin, allowed the localization of vimentin filaments in cultured ciliary epithelial cells. Treatment of these cells in culture with the catecholamine hormone, isoproterenol (1 microM), resulted in a profound reorganization of vimentin filaments. This may be correlated with the enhanced levels of phosphorylated vimentin observed upon increasing cellular cyclic AMP.

  20. Elimination of intermediate species in multiscale stochastic reaction networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele; Wiuf, Carsten

    2016-01-01

    We study networks of biochemical reactions modelled by continuoustime Markov processes. Such networks typically contain many molecular species and reactions and are hard to study analytically as well as by simulation. Particularly, we are interested in reaction networks with intermediate species...... such as the substrate-enzyme complex in the Michaelis-Menten mechanism. Such species are virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard to observe experimentally. We provide conditions under which the Markov process of a multiscale reaction network...... with intermediate species is approximated by the Markov process of a simpler reduced reaction network without intermediate species. We do so by embedding the Markov processes into a one-parameter family of processes, where reaction rates and species abundances are scaled in the parameter. Further, we show...

  1. Trusted intermediating agents in electronic trade networks

    NARCIS (Netherlands)

    T.B. Klos (Tomas); F. Alkemade (Floortje)

    2005-01-01

    htmlabstract Electronic commerce and trading of information goods significantly impact the role of intermediaries: consumers can bypass intermediating agents by forming direct links to producers. One reason that traditional intermediaries can still make a profit, is that they have more knowledge of

  2. α-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases

    Science.gov (United States)

    Cairns, Nigel J.; Uryu, Kunihiro; Bigio, Eileen H.; Mackenzie, Ian R. A.; Gearing, Marla; Duyckaerts, Charles; Yokoo, Hideaki; Nakazato, Yoichi; Jaros, Evelyn; Perry, Robert H.; Arnold, Steven E.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2009-01-01

    Abnormal neuronal aggregates of α-internexin and the three neurofilament (NF) subunits, NF-L, NF-M, and NF-H have recently been identified as the pathological hallmarks of neuronal intermediate filament (IF) inclusion disease (NIFID), a novel neurological disease of early onset with a variable clinical phenotype including frontotemporal dementia, pyramidal and extrapyramidal signs. α-Internexin, a class IV IF protein, a major component of inclusions in NIFID, has not previously been identified as a component of the pathological protein aggregates of any other neurodegenerative disease. Therefore, to determine the specificity of this protein, α-internexin immunohistochemistry was undertaken on cases of NIFID, non-tau frontotemporal dementias, motor neuron disease, α-synucleinopathies, tauopathies, and normal aged control brains. Our results indicate that class IV IF proteins are present within the pleomorphic inclusions of all cases of NIFID. Small subsets of abnormal neuronal inclusions in Alzheimer's disease, Lewy body diseases, and motor neuron disease also contain epitopes of α-internexin. Thus, α-internexin is a major component of the neuronal inclusions in NIFID and a relatively minor component of inclusions in other neurodegenerative diseases. The discovery of α-internexin in neuronal cytoplasmic inclusions implicates novel mechanisms of pathogenesis in NIFID and other neurological diseases with pathological filamentous neuronal inclusions. PMID:15170578

  3. The dermatan sulfate proteoglycan decorin modulates α2β1 integrin and the vimentin intermediate filament system during collagen synthesis.

    Directory of Open Access Journals (Sweden)

    Oliver Jungmann

    Full Text Available Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn(-/- mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn(-/- mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn(-/- fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn(-/- fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn(-/- fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn(-/-. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn(-/- phenotype.

  4. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers.

    Science.gov (United States)

    Burcham, Philip C; Raso, Albert; Henry, Peter J

    2014-05-07

    The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    Energy Technology Data Exchange (ETDEWEB)

    Auth, Thorsten [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Gov, Nir S [Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)

    2007-11-15

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  6. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    International Nuclear Information System (INIS)

    Auth, Thorsten; Safran, S A; Gov, Nir S

    2007-01-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton

  7. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    Science.gov (United States)

    Mullins, R. Dyche; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  8. On Identifying which Intermediate Nodes Should Code in Multicast Networks

    DEFF Research Database (Denmark)

    Pinto, Tiago; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    the data packets. Previous work has shown that in lossless wireline networks, the performance of tree-packing mechanisms is comparable to network coding, albeit with added complexity at the time of computing the trees. This means that most nodes in the network need not code. Thus, mechanisms that identify...... intermediate nodes that do require coding is instrumental for the efficient operation of coded networks and can have a significant impact in overall energy consumption. We present a distributed, low complexity algorithm that allows every node to identify if it should code and, if so, through what output link......Network coding has the potential to enhance energy efficiency of multicast sessions by providing optimal communication subgraphs for the transmission of the data. However, the coding requirement at intermediate nodes may introduce additional complexity and energy consumption in order to code...

  9. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.

    Science.gov (United States)

    Miotto, Paula M; Steinberg, Gregory R; Holloway, Graham P

    2017-02-15

    The obligatory role of carnitine palmitoyltransferase-I (CPT-I) in mediating mitochondrial lipid transport is well established, a process attenuated by malonyl-CoA (M-CoA). However, the necessity of reducing M-CoA concentrations to promote lipid oxidation has recently been challenged, suggesting external regulation on CPT-I. Since previous work in hepatocytes suggests the involvement of the intermediate filament fraction of the cytoskeleton in regulating CPT-I, we investigated in skeletal muscle if CPT-I sensitivity for M-CoA inhibition could be regulated by the intermediate filaments, and whether AMP-activated protein kinase (AMPK) could be involved in this process. Chemical disruption (3,3'-iminodipropionitrile, IDPN) of the intermediate filaments did not alter mitochondrial respiration or sensitivity for numerous substrates (palmitoyl-CoA, ADP, palmitoyl carnitine and pyruvate). In contrast, IDPN reduced CPT-I sensitivity for M-CoA inhibition in permeabilized muscle fibers, identifying M-CoA kinetics as a specific target for intermediate filament regulation. Importantly, exercise mimicked the effect of IDPN on M-CoA sensitivity, suggesting that intermediate filament disruption in vivo is physiologically important for CPT-I regulation. To ascertain a potential mechanism, since AMPK is activated during exercise, AMPK β1β2-KO mice were utilized in an attempt to ablate the observed exercise response. Unexpectedly, these mice displayed drastic attenuation in resting M-CoA sensitivity, such that exercise and IDPN could not further alter M-CoA sensitivity. These data suggest that AMPK is not required for the regulation of the intermediate filament interaction with CPT-I. Altogether, these data highlight that M-CoA sensitivity is important for regulating mitochondrial lipid transport. Moreover, M-CoA sensitivity appears to be regulated by intermediate filament interaction with CPT-I, a process that is important when metabolic homeostasis is challenged. © 2017 The

  10. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  11. Medium Calcium Concentration Determines Keratin Intermediate Filament Density and Distribution in Immortalized Cultured Thymic Epithelial Cells (TECs)

    Science.gov (United States)

    Sands, Sandra S.; Meek, William D.; Hayashi, Jun; Ketchum, Robert J.

    2005-08-01

    Isolation and culture of thymic epithelial cells (TECs) using conventional primary tissue culture techniques under conditions employing supplemented low calcium medium yielded an immortalized cell line derived from the LDA rat (Lewis [Rt1l] cross DA [Rt1a]) that could be manipulated in vitro. Thymi were harvested from 4 5-day-old neonates, enzymically digested using collagenase (1 mg/ml, 37°C, 1 h) and cultured in low calcium WAJC404A medium containing cholera toxin (20 ng/ml), dexamethasone (10 nM), epidermal growth factor (10 ng/ml), insulin (10 [mu]g/ml), transferrin (10 [mu]g/ml), 2% calf serum, 2.5% Dulbecco's Modified Eagle's Medium (DMEM), and 1% antibiotic/antimycotic. TECs cultured in low calcium displayed round to spindle-shaped morphology, distinct intercellular spaces (even at confluence), and dense reticular-like keratin patterns. In high calcium (0.188 mM), TECs formed cobblestone-like confluent monolayers that were resistant to trypsinization (0.05%) and displayed keratin intermediate filaments concentrated at desmosomal junctions between contiguous cells. Changes in cultured TEC morphology were quantified by an analysis of desmosome/membrane relationships in high and low calcium media. Desmosomes were significantly increased in the high calcium medium. These studies may have value when considering the growth conditions of cultured primary cell lines like TECs.

  12. Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties of the f......Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties...

  13. Intermediate filaments of zebrafish retinal and optic nerve astrocytes and Müller glia: differential distribution of cytokeratin and GFAP

    Directory of Open Access Journals (Sweden)

    Mosier Amanda L

    2010-03-01

    Full Text Available Abstract Background Optic nerve regeneration (ONR following injury is a model for central nervous system regeneration. In zebrafish, ONR is rapid - neurites cross the lesion and enter the optic tectum within 7 days; in mammals regeneration does not take place unless astrocytic reactivity is suppressed. Glial fibrillary acidic protein (GFAP is used as a marker for retinal and optic nerve astrocytes in both fish and mammals, even though it has long been known that astrocytes of optic nerves in many fish, including zebrafish, express cytokeratins and not GFAP. We used immunofluorescence to localize GFAP and cytokeratin in wild-type zebrafish and transgenic zebrafish expressing green fluorescent protein (GFP under control of a GFAP promoter to determine the pattern of expression of intermediate filaments in retina and optic nerve. Findings GFAP labeling and GFAP gene expression as indicated by GFP fluorescence was found only in the Müller glial cells of the retina. Within Müller cells, GFP fluorescence filled the entire cell while GFAP labelling was more restricted in distribution. No GFAP expression was observed in optic nerves. Cytokeratin labeling of astrocytes was observed throughout the optic nerve and less intensely in cells in the retinal inner plexiform layer. The retinal inner limiting membrane was strongly labeled by anti-cytokeratin. Conclusions Studies of astrocyte function during ONR in zebrafish cannot solely rely on GFAP as an astrocyte marker or indicator of reactivity. Future studies of ONR in zebrafish should include evaluation of changes in cytokeratin expression and localization in the optic nerve.

  14. Nonequilibrium dynamics of probe filaments in actin-myosin networks

    Science.gov (United States)

    Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.

    2017-08-01

    Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.

  15. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  16. The Autoimmune Regulator (AIRE), Which Is Defective in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Patients, Is Expressed in Human Epidermal and Follicular Keratinocytes and Associates With the Intermediate Filament Protein Cytokeratin 17

    Science.gov (United States)

    Kumar, Vipul; Pedroza, Luis A.; Mace, Emily M.; Seeholzer, Steven; Cotsarelis, George; Condino-Neto, Antonio; Payne, Aimee S.; Orange, Jordan S.

    2011-01-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is caused by mutation of the autoimmune regulator (AIRE) gene, is a highly variable disease characterized by multiple endocrine failure, chronic mucocutaneous candidiasis, and various ectodermal defects. AIRE is a transcriptional regulator classically expressed in medullary thymic epithelial cells, monocytes, macrophages, and dendritic cells. Previous studies have suggested that AIRE can shuttle between the nucleus and cytoplasm of cells, although its cytoplasmic functions are poorly characterized. Through mass spectrometry analysis of proteins co-immunoprecipitating with cytoplasmic AIRE, we identified a novel association of AIRE with the intermediate filament protein cytokeratin 17 (K17) in the THP-1 monocyte cell line. We confirmed AIRE expression in HaCaT epidermal keratinocytes, as well as its interaction with K17. Confocal microscopy of human fetal and adult scalp hair follicles demonstrated a cytoplasmic pattern of AIRE staining that moderately colocalized with K17. The cytoplasmic association of AIRE with the intermediate filament network in human epidermal and follicular keratinocytes may provide a new path to understanding the ectodermal abnormalities associated with the APECED syndrome. PMID:21356351

  17. A core filamentation response network in Candida albicans is restricted to eight genes.

    Directory of Open Access Journals (Sweden)

    Ronny Martin

    Full Text Available Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.

  18. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines

    Directory of Open Access Journals (Sweden)

    Duncan Alice

    2012-10-01

    Full Text Available Abstract Background Fas expression and Fas-induced apoptosis are mechanisms attributed to the selective destruction of cells of the corpus luteum (CL during luteal regression. In certain cell-types, sensitivity to these death-inducing mechanisms is due to the loss or cleavage of keratin-containing intermediate filaments. Specifically, keratin 8/18 (K8/K18 filaments are hypothesized to influence cell death in part by regulating Fas expression at the cell surface. Methods Here, Fas expression on bovine luteal cells was quantified by flow cytometry during the early (Day 5, postovulation and late stages (Days 16–18, postovulation of CL function, and the relationship between Fas expression, K8/K18 filament expression and cytokine-induced cell death in vitro was evaluated. Results Both total and cell surface expression of Fas on luteal cells was greater for early versus late stage bovine CL (89% vs. 44% of cells for total Fas; 65% vs.18% of cells for cell surface Fas; respectively, P0.05, n=4 CL/stage, despite evidence these conditions increased Fas expression on HepG2 cells (P0.05 or stage of CL (P>0.05, n= 4 CL/stage on this outcome. Conclusion In conclusion, we rejected our null hypothesis that the cell surface expression of Fas does not differ between luteal cells of early and late stage CL. The results also did not support the idea that K8/K18 filaments influence the expression of Fas on the surface of bovine luteal cells. Potential downstream effects of these filaments on death signaling, however, remain a possibility. Importantly, the elevated expression of Fas observed on cells of early stage bovine CL compared to late stage bovine CL raises a provocative question concerning the physiological role(s of Fas in the corpus luteum, particularly during early luteal development.

  19. Development of composite pipelines by filament winding: an study using neural networks; Desenvolvimento de dutos compositos por filament winding: um estudo atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Contant, Sheila [Universidade Estadual de Campinas, SP (Brazil); Lona, Liliane M.F. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Quimica; Calado, Veronica M.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2003-07-01

    The application of composite materials on pipeline systems for transportation of petroleum and natural gas is being pointed as one alternative to conventional materials, improving safety and reliability and reducing costs. Polymeric composite pipes can be manufactured by filament winding, a method that shows several advantages over other manufacturing processes such as low cost, high production rates and ability to produce high specific strength parts. Because of the many parameters involved in this process, among others aspects, mathematical modeling of filament winding process through conventional methods is complex task. In this work the process has been studied using neural networks, a computational technique inspired in human brain that presents several advantages when compared to conventional methods like a reduced processing time. Neural networks have been applied to prediction of mechanical properties of composite tubes and also to prediction of the thermal behavior of the parts during cure step. Results showed the efficacy of the proposed methodology. (author)

  20. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  1. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR

    Science.gov (United States)

    Fontoura, Beatriz M. A.; Dales, Samuel; Blobel, Günter; Zhong, Hualin

    2001-01-01

    The Nup98 gene codes for several alternatively spliced protein precursors. Two in vitro translated and autoproteolytically cleaved precursors yielded heterodimers of Nup98-6kDa peptide and Nup98-Nup96. TPR (translocated promoter region) is a protein that forms filamentous structures extending from nuclear pore complexes (NPCs) to intranuclear sites. We found that in vitro translated TPR bound to in vitro translated Nup98 and, via Nup98, to Nup96. Double-immunofluorescence microscopy with antibodies to TPR and Nup98 showed colocalization. In confocal sections the nucleolus itself was only weakly stained but there was intensive perinucleolar staining. Striking spike-like structures emanated from this perinucleolar ring and attenuated into thinner structures as they extended to the nuclear periphery. This characteristic staining pattern of the TPR network was considerably enhanced when a myc-tagged pyruvate kinase-6kDa fusion protein was overexpressed in HeLa cells. Double-immunoelectron microscopy of these cells using anti-myc and anti-TPR antibodies and secondary gold-coupled antibodies yielded row-like arrangements of gold particles. Taken together, the immunolocalization data support previous electron microscopical data, suggesting that TPR forms filaments that extend from the NPC to the nucleolus. We discuss the possible implications of the association of Nup98 with this intranuclear TPR network for an intranuclear phase of transport. PMID:11248057

  2. RecA-DNA filament topology: the overlooked alternative of an unconventional syn-syn duplex intermediate

    DEFF Research Database (Denmark)

    Egel, Richard

    2007-01-01

    The helical filaments of RecA protein mediate strand exchange for homologous recombination, but the paths of the interacting DNAs have yet to be determined. Although this interaction is commonly limited to three strands, it is reasoned here that the intrinsic symmetry relationships of quadruplex...... topology are superior in explaining a range of observations. In particular, this topology suggests the potential of post-exchange base pairing in the unorthodox configuration of syn-syn glycosidic bonds between the nucleotide bases and the pentose rings in the sugar-phosphate backbone, which would...

  3. Contrasting Intermediation Practices in Various Advisory Service Networks in the Case of the French Ecophyto Plan

    Science.gov (United States)

    Cerf, M.; Bail, Le; Lusson, J. M.; Omon, B.

    2017-01-01

    Purpose: To highlight the way a public policy aiming to achieve a 50% decrease of pesticides use in France reframed advice provision in public and private networks. Design/methodology/approach: We developed a framework to analyze intermediation in a public funded network, a farmers' association, and a network of co-operatives. The framework…

  4. The Molecular Architecture for the Intermediate Filaments of Hard [alpha]-Keratin Based on the Superlattice Data Obtained from a Study ofMammals Using Synchrotron Fibre Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    James, Veronica (ANU)

    2014-09-24

    High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.

  5. Assembly studies of six intestinal intermediate filament (IF) proteins B2, C1, C2, D1, D2, and E1 in the nematode C. elegans.

    Science.gov (United States)

    Karabinos, Anton; Schünemann, Jürgen; Parry, David A D

    2017-03-01

    The dimerisation properties of six intestine-expressed intermediate filament (IF) proteins (B2, C1, C2, D1, D2, E1) were analysed in blot overlay assay on membranes containing all of the eleven recombinant C. elegans IF proteins (A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, and E1). The interactions detected in the blot assays exclusively comprise intestine-expressed IF proteins and the protein A4, which is found in the dauer larva intestine. About 86% of these interactions are heterotypic, while the remaining interactions relate to C1, C2, and D2 homodimers. These multiple modes of interaction were also supported by calculations of the numbers of possible interchain ionic interactions derived from the individual rod sequences. The results predict that the six B2, C1, C2, D1, D2, and E1 IF proteins are able to form as many as eleven different heteropolymeric and three homopolymeric IFs in the C. elegans intestine. This simple model of the intestinal IF meshwork enables us to speculate that our previously reported triple RNAi worms arrested or decreased their growth because of feeding reduction due to morphological defects of the mechanically compromised intestine. © 2017 Wiley Periodicals, Inc.

  6. Immunocytochemical demonstration of intermediate filament proteins, S-100 protein and CEA in apocrine sweat glands and apocrine gland derived lesions of the dog.

    Science.gov (United States)

    Ferrer, L; Rabanal, R M; Fondevila, D; Prats, N

    1990-09-01

    The presence of carcinoembryonic antigen (CEA), intermediate filament proteins and S-100 protein in normal and pathological canine apocrine sweat glands was investigated, using a standard immunoperoxidase technique. The normal apocrine sweat glands showed a constant immunoreactivity in all the cases studied. The cells of the acini and of the ducts only reacted with the antikeratin antibody. The myoepithelial cells reacted positively with the antisera antikeratin and anti protein S-100. Epithelial cells of apocrine cysts, sweat gland adenomas and sweat gland carcinomas showed the same immunoreaction than normal apocrine cells. Proliferating myoepithelial cells were also positive for vimentin. In two out of three adenocarcinomas a positive reaction with the anti CEA could be detected in the glandular cells. This can be due to the presence in glandular cells of CEA or of Nonspecific Crossreacting Antigen (NCA). These findings indicate that demonstration of keratin is a useful aid in the detection of apocrine gland derived lesions in the dog. Similarly, S-100 protein is a marker for myoepithelial cells. Further research is necessary to investigate the expression of CEA in canine tumours.

  7. Effect of desynchronosis on oxidative stress biomarkers and the state of glial intermediate filaments in the brains of rats subject to aging

    Directory of Open Access Journals (Sweden)

    S. Kyrychenko

    2016-09-01

    Full Text Available Desynchronosis may be the cause of many diseases. Oxidative stress plays an important role in the pathogenesis of various diseases. The present study investigates the effect of constant light on biomarkers of oxidative stress and content of glial intermediate filaments protein in the brains of old rats. We found that desynchronosis led to development of oxidative stress in the hippocampus, cerebral cortex and cerebellum of old rats. Prolonged continuous lighting led to an increase in the content of TBA-reactive products in all studied regions of the brains of old rats. This indicates an activation of lipid peroxidation and oxidative stress. Significant changes in the content of TBA-reactive products were found in the departments responsible for the functions of the higher nervous activity, particularly in the hippocampus and cerebral cortex. The level of restored glutathione in all three regions of the brain decreased in the group of rats kept under constant illumination in comparison with the control group. The results of the indicators of locomotor and orienting-investigative activity of the animals in the "open field" test revealled changes in the indices for desynchronosis. This showed a reduction in locomotor activity, inhibition of exploratory activity and development of emotional stress. In the brains of old rats kept under constant illumination a significant increase in the content of glial fibrillary protein (GFAP was shown. There was a significant increase in the intensity of the polypeptide zone 49 kDa in the filamentous and soluble fraction of the cerebellum and hippocampus. This fact indicates that desynchronosis activates fibrillogenesis in glial cells. At the same time, there is degradation of polypeptides GFAP with Mr in the field of 46 kDa. Melatonin is a universal adaptogen that regulates the function of many body systems. The amount of melatonin which is synthesized depends on the illumination mode. Violation of the global

  8. Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

    OpenAIRE

    Bharucha, Nikë; Ma, Jun; Dobry, Craig J.; Lawson, Sarah K.; Yang, Zhifen; Kumar, Anuj

    2008-01-01

    The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling m...

  9. A neural network gravitational arc finder based on the Mediatrix filamentation method

    Science.gov (United States)

    Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.

    2017-01-01

    Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.

  10. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    Science.gov (United States)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  11. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments

    Directory of Open Access Journals (Sweden)

    M. Garbuglia

    1999-10-01

    Full Text Available The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix type, S100A1 and S100B, that have been shown to inhibit microtubule (MT protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF subunits, desmin and glial fibrillary acidic protein (GFAP, with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

  12. Two rigidity-percolation transitions on binary Bethe networks and the intermediate phase in glass.

    Science.gov (United States)

    Moukarzel, Cristian F

    2013-12-01

    Rigidity percolation is studied analytically on randomly bonded networks with two types of nodes, respectively, with coordination numbers z(1) and z(2), and with g(1) and g(2) degrees of freedom each. For certain cases that model chalcogenide glass networks, two transitions, both of first order, are found, with the first transition usually rather weak. The ensuing intermediate pase, although not isostatic in its entirety, has very low self-stress. Our results suggest a possible mechanism for the appearance of intermediate phases in glass that does not depend on a self-organization principle.

  13. A Robust Actin Filaments Image Analysis Framework.

    Directory of Open Access Journals (Sweden)

    Mitchel Alioscha-Perez

    2016-08-01

    Full Text Available The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale. Based on this observation, we propose a three-steps actin filaments extraction methodology: (i first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in

  14. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data.

    Science.gov (United States)

    Zhang, Yan; Kweon, Hye Kyong; Shively, Christian; Kumar, Anuj; Andrews, Philip C

    2013-01-01

    Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive pipeline presents a

  15. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture technique with interventional experiments (kinase-dead mutations. The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses. All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive

  16. Expressão dos filamentos intermediários no diagnóstico dos tumores mamários de cadelas Expression of intermediate filaments in canine mammary tumors diagnosis

    Directory of Open Access Journals (Sweden)

    D.A.P.C. Zuccari

    2002-12-01

    Full Text Available Foram utilizados anticorpos monoclonais para marcação imunoistoquímica dos tecidos tumorais e obtenção de informações sobre a histogênese dos tumores mamários utilizando-se anti-citoqueratinas para marcação de células epiteliais, e anti-actina e anti-vimentina para células mioepiteliais. O procedimento imunoistoquímico mostrou-se esclarecedor com relação à histogênese dos tumores mamários, confirmando a marcação de células epiteliais com as citoqueratinas que perdem sua expressão na transformação celular maligna. A alfa-actina e a vimentina mostraram-se eficientes na marcação de células mioepiteliais. A alfa-actina diminuiu a marcação na metaplasia óssea ou cartilaginosa contrariamente à vimentina cuja marcação foi aumentada. Os resultados permitem melhor entendimento da classificação dos tumores mamários de cadelas com a utilização de anticorpos monoclonais como marcadores do citoesqueleto, que se mostraram eficientes nessa caracterização.Immunohistochemical evaluation was performed to study the histogenesis of canine mammary tumors and to contribute to a better understanding of their classification. Monoclonal antibodies specific for different types of intermediate filaments (cytokeratins, vimentin, alpha-actin were used. Epithelial cells stained positively for cytokeratins and their expression was lost as the malignant transformation occurs. Myoepithelial cells stained positively for vimentin and alpha-actin. In contrast to vimentin, alpha-actin lost the expression as the cartilaginous or osseous metaplasia occurs. Immunohistochemical evaluation with monoclonal antibodies proved to be efficient for identification of tumor histogenesis. alpha-actin were used. Epithelial cells stained positively for cytokeratins and their expression was lost as the malignant transformation occurs. Myoepithelial cells stained positively for vimentin and alpha-actin. In contrast to vimentin, alpha-actin lost the expression

  17. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    Science.gov (United States)

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  18. Occurrence of proteinaceous 10-nm filaments throughout the cytoplasm of algae of the order Dasycladales.

    Science.gov (United States)

    Berger, S; Wittke, W; Traub, P

    1998-05-01

    Previously, whole-mount electron microscopy of nuclei extruded together with residual cytoplasm from the rhizoids of several algal species of the order Dasycladales has revealed the occurrence of an intra- and perinuclear network of 10-nm filaments morphologically indistinguishable from that of mammalian vimentin intermediate filaments. The present investigation demonstrates the existence of a filament system throughout the cytoplasm of the rhizoid, stalk, and apical tip of these giant cells. However, while the perinuclear 10-nm filaments interconnecting the nuclear surface with a perinuclear layer of large, electron-dense bodies filled with nucleoprotein material are of smooth appearance, those continuing within and beyond the perinuclear bodies are densely covered with differently sized, globular structures and, therefore, are of a very rough appearance. The filaments in the very apical tip of the cells are mainly of the smooth type. The transition from smooth to rough filaments seems to occur in the numerous perinuclear dense bodies surrounding the large nucleus. Digestion of the rough filaments with proteinase K removes the globules from the filament surface, revealing that throughout the nonvacuolar, intracellular space the filaments have the same basic 10-nm structure. On the other hand, gold-conjugated RNase A strongly binds to the filament-attached globules but not to the smooth, perinuclear, and the proteinase K-treated, rough filaments. In addition, an antibody raised against Xp54, a highly conserved protein which in Xenopus oocytes is an integral component of stored mRNP particles, decorates the rough but not the smooth 10-nm filaments. These results support the notion that the 10-nm filament system of Dasycladales cells plays a role in the transient storage of ribonucleoprotein particles in the cytoplasm and possibly fulfils a supportive function in the actomyosin-based transport of such material to various cytological destinations.

  19. Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections

    Directory of Open Access Journals (Sweden)

    Martin P Nawrot

    2009-02-01

    Full Text Available The mammalian neocortex has a remarkable ability to precisely reproduce behavioral sequences or to reliably retrieve stored information. In contrast, spiking activity in behaving animals shows a considerable trial-to-trial variability and temporal irregularity. The signal propagation and processing underlying these conflicting observations is based on fundamental neurophysiological processes like synaptic transmission, signal integration within single cells, and spike formation. Each of these steps in the neuronal signaling chain has been studied separately to a great extend, but it has been difficult to judge how they interact and sum up in active sub-networks of neocortical cells. In the present study, we experimentally assessed the precision and reliability of small neocortical networks consisting of trans-columnar, intermediate-range projections (200 – 1000 µm on a millisecond time-scale. Employing photo-uncaging of glutamate in acute slices, we activated a number of distant pre-synaptic cells in a spatiotemporally precisely controlled manner, while monitoring the resulting membrane potential fluctuations of a post-synaptic cell. We found that signal integration in this part of the network is highly reliable and temporally precise. As numerical simulations showed, the residual membrane potential variability can be attributed to amplitude variability in synaptic transmission and may significantly contribute to trial-to-trial output variability of a rate signal. However, it does not impair the temporal accuracy of signal integration. We conclude that signals from intermediate-range projections onto neocortical neurons are propagated and integrated in a highly reliable and precise manner, and may serve as a substrate for temporally precise signal transmission in neocortical networks.

  20. Change in network connectivity during fictive-gasping generation in hypoxia: Prevention by a metabolic intermediate

    Directory of Open Access Journals (Sweden)

    Andrés eNieto-Posadas

    2014-07-01

    Full Text Available The neuronal circuit in charge of generating the respiratory rhythms, localized in the pre-Bötzinger complex (preBötC, is configured to produce fictive-eupnea during normoxia and reconfigures to produce fictive-gasping during hypoxic conditions in vitro. The mechanisms involved in such reconfiguration have been extensively investigated by cell-focused studies, but the actual changes at the network level remain elusive. Since a failure to generate gasping has been linked to Sudden Infant Death Syndrome, the study of gasping generation and pharmacological approaches to promote it may have clinical relevance. Here, we study the changes in network dynamics and circuit reconfiguration that occur during the transition to fictive-gasping generation in the brainstem slice preparation by recording the preBötC with multi-electrode arrays and assessing correlated firing among respiratory neurons or clusters of respiratory neurons (multiunits. We studied whether the respiratory network reconfiguration in hypoxia involves changes in either the number of active respiratory elements, the number of functional connections among elements, or the strength of these connections. Moreover, we tested the influence of isocitrate, a Krebs cycle intermediate that has recently been shown to promote breathing, on the configuration of the preBötC circuit during normoxia and on its reconfiguration during hypoxia. We found that, in contrast to previous suggestions based on cell-focused studies, the number and the overall activity of respiratory neurons change only slightly during hypoxia. However, hypoxia induces a reduction in the strength of functional connectivity within the circuit without reducing the number of connections. Isocitrate prevented this reduction during hypoxia while increasing the strength of network connectivity. In conclusion, we provide an overview of the configuration of the respiratory network under control conditions and how it is reconfigured

  1. Nuclear networking.

    Science.gov (United States)

    Xie, Wei; Burke, Brian

    2017-07-04

    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  2. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins.

    Science.gov (United States)

    Alibardi, Lorenzo

    2013-02-01

    The isolation of genes for alpha-keratins and keratin-associated beta-proteins (formerly beta-keratins) has allowed the production of epitope-specific antibodies for localizing these proteins during the process of cornification epidermis of reptilian sauropsids. The antibodies are directed toward proteins in the alpha-keratin range (40-70 kDa) or beta-protein range (10-30 kDa) of most reptilian sauropsids. The ultrastructural immunogold study shows the localization of acidic alpha-proteins in suprabasal and precorneous epidermal layers in lizard, snake, tuatara, crocodile, and turtle while keratin-associated beta-proteins are localized in precorneous and corneous layers. This late activation of the synthesis of keratin-associated beta-proteins is typical for keratin-associated and corneous proteins in mammalian epidermis (involucrin, filaggrin, loricrin) or hair (tyrosine-rich or sulfur-rich proteins). In turtles and crocodilians epidermis, keratin-associated beta-proteins are synthesized in upper spinosus and precorneous layers and accumulate in the corneous layer. The complex stratification of lepidosaurian epidermis derives from the deposition of specific glycine-rich versus cysteine-glycine-rich keratin-associated beta-proteins in cells sequentially produced from the basal layer and not from the alternation of beta- with alpha-keratins. The process gives rise to Oberhäutchen, beta-, mesos-, and alpha-layers during the shedding cycle of lizards and snakes. Differently from fish, amphibian, and mammalian keratin-associated proteins (KAPs) of the epidermis, the keratin-associated beta-proteins of sauropsids are capable to form filaments of 3-4 nm which give rise to an X-ray beta-pattern as a consequence of the presence of a beta-pleated central region of high homology, which seems to be absent in KAPs of the other vertebrates. Copyright © 2012 Wiley Periodicals, Inc.

  3. Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding

    Science.gov (United States)

    Pérez-Sala, Dolores; Oeste, Clara L.; Martínez, Alma E.; Carrasco, M. Jesús; Garzón, Beatriz; Cañada, F. Javier

    2015-01-01

    The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial–mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc. PMID:26031447

  4. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  5. The impact of intermediate wet states on two-phase flow in porous media, studied by network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiland, Linda Kaada

    2006-04-15

    Reservoir wettability is a measure of a rocks preference for the oil and/or the brine phase. Wettability has a dominant impact on fluid movements in porous media, hence oil displacement in reservoir rocks. Understanding the local wettability and the effect of wettability on the fluid movements are therefore of interest in relation to oil recovery processes. Contrary to the earlier believed homogenous wetted cases where the porous media was strongly oil-wet for carbonate reservoirs or strongly water-wet for clastic reservoirs, it is now believed that most reservoir rocks experience some kind of intermediate wet state. Since wettability affects oil recovery, different classes of intermediate wettability are expected to have different impacts on the fluid flow processes. The major subject treated in this thesis is how different intermediate wet states affect fluid flow parameters which are important for the oil recovery. This is done by use of a capillary dominated network model of two-phase flow, where the network is based on a model of reconstructed sandstone. The existence of different intermediate wet classes is argued in Paper I, while Paper II, III and IV analyse the effect different intermediate wet classes have on wettability indices, residual oil saturation, capillary pressure and relative permeability (author)

  6. Optimized color decomposition of localized whole slide images and convolutional neural network for intermediate prostate cancer classification

    Science.gov (United States)

    Zhou, Naiyun; Gao, Yi

    2017-03-01

    This paper presents a fully automatic approach to grade intermediate prostate malignancy with hematoxylin and eosin-stained whole slide images. Deep learning architectures such as convolutional neural networks have been utilized in the domain of histopathology for automated carcinoma detection and classification. However, few work show its power in discriminating intermediate Gleason patterns, due to sporadic distribution of prostate glands on stained surgical section samples. We propose optimized hematoxylin decomposition on localized images, followed by convolutional neural network to classify Gleason patterns 3+4 and 4+3 without handcrafted features or gland segmentation. Crucial glands morphology and structural relationship of nuclei are extracted twice in different color space by the multi-scale strategy to mimic pathologists' visual examination. Our novel classification scheme evaluated on 169 whole slide images yielded a 70.41% accuracy and corresponding area under the receiver operating characteristic curve of 0.7247.

  7. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  8. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  9. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  10. Pathomorphological feature of chronic pancreatitis (CP is the development of pancreatic fibrosis with the accumulation of various collagen types, tubulin, fibronectin, laminin, and also intermediate filament proteins produced by activated pancreatic stel

    Directory of Open Access Journals (Sweden)

    T. V. Turovskaya

    2013-04-01

    Full Text Available T. V. Turovskaya, A. M. Gnilorybov, L. V. Vasilyeva Pathomorphological feature of chronic pancreatitis (CP is the development of pancreatic fibrosis with the accumulation of various collagen types, tubulin, fibronectin, laminin, and also intermediate filament proteins produced by activated pancreatic stellate cells (PSCs, which express the cytoskeletal α-smooth muscle actin (α-SMA. The aim of the research: determination of immunophenotype and proliferative activity of pancreatic stellate cells as well as the main histotopographic components of severe pancreatic fibrosis and accumulation of collagen I, III and IV types in pancreas at CP. Materials and methods. Histological, histochemical (Van Gieson's and Masson's trichrome staining, immunohistochemical (α-SMA, vimentin, desmin, fibronectin, Ki-67, collagen I, III and IV types and morphometric studies (Image J program of accumulation of various collagen types, represented in standard unit of optical density (SUOD, were held at pancreas biopsies of 30 patients (35-72 years old with CP. Results. It was found that development of severe pancreatic fibrosis is promoted by proliferation and increase of α-SMA+, vimentin+, desmin+ activated stellate cells and deposition of significant amount of collagen I, III, IV types and fibronectin in pancreas that are synthesized by PSCs. In areas of severe fibrosis Ki-67 expression is detected in the nuclei of at least 25% of PSCs, that corresponds to relatively low levels of proliferation. Four components of severe pancreatic fibrosis: circular-periductal fibrosis involving the large ducts of the pancreas, laminar fibrosis in extensive fibrous fields between large ducts and acinar tissue, as well as tape-like interlobular and septal-periacinar intralobular pancreatic fibrosis are identified in patients with CP. Conclusion. Morphological manifestation of severe circular-periductal pancreatic fibrosis is the presence of significant concentric fibrosis around the

  11. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  12. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    Science.gov (United States)

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  13. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    Science.gov (United States)

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis.

    Science.gov (United States)

    Kang, Dong Hyuk; Cho, Kang Su; Ham, Won Sik; Lee, Hyungmin; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong

    2016-01-01

    To perform a systematic review and network meta-analysis of randomized controlled trials (RCTs) to determine the optimal shock wave lithotripsy (SWL) frequency range for treating urinary stones, i.e., high-frequency (100-120 waves/minute), intermediate-frequency (80-90 waves/minute), and low-frequency (60-70 waves/minute) lithotripsy. Relevant RCTs were identified from electronic databases for meta-analysis of SWL success and complication rates. Using pairwise and network meta-analyses, comparisons were made by qualitative and quantitative syntheses. Outcome variables are provided as odds ratios (ORs) with 95% confidence intervals (CIs). Thirteen articles were included in the qualitative and quantitative synthesis using pairwise and network meta-analyses. On pairwise meta-analyses, comparable inter-study heterogeneity was observed for the success rate. On network meta-analyses, the success rates of low- (OR 2.2; 95% CI 1.5-2.6) and intermediate-frequency SWL (OR 2.5; 95% CI 1.3-4.6) were higher than high-frequency SWL. Forest plots from the network meta-analysis showed no significant differences in the success rate between low-frequency SWL versus intermediate-frequency SWL (OR 0.87; 95% CI 0.51-1.7). There were no differences in complication rate across different SWL frequency ranges. By rank-probability testing, intermediate-frequency SWL was ranked highest for success rate, followed by low-frequency and high-frequency SWL. Low-frequency SWL was also ranked highest for low complication rate, with high- and intermediate-frequency SWL ranked lower. Intermediate- and low-frequency SWL have better treatment outcomes than high-frequency SWL when considering both efficacy and complication.

  15. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Dong Hyuk Kang

    Full Text Available To perform a systematic review and network meta-analysis of randomized controlled trials (RCTs to determine the optimal shock wave lithotripsy (SWL frequency range for treating urinary stones, i.e., high-frequency (100-120 waves/minute, intermediate-frequency (80-90 waves/minute, and low-frequency (60-70 waves/minute lithotripsy.Relevant RCTs were identified from electronic databases for meta-analysis of SWL success and complication rates. Using pairwise and network meta-analyses, comparisons were made by qualitative and quantitative syntheses. Outcome variables are provided as odds ratios (ORs with 95% confidence intervals (CIs.Thirteen articles were included in the qualitative and quantitative synthesis using pairwise and network meta-analyses. On pairwise meta-analyses, comparable inter-study heterogeneity was observed for the success rate. On network meta-analyses, the success rates of low- (OR 2.2; 95% CI 1.5-2.6 and intermediate-frequency SWL (OR 2.5; 95% CI 1.3-4.6 were higher than high-frequency SWL. Forest plots from the network meta-analysis showed no significant differences in the success rate between low-frequency SWL versus intermediate-frequency SWL (OR 0.87; 95% CI 0.51-1.7. There were no differences in complication rate across different SWL frequency ranges. By rank-probability testing, intermediate-frequency SWL was ranked highest for success rate, followed by low-frequency and high-frequency SWL. Low-frequency SWL was also ranked highest for low complication rate, with high- and intermediate-frequency SWL ranked lower.Intermediate- and low-frequency SWL have better treatment outcomes than high-frequency SWL when considering both efficacy and complication.

  16. New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength

    Directory of Open Access Journals (Sweden)

    Rennie Kaunda

    2014-08-01

    Full Text Available Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval. Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D failure criteria by incorporating intermediate principal stress effects.

  17. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  18. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.

    Science.gov (United States)

    Gullmets, Josef; Torvaldson, Elin; Lindqvist, Julia; Imanishi, Susumu Y; Taimen, Pekka; Meinander, Annika; Eriksson, John E

    2017-12-01

    Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila , transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila , a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila , we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. © FASEB.

  19. Strategies for Advancing Disease Definition Using Biomarkers and Genetics: The Bipolar and Schizophrenia Network for Intermediate Phenotypes.

    Science.gov (United States)

    Tamminga, Carol A; Pearlson, Godfrey D; Stan, Ana D; Gibbons, Robert D; Padmanabhan, Jaya; Keshavan, Matcheri; Clementz, Brett A

    2017-01-01

    It is critical for psychiatry as a field to develop approaches to define the molecular, cellular, and circuit basis of its brain diseases, especially for serious mental illnesses, and then to use these definitions to generate biologically based disease categories, as well as to explore disease mechanisms and illness etiologies. Our current reliance on phenomenology is inadequate to support exploration of molecular treatment targets and disease formulations, and the leap directly from phenomenology to disease biology has been limiting because of broad heterogeneity within conventional diagnoses. The questions addressed in this review are formulated around how we can use brain biomarkers to achieve disease categories that are biologically based. We have grouped together a series of vignettes as examples of early approaches, all using the Bipolar and Schizophrenia Network on Intermediate Phenotypes (BSNIP) biomarker database and collaborators, starting off with describing the foundational statistical methods for these goals. We use primarily criterion-free statistics to identify pertinent groups of involved genes related to psychosis as well as symptoms, and finally, to create new biologically based disease cohorts within the psychopathological dimension of psychosis. Although we do not put these results forward as final formulations, they represent a novel effort to rely minimally on phenomenology as a diagnostic tool and to fully embrace brain characteristics of structure, as well as molecular and cellular characteristics and function, to support disease definition in psychosis. Copyright © 2016. Published by Elsevier Inc.

  20. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  1. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  2. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  3. Rheology of semiflexible bundle networks with transient linkers.

    Science.gov (United States)

    Müller, Kei W; Bruinsma, Robijn F; Lieleg, Oliver; Bausch, Andreas R; Wall, Wolfgang A; Levine, Alex J

    2014-06-13

    We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium thermal fluctuations.

  4. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  5. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  6. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  7. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    Full Text Available How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below

  8. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Science.gov (United States)

    Erickson, Robert P; Gross, Steven P; Yu, Clare C

    2013-01-01

    How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing

  9. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  10. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  11. Participation and coordination in Dutch health care policy-making. A network analysis of the system of intermediate organizations in Dutch health care.

    Science.gov (United States)

    Lamping, Antonie J; Raab, Jörg; Kenis, Patrick

    2013-06-01

    This study explores the system of intermediate organizations in Dutch health care as the crucial system to understand health care policy-making in the Netherlands. We argue that the Dutch health care system can be understood as a system consisting of distinct but inter-related policy domains. In this study, we analyze four such policy domains: Finances, quality of care, manpower planning and pharmaceuticals. With the help of network analytic techniques, we describe how this highly differentiated system of >200 intermediate organizations is structured and coordinated and what (policy) consequences can be observed with regard to its particular structure and coordination mechanisms. We further analyze the extent to which this system of intermediate organizations enables participation of stakeholders in policy-making using network visualization tools. The results indicate that coordination between the different policy domains within the health care sector takes place not as one would expect through governmental agencies, but through representative organizations such as the representative organizations of the (general) hospitals, the health care consumers and the employers' association. We further conclude that the system allows as well as denies a large number of potential participants access to the policy-making process. As a consequence, the representation of interests is not necessarily balanced, which in turn affects health care policy. We find that the interests of the Dutch health care consumers are well accommodated with the national umbrella organization NPCF in the lead. However, this is no safeguard for the overall community values of good health care since, for example, the interests of the public health sector are likely to be marginalized.

  12. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  13. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  14. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.

    Science.gov (United States)

    Li, Jing; Biel, Thomas; Lomada, Pranith; Yu, Qilin; Kim, Taeyoon

    2017-05-03

    Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.

  15. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  16. Planck intermediate results: VIII. Filaments between interacting clusters

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Castex, G.

    2013-01-01

    . The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures...... of this intercluster medium. We obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 ± 0.2) × 10-4 cm -3. Conclusions. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas. © 2013 ESO....

  17. Mechanosensing through focal adhesion-anchored intermediate filaments

    Czech Academy of Sciences Publication Activity Database

    Gregor, Martin; Osmanagic-Myers, S.; Burgstaller, G.; Wolfram, M.; Fischer, I.; Walko, G.; Resch, G.P.; Jorgl, A.; Herrmann, H.; Wiche, G.

    2014-01-01

    Roč. 28, č. 2 (2014), s. 715-729 ISSN 0892-6638 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : vimentin * plectin * integrin * activation * cellmotility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.043, year: 2014

  18. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  19. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  20. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  1. Aspiperidine oxide, a piperidine N-oxide from the filamentous fungus Aspergillus indologenus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Kildgaard, Sara; Jaspars, Marcel

    2015-01-01

    A novel secondary metabolite, aspiperidine oxide, was isolated from the filamentous fungus, Aspergillus indologenus. The structure of aspiperidine oxide was determined from extensive 1D and 2D NMR spectroscopic analysis supported by high-resolution mass spectrometry. The structure revealed a rare...... piperidine N-oxide, not observed in filamentous fungi before. A biosynthetic pathway towards aspiperidine oxide is proposed, based on tentative identification of intermediates from UHPLC-DAD-HRMS data....

  2. Colloidal transport by active filaments.

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P B Sunil; Adhikari, R

    2017-01-14

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  3. Colloidal transport by active filaments

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.

    2017-01-01

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  4. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  5. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  6. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages.

    Science.gov (United States)

    Korkmaz Zirpel, Nuriye; Park, Eun Jin

    2015-09-01

    Bacteriophages are filamentous polyelectrolyte viral rods infecting only bacteria. In this study, we investigate the bundle formation of fd phages with trivalent cations having different ionic radii (Al(3+) , La(3+) and Y(3+) ) at various phage and counterion concentrations, and at varying bundling times. Aggregated phage bundles were detected at relatively low trivalent counterion concentrations (1 mM). Although 10 mM and 100 mM Y(3+) and La(3+) treatments formed larger and more intertwined phage bundles, Al(3+) and Fe(3+) treatments lead to the formation of networking filaments. Energy dispersive X-ray spectroscopy (EDX) analyses confirmed the presence of C, N and O peaks on densely packed phage bundles. Immunofluorescence labelling and ELISA analyses with anti-p8 antibodies showed the presence of phage filaments after bundling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex.

    Science.gov (United States)

    McFadden, William M; McCall, Patrick M; Gardel, Margaret L; Munro, Edwin M

    2017-12-01

    Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding

  8. Beam distribution function after filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.; Decker, F.J.; Seeman, J.T.

    1995-05-01

    In this paper, the authors calculate the beam distribution function after filamentation (phase-mixing) of a focusing mismatch. This distribution is relevant when interpreting beam measurements and sources of emittance dilution in linear colliders. It is also important when considering methods of diluting the phase space density, which may be required for the machine protection system in future linear colliders, and it is important when studying effects of trapped ions which filament in the electron beam potential. Finally, the resulting distribution is compared with measured beam distributions from the SLAC linac.

  9. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  10. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  11. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...

  12. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then...

  13. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  14. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  15. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  16. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  17. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  18. Femtosecond Laser Filamentation for Atmospheric Sensing

    OpenAIRE

    Huai Liang Xu; See Leang Chin

    2010-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence sp...

  19. Filament Winding Of Carbon/Carbon Structures

    Science.gov (United States)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  20. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    Filaments are clouds of relatively cool and dense gas in the solar atmosphere. ... First-tier filaments may be related to a peculiar feature of the solar dynamo. .... Still, an appeal to subsurface processes should be resisted, but surface motion models have been able to reproduce neither the pattern of filament field orientations ...

  1. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  2. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    according to which, probably all the magnetic flux that emerges into the photosphere is twisted. Twisted flux forms sunspots, active regions (ARs) and filaments. The twist accumulates in filaments and coronal arcades. Eventually the accumulated, highly twisted fields become unstable and erupt. From a study of filament ...

  3. Elasticity of a Filament with Kinks

    Science.gov (United States)

    Razbin, Mohammadhosein

    2017-12-01

    Using the wormlike chain model, we analytically study the elasticity of a filament with kinks. We calculate the position probability density function and the force constant of a kinked filament with a general kink angle. Then, using the mathematical induction, we obtain the positional-orientational probability density function of a filament with regular kinks. For this filament, we compute the force constant in two different directions. In longitudinal direction of the filament, the force constant is proportional to the inverse of the number of the segments, i.e., 1 / m, while in transverse direction, it is proportional to 1/m^3.

  4. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Premchandar, Aiswarya; Mücke, Norbert; Poznański, Jarosław; Wedig, Tatjana; Kaus-Drobek, Magdalena; Herrmann, Harald; Dadlez, Michał

    2016-11-25

    Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. UNUSUAL FILAMENTS INSIDE THE UMBRA

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Sainz Dalda, A., E-mail: kleintl@ucar.edu [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States)

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  6. [Chitinolytic activity of filamentous fungi].

    Science.gov (United States)

    Shubakov, A A; Kucheriavykh, P S

    2004-01-01

    The chitinolytic activity of nine species of filamentous fungi, classified with seven genera (specifically, Aspergillus, Penicillium, Trichoderma, Paecilomyces, Sporotrichum, Beaueria, and Mucor), was studied. When cultured in liquid medium containing 1% crystalline chitin, all fungi produced extracellular chitosans with activity varying from 0.2 U/mg protein (Sporotrichum olivaceum, Mucor sp., etc.) to 4.0-4.2 U/mg protein (Trichoderma lignorum, Aspergillus niger).

  7. Lighting the universe with filaments.

    Science.gov (United States)

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  8. Direct observation of current in type-I edge-localized-mode filaments on the ASDEX Upgrade tokamak.

    Science.gov (United States)

    Vianello, N; Naulin, V; Schrittwieser, R; Müller, H W; Zuin, M; Ionita, C; Rasmussen, J J; Mehlmann, F; Rohde, V; Cavazzana, R; Maraschek, M

    2011-03-25

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n≅10-15) structures (filaments) localized in the perpendicular plane and extended along the field lines. By detailed localized measurements of the magnetic field perturbation associated to type-I ELM filaments, it is shown that these filaments carry a substantial current.

  9. Intermediates and Generic Convergence to Equilibria

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical condition...

  10. Nonlinear Force-free Field Extrapolation of a Coronal Magnetic Flux Rope Supporting a Large-scale Solar Filament from a Photospheric Vector Magnetogram

    Science.gov (United States)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-05-01

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  11. Femtosecond Laser Filamentation for Atmospheric Sensing

    Directory of Open Access Journals (Sweden)

    Huai Liang Xu

    2010-12-01

    Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

  12. Fine oral filaments in Paramecium: a biochemical and immunological analysis.

    Science.gov (United States)

    Clerot, J; Iftode, F; Budin, K; Jeanmaire-Wolf, R; Coffe, G; Fleury-Aubusson, A

    2001-01-01

    In Paramecium, several kinds of the oral networks of fine filaments are defined at the ultrastructural level. Using the sodium chloride-treated oral apparatus of Paramecium as an antigen to produce monoclonal antibodies, we have begun to identify the proteins constituting these networks. Immunoblotting showed that all positive antibodies were directed against three bands (70-, 75-and 83-kD), which corresponded to quantitatively minor components of the antigen; there was no antibody specific for the quantitatively major components (58- and 62-kD). Immunolocalization with four of these antibodies directed against one or several of these three bands showed that these proteins are components of the fine filaments supporting the oral area; a decoration of the basal bodies and the outer lattice was also observed on the cortex. Immunofluorescence on interphase cells suggested that the three proteins colocalized on the left side of the oral apparatus, whereas only the 70-kD band was detected on the right side. During division, the antigens of the antibodies were detected at different stages after oral basal body assembly. The antibodies cross-reacted with the tetrins, which are oral filament-forming proteins in Tetrahymena, demonstrating that tetrin-related proteins are quantitatively minor components of the oral and the somatic cytoskeleton of Paramecium.

  13. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  14. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S. [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Li, T. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Zheng, R. S., E-mail: zhangqm@pmo.ac.cn [Institute of Space Sciences, Shandong University, Weihai 264209 (China)

    2017-06-10

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  15. Assembly of Superparamagnetic Filaments in External Field.

    Science.gov (United States)

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.

  16. Chaperonin filaments: The archaeal cytoskeleton?

    Science.gov (United States)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  17. Current state of genome-scale modeling in filamentous fungi

    DEFF Research Database (Denmark)

    Brandl, Julian; Andersen, Mikael Rørdam

    2015-01-01

    capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before...... testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique...... metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi....

  18. Regulated 15-V, 7500-A, neutral-beam filament supply

    International Nuclear Information System (INIS)

    Reass, W.

    1977-01-01

    Lawrence Livermore Laboratory (LLL) designed a cost-effective, regulated 15-V, 7500-A filament supply for use with the High-Voltage Test Stand , a major ERDA developmental neutral-beam test facility. The filament supply can float to 200 kV and can provide pulse widths up to 30 s. Powered by a 24-V, 0.5-TJ battery bank, it avoids the use of expensive isolation transformers and induction voltage regulators (IVR's). Battery output is regulated by a water-cooled resistor-contactor combination in which contactors are closed in sequential format to create a staircase current waveform. A fine-tuning network tunes in-between the ''steps'' for regulation to less than 0.5 percent. The regulator is digitally controlled except for the sense amplifiers, which are optically coupled to the digital controller. All ground telemetry uses optical links to minimize effects of rfi and emi noise in the data channels

  19. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    Science.gov (United States)

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  20. Subcutaneous implants of polypropylene filaments.

    Science.gov (United States)

    Liebert, T C; Chartoff, R P; Cosgrove, S L; McCuskey, R S

    1976-11-01

    Extruded filaments of unmodified polypropylene (PP) with and without antioxidant were implanted subcutaneously in hamsters in order to determine their rate of degradation. Specimens were removed periodically during a 5 month test period and analyzed by infrared spectroscopy and dynamic mechanical testing. The analyses show that degradation beigns to occur after only a few days. Although the reaction sequence is not known, several factors suggest that the in vivo degradation process is similar to autoxidation which occurs in air or oxygen. The infrared data indicate that the hydroxyl content of the implants increases at a rate of 0.061 mg/g polypropylene per day during the initiation phase of the reaction. An induction time of 108 days was extablished. Carbonyl bonds appear after an implantation time of 50--90 days and increase therafter. Mechanical tests indicate a decrease in the dynamic loss tangent, tan delta, during the first month of implantation for unmodified polypropylene. No change in the infrared spectra or tan delta was observed, however, for implants containing an antioxidant. Thus, it is apparent that polypropylene filaments implanted subcutaneously in hamsters degrade by an oxidation process which is retarded effectively by using an antioxidant. While the findings reported are specific to subcutaneous polypropylene implants, they suggest that degradation of other systems may involve similar processes. This notion suggests directions for further research on increasing the in vivo stability of synthetic polymers. Long-term effects of polymer implantation upon tissue were not studied in this work.

  1. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available This paper reports on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological...

  2. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  3. A First Approach to Filament Dynamics

    Science.gov (United States)

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  4. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  5. Kinetics of filamentous phage assembly

    Science.gov (United States)

    Ploss, Martin; Kuhn, Andreas

    2010-12-01

    Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.

  6. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved...... in polarity establishment and maintenance, cytoskeleton dynamics and intracellular transport. The first part of this thesis addresses the A. gossypii Arf3 small GTPase and its GEF- and GAP regulators; Yel1 and Gts1, which has been implicated in polar growth in a wide range of organisms. We could demonstrate......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...

  7. Polar patterns of driven filaments.

    Science.gov (United States)

    Schaller, Volker; Weber, Christoph; Semmrich, Christine; Frey, Erwin; Bausch, Andreas R

    2010-09-02

    The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system

  8. Liquid droplets of cross-linked actin filaments

    Science.gov (United States)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  9. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  10. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  11. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  12. Current filamentation in high-current diodes

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Kuksov, P.V.; Fanchenko, S.D.; Shuvaev, V.Y.

    1988-01-01

    Experimental data are reported on the filamentation of a high-current relativistic electron beam in the Kal'mar-1 relativistic-electron-beam source. A possible mechanism for this filamentation is studied theoretically. It is shown that the experimental results on the number of filaments into which the relativistic electron beam breaks up can be explained on the basis of an azimuthal nonuniformity of the current. This nonuniformity develops in the plasma near the cathode as the result of a Rayleigh--Taylor electron instability

  13. Membrane Buckling Induced by Curved Filaments

    Science.gov (United States)

    Lenz, Martin; Crow, Daniel J. G.; Joanny, Jean-François

    2009-07-01

    We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.

  14. Biophysically realistic filament bending dynamics in agent-based biological simulation.

    Directory of Open Access Journals (Sweden)

    Jonathan B Alberts

    Full Text Available An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions--following thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear centration, cytokinesis, the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed (or theoretically expected static force deflection, relaxation time-constant, and thermal writhing motions. I additionally employ a unique pair of elastic elements--one representing the axial and the other the bending rigidity- that formulate the restoring force in terms of single time-step constraint resolution. This method is highly local -adjacent rigid segments of a filament only interact with one another through constraint forces-and is thus well-suited to simulations in which arbitrary additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements between filaments may be present. Implementation in code is straightforward; Java source code is available at www.celldynamics.org.

  15. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  16. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  17. Two-step solar filament eruptions

    Science.gov (United States)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  18. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  19. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen MJ; Stricker RB

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  20. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  1. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  2. Dynamics of contracting surfactant-covered filaments

    Science.gov (United States)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  3. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  4. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    Science.gov (United States)

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  5. Network Coding

    Indian Academy of Sciences (India)

    message symbols downstream, network coding achieves vast performance gains by permitting intermediate nodes to carry out algebraic oper- ations on the incoming data. In this article we present a tutorial introduction to network coding as well as an application to the e±cient operation of distributed data-storage networks.

  6. Network Coding

    Indian Academy of Sciences (India)

    Network coding is a technique to increase the amount of information °ow in a network by mak- ing the key observation that information °ow is fundamentally different from commodity °ow. Whereas, under traditional methods of opera- tion of data networks, intermediate nodes are restricted to simply forwarding their incoming.

  7. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime.

    Science.gov (United States)

    Skrodzki, P J; Burger, M; Jovanovic, I

    2017-10-06

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. We investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficiencies for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr . Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr , emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.

  8. Role of multiple filaments in self-accelerating actions of laser filamentation in air

    Science.gov (United States)

    Hu, Yuze; Nie, Jinsong; Sun, Ke

    2017-11-01

    The nonlinear dynamics of multiple filaments in self-accelerating actions by using corrected accelerating parabolic beams (CAPBs) are numerically investigated. By increasing the number of main lobes, the curved filaments can be elongated, leading to a longer displacement. The replenished energy originating from curved multiple filaments (MFs) that constructively interfere with the central one plays a crucial role in the phenomenon. At the bifurcation position, a beam pattern in which secondary lobes tightly follow the main lobes is formed, which is beneficial for the accelerating action of MFs. A new curved filament is generated due to the merging of side-curved MFs, and its accelerating strength decreases gradually with further propagation. Moreover, a special spatiotemporal profile that enhances the possibility of acceleration is also formed. The use of the accelerating beam with the appropriate amount of main lobes provides a new approach to elongate curved filaments.

  9. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...

  10. an intermediate moisture meat

    African Journals Online (AJOL)

    Bunmi

    Matured leaves of Ocimum gratissimum were harvested and the extracts used to cure. Suya (an intermediate moisture meat). O. gratissimum leaves were collected from. Oyo state south west region of Nigeria, rinsed in distilled water and squeezed to extract the fluid. The meat used was Semi membranosus muscle from beef ...

  11. Filamentous Influenza Virus Enters Cells via Macropinocytosis

    Science.gov (United States)

    Rossman, Jeremy S.; Leser, George P.

    2012-01-01

    Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes. PMID:22875971

  12. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  13. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Structure of Flexible Filamentous Plant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald (IIT); (BU-M); (Vanderbilt); (Kentucky); (BNL)

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  15. Interaction of Two Filaments in a Long Filament Channel Associated with Twin Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Du, Guohui; Li, Chuanyang [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209 Weihai (China); Zhang, Qingmin [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yang, Kai, E-mail: ruishengzheng@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2017-02-20

    Using the high-quality observations of the Solar Dynamics Observatory , we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanied by post-eruption loops and flare ribbons. This likely indicated a large-scale eruption involving the long filament channel, which resulted from the interaction between F1 and the east filament (F2). Some bright plasma flew over F2, and F2 stayed at rest during the eruption, likely due to the confinement of its overlying lower magnetic field. Interestingly, the impulsive F1 pushed its overlying magnetic arcades to form the first CME, and F1 finally evolved into the second CME after the collision with the nearby coronal hole. We suggest that the interaction of F1 and the overlying magnetic field of F2 led to the merging reconnection that forms a longer eruptive filament loop. Our results also provide a possible picture of the origin of twin CMEs and show that the large-scale magnetic topology of the coronal hole is important for the eventual propagation direction of CMEs.

  16. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  17. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  18. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  19. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  20. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  1. Differential mapping of the free barbed and pointed ends of actin filaments in cells.

    Science.gov (United States)

    Ofer, Noa; Abu Shah, Enas; Keren, Kinneret

    2014-06-01

    The actin cytoskeleton plays a pivotal role in many cellular processes. Detailed analysis of the architecture of cellular actin networks provides valuable insight into the dynamic self-organization underlying these processes. In particular, since most of the actin turnover occurs at the tips of actin filaments, it is insightful to map the distribution of filament ends. Here we report a method for differentially labeling the pointed and the barbed ends of actin filaments in cellular networks by permeabilizing cells, following a brief fixation, and introducing labeled actin monomers in the presence or absence of capping protein, respectively. This method quantitatively maps the distributions of free barbed ends and free pointed ends in adherent cells, providing information on the polarity of cytoskeletal structures and mapping active sites available for actin assembly or disassembly. We demonstrate the use of this method by mapping the distribution of actin filament ends in motile fish epithelial keratocytes and in several mammalian cell lines, and show that free barbed ends are enriched near the tip of protruding lamellipodia while free pointed ends concentrate toward the rear. © 2014 Wiley Periodicals, Inc.

  2. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    Science.gov (United States)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  3. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  4. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B.; Mandel, U.

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  5. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  6. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  7. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  8. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  9. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo...

  10. Evolution of genetic systems in filamentous ascomycetes

    NARCIS (Netherlands)

    Nauta, M.J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied,

  11. Featured Image: A Filament Forms and Erupts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    This dynamic image of active region NOAA 12241 was captured by the Solar Dynamics Observatorys Atmospheric Imaging Assembly in December 2014. Observations of this region from a number of observatories and instruments recently presented by Jincheng Wang (University of Chinese Academy of Sciences) and collaborators reveal details about the formation and eruption of a long solar filament. Wang and collaborators show that the right part of the filament formed by magnetic reconnection between two bundles of magnetic field lines, while the left part formed as a result of shearing motion. When these two parts interacted, the filament erupted. You can read more about the teams results in the article linked below. Also, check out this awesome video of the filament formation and eruption, again by SDO/AIA:http://cdn.iopscience.com/images/0004-637X/839/2/128/Full/apjaa6bf3f1_video.mp4CitationJincheng Wang et al 2017 ApJ 839 128. doi:10.3847/1538-4357/aa6bf3

  12. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    The 'seeing' dependent contrast of the Hα pictures is the source of uncertainties during the measurements on ... Results of measurements and conclusions. Heliographic position of the filaments is measured on the full disc Hα pictures taken ... consecutive magnetic synoptic charts. Two arrays of corresponding velocities are ...

  13. Mapping the filaments in NGC 1275

    Science.gov (United States)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  14. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  15. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    Science.gov (United States)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-01

    We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L chain model with step size d and persistence length ℓp, hitting a hard wall. Explicit properties require the computation of the mean force f ¯ i ( L ) exerted by the wall at L and associated potential f ¯ i ( L ) = - d W i ( L ) / d L on a filament of fixed size i. By original Monte-Carlo calculations for few filament lengths in a wide range of compression, we justify the use of the weak bending universal expressions of Gholami et al. [Phys. Rev. E 74, 041803 (2006)] over the whole non-escaping filament regime. For a filament of size i with contour length Lc = (i - 1) d, this universal form is rapidly growing from zero (non-compression state) to the buckling value f b ( L c , ℓ p ) = /π 2 k B T ℓ p 4 Lc 2 over a compression range much narrower than the size d of a monomer. Employing this universal form for living filaments, we find that the average force exerted by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1

  16. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  17. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  18. Standing waves in a counter-rotating vortex filament pair

    Science.gov (United States)

    García-Azpeitia, Carlos

    2018-03-01

    The distance among two counter-rotating vortex filaments satisfies a beam-type of equation according to the model derived in [15]. This equation has an explicit solution where two straight filaments travel with constant speed at a constant distance. The boundary condition of the filaments is 2π-periodic. Using the distance of the filaments as bifurcating parameter, an infinite number of branches of periodic standing waves bifurcate from this initial configuration with constant rational frequency along each branch.

  19. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  20. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  1. Fabrication of Polylactide Nanocomposite Filament Using Melt Extrusion and Filament Characterization for 3D Printing

    Science.gov (United States)

    Jain, Shrenik Kumar

    Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.

  2. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    Science.gov (United States)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  3. The Novel Desmin Mutant p.A120D Impairs Filament Formation, Prevents Intercalated Disk Localization, and Causes Sudden Cardiac Death

    DEFF Research Database (Denmark)

    Brodehl, Andreas; Dieding, Mareike; Klauke, Bärbel

    2013-01-01

    The intermediate filament protein desmin is encoded by the gene DES and contributes to the mechanical stabilization of the striated muscle sarcomere and cell contacts within the cardiac intercalated disk. DES mutations cause severe skeletal and cardiac muscle diseases with heterogeneous phenotype...

  4. Synthesis and functionalization of coiled carbon filaments

    Science.gov (United States)

    Hikita, Muneaki

    Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs

  5. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  6. Morphogenesis of filaments growing in flexible confinements

    Science.gov (United States)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2014-07-01

    Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.

  7. SWAYING THREADS OF A SOLAR FILAMENT

    International Nuclear Information System (INIS)

    Lin, Y.; Engvold, O.; Langangen, Oe.; Rouppe van der Voort, L. H. M.; Soler, R.; Ballester, J. L.; Oliver, R.

    2009-01-01

    From recent high-resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory characters of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic (MHD) theory. Kink MHD waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfven speed and magnetic field strength by means of seismological arguments.

  8. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  9. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii , Borrelia miyamotoi , and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  10. Statistical study of solar filaments since 1919

    Science.gov (United States)

    Aboudarham, Jean

    2016-04-01

    Science board of Paris Observatory funded the data capture of tables associated with Meudon synoptic maps of Solar activity, which were published for observations ranging from 1919 to 1992. The EU HELIO project developed automatic recognition codes, especially concerning filaments based on observations between 1996 en 2014 (and soon, up to now). We plan to fill the gap between the two catalogues in the short term. But it is already possible to study filaments behavior over quite long periods of time. We present here the first series of results obtained from this analysis which give some clue about the way Solar activity behaves in various parts of the cycle, and about the way if depends on the hemisphere where activity occurs. This information could then be correlated with events catalogues (e.g. flares, CMEs, …) in order to link those phenomena with concrete Solar activity.

  11. Actin organization and dynamics in filamentous fungi.

    Science.gov (United States)

    Berepiki, Adokiye; Lichius, Alexander; Read, Nick D

    2011-11-02

    Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.

  12. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  13. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface. We...... observed the chemotactic patterns of single filaments in a transparent agar medium and scored their reversals and the glided distances between reversals. Filaments within the preferred microenvironment glided distances shorter than their own length between reversals that anchored them in their position...... as a microbial mat. Filaments in the oxic region above the mat or in the sulfidic, anoxic region below the mat glided distances longer than the filament length between reversals. This reversal behavior resulted in a diffusion-like spreading of the filaments. A numerical model of such gliding filaments...

  14. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  15. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  16. A first approach to filament dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  17. The Magnetic Structure of Filament Barbs

    Science.gov (United States)

    Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk

    2005-06-01

    There is a controversy about how features protruding laterally from filaments, called barbs, are magnetically structured. On 2004 August 3, we observed a filament that had well-developed barbs. The observations were performed using the 10 inch refractor of the Big Bear Solar Observatory. A fast camera was employed to capture images at five different wavelengths of the Hα line and successively record them on the basis of frame selection. The terminating points of the barbs were clearly discernable in the Hα images without any ambiguity. The comparison of the Hα images with the magnetograms taken by SOHO MDI revealed that the termination occurred above the minor polarity inversion line dividing the magnetic elements of the major polarity and those of the minor polarity. There is also evidence that the flux cancellation proceeded on the polarity inversion line. Our results together with similar other recent observations support the idea that filament barbs are cool matter suspended in local dips of magnetic field lines, formed by magnetic reconnection in the chromosphere.

  18. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  19. A first approach to filament dynamics

    International Nuclear Information System (INIS)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  20. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  1. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  2. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    Science.gov (United States)

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503

  3. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  4. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. © 2015. Published by The Company of Biologists Ltd.

  5. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  6. Patterns of molecular motors that guide and sort filaments.

    Science.gov (United States)

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  7. Information acquisition and financial intermediation

    OpenAIRE

    Boyarchenko, Nina

    2012-01-01

    This paper considers the problem of information acquisition in an intermediated market, where the specialists have access to superior technology for acquiring information. These informational advantages of specialists relative to households lead to disagreement between the two groups, changing the shape of the intermediation-constrained region of the economy and increasing the frequency of periods when the intermediation constraint binds. Acquiring the additional information is, however, cost...

  8. Intermediate inputs and economic productivity.

    Science.gov (United States)

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  9. Filament Eruptions, Jets, and Space Weather

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  10. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  11. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  12. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  13. The elastic modulus of isolated polytetrafluoroethylene filaments

    Directory of Open Access Journals (Sweden)

    Patrick Drawe

    2014-09-01

    Full Text Available We report vibrational Raman spectra of small extended perfluoro-n-alkanes (CnF2n+2 with n = 6, 8–10, 12–14 isolated in supersonic jet expansions and use wavenumbers of longitudinal acoustic vibrations to extrapolate the elastic modulus of cold, isolated polytetrafluoroethylene filaments. The derived value E = 209(10 GPa defines an upper limit for the elastic modulus of the perfectly crystalline, noninteracting polymer at low temperatures and serves as a benchmark for quantum chemical predictions.

  14. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  15. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  16. Multiple filamentation generated by focusing femtosecond laser with axicon.

    Science.gov (United States)

    Sun, Xiaodong; Gao, Hui; Zeng, Bin; Xu, Shengqi; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan; Mu, Guoguang

    2012-03-01

    Multiple filamentation has been observed when focusing a femtosecond laser pulse into a methanol solution with an axicon. It is found that multiple long filaments are located on the central spot and ring structures of the quasi-Bessel beam created by the axicon. Since the quasi-Bessel profile is determined by the axicon properties, the axicon has been suggested as a simple optics to control multiple filaments. © 2012 Optical Society of America

  17. Observations of the Growth of an Active Region Filament

    Science.gov (United States)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  18. Native bare zone assemblage nucleates myosin filament assembly.

    Science.gov (United States)

    Niederman, R; Peters, L K

    1982-11-15

    Native myosin filaments from rabbit psoas muscle are always 1.5 micrometer long. The regulated assembly of these filaments is generally considered to occur by an initial antiparallel and subsequent parallel aggregation of identical myosin subunits. In this schema myosin filament length is controlled by either a self-assembly or a Vernier process. We present evidence which refines these ideas. Namely, that the intact myosin bare zone assemblage nucleates myosin filament assembly. This suggestion is based on the following experimental evidence. (1) A native bare zone assemblage about 0.3 micrometer long can be formed by dialysis of native myosin filaments to either a pH 8 or a 0.2 M-KCl solution. (2) Upon dialysis back to 0.1 M-KCl, bare zone assemblages and distal myosin molecules recombine to form 1.5 micrometer long bipolar filaments. (3) The bare zone assemblage can be separated from the distal myosin molecules by column chromatography in 0.2 M-KCl. Upon dialysis of the fractionated subsets back to 0.1 M-KCl, the bare zone assemblage retains its length of about 0.3 micrometer. However, the distal molecules reassemble to form filaments about 5 micrometers long. (4) Filaments are formed from mixes of the isolated subsets. The lengths of these filaments vary with the amount of distal myosin present. (5) When native filaments, isolated bare zone assemblages or distal myosin molecules are moved sequentially to 0.6 M-KCl and then to 0.1 M-KCl, the final filament lengths are all about 5 micrometers. The capacity of the bare zone assemblage to nucleate filament assembly may be due to the bare zone myosin molecules, the associated M band components or both.

  19. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  20. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  1. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  2. Statistical Study of the Magnetic Field Orientation in Solar Filaments

    Science.gov (United States)

    Hanaoka, Yoichiro; Sakurai, Takashi

    2017-12-01

    We have carried out a statistical study of the average orientation of the magnetic field in solar filaments with respect to their axes for more than 400 samples, based on data taken with daily full-Sun, full-Stokes spectropolarimetric observations using the He I 1083.0 nm line. The major part of the samples are the filaments in the quiet areas, but those in the active areas are included as well. The average orientation of the magnetic field in filaments shows a systematic property depending on the hemisphere; the direction of the magnetic field in filaments in the northern (southern) hemisphere mostly deviates clockwise (counterclockwise) from their axes, which run along the magnetic polarity inversion line. The deviation angles of the magnetic field from the axes are concentrated between 10° and 30°. This hemispheric pattern is consistent with that revealed for chirality of filament barbs, filament channels, and for other solar features found to possess chirality. For some filaments, it was confirmed that their magnetic field direction is locally parallel to their structure seen in Hα images. Our results for the first time confirmed this hemispheric pattern with the direct observation of the magnetic field in filaments. Interestingly, the filaments which show the opposite magnetic field deviation to the hemispheric pattern, are in many cases found above the polarity inversion line whose ambient photospheric magnetic field has the polarity alignment being opposite to that of active regions following the Hale–Nicholson law.

  3. Spatial evolution of laser filaments in turbulent air

    Science.gov (United States)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  4. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  5. MATERIAL SUPPLY AND MAGNETIC CONFIGURATION OF AN ACTIVE REGION FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: fangc@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-11-10

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  6. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Alexandra L. [Univ. of Pennsylvania, Philadelphia, PA (United States); Kiselar, Janna [Case Western Reserve Univ., Cleveland, OH (United States); Ilchenko, Serguei [Case Western Reserve Univ., Cleveland, OH (United States); Komatsu, Hiroaki [Univ. of Pennsylvania, Philadelphia, PA (United States); Chance, Mark R. [Case Western Reserve Univ., Cleveland, OH (United States); Axelsen, Paul H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2014-11-09

    The structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. When we combined mass-per-length measurements performed by dark-field electron microscopy, we determined that the results of our study were consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. Our results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide.

  7. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  8. Morgellons disease: a filamentous borrelial dermatitis

    Directory of Open Access Journals (Sweden)

    Middelveen MJ

    2016-10-01

    Full Text Available Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. Keywords: Morgellons disease, dermatitis, Lyme disease, Borrelia burgdorferi, spirochetes

  9. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Roetter, Daniel Enrique Lucani

    2015-01-01

    incorporate content caching and storage, all of which are key challenges of the future Internet and the upcoming 5G networks. This paper proposes some of the keys behind this intersection and supports it with use cases as well as a an implementation that integrated the Kodo library (NC) into OpenFlow (SDN......Software Defined Networking (SDN) and Network Coding (NC) are two key concepts in networking that have garnered a large attention in recent years. On the one hand, SDN's potential to virtualize services in the Internet allows a large flexibility not only for routing data, but also to manage...... buffering, scheduling, and processing over the network. On the other hand, NC has shown great potential for increasing robustness and performance when deployed on intermediate nodes in the network. This new paradigm changes the dynamics of network protocols, requiring new designs that exploit its potential...

  10. A catalytic oligomeric motor that walks along a filament track

    Science.gov (United States)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  11. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  12. Application of digital holography to filament size analysis

    NARCIS (Netherlands)

    Semin, N.V.; Poelma, C.; Drost, S.; Westerweel, J.

    2010-01-01

    The potential of in-line digital holography to locate and measure the size and position of filaments, i.e. thin wire-like objects, distributed throughout a thick volume has been investigated. In this paper two approaches are introduced to study filaments of varying diameter. (1) It is shown

  13. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  14. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  15. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  16. Method for simultaneously coating a plurality of filaments

    Science.gov (United States)

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  17. Cellulase activity of filamentous fungi induced by rice husk | Oliveros ...

    African Journals Online (AJOL)

    Cellulase activity of filamentous fungi induced by rice husk. DF Oliveros, N Guarnizo, EM Perea, WM Arango. Abstract. The objective of this study was to determine the potential of different filamentous fungi to degrade cellulose in rice husk pre-treated with steam explosion or alkaline hydrolysis. A preliminary test performed ...

  18. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  19. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  20. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  1. A Model of Filamentous Cyanobacteria Leading to Reticulate Pattern Formation

    Directory of Open Access Journals (Sweden)

    Carlos Tamulonis

    2014-09-01

    Full Text Available The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these fossils, which are billions of years old, directly to the specific microorganisms that built them. Identifying the physicochemical conditions and microorganism properties that lead microbial mats to form macroscopic structures can lead to a better understanding of the conditions on Earth at the dawn of life. In this article, a cell-based model is used to simulate the formation of reticulate patterns in cultures of Pseudanabaena. A minimal system of long and flexible trichomes capable of gliding motility is shown to be sufficient to produce stable patterns consisting of a network of streams. Varying model parameters indicate that systems with little to no cohesion, high trichome density and persistent movement are conducive to reticulate pattern formation, in conformance with experimental observations.

  2. Axonal Actin Transport Driven By Metastable Actin Filaments

    Science.gov (United States)

    Chakrabarty, Nilaj; Ganguly, Archan; Roy, Subhojit; Jung, Peter

    Actin is one of the key constituents of the neuronal cytoskeleton and is responsible for driving important cellular processes like axon elongation. Axonal actin is synthesized in the cell body and transported at rates of 0.25 - 3 mm/day, as shown by in-vivo pulse-chase radiolabelling studies. However, the underlying transport mechanisms are unknown. Recent experiments in cultured neurons have revealed a dynamic network of metastable actin filaments (actin trails). Actin trails seem to originate from focal actin hotspots which colocalize with stationary endosomes. Interestingly, the number of actin trails extending anterogradely is higher than the ones extending retrogradely. We hypothesize that the bulk axonal transport of actin originates from this directional asymmetry of the number of actin trails. To test this, we constructed a computational model of actin trail growth and simulated the pulse-chase experiment. In our model, local, metastable trails, which grow with their barbed ends anchored to the hotspots, drive the bulk anterograde transport. Our results indicate that the observed bias of the nucleation probabilities and the elongation rate of actin trails are sufficient to drive the bulk transport of actin at rates that agree with in-vivo pulse chase experiments.

  3. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, M.; Rosenvinge, F. S.; Spillum, E.

    2015-01-01

    Background: Antibiotics of the beta-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... displaying different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 beta-lactam antibiotics or beta-lactam-beta-lactamase inhibitor combinations were analyzed...... in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results: Three E. coli strains...

  4. Bursting of filaments in the plasma focus

    International Nuclear Information System (INIS)

    Gratton, F.T.L.

    1976-01-01

    Photographs of the current sheath of (low energy) plasma focus show a disruption of the filaments. This phenomenon is interpreted as a vortex breakdown. Physical parameters which support this hypothesis are obtained from measurements, from the theoretical thickness of the current sheath given by Nardi and from some models of the plasma flow. The widening of a vortex due to axial velocity increase is analyzed by means of magnetohydrodynamic collinear models. The main results are: (1) the existence of a limit separating supercritical from subcritical regimes (their character changes with the ratio between kinetic and magnetic energy); (2) the existence of flow regimes where the vortex radius remains approximately constant for moderate increments of the external velocity; (3) the structure of the vortex may change substantially for a sufficiently large increment of the external velocity, even in subcritical states; (4) the possibility that a burst of the vortex may occur when the external velocity suffers a slowdown

  5. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  6. Engineering of filamentous bacteriophage for protein sensing

    Science.gov (United States)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  7. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  8. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  9. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  10. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  11. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  12. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  13. Harmful impact of filamentous algae (Spirogyra sp. on juvenile crayfish

    Directory of Open Access Journals (Sweden)

    Ulikowski Dariusz

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch., in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 under natural thermal conditions and fed a commercial feed. The results indicated that the presence of the filamentous algae did not have a statistically significant impact on the growth of the juvenile crayfish (P > 0.05. The presence of the filamentous algae had a strong negative impact on juvenile crayfish survival and stock biomass (P < 0.05. The layer of gravel and small stones that imitated the mineral substrate of natural aquatic basins somewhat neutralized the disadvantageous impact the filamentous algae had on the crayfish.

  14. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  15. Microwave structure of quiescent solar filaments at high resolution

    International Nuclear Information System (INIS)

    Gary, D.E.

    1986-01-01

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  16. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  17. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  18. Gravity with Intermediate Goods Trade

    Directory of Open Access Journals (Sweden)

    Sujin Jang

    2017-12-01

    Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.

  19. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer...... transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural...... the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness....

  20. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Teixeira, Paula S. [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180, Wien (Austria); Zapata, Luis A., E-mail: satoko_t@asiaa.sinica.edu.tw [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan 58090 (Mexico)

    2013-01-20

    We present a high angular resolution map of the 850 {mu}m continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 Multiplication-Sign 2.'0 (0.88 Multiplication-Sign 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H{sub 2} mass between 0.3-5.7 M {sub Sun} and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n{sub H{sub 2}}{>=}10{sup 6} cm{sup -3}), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of Almost-Equal-To 17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud ( Almost-Equal-To 35 pc), large-scale clumps ( Almost-Equal-To 1.3 pc), and small-scale clumps ( Almost-Equal-To 0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  1. Failure and nonfailure of fluid filaments in extension

    DEFF Research Database (Denmark)

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    1998-01-01

    The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain...

  2. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring viscoela......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...... to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially...

  3. The Apis mellifera Filamentous Virus Genome

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  4. Intermediate Infrastructure Analyst | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The incumbent conducts research on technologies and tools that might enhance service delivery and where appropriate, makes recommendations to management. The Intermediate Infrastructure System Analyst provides leadership and direction to junior team members and functional direction to consultants and ...

  5. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  6. Biofilms from a Brazilian water distribution system include filamentous fungi.

    Science.gov (United States)

    Siqueira, V M; Oliveira, H M B; Santos, C; Paterson, R R M; Gusmão, N B; Lima, N

    2013-03-01

    Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4',6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.

  7. Health Risks Associated with Exposure to Filamentous Fungi

    Science.gov (United States)

    Egbuta, Mary Augustina; Mwanza, Mulunda

    2017-01-01

    Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties. PMID:28677641

  8. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    Keywords: activated sludge, denitrification, glycogen accumulating organisms, filamentous bacteria, phosphorus removal. Introduction. Biological nutrient removal (BNR) has gained attention over chemical nutrient removal because of the high cost of the chemi- cal process and the large sludge volumes produced.

  9. Method for preparing metallated filament-wound structures

    Science.gov (United States)

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  10. Positrusion Filament Recycling System for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Positrusion ISS Recycler enables recycling of scrap and waste plastics into high-quality filament for 3D printers to enable sustainable in-situ manufacturing on...

  11. UHECR acceleration in dark matter filaments of cosmological structure formation

    Science.gov (United States)

    Malkov, M. A.; Sagdeev, R. Z.; Diamond, P. H.

    2011-04-01

    A mechanism for proton acceleration to ~ 1021 eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by E × B drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p⊥2/B(r). Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this `betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax = eBR for an accelerator with magnetic field B and the orbit radius R (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. To escape the filament, accelerated particles must have gyro-radii comparable with the filament radius. Therefore, the mechanism requires pre-acceleration that is likely to occur in large scale shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators, with a firm upper limit ~ 1019.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy ~ 1021 eV. A customary requirement on accelerator power to reach a given Emax, which is placed by the accelerator energy dissipation proptoEmax2/Z0 due to the finite vacuum impedance Z0, is circumvented by the cyclic operation of the accelerator.

  12. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    Science.gov (United States)

    2015-02-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 29-04-2015 Journal Article Impact of submesoscale processes on dynamics of phytoplankton ...in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a...filaments are 3 -4 times weaker. coastal processes; upwelling, submesoscale processes, phytoplankton filaments Unclassified Unclassified Unclassified UU 13 Igor Shulman (228) 688-5646 Reset

  13. The architecture and fine structure of gill filaments in the brown ...

    African Journals Online (AJOL)

    Special attention was paid to filament architecture, ennervation of filaments, number and type of cells populating filament epithelia and variations in epithelial cell morphology and cilia ultrastructure. Filament shape was maintained by thickened chi-tln and strategically placed smooth myocytes. The epithelium was populated ...

  14. Treadmilling of actin filaments via Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2010-10-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

  15. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  16. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  17. The electric toothbrush: analysis of filaments under stereomicroscope.

    Science.gov (United States)

    Checchi, L; Farina, E; Felice, P; Montevecchi, M

    2004-08-01

    The use of manual and electric toothbrushes has a fundamental role in primary prevention in oral hygiene. However, aggressive use of the toothbrush, especially those with non-rounded filaments, can result in lesions in both soft and hard oral tissue. Without doubt, the electric toothbrush is a useful aid for the patient, and it is therefore interesting to evaluate not only its effectiveness in plaque removal, but also the relationship between morphology of filaments and incidence of muco-gingival pathologies. The aim of this research was to evaluate various forms of bristles of electric toothbrushes under a stereomicroscope vision. Brushes tested included two samples of toothbrushes from six different types. Tufts from the same position on the toothbrush head were removed and examined under stereomicroscope. In this study the percentage of rounded filaments that is considered acceptable and non-traumatic was evaluated according to the Silverstone and Featherstone classification. Morphological analysis of electric toothbrush filaments revealed a low percentage of rounded filaments. In only four of 12 electric toothbrushes tested there were more than 50% of the filaments rounded in appearance.

  18. Effect of Filament Fineness on Composite Yarn Residual Torque

    Directory of Open Access Journals (Sweden)

    Sarıoğlu Esin

    2018-03-01

    Full Text Available Yarn residual torque or twist liveliness occurs when the twist is imparted to spin the fibers during yarn formation. It causes yarn snarling, which is an undesirable property and can lead the problems for further processes such as weaving and knitting. It affects the spirality of knitted fabrics and skewness of woven fabrics. Generally, yarn residual torque depends on yarn twist, yarn linear density, and fiber properties used. Composite yarns are widely produced to exploit two yarns with different properties such on optimum way at the same time and these yarns can be produced by wrapping sheath fibers around filament core fiber with a certain twist. In this study, the effect of filament fineness used as core component of composite yarn on residual torque was analyzed. Thus, the false twist textured polyester filament yarns with different filament fineness were used to produce composite yarns with different yarn count. The variance analysis was performed to determine the significance of twist liveliness of filament yarns and yarn count on yarn twist liveliness. Results showed that there is a statistically significant differences at significance level of α=0.05 between filament fineness and yarn residual torque of composite yarns.

  19. Optical and electrical properties of a spiral LED filament

    Science.gov (United States)

    Wang, Liping; Zou, Jun; Yang, Bobo; Li, Wenbo; Li, Yang; Shi, Mingming; Zhu, Wei; Zhang, Canyun; Wang, Fengchao; Lin, Yujie

    2018-02-01

    This paper introduces a new type of spiral white light-emitting diodes (WLED) filament with high luminous efficiency and uniform optical performance. The optical and thermal properties of the flexible filament were investigated at different stretching heights, namely 0, 1, 2, and 3 cm. The results indicated that the filament showed the best optical characteristics at the stretching height of 2 cm, because of good heat dissipation. In addition, the radiation temperature of the filament was inversely proportional to the output luminous flux. The reliability of the filament at a stretching height of 2 cm was also evaluated after 1000 h of use. The result demonstrated that the luminous flux decay of the bulb was only 0.85%. The flexible spiral WLED filament exhibiting high luminous flux and good reliability could be adapted to promote industrial development in the near future. Project supported by the National Nature Science Foundation of China (No. 51302171), the Science and Technology Commission of Shanghai Municipality (CN) (No. 14500503300), the Shanghai Municipal Alliance Program (No. Lm201547), the Shanghai Cooperative Project (No. ShanghaiCXY-2013-61), and the Jiashan County Technology Program (No. 20141316).

  20. Experimental study of infrared filaments under different initial conditions

    Science.gov (United States)

    Mirell, Daniel Joseph

    In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light

  1. Filamented plasmas in laser ablation of solids

    Science.gov (United States)

    Davies, J. R.; Fajardo, M.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.

    2009-03-01

    We report results from laser-solid experiments at PALS using an x-ray laser probe with a pulse length of 0.1 ns and a wavelength of 21.2 nm. A laser with a pulse length of 0.3 ns, a peak intensity of up to 5 × 1013 W cm-2 and a wavelength of 1.3 µm was focused to a 0.15 mm wide line on 3 mm long zinc and 1 mm long iron targets and the probe was passed along the length of the plasma formed. The results show plasma 'hairs', or filaments, appearing only below the critical density, 0.1 ns before the peak of the laser pulse. The plasma around the critical density was clearly imaged and remained uniform. Magneto-hydrodynamic modelling indicates that this is caused by a magnetic field that diffuses from the critical surface, where it is generated, leading to a magnetic pressure comparable to the plasma pressure below the critical density. A dispersion relation is derived for density perturbations perpendicular to a temperature gradient in the presence of an existing magnetic field, which shows that such perturbations always grow, with the growth rate being the greatest for small wavelength perturbations and at low densities. These results indicate that the hair-like structures should be a typical feature of laser ablated plasmas below the critical density following significant plasma expansion, in agreement with numerous experimental results. The implications for x-ray lasers and fast ignition inertial confinement fusion are discussed.

  2. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  3. Origin of the Cosmic Network: Nature vs Nurture

    OpenAIRE

    Shandarin, Sergei; Habib, Salman; Heitmann, Katrin

    2009-01-01

    The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure fo...

  4. Shaping plant microtubule networks via overlap formation

    NARCIS (Netherlands)

    Keijzer, de Jeroen

    2017-01-01

    Microtubules are long filaments made up from protein building blocks and ubiquitously employed by eukaryotic cells for a wide range of often essential cellular processes. To perform these functions, microtubules are virtually always organized into higher order networks. Microtubule networks in

  5. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  6. Closely spaced fine filament multifilamentary NbTi strands

    International Nuclear Information System (INIS)

    Gregory, E.; Liu, H.; Seuntjens, J.M.

    1994-01-01

    A series of papers showing the advantages of close spacing and matrix alloying for the development of high J c , fine filament, NbTi materials which have low electrical coupling have appeared in the last seven years. In order to achieve the highest J c 's, it has been shown that close spacing has many advantages. This, however, leads to proximity coupling which has to be overcome by the addition of alloying elements to the matrix between the filaments. Of the three alloying materials normally used for this purpose, Ni, Si, and Mn, the most effective is Mn, which operates by a spin flip scattering mechanism whereas Ni and Si produce decoupling by less effective resistive scattering. Ni and Si, however, harden the matrix more than does the small amount of Mn, [0.5wt%], which has been used in most of the past work on the reduction of proximity coupling. This hardening allows the filaments to be separated to a greater extent than is possible in the case of a pure copper matrix without a significant increase in filament sausaging and a resultant J c decrease. Silicon also has one additional advantage over the other alloying elements in that it reduces the formation of compounds on the surface of the filaments, thus it may obviate the necessity for a Nb barrier layer and thus allow an even greater increase in J c . In this paper the authors explore further some of the effects of the addition of manganese and/or silicon to the matrix between the filaments in an effort to optimize properties at the smaller filament sizes

  7. Large-amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis

    Science.gov (United States)

    Luna, M.; Su, Y.; Schmieder, B.; Chandra, R.; Kucera, T. A.

    2017-12-01

    We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and EUV (from Solar Dynamics Observatory SDO/Atmospheric Imaging assembly AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα, the period decreases with time and exhibits strong damping. The analysis of 171 Å images shows that the oscillation has two phases: an initial long-period phase and a subsequent oscillation with a shorter period. In this wavelength, the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 {km} {{{s}}}-1. Using SDO/HMI magnetograms, we reconstruct the magnetic field of the filaments, modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques, we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed, that is also in agreement with the values from the reconstruction (8-20 Gauss). The poloidal flux is zero and the axis flux is on the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.

  8. Intermediation in Foreign Trade: When do Exporters Rely on Intermediaries?

    DEFF Research Database (Denmark)

    Schröder, Philipp J.H.; Trabold, H.; Trübswetter, P.

    2005-01-01

    The paper explores the question of why trade intermediaries (TIs) are frequently used as agents for exports to some countries but not to others. First, we adapt a standard intra-industry trade model with variable export costs (e.g. transport) and fixed export costs (e.g. market access) to include......) higher market access costs increase the TI share, (ii) smaller export markets feature a larger TI share, (iii) network effects are important determinants of trade intermediation....

  9. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  10. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  11. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  12. Rapid Formation and Disappearance of a Filament Barb

    Science.gov (United States)

    Joshi, Anand D.; Srivastava, Nandita; Mathew, Shibu K.; Martin, Sara F.

    2013-11-01

    We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.

  13. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  14. Morphological indictors of the chirality of solar filaments

    Science.gov (United States)

    Filippov, B. P.

    2017-10-01

    There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous "barbs"; i.e., those whose jagged side is located on the opposite side of the axis compared to most ("normal") filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.

  15. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  16. Studies of the laser filament instability in a semicollisional plasma

    International Nuclear Information System (INIS)

    Michel, P.; Labaune, C.; Weber, S.; Tikhonchuk, V.T.; Bonnaud, G.; Riazuelo, G.; Walraet, F.

    2003-01-01

    The stability and nonlinear evolution of a laser filament in an underdense, semicollisional plasma are studied with a simulation code accounting for the ponderomotive and thermal effects together with the nonlocal electron transport. It is found that the filament is stable at low intensities, where the trapped laser power is below the self-focusing threshold. For larger powers, the filament is unstable with respect to bending. This instability, though predicted in theory (the m=1 mode), has not been seen so far in monospeckle modelling probably because of simulation symmetry. In our simulations an artificial noise source has been implemented in order to make nonsymmetric features appear. The instability leads to a complete breakup of the filament which reconstructs itself after some time and the process then repeats itself. Due to the filament instability the plasma sets in a regime of self-supported oscillations and results in temporal modulation and angular spreading of transmitted light. The numerical simulations are compared with theoretical predictions and experimental observations of speckle dynamics in the interaction of a randomized laser beam with preformed plasmas

  17. Connectomic intermediate phenotypes for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Alex eFornito

    2012-04-01

    Full Text Available Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A and APOE, may be higher for intermediate phenotypes characterised at the level of distributed neural systems than at the level of spatially localised brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of

  18. ESL intermediate/advanced writing

    CERN Document Server

    Munoz Page, Mary Ellen; Jaskiewicz, Mary

    2011-01-01

    Master ESL (English as a Second Language) Writing with the study guide designed for non-native speakers of English. Skill-building lessons relevant to today's topics help ESL students write complete sentences, paragraphs, and even multi-paragraph essays. It's perfect for classroom use or self-guided writing preparation.DETAILS- Intermediate drills for improving skills with parallel structure, mood, correct shifting errors & dangling participles- Advanced essay drills focusing on narrative, descriptive, process, reaction, comparison and contrast- Superb preparation for students taking the TOEFL

  19. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  20. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  1. The formation and disappearance of filament barbs observed by SDO

    Science.gov (United States)

    Li, Leping; Zhang, Jun

    2014-01-01

    Employing six-day (August 16-21, 2010) SDO/AIA observations, we systematically investigate the formation and disappearance of 58 barbs of a northern (~N60) polar crown filament. Three different ways of barb formation are discovered, including (1) the convergence of surrounding moving materials (55.2%), (2) the flows of materials from the filament (37.9%), and (3) the material injections from neighboring brightening regions (6.9%). We also find three different types of barb disappearance, involving: (i) the bi-lateral movements (44.8%), and (ii) the outflowing (27.6%) of barb material resulting in the barb disappearance, as well as (iii) the barb disappearance associated with neighboring brightenings (27.6%). We propose that barbs exchange materials with the filament, surrounding atmosphere, and nearby brightening regions, causing the barb formation and disappearance.

  2. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  3. Filamentation instability of large-amplitude Alfven waves

    International Nuclear Information System (INIS)

    Kuo, S.P.; Whang, M.H.; Lee, M.C.

    1988-01-01

    An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. We have examined their dependence on the filamentation spectrum, the plasma β, and the pump frequency and intensity for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability with some observations is discussed. copyright American Geophysical Union 1988

  4. Effect of filament supports on emissive probe measurements

    International Nuclear Information System (INIS)

    Wang, X.; Howes, C. T.; Horányi, M.; Robertson, S.

    2013-01-01

    We have constructed an emissive probe with a thin tungsten filament spot-welded across two nickel wires insulated with ceramic paint. We show that the ceramic supports covering the nickel wires have a large effect on the potential measurements in low-density plasmas. It is found that the potential measured by the emissive probe is more negative than the potential derived from a Langmuir probe current-voltage (I-V) characteristic curve when the plasma density is so low that the emitting filament remains immersed in the sheaths of the ceramic supports. The length of the filament L needs to be larger than about 2 Debye lengths (L > 2λ De ) in order to avoid the influence of the ceramic supports and to achieve reliable plasma potential measurements using emissive probes.

  5. Filaments Data Since 1919: A Basis for Statistics

    Science.gov (United States)

    Aboudarham, J.; Renié, C.

    2016-04-01

    From 1919 to 2002, Paris-Meudon Observatory published synoptic maps of the Solar activity. Together with maps, tables were provided, containing some information concerning at least filaments. The board of Paris Observatory funded a data capture program concerning the 680 000 basic informations available in those tables. On the other hand, in the frame of the FP7 European project HELIO, a Heliophysics Feature Catalogue (HFC) has been developed, which contains also filaments data from 1996 up to now. We now pool all these data in order to give access to a filaments database for nearly a century of observations. This allows to make statistical studies of those Solar features, and try to correlate them with other information such as sunspot number. We present here the data available for this long period of time.

  6. Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Weng Ming; Xu Weijun; Liu Qiang

    2007-01-01

    In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information

  7. Dynamically generated patterns in dense suspensions of active filaments

    Science.gov (United States)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  8. XUV laser-plasma source based on solid Ar filament.

    Science.gov (United States)

    Peth, Christian; Kalinin, Anton; Barkusky, Frank; Mann, Klaus; Toennies, J Peter; Rusin, Lev Yu

    2007-10-01

    We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter approximately 56 microm, flow speed approximately 5 mms) was used as a laser target in order to generate a plasma source of high brightness in the "water window" (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mms, facilitating the operation at higher repetition rates.

  9. On the association of magnetic clouds with disappearing filaments

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1986-01-01

    We present evidence that an interplanetary magnetic cloud preceding an interaction region, observed at earth January 24, 1974, is associated with the eruptive filament or disparition brusque (DB) near central meridian on January 18. The DB also was associated with a long-decay soft X ray transient (LDE) and a long-duration gradual-rise-and-fall (GRF) radio burst. To assess whether magnetic clouds are generally associated with DBs, we present results from statistical testing of the relation of 33 magnetic clouds (and 33 control samples without magnetic clouds) to disappearing filaments near central meridian (approx. 99% confidence. There is a suggestion that clouds following shocks, probably launched at times of solar flares, are not as strongly associated with disappearing filaments as are clouds launched less violently

  10. Ultra small angle neutron scattering from superconducting filament structures

    International Nuclear Information System (INIS)

    Amenitsch, H.

    1999-01-01

    With a perfect crystal camera, ultra small-angle scattering measurements were performed to investigate the internal diffusion process of tin inside a superconducting multi-filament wire caused by a temperature treatment. Commercially available Nb 3 Sn superconducting multi-filament wires were treated at 700 C with varying ageing times up to 144 h. A theoretical model taking into account the geometrical form, the size distribution, the interference term and the multiple scattering has been developed to understand and to describe the small angle diffraction pattern. Additionally, the diffusion of H and D into the filament wires was used to vary the scattering length density inside the wires. The results show a direct relationship between the different technological treatments and the characteristic small-angle scattering parameters, like Guinier radius and small-angle scattering probability. (orig.) [de

  11. Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition.

    Science.gov (United States)

    You, Byoung Kuk; Byun, Myunghwan; Kim, Seungjun; Lee, Keon Jae

    2015-06-23

    Ge2Sb2Te5-based phase-change memories (PCMs), which undergo fast and reversible switching between amorphous and crystalline structural transformation, are being utilized for nonvolatile data storage. However, a critical obstacle is the high programming current of the PCM cell, resulting from the limited pattern size of the optical lithography-based heater. Here, we suggest a facile and scalable strategy of utilizing self-structured conductive filament (CF) nanoheaters for Joule heating of chalcogenide materials. This CF nanoheater can replace the lithographical-patterned conventional resistor-type heater. The sub-10 nm contact area between the CF and the phase-change material achieves significant reduction of the reset current. In particular, the PCM cell with a single Ni filament nanoheater can be operated at an ultralow writing current of 20 μA. Finally, phase-transition behaviors through filament-type nanoheaters were directly observed by using transmission electron microscopy.

  12. Chemical Strategies for the Covalent Modification of Filamentous Phage

    Directory of Open Access Journals (Sweden)

    Matthew B Francis

    2014-12-01

    Full Text Available Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proved to be powerful outside the realms of phage display technology in fields such as molecular imaging, cancer research and materials and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved functionalizing the virion.

  13. Intermediate filaments of zebrafish retinal and optic nerve astrocytes and M?ller glia: differential distribution of cytokeratin and GFAP

    OpenAIRE

    Koke, Joseph R; Mosier, Amanda L; Garc?a, Dana M

    2010-01-01

    Abstract Background Optic nerve regeneration (ONR) following injury is a model for central nervous system regeneration. In zebrafish, ONR is rapid - neurites cross the lesion and enter the optic tectum within 7 days; in mammals regeneration does not take place unless astrocytic reactivity is suppressed. Glial fibrillary acidic protein (GFAP) is used as a marker for retinal and optic nerve astrocytes in both fish and mammals, even though it has long been known that astrocytes of optic nerves i...

  14. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  15. [Clinical significance of positive sputum culture for filamentous fungi].

    Science.gov (United States)

    Shi, Xiao-Chun; Liu, Zheng-Yin; Xu, Ying-Chun; Wang, Ai-Xia

    2010-01-26

    To investigate the clinical significance of positive sputum culture for filamentous fungi. The medical data of 140 patients positive for filamentous fungi in sputum culture at Peking Union Medical College Hospital were reviewed retrospectively. Based on the diagnostic criteria by European Organization for Research and Treatment of Cancer/Mycoses Study Group, invasive pulmonary fungal infection (IPFI) was diagnosed. The clinical characteristics of cases with and without IPFI were analyzed respectively. Among all 140 cases positive for filamentous fungi in sputum culture, only 22 cases could be diagnosed as IPFI. Two of 22 IPFI cases were confirmed by post-operative pathology, 1 case was confirmed by positive blood culture for filamentous fungi and the remaining 19 cases were diagnosed clinically according to the nature of hosts, characteristics of pulmonary infections and microbiological evidence (positive sputum culture for filamentous fungi, 2 - 5 times for each case). Most of etiological fungi in IPFI patients belonged to Aspergillus. And the identity of isolated fungal strain was mostly one strain for each patient. In IPFI group, patients who had been treated with broad-spectrum antibiotics (100%), steroids (13, 59.1%) or immunosuppressant (7, 31.8%) or who had pulmonary X-ray imaging changes (100%), primary diseases (21, 95.5%), hypoalbuminemia (18, 81.8%) or hemoptysis (10, 45.5%), were significantly more than those in non-IPFI group (66.9%, 34.7%, 18.6%, 79.7%, 72.0%, 45.8% and 4.2% respectively; P significance of positive sputum culture for filamentous fungi are associated with the times of positive culture, the number and species of isolated fungal strains. Meanwhile it is important to determine whether there is IPFI according to the nature and clinical characteristics of patients.

  16. Unification of favourable intermediate-, unfavourable intermediate-, and very high-risk stratification criteria for prostate cancer.

    Science.gov (United States)

    Zumsteg, Zachary S; Zelefsky, Michael J; Woo, Kaitlin M; Spratt, Daniel E; Kollmeier, Marisa A; McBride, Sean; Pei, Xin; Sandler, Howard M; Zhang, Zhigang

    2017-11-01

    To improve on the existing risk-stratification systems for prostate cancer. This was a retrospective investigation including 2 248 patients undergoing dose-escalated external beam radiotherapy (EBRT) at a single institution. We separated National Comprehensive Cancer Network (NCCN) intermediate-risk prostate cancer into 'favourable' and 'unfavourable' groups based on primary Gleason pattern, percentage of positive biopsy cores (PPBC), and number of NCCN intermediate-risk factors. Similarly, NCCN high-risk prostate cancer was stratified into 'standard' and 'very high-risk' groups based on primary Gleason pattern, PPBC, number of NCCN high-risk factors, and stage T3b-T4 disease. Patients with unfavourable-intermediate-risk (UIR) prostate cancer had significantly inferior prostate-specific antigen relapse-free survival (PSA-RFS, P prostate cancer-specific mortality (PCSM, P prostate cancer. Similarly, patients with very high-risk (VHR) prostate cancer had significantly worse PSA-RFS (P prostate cancer. Moreover, patients with FIR and low-risk prostate cancer had similar outcomes, as did patients with UIR and SHR prostate cancer. Consequently, we propose the following risk-stratification system: Group 1, low risk and FIR; Group 2, UIR and SHR; and Group 3, VHR. These groups have markedly different outcomes, with 8-year distant metastasis rates of 3%, 9%, and 29% (P < 0.001) for Groups 1, 2, and 3, respectively, and 8-year PCSM of 1%, 4%, and 13% (P < 0.001) after EBRT. This modified stratification system was significantly more accurate than the three-tiered NCCN system currently in clinical use for all outcomes. Modifying the NCCN risk-stratification system to group FIR with low-risk patients and UIR with SHR patients, results in modestly improved prediction of outcomes, potentially allowing better personalisation of therapeutic recommendations. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  17. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition.

    Science.gov (United States)

    Kim, Hyun Ji; Choi, Won Jun; Lee, Chang Hoon

    2015-07-01

    Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.

  18. Intermediate neutron detection by thermoluminescence

    International Nuclear Information System (INIS)

    Santos, E.N. dos; Muccillo, R.

    1979-01-01

    Thermoluminescent (TL) studies were carried out in cold-pressed CaSO 4 :Dy + Dy 2 O 3 + KCl and CaF 2 + Dy 2 O 3 + KCl polycrystalline samples exposed to mixed neutron-gamma fields, for the detection of intermediate neutrons which is based on the evaluation of the TL signal of the specimens stored for 24 hours after being exposed to a mixed neutron-gamma field and thermally annealed to erase the total radiation-induced TL. The addition of Dy 2 O 3 to CaSO 4 :Dy in the proportion 1:2 increased the neutron response by a factor of 160 relative to that of CaSO 4 :Dy. 180 mg of CaSO 4 :Dy + Dy 2 O 3 + KCl in the proportion 2:1:3 showed to be an appropriate detector of intermediate neutrons; the minimum detectable fluence was estimated to be 3.5 x 10 5 neutrons/cm 2 . (Author) [pt

  19. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    International Nuclear Information System (INIS)

    Zhang, Zhelin; Chen, Yanping; Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-01-01

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  20. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  1. Water quenching of a filament heated to high temperature

    International Nuclear Information System (INIS)

    Berthoud, G.; Boulin, A.; Gros D'Aillon, L.

    2006-01-01

    The aim of this study is to precise the type of heat transfer which takes place when a filament heated to high temperature is plunged into water. The originality of this study resides in the high temperature and in the study of pressure effects. A scale analysis allows to distinguish between two extreme cases: the strong under-cooling where the main part of the heat lost by the filament is used to heat the water, and the weak under-cooling where the main part of the heat is used to vaporize water. A correlation is proposed for the first case. (J.S.)

  2. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  3. Strength analysis of filament-wound composite tubes

    Directory of Open Access Journals (Sweden)

    Vasović Ivana

    2010-01-01

    Full Text Available The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTRAN, were performed to predict the behavior of filament wound structures. Computation results are compared with experiments. Good agreement between computation and experimental results are obtained.

  4. The desmin network is a determinant of the cytoplasmic stiffness of myoblasts.

    Science.gov (United States)

    Charrier, Elisabeth E; Montel, Lorraine; Asnacios, Atef; Delort, Florence; Vicart, Patrick; Gallet, François; Batonnet-Pichon, Sabrina; Hénon, Sylvie

    2018-02-01

    The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue. © 2018 Société Française des

  5. Intermediate processes in nuclear reactions

    International Nuclear Information System (INIS)

    Petrovici, M.

    1983-01-01

    The main results presented here cannot be interpreted in terms of the direct reaction model or the statistical models and one can more or less explicitely use some nuclear configurations for their interpretation. The first chapter deals with the so-called second order intermediate structures observed in the elastic and inelastic proton scattering on 66 Zn and 70 Ge targets in the energetic regions of some isobaric analog resonances. A formal theory for their interpretation is developed and the comparison with the experimental data is presented. New experimental results on the resonant structures observed in the elastic and inelastic scattering of 12 C on 24 Mg are presented in the second chapter. Detailed statistical analysis and their interpretation is presented too. Charge equilibration in deep inelastic collisions is the main subject of the third chapter. The experimental results obtained by the 98 Mo + 154 Sm collision at 12 MeV/n, a quantum treatment of a damped harmonic oscillator and the comparison with the experimental data are given. In the last chapter, some results on the existence of two other processes which could candidate to be involved in the main topic are presented. Those processes are: the fast fragmentation and preequilibrium charged particles emission. All these processes originate in the excitation of some simple configurations which can be seen on ''doorway'' states (''Hallway'' in the case of the second intermediate structures). The coupling of these states to other more complicated excitation modes of the nuclei and to outgoing channel=gives the possibility to study the nuclear dynamics. This justifies the interest for their detailed theoretical and experimental investigations. (author)

  6. Filamentation of ultrashort laser pulses of different wavelengths in ...

    Indian Academy of Sciences (India)

    2017-01-17

    Jan 17, 2017 ... Hence, many researchers choose a noble gas such as argon as the propagating medium [21–25]. In this paper, we adopt incident laser pulses hav- ing three different wavelengths to study the filament in argon. The content is organized as follows: Section 2 introduces the nonlinear Schrödinger equation for.

  7. Monetary value of the impacts of filamentous green algae on ...

    African Journals Online (AJOL)

    This paper presents estimates of the monetary value of the impact of eutrophication (algae) on commercial agriculture in two different catchments in South Africa. A production function approach is applied to estimate the monetary value of the impact of filamentous green algae on commercial agriculture in the Dwars River, ...

  8. Thermal Resonator Experiments Using A Magnetized Electron Temperature Filament

    Science.gov (United States)

    Karbashewski, Scott; Sydora, Richard; van Compernolle, Bart; Poulos, Matt; Morales, George

    2017-10-01

    We present results from basic heat transport experiments of a magnetized electron temperature filament that behaves as a thermal resonator. Experiments are performed in the Large Plasma Device at UCLA. A CeB6 cathode injects low energy electrons along a magnetic field into the center of a pre-existing plasma forming a hot electron filament embedded in a colder plasma. Previous work reported that the filament exhibits spontaneous excitation of thermal waves and temperature gradient driven drift-Alfvén waves that enhance cross-field transport. We have added to the cathode bias a series of low amplitude pulse trains tuned to the thermal resonance of the filament that externally excite thermal waves. Langmuir probe measurements allow for the determination of the phase velocity and radial decay length of the thermal mode. These results are used to compute the axial and transverse thermal conductivities of the magnetized plasma and compare with those given by classical theory. Agreement of the axial conductivity provides a measurement of electron temperature; deviation of the transverse conductivity suggests anomalous transport or non-uniform excitation. Work Supported by NSERC, Canada and NSF-DOE, USA.

  9. Dynamical origin of non-thermal states in galactic filaments

    Science.gov (United States)

    Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo

    2018-03-01

    Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.

  10. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface.We ...... Beggiatoa accumulate high nitrate concentrations in internal vacuoles as an alternative electron acceptor to oxygen....

  11. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  12. Measurement of Reversed Extension Flow using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann

    2008-01-01

    ). The latter is applicable on highly extensible elastomers, whereas in LAOE measurements on liquids (including polymer melts) the LAOE flow needs to be imposed upon a constant strain rate uniaxial elongation. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric...... melts) from room temperature until 200 degrees C....

  13. Filament identification and dominance of Eikelboom Type 0092 in ...

    African Journals Online (AJOL)

    In order of prevalence, the five most common dominant filament species in 96 activated sludge samples were: Eikelboom Type 0092, Eikelboom Type 1851, nocardioforms, Microthrix parvicella and Eikelboom Type 021N. In order to compile a statistically significant database, it is recommended that an extensive nationwide ...

  14. A model of filamentous cyanobacteria leading to reticulate pattern formation

    NARCIS (Netherlands)

    Tamulonis, C.; Kaandorp, J.

    2014-01-01

    The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these

  15. Sensitivity of RF-driven Plasma Filaments to Trace Gases

    Science.gov (United States)

    Burin, M. J.; Czarnocki, C. J.; Czarnocki, K.; Zweben, S. J.; Zwicker, A.

    2011-10-01

    Filamentary structures have been observed in many types of plasma discharges in both natural (e.g. lightning) and industrial systems (e.g. dielectric barrier discharges). Recent progress has been made in characterizing these structures, though various aspects of their essential physics remain unclear. A common example of this phenomenon can be found within a toy plasma globe (or plasma ball), wherein a primarily neon gas mixture near atmospheric pressure clearly and aesthetically displays filamentation. Recent work has provided the first characterization of these plasma globe filaments [Campanell et al., Physics of Plasmas 2010], where it was noticed that discharges of pure gases tend not to produce filaments. We have extended this initial work to investigate in greater detail the dependence of trace gases on filamentation within a primarily Neon discharge. Our preliminary results using a custom globe apparatus will be presented, along with some discussion of voltage dependencies. Newly supported by the NSF/DOE Partnership in Basic Plasma Science and Engineering.

  16. Organic acid production in Aspergillus niger and other filamentous fungi

    NARCIS (Netherlands)

    Odoni, Dorett I.

    2017-01-01

    The aim of the thesis was to increase the understanding of organic acid production in Aspergillus niger and other filamentous fungi, with the ultimate purpose to improve A. niger as biotechnological production host. In Chapter 1, the use of microbial cell-factories for the

  17. Propulsion by passive filaments and active flagella near boundaries

    Science.gov (United States)

    Evans, Arthur A.; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  18. Filament growth and resistive switching in hafnium oxide memristive devices.

    Science.gov (United States)

    Dirkmann, Sven; Kaiser, Jan; Wenger, Christian; Mussenbrock, Thomas

    2018-03-30

    We report on the resistive switching in TiN/Ti/HfO 2 /TiN memristive devices. A resistive switching model for the device is proposed, taking into account important experimental and theoretical findings. The proposed switching model is validated using 2D and 3D kinetic Monte Carlo simulation models. The models are consistently coupled to the electric field and different current transport mechanisms as direct tunneling, trap assisted tunneling (TAT), ohmic transport, and transport through a quantum point contact (QPC) have been considered. We find that the numerical results are in excellent agreement with experimentally obtained data. Important device parameters, which are difficult or impossible to measure in experiments, are calculated. This includes the shape of the conductive filament, width of filament constriction, current density, and temperature distribution. To obtain insights in the operation of the device, consecutive cycles have been simulated. Furthermore, the switching kinetic for the forming and set process for different applied voltages is investigated. Finally, the influence of an annealing process on the filament growth, especially on the filament growth direction, is discussed.

  19. Tesla coil discharges guided by femtosecond laser filaments in air

    OpenAIRE

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-01-01

    International audience; A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  20. Filamentous phage associated with recent pandemic strains of Vibrio parahaemolyticus.

    OpenAIRE

    Iida, T.; Hattori, A.; Tagomori, K.; Nasu, H.; Naim, R.; Honda, T.

    2001-01-01

    A group of pandemic strains of Vibrio parahaemolyticus has recently appeared in Asia and North America. We demonstrate that a filamentous phage is specifically associated with the pandemic V. parahaemolyticus strains. An open reading frame unique to the phage is a useful genetic marker to identify these strains.

  1. Calorie restriction in the filamentous fungus Podospora anserina

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Slakhorst, S Marijke; Koopmanschap, A Bertha; Ikink, Gerjon J; Debets, Alfons J M; Hoekstra, Rolf F

    Calorie restriction (CR) is a regimen of reduced food intake that, although the underlying mechanism is unknown, in many organisms leads to life span extension. Podospora anserina is one of the few known ageing filamentous fungi and the ageing process and concomitant degeneration of mitochondria

  2. Spin alignment of dark matter haloes in filaments and walls

    NARCIS (Netherlands)

    Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host

  3. Spin alignment of dark matter halos in filaments and walls

    NARCIS (Netherlands)

    Aragon-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M.

    2007-01-01

    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter halos are significantly correlated with each other and with the orientation of their host structures. The

  4. Filamentous fungi as cell factories for heterologous protein production

    NARCIS (Netherlands)

    Punt, P.J.; Biezen, N. van; Conesa, A.; Albers, A.; Mangnus, J.; Hondel, C. van den

    2002-01-01

    Filamentous fungi have been used as sources of metabolites and enzymes for centuries. For about two decades, molecular genetic tools have enabled us to use these organisms to express extra copies of both endogenous and exogenous genes. This review of current practice reveals that molecular tools

  5. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Ma, Suli [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yan, Xiaoli [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Xue, Jianchao, E-mail: hdchen@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-05-20

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.

  6. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    International Nuclear Information System (INIS)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-01-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s −1 . During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.

  7. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Science.gov (United States)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-05-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.

  8. Filamentation of diamond nanoparticles treated in underwater corona discharge

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Lukeš, Petr; Kozak, Halyna; Artemenko, Anna; Člupek, Martin; Čermák, Jan; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 6, č. 3 (2016), 2352-2360 ISSN 2046-2069 R&D Projects: GA ČR GA15-01687S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : nanodiamonds * pulsed streamer corona discharge * filamentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  9. Protein secretion in the filamentous fungus Aspergillus niger

    NARCIS (Netherlands)

    Weenink, Xavier Oswin

    2008-01-01

    Filamentous fungi are multicellular eukaryotic organisms, which represent a separate taxonomic group organisms within the fungal kingdom, apart from the yeasts. These fungi always need a substrate to grow on, this can be living or dead material. Fungi possess the capacity to secrete high levels of

  10. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  11. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Viruses: incredible nanomachines. New advances with filamentous phages

    NARCIS (Netherlands)

    Hemminga, M.A.; Vos, W.L.; Nazarov, P.V.; Koehorst, R.B.M.; Wolfs, C.J.A.M.; Spruijt, R.B.; Stopar, D.

    2010-01-01

    During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and

  13. Isolation and cultivation of filamentous bacteria implicated in ...

    African Journals Online (AJOL)

    Filamentous bacteria have long been associated with activated sludge bulking and foaming and are known to be the main cause of this problem. Chemical control methods such as chlorination and the use of hydrogen peroxide have been, and still are, used to cure bulking and foaming but are only effective as interim ...

  14. Three-dimensional simulations of viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...

  15. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    Biological phosphorus removal has gained attention because the condition of wastewater is manipulated in order to facilitate nutrient removal by the microbial communities in the wastewater. It has been reported that filamentous bacteria are capable of removing P at a similar or higher rate to that of heterotrophic bacteria.

  16. A Study of Low Density, High Strength High Modulus Filaments and Composites

    National Research Council Canada - National Science Library

    Alexander, J

    1966-01-01

    ...) Multilaminar composites consisting of alternate layers of metal and ceramic. In order to fabricate the filament composites, continuous boron, and batch boron carbide, and silicon carbide filaments were synthesized at GTC...

  17. UV/IR Filaments for High Resolution Novel Spectroscopic Interrogation of Plumes on Nuclear Materials

    Science.gov (United States)

    2016-06-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-66 UV/ IR filaments for high resolution novel spectroscopic...by the factor to get the U.S. customary unit. UV/ IR filaments for high resolution novel spectroscopic Interrogation of Plumes on nuclear materials...10 5.1 UV filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 IR filaments

  18. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  19. Filamentous fungi: the indeterminate lifestyle and microbial ecology.

    Science.gov (United States)

    Klein, D A; Paschke, M W

    2004-04-01

    The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be

  20. PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE

    International Nuclear Information System (INIS)

    Ahn, Kwangsu; Chae, Jongchul; Cao Wenda; Goode, Philip R.

    2010-01-01

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of Hα images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s -1 . The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to the associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13 0 and 39 0 in the spine and the barb, respectively.

  1. Measuring the flexural rigidity of actin filaments and microtubules from their thermal fluctuating shapes: A new perspective

    Science.gov (United States)

    Jia, Kangyu; Liu, Xiaohu

    Actin filaments and microtubules are important components of cytoskeletal networks and show both active and passive dynamic mechanical behaviors. Measuring the mechanical properties of individual filament can not only help us understand the mechanisms behind the complex dynamic behaviors, but also provide parameters that are needed to calibrate biological piconewton forcemeters. Although many methods have been proposed, the values of flexural rigidity reported in literature are still quite different for both actin filaments and microtubules. In this paper, a new formulation based on mode analysis of the thermal fluctuating shapes and principle of virtual work has been proposed, where both the linear and nonlinear assumptions are considered. What's more, following previous inspiring works, both the effects of sampling time interval and hydrodynamics are taken into account in our model. When applied to the experiment data in literature and the simulation data generated by finite element method software, our method gives good results and show an advantage over the previous methods. Besides, we suggest that the inconformity of the flexural rigidity in literature might be caused by the different sampling time intervals and hydrodynamic wall effects in experiments.

  2. Effect of ammonia on Ta filaments in the hot wire CVD process

    NARCIS (Netherlands)

    Verlaan, V.; van der Werf, C.H.M.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    The exposure of Ta filaments to a pure NH3 ambient in a hot wire chemical vapour deposition (HWCVD) reactor affects the resistance of the wires. For filament temperatures below 1950 °C the resistance increases over time, which is probably caused by in-diffusion of N atoms. Using the filaments in a

  3. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  4. Fossil evidence for spin alignment of Sloan Digital Sky Survey galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J. T.; van de Weijgaert, Marinus; Aragon-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This indicates the fact that the action of large-scale tidal torques affected the alignments of galaxies located in cosmic filaments. To this

  5. Ultrashort laser pulse filamentation from spontaneous X-Wave formation in air.

    Science.gov (United States)

    Faccio, Daniele; Averchi, Alessandro; Lotti, Antonio; Di Trapani, Paolo; Couairon, Arnaud; Papazoglou, Dimitris; Tzortzakis, Stelios

    2008-02-04

    The description of ultrashort laser pulse filamentation in condensed media as a spontaneous formation of X waves is shown to apply also to filaments generated in air. Within this framework, a simple explanation is brought for several features of the filament such as the subdiffractive propagation and the energy flux from the weakly localized tails of the X-waves to the intense core.

  6. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  7. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  8. RHIZOME AND DISCOURSE OF INTERMEDIALITY

    Directory of Open Access Journals (Sweden)

    Л Н Синельникова

    2017-12-01

    Full Text Available Rhizomaticity is a strategy and a regularity of text creation in a lot of modern commu-nicative discourse practices. What remains urgent is the problem of the systematic interdisciplinary de-scription of texts whose structure and language qualities are determined by the signs of the rhizome - a concept of post-modern philosophy introduced into the scientific field by the French philosopher Gilles Deleuze and the psychotherapist Félix Guattari (Deleuze, Guattari 1996. The rhizome (Fr. rhizome - rootstock, tuber, bulb, mycelium possesses the following qualities: it is non-linear, open and directed towards the unpredictability of discourse transformations through the possibilities of structure development in any direction; there is no centre or periphery in the rhizome, and any discourse element can become ‘a vital structure’ for text-creation. The rhizome does not have non-intersecting boundaries; and in the space of the rhizomatic discourse environment, an increase of reality facets takes place, non-standard associative con-nections appear, multiplication effects are formed, which create new meanings. Rhizomaticity is the quality of texts being organised by the laws of rhizomatic logic (V.F. Sharkov 2007, by the terms of which ‘su-perposition’ of discourses can take place, a transition from one semiotic system to another. The article makes an attempt to correlate the qualities of the rhizome with the signs of the intermedia discourse, which is built on the semiotic interaction of different media. The moving lines of the rhizome, its ‘branch-ing’ qualities can be found in poetic texts, in the evaluating segments of political discourse, in advertising discourse, in internet communications, which represent rhizomorphic environments. An analysis of examples from these spheres has shown that the rhizomatic approach opens new facets of intermediality. The author uses the methods of discourse analysis to prove that the openness and non

  9. On financial equilibrium with intermediation costs

    DEFF Research Database (Denmark)

    Markeprand, Tobias Ejnar

    2008-01-01

    This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...... correspondence. Finally, we prove that when intermediation costs approach zero, unbounded volume of asset trades is a necessary and sufficient condition, provided that, there is no financial equilibrium without intermediation costs....

  10. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  11. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  12. Compact Intermediate-Temperature Fuel Cells

    National Research Council Canada - National Science Library

    Sun, Yipeng

    2003-01-01

    In Phase I, we demonstrate the feasibility of making supported electronically insulating, proton conducting inorganic thin films on metal hydride foils for intermediate temperature fuel cell electrolytes...

  13. Three-dimensional manipulation of femtosecond filament direction with an air bubble in water

    International Nuclear Information System (INIS)

    Cui, Qiannan; Yao, Jinping; Ni, Jielei; Cheng, Ya

    2012-01-01

    We experimentally reported a simple, novel method to manipulate the directions of femtosecond filaments in three-dimensional (3D) space taking advantage of an air bubble in water. When the air bubble is introduced to the path of filaments, it will change the propagation direction of filaments by reflection or refraction, acting as a curved mirror with a high damage threshold. In this way, we successfully realized 3D manipulation of the directions of both filaments and supercontinuum emission over a wide range of solid angles only by finely adjusting the position of the air bubble with respect to the filament. (paper)

  14. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  15. Nuclear structure at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  16. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments

    Science.gov (United States)

    Singh, Ashish Kumar; Patil, Balu; Hoffmann, Niklas; Saltonstall, Brooks; Doddamani, Mrityunjay; Gupta, Nikhil

    2018-01-01

    This work focuses on developing filaments of high-density polyethylene (HDPE) and their hollow particle-filled syntactic foams for commercial three-dimensional (3D) printers based on fused filament fabrication technology. Hollow fly-ash cenospheres were blended by 40 wt.% in a HDPE matrix to produce syntactic foam (HDPE40) filaments. Further, the recycling potential was studied by pelletizing the filaments again to extrude twice (2×) and three times (3×). The filaments were tensile tested at 10-4 s-1, 10-3 s-1, and 10-2 s-1 strain rates. HDPE40 filaments show an increasing trend in modulus and strength with the strain rate. Higher density and modulus were noticed for 2× filaments compared to 1× filaments because of the crushing of some cenospheres in the extrusion cycle. However, 2× and 3× filament densities are nearly the same, showing potential for recycling them. The filaments show better properties than the same materials processed by conventional injection molding. Micro-CT scans show a uniform dispersion of cenospheres in all filaments.

  17. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments

    Science.gov (United States)

    Singh, Ashish Kumar; Patil, Balu; Hoffmann, Niklas; Saltonstall, Brooks; Doddamani, Mrityunjay; Gupta, Nikhil

    2018-03-01

    This work focuses on developing filaments of high-density polyethylene (HDPE) and their hollow particle-filled syntactic foams for commercial three-dimensional (3D) printers based on fused filament fabrication technology. Hollow fly-ash cenospheres were blended by 40 wt.% in a HDPE matrix to produce syntactic foam (HDPE40) filaments. Further, the recycling potential was studied by pelletizing the filaments again to extrude twice (2×) and three times (3×). The filaments were tensile tested at 10-4 s-1, 10-3 s-1, and 10-2 s-1 strain rates. HDPE40 filaments show an increasing trend in modulus and strength with the strain rate. Higher density and modulus were noticed for 2× filaments compared to 1× filaments because of the crushing of some cenospheres in the extrusion cycle. However, 2× and 3× filament densities are nearly the same, showing potential for recycling them. The filaments show better properties than the same materials processed by conventional injection molding. Micro-CT scans show a uniform dispersion of cenospheres in all filaments.

  18. [Treatment of polluted urban river water using filamentous green algae].

    Science.gov (United States)

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  19. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    Science.gov (United States)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  20. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... was ATP dependent, and depolymerization of ParM filaments required nucleotide hydrolysis. Our in vivo and in vitro results indicate that ParM polymerization generates the force required for directional movement of plasmids to opposite cell poles and that the ParR-parC complex functions as a nucleation...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  1. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    The fungal kingdom encompasses a diverse group of organisms some of which have a great impact on human lives, either as domesticated benefactors or as human and crop pathogens. Using the filamentous fungus Ashbya gossypii and its close relative Eremothecium cymbalariae as model organisms, this th...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi.......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...

  2. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    Science.gov (United States)

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  3. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Hartvig, N; Belágyi, J; Somogyi, B

    2000-12-29

    Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys(374) residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys(374) from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys(374) of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.

  4. The surge-like eruption of a miniature filament associated with circular flare ribbon

    Science.gov (United States)

    Li, Haidong; Yang, Jiayan; Jiang, Yunchun; Bi, Yi; Qu, Zhining; Chen, Hechao

    2018-02-01

    We present a study of a mini-filament erupting in association with a circular ribbon flare observed by NVST and SDO/AIA on 2014 March 17. The filament was located at one footpoint region of a large loops. The potential field extrapolation shows that it was embedded under a magnetic null point configuration. First, we observed a brightening of the filament at the corresponding EUV images, close to one end of the filament. With time evolution, a circular flare ribbon was observed around the filament at the onset of the eruption, which is regarded as a signature of reconnection at the null point. After the filament activation, its eruption took the form of a surge, which ejected along one end of a large-scale closed coronal loops with a curtain-like shape. We conjecture that the null point reconnection may facilitate the eruption of the filament.

  5. Femtosecond laser filament array generated with step phase plate in air.

    Science.gov (United States)

    Gao, Hui; Chu, Wei; Yu, Guoliang; Zeng, Bin; Zhao, Jiayu; Wang, Zhi; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2013-02-25

    Femtosecond laser filament arrays are generated in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate (SCPP), the quarter-circle phase plate (QCPP) and eight-octant phase plate (EOPP). Experimental results and simulations show that filament arrays consisting of two, four and eight filaments, respectively, are produced by three phase plates. The transverse patterns of the filament arrays are determined by the geometrical shapes of the phase plates. At the same time, the separation distances are found to vary with the focal lengths of the used lenses. We further propose that by using an axicon, filament array in the form of ring shape could be realized while the lengths of the filaments could be significantly elongated at the same time. Our study has suggested a realistic method to generate filament array by the step phase plate with π phase lag.

  6. 19 CFR 122.84 - Intermediate airport.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Intermediate airport. 122.84 Section 122.84... Intermediate airport. (a) Application. The provisions of this section apply at any U.S. airport to which an... aircraft arrives at the next airport, the aircraft commander or agent shall make entry by filing the: (1...

  7. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  8. Some Intermediate-Level Violin Concertos.

    Science.gov (United States)

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  9. Automotive Body Repair. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  10. 39 CFR 3001.39 - Intermediate decisions.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL RULES OF PRACTICE AND PROCEDURE Rules of General Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in...

  11. Brazil : Interest Rates and Intermediation Spreads

    OpenAIRE

    World Bank

    2006-01-01

    This study sheds light on the analytical and policy issues regarding the high intermediation spread in Brazil, focusing on its determinants, the reasons for its persistence, and its impact on the real economy, especially on access to finance for Brazilian firms. The key contention of the analysis is that high intermediation spreads are a symptom of underlying problems; as such, spreads constitute ...

  12. Stability of a plasma filament with a skinned current

    International Nuclear Information System (INIS)

    Blekher, P.M.

    1984-01-01

    An effective sufficient condition of existence of ideal helical plasma filament instability in a strong longitUdinal magnetic field for skinned current profiles is deduced in the paper. The results of numerical calculations of current skinned profiles of instability diagrams are presented and these results are compared with the obtained sufficient condition. An analytical solution for one model current profile skinning and this solution also is compared with the sufficient condition of instability

  13. Diversity and ecology of filamentous green conjugate algae

    OpenAIRE

    Strouhalová, Pavla

    2016-01-01

    Filamentous conjugating algae have a cosmopolitan distribution. They often inhabit fragile freshwater habitats such as temporary hydrated ditches or puddles of melting snow. Occurrence in this environment entails having to deal with extreme conditions. That helps them to variously adaptation and also the formation of resistant stages. Algae belonging to this group have an important role in nature, because they are often the first species that inhabit newly created habitats and consequently al...

  14. A model of filament-wound thin cylinders

    Science.gov (United States)

    Calius, Emilio P.; Springer, George S.

    1990-01-01

    A model was developed for simulating he manufacturing process of filament-wound cylinders made of a thermoset matrix composite. The model relates the process variables (winding speed, fiber tension, applied temperature) to the parameters characterizing the composite cylinder and the mandrel. The model is applicable to cylinders for which the diameter is large compared to the wall thickness. The model was implemented by a user-friendly computer code suitable for generating numerical results.

  15. Filament winding cylinders. III - Selection of the process variables

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    By using the Lee-Springer filament winding model temperatures, degrees of cure, viscosities, stresses, strains, fiber tensions, fiber motions, and void diameters were calculated in graphite-epoxy composite cylinders during the winding and subsequent curing. The results demonstrate the type of information which can be generated by the model. It is shown, in reference to these results, how the model, and the corresponding WINDTHICK code, can be used to select the appropriate process variables.

  16. Oxygen vacancy chain and conductive filament formation in hafnia

    Science.gov (United States)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  17. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  18. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    Science.gov (United States)

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  19. Programmable Active Matter: Dynamics of active filaments on patterned surfaces

    Science.gov (United States)

    Yadav, Vikrant; Todd, Daniel; Milas, Peker; Ruijgrok, Paul; Bryant, Zev; Ross, Jennifer

    Interfaces are ubiquitous in biology. For a sub-cellular component moving inside the cell, any change in its local environment across an interface whether chemical concentration, density, or any other physical variables can produce novel dynamics. Recent advances in bioengineering allow us to control motor proteins' velocities when prompted by an optical trigger. Using an optical diaphragm and a gear-shifting myosin XI construct containing a photoactive LOV domain, we can spatially pattern light to create interfaces across which speed of a gliding actin filament can differ by as much as a factor of two. We observe that when a gliding actin filament crosses an interface that has a discontinuous velocity jump, it buckles and changes its angle of orientation due to the velocity mismatch. Our preliminary data suggests that for small angels of incidence, the angle of emergence increases linearly. If we increase the angle of incidence further we observe that the angle of emergence saturates. For some actin filaments approaching the interface near-tangentially we observe total internal reflection as they fail to crossover the boundary. We have modeled our system using Cytosim software package and find excellent agreement with experimental data.

  20. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii

    Science.gov (United States)

    1991-01-01

    Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate. PMID:1757465

  1. Towards tradable permits for filamentous green algae pollution.

    Science.gov (United States)

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  3. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity.

    Science.gov (United States)

    Franceschetti, Marina; Maqbool, Abbas; Jiménez-Dalmaroni, Maximiliano J; Pennington, Helen G; Kamoun, Sophien; Banfield, Mark J

    2017-06-01

    Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization. Copyright © 2017 American Society for Microbiology.

  4. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi.

    Science.gov (United States)

    Nagano, Nozomi; Umemura, Myco; Izumikawa, Miho; Kawano, Jin; Ishii, Tomoko; Kikuchi, Moto; Tomii, Kentaro; Kumagai, Toshitaka; Yoshimi, Akira; Machida, Masayuki; Abe, Keietsu; Shin-Ya, Kazuo; Asai, Kiyoshi

    2016-01-01

    Ustiloxins were found recently to be the first example of cyclic peptidyl secondary metabolites that are ribosomally synthesized in filamentous fungi. In this work, two function-unknown genes (ustYa/ustYb) in the gene cluster for ustiloxins from Aspergillus flavus were found experimentally to be involved in cyclization of the peptide. Their homologous genes are observed mainly in filamentous fungi and mushrooms. They have two "HXXHC" motifs that might form active sites. Computational genome analyses showed that these genes are frequently located near candidate genes for ribosomal peptide precursors, which have signal peptides at the N-termini and repeated sequences with core peptides for the cyclic portions, in the genomes of filamentous fungi, particularly Aspergilli, as observed in the ustiloxin gene cluster. Based on the combination of the ustYa/ustYb homologous genes and the nearby ribosomal peptide precursor candidate genes, 94 ribosomal peptide precursor candidates that were identified computationally from Aspergilli genome sequences were classified into more than 40 types including a wide variety of core peptide sequences. A set of the predicted ribosomal peptide biosynthetic genes was experimentally verified to synthesize a new cyclic peptide compound, designated as asperipin-2a, which comprises the amino acid sequence in the corresponding precursor gene, distinct from the ustiloxin precursors. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Functional characterisation of filamentous actin probe expression in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Shrujna Patel

    Full Text Available Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.

  6. Novel Actin-like Filament Structure from Clostridium tetani*

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Tanaka, Toshitsugu; Robinson, Robert C.

    2012-01-01

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  7. Novel actin-like filament structure from Clostridium tetani.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  8. Brittle fracture of polymer transient networks

    DEFF Research Database (Denmark)

    Arora, S.; Shabbir, A.; Hassager, O.

    2017-01-01

    We study the fracture of reversible double transient networks, constituted of water suspensions of entangled surfactant wormlike micelles reversibly linked by various amounts of telechelic polymers. We provide a state diagram that delineates the regime of fracture without necking of the filament...

  9. Brittle fracture of polymer transient networks

    DEFF Research Database (Denmark)

    Arora, Srishti; Shabbir, Aamir; Hassager, Ole

    We study the fracture of reversible double transient networks, constituted of a water suspension of entangled surfactant wormlike micelles reversibly linked by various amounts of telechelic polymers. We provide a state diagram that delineates the regime of fracture without necking of the filament...

  10. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  11. Identification of constitutive theory parameters using a tensile machine for deposited filaments of microcrystalline ink by the direct-write method

    International Nuclear Information System (INIS)

    Lourdel, N; Therriault, D; Lévesque, M

    2009-01-01

    A custom-designed tensile machine is developed to characterize the mechanical properties of ink micro-filaments deposited by the direct-write method. The direct-write method has been used for the fabrication of a wide variety of micro-systems such as microvascular networks, chaotic mixers and laboratory on chips. The tensile machine was used to measure the induced force in ink filaments during tensile and tension-relaxation tests as a function of the applied strain rate, the ink composition and the filament diameter. Experimental data were fitted by a linearly viscoelastic model using a data reduction procedure in order to identify the constitutive theory parameters of the deposited ink filaments. The model predictions based on the linearly viscoelastic model and the defined constitutive theory parameters give a close approximation of all experimental data generated in this study. Such models will be useful for the development and optimization of future 3D complex structures made by the direct-write method

  12. The effect of tapered toothbrush filaments compared to end-rounded filaments on dental plaque, gingivitis and gingival abrasion : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Hoogteijling, F.C.R.; Hennequin-Hoenderdos, N.L.; van der Weijden, G.A.; Slot, D.E.

    2018-01-01

    Aim: This systematic review was performed to establish the effect of a manual toothbrush with tapered toothbrush filaments (TFTBs) compared to a manual toothbrush with end-rounded toothbrush filaments (ERTB) on clinical parameters of dental plaque, gingivitis and gingival abrasion. Materials and

  13. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis

    Directory of Open Access Journals (Sweden)

    Farkas Nelli

    2007-06-01

    Full Text Available Abstract Background Thermal denaturation experiments were extended to study the thermal behaviour of the main motor proteins (actin and myosin in their native environment in striated muscle fibres. The interaction of actin with myosin in the highly organized muscle structure is affected by internal forces; therefore their altered conformation and interaction may differ from those obtained in solution. The energetics of long functioning intermediate states of ATP hydrolysis cycle was studied in muscle fibres by differential scanning calorimetry (DSC. Results SETARAM Micro DSC-II was used to monitor the thermal denaturation of the fibre system in rigor and in the presence of nucleotide and nucleotide analogues. The AM.ADP.Pi state of the ATP hydrolysis cycle has a very short lifetime therefore, we mimicked the different intermediate states with AMP.PNP and/or inorganic phosphate analogues Vi and AlF4 or BeFx. Studying glycerol-extracted muscle fibres from the rabbit psoas muscle by DSC, three characteristic thermal transitions were detected in rigor. The thermal transitions can be assigned to myosin heads, myosin rods and actin with transition temperatures (Tm of 52.9 ± 0.7°C, 57.9 ± 0.7°C, 63.7 ± 1.0°C. In different intermediate states of the ATP hydrolysis mimicked by nucleotide analogues a fourth thermal transition was also detected which is very likely connected with nucleotide binding domain of myosin and/or actin filaments. This transition temperature Tm4 depended on the mimicked intermediate states, and varied in the range of 66°C – 77°C. Conclusion According to DSC measurements, strongly and weakly binding states of myosin to actin were significantly different. In the presence of ADP only a moderate change of the DSC pattern was detected in comparison with rigor, whereas in ADP.Pi state trapped by Vi, AlF4 or BeFx a remarkable stabilization was detected on the myosin head and actin filament which is reflected in a 3.0 – 10.0

  14. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  15. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant.

    Directory of Open Access Journals (Sweden)

    Anja Wartenberg

    2014-12-01

    Full Text Available Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

  16. Chaperonin filaments : their formation and an evaluation of methods for studying them.

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, T.; Kagawa, K. H.; Trent, J. D.; Center for Mechanistic Biology and Biotechnology

    1998-08-01

    Chaperonins are multisubunit protein complexes that can be isolated from cells as high-molecular-weight structures that appear as double rings in the electron microscope. We recently discovered that chaperonin double rings isolated from the hyperthermophilic archaeon Sulfolobus shibatae, when incubated at physiological temperatures in the presence of ATP and Mg{sup 2+}, stacked into filaments; we hypothesized that these filaments are related to filaments seen inside S. shibatae cells and that chaperonins exist as filaments in vivo. This paper elucidates the conditions under which we have observed S. shibatae chaperonins to form filaments and evaluates native polyacrylamide gel electrophoresis (PAGE), TEM, spectrophotometry, and centrifugation as methods for studying these filaments. We observed that in the presence of Mg{sup 2+} combined with ATP, ADP, ATP{gamma}S, or GTP, native PAGE indicated that chaperonin subunits assembled into double rings and that the conformation of these double rings was effected by nucleotide binding, but we saw no indication of chaperonin filament formation. Under these same conditions, however, TEM, spectroscopy, and centrifugation methods indicated that chaperonin subunits and double rings had assembled into filaments. We determined that this discrepancy in the representation of the chaperonin structure was due to the native PAGE method itself. When we exposed chaperonin filaments to the electrophoretic field used in native PAGE, the filaments dissociated into double rings. This suggests that TEM, spectrophotometry, and centrifugation are the preferred methods for studying the higher-order structures of chaperonins, which are likely to be of biological significance.

  17. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D. [Department of Astronomy, University of Illinois at Urbana—Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Arce, H. G.; Plunkett, A. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Isella, A.; Kauffmann, J. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Rosolowsky, E. [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747-AD Groningen (Netherlands); Ostriker, E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Tassis, K. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete (Greece); Shirley, Y. L., E-mail: manferna@gmail.com [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  18. Penetration of Magnetosheath Plasma into Dayside Magnetosphere. 2. ; Magnetic Field in Plasma Filaments

    Science.gov (United States)

    Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya Inna; Avanov, Levon Albert

    2016-01-01

    In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.

  19. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  20. Language in use intermediate : classroom book

    CERN Document Server

    Doff, Adrian

    1995-01-01

    ach of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  1. Language in use intermediate : teacher's book

    CERN Document Server

    Doff, Adrian

    1998-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  2. Intermedial Strategies of Memory in Contemporary Novels

    DEFF Research Database (Denmark)

    Tanderup, Sara

    2014-01-01

    , and Judd Morrissey and drawing on the theoretical perspectives of N. Katherine Hayles (media studies) and Andreas Huyssen (cultural memory studies), Tanderup argues that recent intermedial novels reflect a certain nostalgia celebrating and remembering the book as a visual and material object in the age......In her article "Intermedial Strategies and Memory in Contemporary Novels" Sara Tanderup discusses a tendency in contemporary literature towards combining intermedial experiments with a thematic preoccupation with memory and trauma. Analyzing selected works by Steven Hall, Jonathan Safran Foer...... of digital media while also highlighting the influence of new media on our cultural understanding and representation of memory and the past....

  3. Intermediate/Advanced Research Design and Statistics

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  4. The deterioration of intermediate moisture foods

    Science.gov (United States)

    Labruza, T. P.

    1971-01-01

    Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.

  5. Proposed changes in intermediate pipe break criteria

    International Nuclear Information System (INIS)

    Schmitz, R.P.

    1984-01-01

    Bechtel Power Corporation proposed to the US NRC in 1983 that the NRC eliminate from their criteria all intermediate breaks. Bechtel's rationale for the proposal and support for their position are presented

  6. MNE Entrepreneurial Capabilities at Intermediate Levels

    DEFF Research Database (Denmark)

    Hoenen, Anne K.; Nell, Phillip Christopher; Ambos, Björn

    2014-01-01

    at intermediate geographical levels differ from local subsidiaries and global corporate headquarters, and why those differences are important. We illustrate our arguments using data on European regional headquarters (RHQs). We find that RHQs' entrepreneurial capabilities depend on their external embeddedness...

  7. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power '2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy...

  8. Intermediality, Architecture, and the Politics of Urbanity

    OpenAIRE

    Tortosa Garrigós, Virgilio

    2011-01-01

    In his article "Intermediality, Architecture, and the Politics of Urbanity" Virgilio Tortosa Garrigós discusses aspects of the exponential development of large cities, the neoliberal economy, and the "spectacle" of architecture in the context of intermediality. With the connivance between land speculators and politicians — which has led not only to the loss of spatial identity but to irreversible pollution and geographic degradation — urbanity is epitomized on the Mediterranean coast line. In...

  9. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  10. Control of femtosecond multi-filamentation in glass by designable patterned optical fields

    Directory of Open Access Journals (Sweden)

    Ping-Ping Li

    2016-12-01

    Full Text Available We present a scheme for realizing femtosecond multi-filamentation with designable quantity and locations of filaments, based on the control of multi-focal spots formed by patterned optical fields (POFs composed of multiple individual optical fields (IOFs. A computer-controlled spatial light modulator is used to engineer the POFs. In particular, we introduce a blazed phase grating in any IOF, which increases a degree of freedom, making the engineering of multi-focal spots becomes more flexible. We achieve experimentally the aim controlling femtosecond multi-filamentation in a K9 glass. Our scheme has great flexibility and convenience in controlling the multi-filamentation in quantity and locations of filaments and strength of interaction between filaments.

  11. Accretion-driven turbulence in filaments - I. Non-gravitational accretion

    Science.gov (United States)

    Heigl, S.; Burkert, A.; Gritschneder, M.

    2018-03-01

    We study accretion-driven turbulence for different inflow velocities in star-forming filaments using the code RAMSES. Filaments are rarely isolated objects and their gravitational potential will lead to radially dominated accretion. In the non-gravitational case, accretion by itself can already provoke non-isotropic, radially dominated turbulent motions responsible for the complex structure and non-thermal line widths observed in filaments. We find that there is a direct linear relation between the absolute value of the total density-weighted velocity dispersion and the infall velocity. The turbulent velocity dispersion in the filaments is independent of sound speed or any net flow along the filament. We show that the density-weighted velocity dispersion acts as an additional pressure term, supporting the filament in hydrostatic equilibrium. Comparing to observations, we find that the projected non-thermal line width variation is generally subsonic independent of inflow velocity.

  12. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing.

    Science.gov (United States)

    Tao, Yubo; Wang, Honglei; Li, Zelong; Li, Peng; Shi, Sheldon Q

    2017-03-24

    This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile properties, microstructure, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The feedstock filaments of this composite were produced and used successfully in an assembled FDM 3D printer. The research concludes that compared with pure PLA filament, adding WF changed the microstructure of material fracture surface, the initial deformation resistance of the composite was enhanced, the starting thermal degradation temperature of the composite decreased slightly, and there were no effects on the melting temperature. The WF/PLA composite filament is suitable to be printed by the FDM process.

  13. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    Science.gov (United States)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  14. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Berman, R S; Kenneth, O; Sznitman, J; Leshansky, A M

    2013-01-01

    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that even though the amplitude and the wavenumber of undulations are similar to those determined for the best performing sinusoidal swimmer, C. elegans overperforms the latter in terms of both displacement and hydrodynamic efficiency. Further comparison with other undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the optimal model swimmer, yet real swimmers still manage to beat the best performing sine-wave swimmer in terms of distance covered per period. Overall our results underline the importance of further waveform optimization, as periodic undulations adopted by C. elegans and other organisms deviate considerably from a simple sine wave. (paper)

  15. THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS

    International Nuclear Information System (INIS)

    Toalá, Jesús A.; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.

    2012-01-01

    Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time (τ ff ) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density ρ can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to √A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly √A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.

  16. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  17. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  18. Associations of Systemic Diseases with Intermediate Uveitis.

    Science.gov (United States)

    Shoughy, Samir S; Kozak, Igor; Tabbara, Khalid F

    2016-01-01

    To determine the associations of systemic diseases with intermediate uveitis. The medical records of 50 consecutive cases with intermediate uveitis referred to The Eye Center in Riyadh, Saudi Arabia, were reviewed. Age- and sex-matched patients without uveitis served as controls. Patients had complete ophthalmic and medical examinations. There were 27 male and 23 female patients. Mean age was 29 years with a range of 5-62 years. Overall, 21 cases (42%) had systemic disorders associated with intermediate uveitis and 29 cases (58%) had no associated systemic disease. A total of 11 patients (22%) had asthma, 4 (8%) had multiple sclerosis, 3 (6%) had presumed ocular tuberculosis, 1 (2%) had inflammatory bowel disease, 1 (2%) had non-Hodgkin lymphoma and 1 (2%) had sarcoidosis. Evidence of systemic disease was found in 50 (5%) of the 1,000 control subjects. Bronchial asthma was found in 37 patients (3.7 %), multiple sclerosis in 9 patients (0.9%), inflammatory bowel disease in 3 patients (0.3%), and tuberculosis in 1 patient (0.1%). None of the control patients had sarcoidosis or lymphoma. There were statistically significant associations between intermediate uveitis and bronchial asthma (p = 0.0001), multiple sclerosis (p = 0.003) and tuberculosis (p = 0.0005). Bronchial asthma and multiple sclerosis were the most frequently encountered systemic diseases associated with intermediate uveitis in our patient population. Patients with intermediate uveitis should undergo careful history-taking and investigations to rule out associated systemic illness.

  19. Fitoremediasi limbah budidaya sidat menggunakan filamentous algae (Spirogyra sp.

    Directory of Open Access Journals (Sweden)

    Tri Apriadi

    2014-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui potensi dari filamentous algae (Spirogyra sp. sebagai agen bioremediasi dalam mereduksi kandungan bahan organik limbah budidaya sidat. Penelitian menggunakan rancangan acak lengkap dengan perlakuan perbedaan dosis limbah (25 %, 50 %, 75 %, 100%. Wadah penelitian berupa akuarium resirkulasi menggunakan sistem carrousel. Dilakukan pengukuran secara rutin terhadap beberapa parameter kualitas air serta perubahan bobot Spirogyra sp. selama dua minggu retensi. Diperoleh hasil bahwa penurunan konsentrasi bahan organik menggunakan Spirogyra sp. berlangsung efektif hingga hari keenam. Spirogyra sp. mampu mentolelir limbah budidaya sidat pada dosis limbah 25% dan 50%. Spirogyra sp. pada perlakuan dosis limbah 50% memiliki kemampuan yang lebih baik dalam menurunkan bahan organik limbah budidaya sidat.

  20. Effect of friction on the motion of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Madsen, Jens; Naulin, Volker

    is influenced by the collisional friction with the neutral gas fluid. In magnetically confined plasmas, the motion of filamentary structures in the edge region can be influenced by parallel dynamics in a manner that resembles an effective friction. In the presence of strong ballooning, such a frictional...... an effective friction, is investigated. In the inertial regime the radial filament velocity scales as the square root of its size. In the limit of strong friction regime the velocity scales as the inverse of the structure size. A discussion of these results will be given in the context of irregularities...

  1. A comparative study on the disintegration of filamentous fungi.

    Science.gov (United States)

    Taubert, J; Krings, U; Berger, R G

    2000-11-01

    Different methods for cell disintegration were tested for their efficacy on filamentous fungi, including percussion grinding, homogenization using an Ultra-Turrax, chemical treatment and lyophylization. The release of protein from Ganoderma applanatum and Pycnoporus cinnabarinus and the activity of cytoplasmatic glucose-6-phosphate dehydrogenase in the crude extracts were monitored to determine the efficiency of each disintegration technique used. Fungal cells proved to be particularly resistant towards some disintegration methods commonly used for yeasts and bacteria. Best results were obtained using a percussion grinder, if necessary, in combination with an Ultra-Turrax pretreatment.

  2. Fine-Filament MgB2 Superconductor Wire

    Science.gov (United States)

    Cantu, Sherrie

    2015-01-01

    Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.

  3. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    Science.gov (United States)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  4. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W.; Tang, Jay X.; Stein, Derek

    2018-02-01

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  5. Turbulent cascade of Kelvin waves on vortex filaments

    International Nuclear Information System (INIS)

    Baggaley, Andrew W; Barenghi, Carlo F

    2011-01-01

    By numerically integrating in time the motion of vortex filaments, we study how the nonlinear interaction of Kelvin waves along vortices generates Kelvin waves of larger and larger wavenumbers (smaller and smaller wavelength). At sufficiently large wavenumbers the angular velocity of the vortices is large enough that kinetic energy is lost by sound emission. This turbulent cascade of Kelvin waves should explain why turbulence, generated in superfluid helium at very low temperature near absolute zero, quickly decays, despite the lack of any viscous dissipation.

  6. Solar filament impact on 21 January 2005: Geospace consequences

    Science.gov (United States)

    Kozyra, J. U.; Liemohn, M. W.; Cattell, C.; De Zeeuw, D.; Escoubet, C. P.; Evans, D. S.; Fang, X.; Fok, M.-C.; Frey, H. U.; Gonzalez, W. D.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W. B.; Mende, S.; Paxton, L. J.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M. W.; Tsurutani, B. T.; Verkhoglyadova, O.

    2014-07-01

    On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere—an unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks—high enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1-2 h and intensified the

  7. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    OpenAIRE

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in close proximity to S. aloides, resulting in gaps in filamentous algae mats. We analyzed whether those gaps may be caused by allelopathic substances excreted by S. aloides or by nutrient depletion. We ...

  8. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynam......, filaments with short cells in sheaths, populating the upper 7 cm of the sediment, and filaments without sheaths living at the sediment surface....

  9. F-actin-like filaments formed by plasmid segregation protein ParM

    DEFF Research Database (Denmark)

    van den Ent, Fusinita; Møller-Jensen, Jakob; Amos, Linda A.

    2002-01-01

    It was the general belief that DNA partitioning in prokaryotes is independent of a cytoskeletal structure, which in eukaryotic cells is indispensable for DNA segregation. Recently, however, immunofluorescence microscopy revealed highly dynamic, filamentous structures along the longitudinal axis o...... compared with F-actin, despite the similar arrangement of the subunits within the filaments. Thus, there is now evidence for cytoskeletal structures, formed by actin-like filaments that are involved in plasmid partitioning in E.coli. Udgivelsesdato: Dec 16...

  10. Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions

    Directory of Open Access Journals (Sweden)

    Crabbé Aurélie

    2012-11-01

    Full Text Available Abstract Background Pseudomonas putida exerts a filamentous phenotype in response to environmental stress conditions that are encountered during its natural life cycle. This study assessed whether P. putida filamentation could confer survival advantages. Filamentation of P. putida was induced through culturing at low shaking speed and was compared to culturing in high shaking speed conditions, after which whole proteomic analysis and stress exposure assays were performed. Results P. putida grown in filament-inducing conditions showed increased resistance to heat and saline stressors compared to non-filamented cultures. Proteomic analysis showed a significant metabolic change and a pronounced induction of the heat shock protein IbpA and recombinase RecA in filament-inducing conditions. Our data further indicated that the associated heat shock resistance, but not filamentation, was dependent of RecA. Conclusions This study provides insights into the altered metabolism of P. putida in filament-inducing conditions, and indicates that the formation of filaments could potentially be utilized by P. putida as a survival strategy in its hostile, recurrently changing habitat.

  11. On the possible mechanism of formation of emission rim in hydrogen filaments

    International Nuclear Information System (INIS)

    Kostik, R.I.; Orlova, T.V.

    1975-01-01

    Hα filtergrams of the chromosphere show an emission rim in many hydrogen filaments. It is supposed that formation of this rim is due to photospheric radiation reflected by the filament in the direction of the chromosphere. The calculations show that: (1) the maximum contrast of the rim relative to the undisturbed chromosphere amounts to 1.4; (2) the larger the optical thickness of the filament and the closer to the solar limb it is situated, the brighter and wider is the rim; (3) the rim was not observed in filaments whose heights exceeds 10000 km above the chromosphere. These results are in close agreement with observations. (Auth.)

  12. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  13. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol

    Science.gov (United States)

    Gao, Hui; Sun, Xiaodong; Zeng, Bin; Xu, Shengqi; Chu, Wei; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan; Mu, Guoguang

    2012-06-01

    We demonstrate that multiple filaments could be generated when focusing femtosecond laser pulses into methanol solution with an axicon. These long multiple filaments are located on the central spot and ring structures of the quasi-Bessel beam created by the axicon. Further numerical simulation reproduces the key features of the experimental observation. The outcome of simulation suggests that the cylindrical symmetry breaking in the initial beam profile could be responsible for the occurrence of multiple filamentation by using an axicon as focusing optics. Since the quasi-Bessel profile is determined by the axicon properties, the axicon has been suggested as a simple optics component to control multiple filaments.

  14. Non-radially polarized THz pulse emitted from femtosecond laser filament in air.

    Science.gov (United States)

    Zhang, Y; Chen, Y; Marceau, C; Liu, W; Sun, Z-D; Xu, S; Théberge, F; Châteauneuf, M; Dubois, J; Chin, S L

    2008-09-29

    Femtosecond laser filament could produce THz wave in forward direction. In our experiment, THz pulse emitted from a femtosecond laser filament has been investigated. It was found that the polarization of the studied THz pulse mainly appears as elliptical. This observation supplements the previous conclusion obtained by C. D'Amico et al. that THz wave emitted by a filament is radially polarized. The mechanism of generating elliptically polarized THz wave has been interpreted by either four-wave optical rectification or second order optical rectification inside the filament zone where centro-symmetry of the air is broken by the femtosecond laser pulse.

  15. Spatial correlation of conductive filaments for multiple switching cycles in CBRAM

    KAUST Repository

    Pey, K. L.

    2014-06-01

    Conducting bridge random access memory (CBRAM) is one of the potential technologies being considered for replacement of Flash memory for non-volatile data storage. CBRAM devices operate on the principle of nucleation and rupture of metallic filaments. One key concern for commercializing this technology is the question of variability which could arise due to nucleation of multiple filaments across the device at spatially different locations. The spatial spread of the filament location may cause long tails at the low and high percentile regions for the switching parameter distribution as the new filament that nucleates may have a completely different shape and size. It is therefore essential to probe whether switching in CBRAM occurs every time at the same filament location or whether there are other new filaments that could nucleate during repeated cycling with some spatial correlation (if any) to the original filament. To investigate this issue, we make use of a metal-insulator-semiconductor (M-I-S) transistor test structure with Ni as the top electrode and HfOx/SiOx as the dielectric stack. In-situ stressing using a nano-tip on the M-I-S stack is performed and the filament is imaged in real-time using a high resolution transmission electron microscope (TEM). We also extract the location of the filament (LFIL) along the channel of the transistor after the nucleation stage using the weighted proportion of the source and drain currents. © 2014 IEEE.

  16. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  17. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox......sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly...

  18. Pigment Production by the Edible Filamentous Fungus Neurospora Intermedia

    Directory of Open Access Journals (Sweden)

    Rebecca Gmoser

    2018-02-01

    Full Text Available The production of pigments by edible filamentous fungi is gaining attention as a result of the increased interest in natural sources with added functionality in the food, feed, cosmetic, pharmaceutical and textile industries. The filamentous fungus Neurospora intermedia, used for production of the Indonesian food “oncom”, is one potential source of pigments. The objective of the study was to evaluate the fungus’ pigment production. The joint effect from different factors (carbon and nitrogen source, ZnCl2, MgCl2 and MnCl2 on pigment production by N. intermedia is reported for the first time. The scale-up to 4.5 L bubble column bioreactors was also performed to investigate the effect of pH and aeration. Pigment production of the fungus was successfully manipulated by varying several factors. The results showed that the formation of pigments was strongly influenced by light, carbon, pH, the co-factor Zn2+ and first- to fourth-order interactions between factors. The highest pigmentation (1.19 ± 0.08 mg carotenoids/g dry weight biomass was achieved in a bubble column reactor. This study provides important insights into pigmentation of this biotechnologically important fungus and lays a foundation for future utilizations of N. intermedia for pigment production.

  19. Liposome-mediated mycelial transformation of filamentous fungi.

    Science.gov (United States)

    Chai, Ran; Zhang, Guang; Sun, Qiang; Zhang, Mingyue; Zhao, Shuaiju; Qiu, Liyou

    2013-09-01

    Liposome-mediated transformation is common for cells with no cell wall, but has very limited usage in cells with walls, such as bacteria, fungi, and plants. In this study, we developed a procedure to introduce DNA into mycelium of filamentous fungi, Rhizopus nigricans LH 21 and Pleurotus ostreatus TD 300, by liposome-mediation but with no protoplast preparation. The DNA was transformed into R. nigricans via plasmid pEGFP-C1 and into P. ostreatus via 7.2 kb linear DNA. The mycelia were ground in 0.6 M mannitol without any grinding aids or glass powder for 15 min to make mycelial fragments suspension; the suspension was mixed with a mixture of the DNA and Lipofectamine 2000, and placed on ice for 30 min; 100 μL of the transformation solution was plated on potato dextrose agar (PDA) plate and cultivated at 28 °C for transformant screening. The plasmid and the linear DNA were confirmed to be integrated into the host chromosome, proving the success of transformation. The transformation efficiencies were similar to those of electroporation-mediated protoplast transformation (EMPT) of R. nigricans or PEG/CaCl2-mediated protoplast transformation (PMT) of P. ostreatus, respectively. The results showed that our procedure was effective, fast, and simple transformation method for filamentous fungi. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Yusef-Zadeh, Farhad [Northwestern Univ., Evanston, IL (United States)

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.