WorldWideScience

Sample records for intermediate excitation energies

  1. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  3. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  4. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  5. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    Energy Technology Data Exchange (ETDEWEB)

    Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  6. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  7. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Science.gov (United States)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  8. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  9. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2015-12-14

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  10. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    International Nuclear Information System (INIS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.

    2015-01-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule

  11. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    International Nuclear Information System (INIS)

    Hudan, S.; Chbihi, A.; Frankland, J.D.

    2000-01-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  12. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Hudan, S.; Chbihi, A.; Frankland, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2000-07-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  13. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  14. De-excitation gamma-ray technique for improved resolution in intermediate energy photonuclear reactions

    International Nuclear Information System (INIS)

    Kuzin, A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Fissum, K.; Issaksson, L.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Gregel, J.

    1997-01-01

    The 12 C (γ,p) reaction was studied. The experiment was done at the MAX Laboratory of Lund University, using tagged photons with energy between 50 and 70 MeV and natural carbon targets. It has been possible to detect γ-ray emitted from the residual nucleus, in coincidence with photoprotons leading to the excited residual state. The 200 KeV gamma-ray resolution permitted the identification of the residual states and allowed off-line cuts to be made in order to identify the excitation region in 11 B from what particular de-excitation gamma-ray were seen. 9 refs., 1 tab., 3 figs

  15. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  16. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  17. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    International Nuclear Information System (INIS)

    Duque, H. V.; Chiari, L.; Jones, D. B.; Pettifer, Z.; Silva, G. B. da; Limão-Vieira, P.; Blanco, F.; García, G.; White, R. D.; Lopes, M. C. A.; Brunger, M. J.

    2014-01-01

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results

  18. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  19. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Chiari, L.; Jones, D. B.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); White, R. D. [School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)

    2014-06-07

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.

  20. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  1. State-selective charge transfer and excitation in ion-ion interactions at intermediate and high energies

    International Nuclear Information System (INIS)

    Samanta, R; Purkait, M

    2012-01-01

    Boundary Corrected Continuum Intermediate State (BCCIS) approximation and Classical Trajectory Monte Carlo (CTMC) methods are applied to calculate the charge transfer and excitation cross sections for ion-ion collisions.

  2. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  3. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  4. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  5. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  6. Photonuclear reactions at intermediate energy

    International Nuclear Information System (INIS)

    Koch, J.H.

    1982-01-01

    The dominant feature of photonuclear reactions at intermediate energies is the excitation of the δ resonance and one can therefore use such reactions to study the dynamics of δ propagation in a nucleus. Following an introductory section the author comments on photoabsorption on a single nucleon in Section II. A review of the δ-n Greens function and of the photonuclear amplitude is given in Section III. Results for photoabsorption on 4 He are shown in Section IV and compared with the data. Coherent π 0 photoproduction is discussed in Section V and calculations for 12 C are compared to recent measurements. (Auth.)

  7. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  8. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  9. Important role of projectile excitation in 16O+60Ni and 16O+27Al scattering at intermediate energies

    Science.gov (United States)

    Zagatto, V. A. B.; Cappuzzello, F.; Lubian, J.; Cavallaro, M.; Linares, R.; Carbone, D.; Agodi, C.; Foti, A.; Tudisco, S.; Wang, J. S.; Oliveira, J. R. B.; Hussein, M. S.

    2018-05-01

    The elastic scattering angular distribution of the 16O+60Ni system at 260 MeV was measured in the range of the Rutherford cross section down to seven orders of magnitude. The cross sections of the lowest 2+ and 3- inelastic states of the target were also measured over several orders of magnitude. Coupled-channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on 16O+27Al elastic and inelastic scattering at 100 and 280 MeV. An analysis in terms of dynamical polarization potentials (DPP) indicates the major role of coupled-channel effects in the overlapping surface region of the colliding nuclei.

  10. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  11. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  12. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  13. Variational approach to excitation of atomic hydrogen atoms by impacts of protons at intermediate velocities

    International Nuclear Information System (INIS)

    Lasri, B.; Bouamoud, M.; Gayet, R.

    2006-01-01

    A variational approach to the excitation of atoms by ion impacts at intermediate velocities is re-examined. Contributions from intermediate states of the target continuum, that were ignored in previous applications of this approach, are taken into account. With this improved variational approach, excitation cross sections of hydrogen atoms by intermediate energy protons are calculated and compared to recent experimental data and to previous theoretical cross sections. The influence of the intermediate target continuum is found to be very weak. In addition, the present approach is shown to apply as long as the capture process is negligible

  14. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  15. Nuclear spin-orbit splitting from an intermediate Δ excitation

    International Nuclear Information System (INIS)

    Ohta, K.; Terasawa, T.; Tohyama, M.

    1980-01-01

    The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings

  16. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  17. Effects of intermediate load on performance limitations in excitation control

    Directory of Open Access Journals (Sweden)

    Pichai Aree

    2008-05-01

    Full Text Available The stability of excitation control systems is of great concern in power system operations. In this paper, the effects of intermediate load on performance limitation in excitation control are studied. The results reveal that the open-loop characteristic of synchronous machine’s flux linkage can be changed from minimum to non-minimum phase at a high level of intermediate load. This change leads to instability of synchronous machines under manual excitation control. A particular emphasis is also given to investigate the fundamental limitations in excitation control, imposed by non-minimum phases with regard to the open-loop right-half-plane (ORHP pole. The study demonstrates the difficulties of excitation control tuning to achieve the desired performance and robustness under the ORHP pole occurrence. Moreover, this paper shows the conditional stability in excitation control loop, where either an increase or decrease of the exciter gain causes a destabilization of the system’s stability. Frequency response techniques are used for these investigations.

  18. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  19. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  20. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  1. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  2. Magnetic excitations in intermediate valence semiconductors with singlet ground state

    International Nuclear Information System (INIS)

    Kikoin, K.A.; Mishchenko, A.S.

    1994-01-01

    The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment

  3. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  4. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  5. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  6. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  7. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  8. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  9. On spallation and fragmentation of heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    Musulmanbekov, G.; Al-Haidary, A.

    2002-01-01

    A new code for simulation of spallation and (multi)fragmentation of nuclei in proton and nucleus induced collisions at intermediate and high energies is developed. The code is a combination of modified intranuclear cascade model with traditional fission - evaporation part and multifragmentation part based on lattice representation of nuclear structure and percolation approach. The production of s-wave resonances and formation time concept included into standard intranuclear cascade code provides correct calculation of excitation energy of residues. This modified cascade code served as a bridge between low and high energy model descriptions of nucleus-nucleus collisions. A good agreement with experiments has been obtained for multiparticle production at intermediate and relatively high energies. Nuclear structure of colliding nuclei is represented as face centered cubic lattice. This representation, being isomorphic to the shell model of nuclear structure, allows to apply percolation approach for nuclear fragmentation. The offered percolation model includes both site and bond percolation. Broken sites represent holes left by nucleons knocked out at cascade state. Therefore, in the first cascade stage mutual rescattering of the colliding nuclei results in knocking some nucleons out of them. After this fast stage paltrily destruct and excited residues remain. On the second stage residual nuclei either evaporate nucleons and light nuclei up to alpha-particles or fragment into pieces with intermediate masses. The choice depends on residue's destruction degree. At low excitation energy and small destruction of the residue the evaporation and fission mechanisms are preferable. The more excitation energy and destruction the more probability of (multi)fragmentation process. Moreover, the more destruction degree of the residual the more the site percolation probability. It is concluded, that at low and intermediate excitation energies the fragmentation of nuclei is slow

  10. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  11. Restrictions on the masses and coupling constants of excited intermediate bosons

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Nogteva, A.V.

    1985-01-01

    The properties of the intermediate bosons are discussed in the framework of composite models which include not only the W +- and Z 0 bosons but also their excited states with large masses. The influence of the excited states on the values of the masses of the W +- and Z 0 bosons is investigated. Restrictions on the masses and coupling constants of the excited intermediate bosons are obtained

  12. Excitation functions and yields of proton induced reactions at intermediate energies leading to important diagnostics radioisotopes of 52Fe, 77Br, 82Rb, 97Ru, 111In, 123I, 127Xe, 128Cs, 178Ta and 201Tl

    International Nuclear Information System (INIS)

    Rurarz, E.

    1994-01-01

    This report describes investigations of the excitation functions of the proton induced reactions on 14 targets (Mn, Co, Br, Rb, 99 Tc, 113 Cd, 114 Cd, Cd, I, Cs, Ta, 206,207,208 Pb) leading directly or indirectly to the formation of radionuclides 52 Fe, 77 Br, 82 Rb, 97 Ru, 111 In, 123 I, 127 Xe, 128 Cs, 178 Ta and 201 Tl frequently used in diagnostic procedures of nuclear medicine. The measurements of the excitation functions were made over a wide proton energy range from the reaction threshold up to 100 MeV using the stacked foil (or pellet) technique. Small energy steps were used to allow for accurate determination of the structure of excitation functions. For 97 Ru, 111 In and 127 Xe formation with protons, new reaction channels and targets were used and data concerning this method are published for the first time. The data for 52 Fe, 77 Br, 82 Rb, 123 I, 128 Cs and 201 Tl obtained in the present work for the E p =70-100 MeV region are also published for the first time. The measured excitation functions for the formation of desired (and undesired) radionuclides (altogether 28 excitation functions) are compared with the theoretical ones calculated on the basis of a hybrid model of nuclear reactions in the form of the Overlaid Alice computer code. In order to determine the contribution of the competitive reaction channels to the purity of the produced, desired radionuclide, the excitation functions of the accompanying reactions were also calculated. The 122 calculated excitation functions for the possible contaminant are given in the present work. The comparison of experimental excitation functions with the results of model calculations showed satisfactory agreement, especially if one considers, that no parameter adjustment for individual reaction products was undertaken. From the measured excitation functions the production yields for 28 radionuclides mentioned above have been determined (author). 262 refs, 65 figs, 34 tabs

  13. Proton scattering at intermediate energies

    International Nuclear Information System (INIS)

    Chaumeaux, A.; Layly, V.; Schaeffer, R.

    1977-01-01

    This article is devoted to the analysis of the most recent Saclay data of elastic and inelastic proton scattering on nuclei at incident energies around 1GeV ( 16 O, the Ca isotopes, the Ni isotopes, 90 Zr and 208 Pb). Various theories (Impulse or Glauber approximation) are comapred. It is shown that the reaction mechanism is very well understood at 1GeV and that, at these energies, absorption and distortion is small enough, so one can extract nuclear densities from the experiment. In particular, the shape of the neutron densities is given, and compared to the Hartree-Fock predictions. The uncertainties, especially in the determination of the neutron radii are discussed [fr

  14. Nuclear photoreactions at intermediate energies

    International Nuclear Information System (INIS)

    Christillin, P.

    1989-02-01

    We review the interaction of real photons with nuclei up to the GeV region. The common microscopic description of exchange effects below threshold and of the corresponding real photoproduction above, is emphasized. The theoretical problems connected with π photoproduction in Δ region and vector meson photoproduction are spelled out and solved. The gross features of the reaction mechanism are shown to explain both the low energy region, the bulk properties around the Δ resonance as well as the appearance of shadowing only above ρ threshold

  15. Intermediate energy proton scattering from 10B

    International Nuclear Information System (INIS)

    Lewis, P.R.; Shute, G.G.; Spicer, R.S.; Henderson, R.S.

    1990-01-01

    Differential cross sections have been measured for 200 MeV proton scattering from 10 B. Data for six low lying natural parity levels below 6 MeV excitation energy are presented. Distorted wave analysis using a density dependent nucleon-nucleon interaction has assessed model spectroscopies of these excited states. The significance of the contribution from quadrupole scattering to the elastic cross section is discussed. 49 refs., 5 tabs., 21 figs

  16. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  17. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  18. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...

  19. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  20. Needs for experiment and theory in intermediate energy reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1991-01-01

    We summarize several reasons intermediate energy data are needed in both basic and applied science. The status of the data base at energies up to 2 GeV is cursorily reviewed. Experimental excitation functions, single and double differential cross sections are compared with predictions of the nuclear model code ALICE. The strengths and weaknesses of the code to reproduce data are summarized. Opinions are given as to areas where data are too few or totally lacking, yet are needed for the verification of models and theories. (author). 25 refs, 22 figs

  1. Electric dipole moments of He atoms excited to the 1s5l (l  ⩾ 2) states by He+-ion impact at intermediate energies

    International Nuclear Information System (INIS)

    Baszanowska, E; Drozdowski, R; Kamiński, P; Von Oppen, G

    2014-01-01

    The post-collisional 1s5l (l ⩾ 2) states of He atoms after He + -ion impact (10 keV–28 keV) have been investigated using anticrossing spectroscopy. In particular, the intensity of the spectral line λ(1s5l 3 D-1s2p 3 P) = 402.6 nm emitted by the impact-excited He atoms was measured as a function of an axial electric field (which varied from −30 kV cm −1 to +30 kV cm −1 ). By fitting the theoretical intensity functions to the measured ones, the post-collisional states of the atoms and their electric dipole moments were determined. The results indicate that for projectile energies below 20 keV, the electric dipole moments are small; however, for energies above 20 keV, mainly the parabolic Stark states with maximal electric dipole moments are excited. We conclude that in the upper section of the energy range investigated here, the Paul-trap promotion is the dominant excitation mechanism for He + –He collisions. (paper)

  2. Parity violation experiments at intermediate energies

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1996-06-01

    The status of the TRIUMF 221 MeV proton-proton violation experiment is reviewed. Several other proton-proton parity violation experiments in the in the intermediate energy range, currently in various stages of preparation, are discussed. A new experiment at an energy of 5.13 GeV (and if confirmed also at an energy of tens of GeV) is needed to follow on the earlier unexpected large result obtained at 5.13 GeV. (author)

  3. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  4. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  5. Excitation methods for energy dispersive analysis

    International Nuclear Information System (INIS)

    Jaklevic, J.M.

    1976-01-01

    The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed

  6. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  7. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  8. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  9. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  10. q-Gamow states for intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Plastino, A. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Rocca, M.C., E-mail: mariocarlosrocca@gmail.com [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Ferri, G.L. [Fac. de C. Exactas, National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa (Argentina); Zamora, D.J. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina)

    2016-11-15

    In a recent paper Plastino and Rocca (2016) [18] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit–Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized Vignat and Plastino (2009) [2] that, empirically, one never exactly and unambiguously “detects” pure Gaussians, but rather q-Gaussians. A prediction is made via Eq. (3.4).

  11. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  12. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  13. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  14. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  15. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  16. MCNP6 fragmentation of light nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)

    2014-11-11

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  17. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  18. Antibonding intermediate state in the theory of vibrational excitation of diatomic molecules by slow electrons

    International Nuclear Information System (INIS)

    Kazanskii, A.K.

    1982-01-01

    An exactly solvable model is constructed for the description of the processes that take place when a slow electron collides with a diatomic molecule (vibrational excitation, associative detachment, and dissociative attachment). As a particular model of the variant, the case of an antibonding (virtual) state of an intermediate state is considered, and a term of this state is parametrized in a very simple manner. The vibrational excitation and dissociative attachment are calculated for a system corresponding to the HCl molecule. The results are in good qualitative agreement with experiment

  19. Excitation of higher lying energy states in a rubidium DPAL

    Science.gov (United States)

    Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.

    2018-02-01

    The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.

  20. Peripheral collisions of heavy ions induced by 40Ar at intermediate energies: giant resonance high energy structures and projectile fragmentation

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    1987-09-01

    The results obtained in similar studies at low incident energies are first of all reviewed. The time of flight spectrometer built for the experiments is then described. A study of the properties of the projectile-like fragments shows numerous deviations from the relativistic energy fragmentation model. Evidence for a strong surface transfer reaction component is given and the persistence of mean field effects at intermediate energies is stressed. A calculation of the contribution of the transfer evaporation mechanism to the inelastic spectra shows that this mechanism is responible for the major part of the background measured at high excitation energy and can in some cases induce narrow structures in the spectra. The inelastic spectra shows a strong excitation of the giant quadrupole resonance. In the region between 20 and 80 MeV excitation energy narrow structures are present for all the studied systems. Statistical and Fourier analysises allow to quantify the probabilities of existence, the widths and the excitation energies of these structures. A transfer evaporation hypothesis cannot consistently reproduce all the observed structures. The excitation energies of the structures can be well described by phenomenological laws where the energies are proportional to the -1/3 power of the target mass. Complete calculations of the excitation probabilities of giant resonances and multiphonon states are performed within a model where the nuclear excitation are calculated microscopically in the Random Phase Approximation. It is shown that a possible interpretation of the structures is the excitation of multiphonon states built with 2 + giant resonances [fr

  1. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  2. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17 O. 85 refs

  3. Experimental determination of fragment excitation energies in multifragmentation events

    International Nuclear Information System (INIS)

    Marie, N.; Natowitz, J.B.; Assenard, M.; Bacri, Ch.O.

    1998-01-01

    For 50 MeV/nucleon 129 Xe + nat Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author)

  4. Experimental determination of fragment excitation energies in multifragmentation events

    Energy Technology Data Exchange (ETDEWEB)

    Marie, N.; Natowitz, J.B. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.; Chbihi, A.; Le Fevre, A.; Salou, S.; Wieleczko, J.P.; Gingras, L.; Auger, G. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France); Assenard, M. [Nantes Univ., 44 (France); Bacri, Ch.O. [Centre National de la Recherche Scientifique, CNRS, 91 - Orsay (France)] [and others

    1998-03-17

    For 50 MeV/nucleon {sup 129}Xe + {sup nat}Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author) 25 refs.

  5. Differential cross sections for inelastic scattering of electrons on Kr and Xe atoms at intermediate energies

    International Nuclear Information System (INIS)

    Filipovic, D.M.

    1989-01-01

    Electron-impact excitation of the larger- number noble-gas atoms is a way of understanding excitation mechanisms in atomic collisional processes. Krypton and xenon have the largest atomic number of all the stable noble gases. Therefore, effects dependent on the size of a target atom, such as alignment and orientation of the atomic outer shell charge cloud after collisional excitation, are best observed by studying these atoms. Normalized, absolute differential cross sections (DCS's) for the lowest electronic states of Kr and Xe atoms, at intermediate energies, are the subject of this report

  6. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  7. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  8. Proceedings of the 6. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1986-01-01

    Several works on nuclear, hadron and quark physics are presented covering both aspects; theoretical and experimental, are presented. Emphasis is given in the intermediate energy region, several MeV centil few GeV. (L.C.) [pt

  9. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  10. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  11. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  12. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  13. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  14. Intermediate resonance excitation in the {gamma}p->p{pi}{sup 0}{pi}{sup 0} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Altieri, S. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom)] (and others)

    2005-09-29

    The helicity dependence of the total cross section for the {gamma}->p->->p{pi}{sup 0}{pi}{sup 0} reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement, performed at the tagged photon beam facility of the MAMI accelerator in Mainz, used the large acceptance detector DAPHNE and a longitudinally polarized frozen-spin target. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, most likely due to the intermediate production of the D{sub 13}(1520) resonance. However, the contribution of the antiparallel spin configuration, arising from other reaction mechanisms, is also not negligible. This result gives important new information to resolve the existing model discrepancies in the identification of the nucleon resonances contributing to this channel.

  15. Breakup reactions at intermediate and high energy

    International Nuclear Information System (INIS)

    Shotter, A.C.; Bice, A.N.

    1981-01-01

    Having considered some general aspects of peripheral break-up reactions involving heavy ions for the incident energy range 10-2000 MeV/A, specific experiments carried out at Berkeley in 1980 in the energy range 10-20 MeV/A are discussed. These indicate that sequential break-up processes from non-sequential inelastic processes both play significant roles in the mechanism. (UK)

  16. Dynamical effects in multifragmentation at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Colin, J.; Cussol, D.; Normand, J. [Caen Univ., Lab. de Physique Corpusculaire, IN2P3-CNRS/ENSICAEN, 14 (France)] [and others

    2003-04-01

    The fragmentation of the quasi-projectile is studied with the INDRA multidetector for different colliding systems and incident energies in the Fermi energy range. Different experimental observations show that a large part of the fragmentation is not compatible with the statistical fragmentation of a fully equilibrated nucleus. The study of internal correlations is a powerful tool, especially to evidence entrance channel effects. These effects have to be included in the theoretical descriptions of nuclear multifragmentation. (authors)

  17. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  18. (p,n) reaction at intermediate energy

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    The use of the (p,n) reaction in exploring effective interactions is reviewed. Some recent data on self-conjugate nuclei taken at the Indiana University Cyclotron Facility (IUCF) are presented, and the differences between low- and high-energy data are emphasized. Experimental problems and techniques used are briefly described. It is concluded that forward-angle (p,n) spectra at energies greater than 100 MeV are dominated by Gamow-Teller (GT) transitions, while Fermi transitions (IAS transitions) dominate near 45 MeV. Prominent GT transitions are expected from a pion-exchange interaction, and it is expected that OPEP is the dominant component of the interaction in the energy range of 100 to 200 MeV. 27 figures, 2 tables

  19. Negotiating comfort in low energy housing: The politics of intermediation

    International Nuclear Information System (INIS)

    Grandclément, Catherine; Karvonen, Andrew; Guy, Simon

    2015-01-01

    Optimising the energy performance of buildings is technically and economically challenging but it also has significant social implications. Maintaining comfortable indoor conditions while reducing energy consumption involves careful design, construction, and management of the built environment and its inhabitants. In this paper, we present findings from the study of a new low energy building for older people in Grenoble, France where conflicts emerged over the simultaneous pursuit of energy efficiency and comfort. The findings contribute to the contemporary literature on the sociotechnical study of buildings and energy use by focusing on intermediation, those activities that associate a technology to end users. Intermediation activities take many forms, and in some cases, can result in the harmonisation or alignment of energy efficiency goals and comfort goals. In other cases, intermediation is unsuccessful, leading to the conventional dichotomy between optimising technical performance and meeting occupant preferences. By highlighting the multiple ways that comfort and energy efficiency is negotiated, we conclude that buildings are provisional achievements that are constantly being intermediated. This suggests that building energy efficiency policies and programmes need to provide opportunities for intermediaries to negotiate the desires and preferences of the multiple stakeholders that are implicated in low energy buildings. -- Highlights: •Energy efficiency and comfort are two possibly contradictory aims of buildings. •We study the pursuit of these aims at the occupation stage of a new building. •Aligning these aims involve negotiating them with occupants. •Intermediation processes are key to such negotiations. •Intermediation processes involve both actors and technical devices

  20. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  1. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  2. Photofissility of actinide nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Tavares, O.A.P.; Duarte, S.B.; Oliveira, E.C. de; Arruda-Neto, J.D.T.; Pina, S.R. de; Likhachev, V.P.; Mesa, J.; Goncalves, M.

    2001-08-01

    We analyze the recent experimental data on photofissility for 237 Np, 238 U, and 232 Th at incident photon energies above 200 MeV. For this analysis, we developed a Monte carlo algorithm for the nuclear evaporation process in photonuclear reactions. This code is used in association with the multi-collisional model for the photon-induced intranuclear cascade process. Our results show a good quantitative and qualitative agreement with the experimental data. It is shown that the emission of protons and alpha particles at the evaporation stage is an important component for the non-saturation of the actinides photofissility up to, at least, 1GeV. (author)

  3. Innovative spin precessor for intermediate energy protons

    International Nuclear Information System (INIS)

    Hoffman, E.W.

    1979-01-01

    A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H - to H + to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF

  4. Deuterons and flow: At intermediate AGS energies

    International Nuclear Information System (INIS)

    Kahana, D.E.; Pang, Y.; Kahana, S.H.

    1996-06-01

    A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density (ρ 0 ) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 ρ 0 is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered

  5. Photonucleon reactions in 40Ca at intermediate energies

    International Nuclear Information System (INIS)

    Adler, J.-O.; Bulow, B.; Jonsson, G.G.; Lindgren, K.

    1976-01-01

    The yields of the reactions 40 Ca(γ,n) 39 Ca* and 40 Ca(γ,p) 39 K* to the first three excited states have been measured for bremsstrahlung with end-point energies in the region 100-750 MeV. The C 2 S values for the first excited state were deduced from the pion photoproduction contribution to the measured yields. (Auth.)

  6. Nuclear studies with intermediate energy probes

    International Nuclear Information System (INIS)

    Norum, B.E.

    1992-01-01

    Data from measurements at NIKHEF-K of the electro-production of neutral pions from the proton were completely analyzed and axe about to be submitted for publication. These results represent the first precise measurement of this fundamental process in the threshold region. The results are completely consistent with calculations based upon the Low Energy Theorems. Results from studies of a gas jet target in the electron storage ring of the Saskatchewan Accelerator Laboratory (SAL) have been fully analyzed and are being prepared for publication. An Internal Target Development Facility (ITDF), established at NIKHEF-K in a collaborative effort for the purpose of developing higher density gas jet targets suitable for use in electron rings, is operational. Diagnostic techniques are being evaluated in preparation for evaluating jet technology options. Our study of the calcium isotopes ( 42 C and 44 C) is nearing completion. Both the electron and proton scattering data have been completely analyzed. Consistent proton and neutron transition densities have been extracted, and are being compared to corresponding results from pion scattering. Preparations for (γ,π - ) measurements at SAL have been completed, and data taking is about to commence

  7. Light fragment formation at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.

    1982-03-01

    This paper concerns itself mainly with the production of energetic protons and light fragments at wide angles. The experiments point to nucleon emission in proton-induced reactions as involving a mechanism in which the observed nucleon is directly knocked out of the nucleus. A similar feature seems to be required to explain (p,F) and (e,F) reactions: an energetic nucleon is produced in one scattering of the projectile, and the struck nucleon subsequently loses some of its energy as it traverses the remaining part of the nucleus, gathering up other nucleons as it goes, to become a fragment. This is what one might call the extreme snowball model, and a more accurate description probably involves multiple scattering of the projectile in addition to the extreme snowball contribution. This will be particularly true for fragments in the mass 6 to 9 region. This scenario also appears to apply to deuteron-induced fragment production. However, for alpha-induced reactions it would appear that the nucleons forming a fragment can originate from collisions involving different incident nucleons in the projectile. For heavy ions, this effect is even stronger, and the snowball contribution is greatly reduced compared to that of the traditional coalescence model

  8. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  9. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  10. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. We have solved a non-trivial model field theory in the strong coupling regime using a discretized light front quantization (DLFQ) scheme. The method we developed expands upon the method of Pauli and Brodsky by incorporating a dynamical treatment of the vacuum. This is a major result since we have shown directly that the light-cone vacuum is not structureless as has been traditionally claimed by some particle theorists. We have thus succeeded in elucidating the consequences of spontaneous symmetry breaking in light-cone quantization. We now propose to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We will complete our analysis of the SLAC NE3 data to explicate the degree to which they confirm the QCM prediction of ''steps'' in the ratio of nuclear structure functions when Bjorken x exceeds unity. In another effort, we will perform a search for narrow resonances in electron-positron interactions high in the continuum using the Bethe-Salpeter equation. We have completed our development of microscopic effective Hamiltonians for nuclear structure which include the explicit treatment of delta resonances. These effective Hamiltonians were successfully used in constrained mean field calculations evaluating conditions for nuclei to undergo a transition from nucleon matter to delta matter. 73 refs

  11. Low energy spin excitations in chromium metal

    International Nuclear Information System (INIS)

    Pynn, R.; Azuah, R.T.; Stirling, W.G.

    1997-01-01

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 ± δ,0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, ± δ) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions

  12. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  13. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  14. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  15. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  16. The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua

    2010-01-01

    We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)

  17. Theoretical research in intermediate energy nuclear physics: Final report

    International Nuclear Information System (INIS)

    Seki, R.

    1987-01-01

    This paper discusses the progress that has been made on the following problems: a numerical calculation of Skyrmiron scattering; (e,e'p) at high momentum transfer; spin-orbit nucleon-nucleon potential from Skyrme model; pionic atom anomaly; and field theory problems. The problems deal with various topics in intermediate-energy nuclear physics

  18. Proceedings of the 5. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1984-05-01

    Several papers concerning the physics at intermediate energies (∼ 100-1000MeV) are presented in this proceedings. Almost all the works show overlapping between Nuclear and Particles Physics. There is a predominance in theoretical papers. (L.C.) [pt

  19. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  20. Polarization phenomena in electromagnetic interactions at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1990-01-01

    Recent results of polarization measurements in electromagnetic interactions at intermediate energies are discussed. Prospects of polarization experiments at the new CW electron accelerators, as well as on upgraded older machines are outlined. It is concluded that polarization experiments will play a very important role in the study of the structure of the nucleon and of light nuclei. 72 refs

  1. Systematics of elastic scattering at high and intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1977-01-01

    A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.

  2. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  3. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  4. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  5. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  6. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  7. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  8. On the determination of the mean excitation energy of water

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed....

  9. Dependence of the giant dipole strength function on excitation energy

    International Nuclear Information System (INIS)

    Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.

    1982-01-01

    Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy

  10. Roles of the Excitation in Harvesting Energy from Vibrations.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.

  11. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  12. Transport code and nuclear data in intermediate energy region

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Odama, Naomitsu; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-01-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  13. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  14. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  15. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  16. Review of recent experiments in intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, PA (USA)

    1978-01-01

    The data generated at intermediate-energy accelerator facilities has expanded rapidly over the past few years. A number of recent experiments chosen for their impact on nuclear structure questions are reviewed. Proton scattering together with pionic and muonic atom X-ray measurements are shown to be giving very precise determinations of gross nuclear properties. Pion scattering and reaction data although less precise, are starting to generate a new understanding of wave functions of specific nuclear states. Specific examples where new unpublished data are now available are emphasized. In addition, other medium-energy experiments that are starting to contribute to nuclear structure physics are summarized.

  17. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  18. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  19. JANUS - A setup for low-energy Coulomb excitation at ReA3

    Science.gov (United States)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  20. Design and development of a parametrically excited nonlinear energy harvester

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel

    2016-01-01

    Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.

  1. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  2. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  3. Energy-optimal electrical excitation of nerve fibers.

    Science.gov (United States)

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  4. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  5. Energy-dependent collisional deactivation of vibrationally excited azulene

    International Nuclear Information System (INIS)

    Shi, J.; Barker, J.R.

    1988-01-01

    Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced

  6. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  7. Excitation functions and yields of proton induced reactions at intermediate energies leading to important diagnostics radioisotopes of {sup 52}Fe, {sup 77}Br, {sup 82}Rb, {sup 97}Ru, {sup 111}In, {sup 123}I, {sup 127}Xe, {sup 128}Cs, {sup 178}Ta and {sup 201}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Rurarz, E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    This report describes investigations of the excitation functions of the proton induced reactions on 14 targets (Mn, Co, Br, Rb, {sup 99}Tc, {sup 113}Cd, {sup 114}Cd, Cd, I, Cs, Ta, {sup 206,207,208}Pb) leading directly or indirectly to the formation of radionuclides {sup 52}Fe, {sup 77}Br, {sup 82}Rb, {sup 97}Ru, {sup 111}In, {sup 123}I, {sup 127}Xe, {sup 128}Cs, {sup 178}Ta and {sup 201}Tl frequently used in diagnostic procedures of nuclear medicine. The measurements of the excitation functions were made over a wide proton energy range from the reaction threshold up to 100 MeV using the stacked foil (or pellet) technique. Small energy steps were used to allow for accurate determination of the structure of excitation functions. For {sup 97}Ru, {sup 111}In and {sup 127}Xe formation with protons, new reaction channels and targets were used and data concerning this method are published for the first time. The data for {sup 52}Fe, {sup 77}Br, {sup 82}Rb, {sup 123}I, {sup 128}Cs and {sup 201}Tl obtained in the present work for the E{sub p}=70-100 MeV region are also published for the first time. The measured excitation functions for the formation of desired (and undesired) radionuclides (altogether 28 excitation functions) are compared with the theoretical ones calculated on the basis of a hybrid model of nuclear reactions in the form of the Overlaid Alice computer code. In order to determine the contribution of the competitive reaction channels to the purity of the produced, desired radionuclide, the excitation functions of the accompanying reactions were also calculated. The 122 calculated excitation functions for the possible contaminant are given. The comparison of experimental excitation functions with the results of model calculations showed satisfactory agreement; no parameter adjustment for individual reaction products was undertaken. Production yields for 28 radionuclides mentioned above were determined (author). 262 refs, 65 figs, 34 tabs.

  8. Theoretical research in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Seki, R.

    1991-01-01

    This report discusses progress that has been made on the following six problems: (1) final state interactions in (e,e'p) at high momentum transfer; (2) a numerical calculation of skyrmion-antiskyrmion annihilation; (3) pion-nucleus interactions above 0.5 GeV/c; (4) pionic atom anomaly; (5) baryon interactions in Skyrme model; and (6) large N c quantum hydrodynamics. The problems deal with various topics in intermediate-energy nuclear physics. Since we plan to continue the investigation of these problems in the third year, we describe the plan of the investigation together

  9. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  10. Intermediate energy semileptonic probes of the hadronic neutral current

    International Nuclear Information System (INIS)

    Musolf, M.J.; Donnelly, T.W.; Dubach, J.; Beise, E.J.; Maryland Univ., College Park, MD

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed

  11. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  12. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  13. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  14. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  15. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2012-01-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)

  16. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  17. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  18. Nuclear data evaluation at intermediate energies: An introduction

    International Nuclear Information System (INIS)

    Koning, A.J.

    2001-01-01

    An outline is presented of the status of nuclear data evaluation for intermediate energies. Our specific contribution to the field concerns neutron and proton transport data libraries, for energies below about 150 MeV. The evaluated data are calculated and stored in ENDF6-format with the computer codes ECIS96, GNASH and MINGUS. New phenomenological optical model potentials up to 200 MeV are presented and we illustrate the library production with a short outline of the other employed physical methods. The calculated results are compared with the available experimental data. A 68 MeV neutron transmission experiment on iron has been analyzed with MCNPX using the Los Alamos LA150 neutron data library, the ECN/BRC 150 MeV neutron data library and with the intranuclear cascade code LAHET. The clear improvement by using the data libraries is confirmed. (author)

  19. Mass distributions in nucleon-induced fission at intermediate energies

    CERN Document Server

    Duijvestijn, M C; Hambsch, F J

    2001-01-01

    Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).

  20. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  1. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  2. International codes and model intercomparison for intermediate energy activation yields

    International Nuclear Information System (INIS)

    Rolf, M.; Nagel, P.

    1997-01-01

    The motivation for this intercomparison came from data needs of accelerator-based waste transmutation, energy amplification and medical therapy. The aim of this exercise is to determine the degree of reliability of current nuclear reaction models and codes when calculating activation yields in the intermediate energy range up to 5000 MeV. Emphasis has been placed for a wide range of target elements ( O, Al, Fe, Co, Zr and Au). This work is mainly based on calculation of (P,xPyN) integral cross section for incident proton. A qualitative description of some of the nuclear models and code options employed is made. The systematics of graphical presentation of the results allows a quick quantitative measure of agreement or deviation. This code intercomparison highlights the fact that modeling calculations of energy activation yields may at best have uncertainties of a factor of two. The causes of such discrepancies are multi-factorial. Problems are encountered which are connected with the calculation of nuclear masses, binding energies, Q-values, shell effects, medium energy fission and Fermi break-up. (A.C.)

  3. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  4. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  5. Statistical and dynamical aspects of intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs

  6. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  7. Statistical and dynamical aspects of intermediate energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.

  8. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  9. Energies and lifetimes of excited states in copperlike Kr VIII

    International Nuclear Information System (INIS)

    Livingston, A.E.; Curtis, L.J.; Schectman, R.M.; Berry, H.G.

    1980-01-01

    The spectrum of Kr VIII has been observed between 180 and 2000 A by using foil excitation of 2.5--3.5-MeV krypton ions. Twenty new transitions have been classified and eleven new excited-state energies have been determined within the n=4 --7 shells. The ionization potential is derived to be 1 015 800 +- 200 cm -1 . The excited-state energies and fine structures are compared with recent relativistic Hartree-Fock calculations. The 4p-state lifetime has been measured by performing a simultaneous analysis of decay data for the 4p level and for its dominant cascade-repopulating levels. The 4p lifetime is found to be 30% shorter than previously measured values and is in excellent agreement with the result of a recent multiconfiguration Hartree-Fock calculation. The source of the discrepancy between this result and earlier measurements is discussed

  10. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  11. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  12. Hipse: an event generator for nuclear collisions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  13. Pitfalls in looking for color transparency at intermediate energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.; Strikman, M.I.; Zhalov, M.B.

    1994-01-01

    The problems and uncertainties in the search for color transparency at intermediate Q 2 are considered. We show that conventional (optical) model [distorted wave impulse approximation (DWIA)] predicts a substantial change of the transparency, T, with Q 2 in the kinematics of the Ne-18 (e,e ' p) experiment, while the color transparency phenomenon may lead to nearly Q 2 independent T. In the case of A(p,2p) reaction we demonstrate that the conventional optical model describes well the 1 GeV A(p,2p) data but not the transparency observed at higher energies. We find also that DWIA (with or without color transparency) predicts strong dependence of T on the momentum of the struck nucleon which is consistent with the pattern of the Brookhaven National Laboratory A(p,2p) data at p N =6 GeV/c and 10 GeV/c

  14. On selection rules and inelastic electron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Nuroh, K.

    1986-12-01

    Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs

  15. Kaon production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1992-01-01

    Production of positive kaons in nuclear collisions at intermediate energies (∝ 1-2 GeV/nucleon) is studied within the 3-dimensional fluid dynamics combined with the hadrochemical kinetics for strangeness production. Sensitivity of the kaon probe to a form of the nuclear equation of state is analyzed. The model reproduces total and differential cross sections of Ne+NaF→K + +X and Ne+Pb→K + +X reactions at E lab =2.1 GeV/nucleon, provided a soft equation of state is used. The pion-production data are also well described employing the same equation of state. Predictions are made for the current experiment on kaon production at the SIS accelerator. The obtained results are compared with the predictions of other models. (orig.)

  16. Excitation-energy influence at the scission configuration

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2017-01-01

    Full Text Available Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z∼50 and Z∼55, where their impact evolves with the excitation energy.

  17. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  18. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  19. Intermediate energy electron scattering from sodium and potassium

    International Nuclear Information System (INIS)

    Buckman, S.J.

    1979-06-01

    This thesis describes an experimental investigation of the interaction of fast electrons with alkali metal atoms. Several of the theoretical models which have been applied to atomic collision processes including the first Born approximation, the Glauber approximation, the optical model and the distorted wave polarized orbital approximation are discussed. The theory of electron-photon coincidence experiments is outlined and the effects of fine and hyperfine structure on the polarization state of photons emitted from an excited atom are calculated for Sodium. The results of elastic scattering measurements on Sodium and Potassium are presented and used to test several theoretical models in their description of the differential cross section at incident energies between 50 and 200eV. Absolute differential and integrated total cross sections for the Potassium resonance lines and Sodium D-lines are presented. Results of the first electron-polarized photon coincidence experiment on the Sodium D-lines are presented and compared with available theoretical calculations

  20. (γ,2n) reactions in complexe nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1976-01-01

    The Monte Carlo Method has been used in the intranuclear cascade model for the calculation of the cross sections of the (γ,2n) reactions in complex nuclei 9 Be, 12 C, 16 O, 59 Co, 103 Rh, 127 I, 197 Au and 209 Bi at intermediate energies (200MeV-1000MeV). The initial photon-interaction via the photomesonic and quasi-deuteron mechanisms have been taken into account. The nuclear model used was a degenerate Fermi gas of nucleons, and the Pauli exclusion principle was considered in all secondary interactions. To improve accuracy in the results of the calculations, 30000 cascades have been followed for each target nucleus at a given incident photon energy. The probabilities of the various (γ,2n) reactions, as well as the correspondent cross section obtained, are summarized in tables and graphs. New data on the cross sections of the 59 Co (γ,2n) and 209 Bi (γ,2n) reactions at photon energies between 300 MeV and 1000MeV are also reported. These measurements were obtained with the Bremsstrahlung beams of the Frascati 1 GeV Electron Synchrotron. A comparison between all existing data in the literature on the (γ,2n) reaction cross sections and the estimates by the Monte Carlo Method, is presented. (Author) [pt

  1. Mott transition: Low-energy excitations and superconductivity

    International Nuclear Information System (INIS)

    Ioffe, L.B.; Larkin, A.I.

    1988-09-01

    It is possible that metal-dielectric transition does not result in changes of magnetic or crystallographic symmetry. In this case a fermionic spectrum is not changed at the transition, but additional low-energy excitations appear which can be described as a gauge field that has the same symmetry as an electromagnetic one. In the case of a non half-filled band gapless scalar Bose excitations also appear. Due to the presence of additional gauge field the physical conductivity is determined by the lowest conductivity of the Fermi or Bose subsystems. (author). 11 refs

  2. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  3. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  4. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    International Nuclear Information System (INIS)

    Nathan, A.M.; Sandorfi, A.M.

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF

  5. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. [eds.

    1992-10-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.

  6. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  7. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  8. The nuclear spin response to intermediate energy protons and deuterons at low momentum transfer

    International Nuclear Information System (INIS)

    Baker, F.T.; Djalali, C.; Glashausser, C.; Lenske, H.; Love, W.G.; Tomasi-Gustafsson, E.; Wambach, J.

    1997-01-01

    Measurements of polarization transfer in the inelastic scattering of intermediate energy protons and deuterons have yielded a wealth of data on the spin response of nuclei. This work complements the well-known studies of Gamow-Teller strength in charge-exchange reactions. The emphasis here is on a consistent determination of the S=1, T=0 response, practical only with deuterons, and on the proper separation of S=0 and S=1 strength in proton spectra for appropriate comparison with sum rules. We concentrate on two nuclei, 40 Ca and 12 C, at momentum transfers below about 1 fm -1 and on excitations up to about 50 MeV. The continuum second random phase approximation provides the primary theoretical tool for calculating and interpreting the response in terms of properties of the nucleon-nucleon force inside the nuclear medium. The reaction mechanism is described by the DWIA, applied here to continuum proton scattering almost as rigorously as it is usually applied to low energy excitations. A new DWIA formalism for the description of spin observables in deuteron scattering is used. Comparison of the proton and deuteron data with each other and with RPA/DWIA calculations yields interesting insights into the current state of understanding of collectivity and the nuclear spin response. (orig.)

  9. Ab initio calculation of electron excitation energies in solids

    International Nuclear Information System (INIS)

    Louie, S.G.

    1996-02-01

    Progress in the first-principles calculation of electron excitation energies in solids is discussed. Quasiparticle energies are computed by expanding the electron self energy to first order in the screened Coulomb interaction in the so-called GW approximation. The method was applied to explain and predict spectroscopic properties of a variety of systems. Several illustrative applications to semiconductors, materials under pressure, chemisorption, and point defects in solids are presented. A recent reformulation of the method employing mixed- space functions and imaginary time techniques is also discussed

  10. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  11. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  12. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  13. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  14. Formation of large target residues in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.; Aleklett, K.; Sihver, L.; Xu, Z.; Seaborg, G.T.

    1987-04-01

    We have used radiochemical techniques to measure the yields, angular distributions and velocity spectra of the large (A/sub frag/ ≥ 2/3 A/sub tgt/) target residues from the fragmentation of 197 Au by intermediate energy 12 C, 20 Ne, 32 S, 40 Ar, 84 Kr, and 139 La projectiles. The fragment moving frame angular distributions are asymmetric for the lighter projectiles (C-Ar). The fragment velocity spectra are Maxwellian for the Kr induced reactions and non-Maxwellian for the reactions induced by the lighter ions. We interpret these results in terms of a change in the dominant fragment production mechanism(s) from one(s) involving a fast non-equilibrium process for the lighter ions to a slow, equilibrium process for Kr. Comparison of the measured yields and angular distributions with calculations made using a Boltzmann transport equation with appropriate modifications for Pauli blocking, etc., show excellent agreement between data and theory. 12 refs., 12 figs

  15. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  16. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  17. General theory for environmental effects on (vertical) electronic excitation energies.

    Science.gov (United States)

    Schwabe, Tobias

    2016-10-21

    Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.

  18. Pion- and proton-nucleus interactions at intermediate energy

    International Nuclear Information System (INIS)

    Dehnhard, D.

    1992-12-01

    We report on scattering and reaction experiments on light nuclei using the π-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF). Differential cross sections, cross section asymmetries, and angular correlation functions have been measured in order to test models of the reaction mechanism and of nuclear structure. At LAMPF we have measured asymmetries for pion scattering from polarized 13 C which are uniquely sensitive to the isoscalar spin density. In order to determine details of the reaction mechanism, we have obtained approval for a scattering experiment on polarized 3 He for which the nuclear structure is very well known. We have completed data taking for two studies of elastic scattering of π + from 6 Li and l3 C. The detailed differential cross sections from these experiments will be used to constrain theoretical analyses of previous polarization experiments done at the Pierre-Scherrer-Institute (PSI) and at LAMPF. We have analyzed π-triton coincidence events from the 4 He(π,π' t)p reaction and have found evidence for direct triton knockout from 4 He. We have extended these angular correlation measurements to higher energies and to 2 H and 3 He targets. At IUCF we have performed the first 4 He(p,n) experiment at intermediate energies, T p = 100, 147, and 200 MeV, in a search for previously reported narrow states in 4 Li of widths of ∼ 1 MeV. Within the statistics of the data we have found no evidence for such narrow structures

  19. Atomic excitation and molecular dissociation by low energy electron collisions

    International Nuclear Information System (INIS)

    Weyland, Marvin

    2016-01-01

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  20. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  1. Deuteron breakup mechanism in the intermediate-energy region

    International Nuclear Information System (INIS)

    Divadeenam, M.; Ward, T.E.

    1991-01-01

    In an earlier investigation, we have explored the possibility of explaining the deuteron breakup mechanism in terms of the Udagawa and Tannura (UT) formalism of the breakup-fusion process. The experimental doubly differential data were very well reproduced for the test case studies. However, the application of UT formalism of the spirit of DWBA involves the use of optical-model parameters for different nuclei and at different energies. The optical model parameters are not always unique. In the present study we investigate the deuteron breakup mechanism in terms of the semiclassical models of Serber (for the nuclear interaction part) and Dancoff (for the electromagnetic dissociation). In the case of Serber model the modification due to the finite range of the deuteron and the Glauber correction for the diffractive disassociation are considered. The modified deuteron breakup cross section either for the (d,p) or the (d,n) process is proportional to the product of the target radius and the deuteron radius (R target · R deuteron ). The predicted proton/neutron spectrum is centered around 1/2 E d and forward peaked. The Coulomb dissociation of deuteron is attributed to the deuteron dipole excitation in the presence of the nuclear Coulomb field. The neutron/proton spectrum, resulting from the Coulomb breakup of the deuteron, is highly forward peaked and also centered around 1/2 E d . The systematics of the deuteron breakup neutron/proton spectra are investigated for medium to heavy target nuclei at 50--200 MeV deuteron energies. 10 refs., 4 figs

  2. Energy risk management through self-exciting marked point process

    International Nuclear Information System (INIS)

    Herrera, Rodrigo

    2013-01-01

    Crude oil is a dynamically traded commodity that affects many economies. We propose a collection of marked self-exciting point processes with dependent arrival rates for extreme events in oil markets and related risk measures. The models treat the time among extreme events in oil markets as a stochastic process. The main advantage of this approach is its capability to capture the short, medium and long-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, as is common in extreme value theory applications. We make use of the proposed model in order to obtain an improved estimate for the Value at Risk in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk estimates improve as a result of finer modeling approach. This is supported by an empirical application in the representative West Texas Intermediate (WTI) and Brent crude oil markets. - Highlights: • We propose marked self-exciting point processes for extreme events in oil markets. • This approach captures the short and long-term behavior of extremes. • We improve the estimates for the VaR in the WTI and Brent crude oil markets

  3. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  4. Studying multifragmentation dynamics at intermediate energies using two-fragment correlations

    International Nuclear Information System (INIS)

    Sangster, T.C.; Britt, H.C.; Namboodiri, M.N.

    1993-01-01

    One of the most challenging topics in Nuclear Physics is the multifragmentation at moderate excitation energies in large nuclear systems. Although the idea that multifragmentation is analogous to a liquid-gas like phase transition is not new, it has only been recently that highly exclusive experimental measurements have been coupled with sophisticated theoretical models like QMD and BUU/VUU to explore reaction dynamics and the process of fragment formation. Indeed, much of what is known about multifragmentation has resulted from the study of complex correlations present in both the experimental data and theoretical calculations. One of the most crucial questions in the ongoing debate concerning the liquid-gas analogy is the differentiation between simultaneous and sequential fragment emission. Clearly, the phase transition analogy breaks down if fragments are emitted sequentially as in an evaporative process. There have been a number of two-fragment correlation results published recently (including those presented in this paper) which attempt to put limits on the emission timescale using three-body Coulomb trajectory calculations with explicit emission times for sequential decays from a fixed source density. These results have been generally consistent and indicate that intermediate mass fragment (IMF) emission is nearly simultaneous in medium energy heavy ion collisions. Only very recently have calculations been performed which approach this question from the other extreme: simultaneous emission from a variable density source. When considered together, these results argue favorably for a simultaneous multifragmentation. In this paper the authors present comprehensive results on two-fragment correlations for heavy systems at intermediate energies

  5. Quasielastic 3Hp and 3Hep scattering at intermediate energies and Glauber sum rules

    International Nuclear Information System (INIS)

    Blinov, A.V.; Vanyushin, I.A.; Grechko, V.E.

    1984-01-01

    Differential cross sections and average energy losses of fast protons in reactions p +3 H→psub(F)+X and p+ 3 He → psub(F)+X are studied making use of the ITEP liquid hydrogen bubble chamber of 80-cm diameter exposed to 2.5-GeV/c tritium nuclei (the kinetic energy of the incident protons in the nucleus rest frame Tsub(p)=0.318 GeV) and to 5-GeV/c 3 He nuclei (Tsub(p)=0.978 GeV). The experimental results are compared to predictions based on the sum rules for differential cross sections and average energy losses in the Glauber-Sitenko multiple scattering theory using the completeness condition for the wave functions of the nuclear excited states and the locality of the nuclear potential. The theory and the data are in good agreement at momentum of 2.5 GeV/c. Inconsistence between the Glauber sum rule predictions and the 5 GeV/c data is attributed to the Δ-isobar production in the intermediate state. It is found that possible six-quark bag admixture in the 3 H and 3 He nuclei does not exceed 5%

  6. Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures.

    Science.gov (United States)

    Mula, Soumyaditya; Elliott, Kristopher; Harriman, Anthony; Ziessel, Raymond

    2010-10-07

    We have designed and synthesized a series of modular, dual-color dyes comprising a conventional boron dipyrromethene (Bodipy) dye, as a yellow emitter, and a Bodipy dye possessing extended conjugation that functions as a red emitter. A flexible tether of variable length, built from ethylene glycol residues, connects the terminal dyes. A critical design element of this type of dyad relates to a secondary amine linkage interposed between the conventional Bodipy and the tether. Cyclic voltammetry shows both Bodipy dyes to be electroactive and indicates that the secondary amine is quite easily oxidized. The ensuing fluorescence quenching is best explained in terms of the rapid formation of an intermediate charge-transfer state. In fact, exciplex-type emission is observed in weakly polar solvents and over a critical temperature range. In the dual-color dyes, direct excitation of the yellow emitter results in the appearance of red fluorescence, indicating that the exciplex is likely involved in the energy-transfer event, and provides for a virtual Stokes shift of 5000 cm(-1). Replacing the red emitter with a higher energy absorber (namely, pyrene) facilitates the collection of near-UV light and extends the virtual Stokes shift to 8000 cm(-1). Modulation of the efficacy of intramolecular energy transfer is achieved by preorganization of the connector in the presence of certain cations. This latter behavior, which is fully reversible, corresponds to an artificial allosteric effect.

  7. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  8. Dynamic processes in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Prendergast, E. P.

    1999-03-01

    This thesis describes the study of the reaction dynamics in heavy-ion collisions of small nuclear systems at intermediate energies. For this, experiments were performed of 24Mg+27A1 at 45 and 95 AMeV. The experiments described in this thesis were performed at the GANIL accelerator facility in Caeri (France) using the Huygens detectors in conjunction with the ‘MUR’. The Huygens detectors consist of the CsI(Tl)-Wall (CIW) covering the backward hemisphere and, located at mid-rapidity, the central trigger detector (CTD), a gas chamber with microstrip read-out backed by 48 plastic scintillators. The forward region is covered by 16 of the plastic scintillators of the CTD and by the MUR, a time-of-flight wall consisting of 96 plastic scintillator sheets. In earlier experiments only fragments with atomic number, Z, greater then two could be identifled in the CTD. Therefore, an investigation was done into the properties of different drift gases. The use of freon (CF4) in the drift chamber, combined with an increase of the gas pressure to 150 mbar, makes it possible to identify all particles with Z ≥ 2. Under these conditions particles with Z = 1 can only be identifled to approximately 25 AMeV. The Isospin Quantum Molecular Dynamics (IQMD) model has been used, to interpret the measured data. This model gives a microscopical description of heavy-ion collisions and simulates collisions on an event by event basis. In IQMD all protons and neutrons are represented as individual Gaussian wave packets. After initialisation the path of each nucleon is calculated for 200 fm/c, after which the simulation is stopped. At this time, nucleons which are close in space are clustered into fragments. The events generated by IQMD can then be processed by a GEANT detector simulation. This calculation takes into account the effects of the detector on the incoming particles. By using the GEANT simulation it is possible to give a direct comparison between the results of IQMD and the

  9. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  10. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  11. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  12. Coulomb excitation of 206Hg at relativistic energies

    Science.gov (United States)

    Alexander, Tom

    The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.

  13. Carbon emission, energy consumption and intermediate goods trade: A regional study of East Asia

    International Nuclear Information System (INIS)

    Zhang, Jingjing

    2015-01-01

    Using country level panel data from East Asia over the period 1998–2011, this paper examines the implications of international production fragmentation-induced intermediate goods trade on the link between energy consumption and carbon pollution. The paper focuses on the interaction effect between energy consumption and trade in intermediate goods on carbon emission. The empirical results presented suggest that international trade in intermediate goods decreases the positive impact on carbon emission of energy consumption. When compared with the trade in final goods, intermediate goods trade contributes to a greater decrease in carbon pollution resulting from energy consumption. These results confirm that the link between energy consumption and carbon pollution in East Asia is significantly affected by international production fragmentation-induced trade in intermediate goods. The results presented in this paper have some important policy implications. - Highlights: • This paper tests the role of intermediates trade in energy-development nexus. • Empirical study is based on data of East Asia. • International trade can reduce the carbon pollution caused by energy use. • Intermediates trade has higher moderating effect than non-intermediate trade.

  14. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  15. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  16. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Semi-classical approach of heavy ion physics at intermediate energies

    International Nuclear Information System (INIS)

    Vinet, L.

    1986-01-01

    The study of heavy ion collisions at intermediate energies (10 to 100 MeV/A), can be undertaken by a semi-classical approach: the nuclear Vlasov equation. It is possible to decompose the one body distribution function over a suitable coherent state basis for dynamical studies. This method is applied for colliding slabs, and the results are compared with those of TDHF. With imposed spherical symmetry, the isoscalar monopole resonance, evaporation, formation of bubble nuclei and total evaporation, are obtained. The extension to three dimensions and to the Landau-Vlasov equation through the residual interaction included in the Uehling-Uhlenbeck collision term, permits a general study of the dynamical instability of highly excited nuclei. The application to heavy ion collisions gives a description of both the main mechanisms of reaction, and the ineffective fusion for the system 40 Ar (35 MeV/A) + 27 Al. Alpha particle multiplicities in correlation with evaporated residues in the experience 40 Ar (27 MeV/A) + 27 Al, have been extracted. From theoretical results, different scenari are proposed (entrance channel limitation and exit channel disintegration), in order to explain the disappearance of the fusion component observed for this system at energies above 32 MeV/A [fr

  18. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  19. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  20. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  1. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  2. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  3. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  4. Gamow Teller strength from charge exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Haeusser, O.

    1989-07-01

    Detailed studies of the spin-isospin structure of nuclear excitations are possible at TRIUMF's medium resolution spectrometer using the (n,p), ( p → , p →/ ) and (p,n) reactions. We discuss here results on isospin symmetry of inelastic nucleon scattering reactions populating isospin triads in A=6 and A=12 nuclei. The β + Gamow Teller strength function from (n,p) reactions on (sd) and (fp) shell targets is found to be substantially quenched compared to current nuclear structure models using the free-nucleon axial-vector coupling constant. (Author) 22 refs., 3 figs

  5. Different aspects of nuclear physics from low energies up to intermediate energies

    International Nuclear Information System (INIS)

    Lallouet, Y.

    2011-12-01

    This study focuses on different aspects of nuclear physics from low energies to intermediate ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons. Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions associated sum rules. In the case of the intermediate energies, where the nuclear matter is considered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear matter relativistic hydrodynamics with spontaneous chiral symmetry breaking. In Part I, the formation and the deexcitation of super-heavy nuclei are being studied. The memory effect must be taken into consideration within the super-heavy nuclei formation dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects. As for the intermediate memory effects some oscillations appear, which is very different from the Markovian dynamics. For super-heavy nuclei deexcitation, the existence of isomeric state within the potential barrier cannot explain the results of experiments performed at GANIL with the crystal blocking technique, and this despite of the fact that it modifies the deexcitation dynamics and increases the fission time. However, this latter study could be useful for the study of the actinides fission. In Part II, the phenomenological Skyrme effective interactions-associated M 1 and M 3 sum rules are being calculated based on their intrinsic definitions. We identify then M 1 up to the tensorial level and M 3 with central potential. In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions, and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the dissipative impact. (author)

  6. Inelastic heavy ion scattering on 90Zr and 208Pb at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Beaumel, D.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C.; Roynette, J.C.; Scarpaci, J.A.; Suomijarvi, T.

    1988-01-01

    Heavy ion inelastic scattering has been investigated using the SPEG spectrometer at GANIL. It is shown that the use of such a high resolution spectrometer allows a quantitative study of the giant resonances excited in heavy ion collisions. The contribution of the pick-up break-up mechanism to the high excitation energy region (E > 30 MeV) is then discussed. Recent results obtained with 40 Ar beams at two different incident energies show that target excitations are also present in this energy region

  7. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  8. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. (eds.)

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of [sigma](700)-meson exchange in [gamma][gamma][yields][pi][pi] processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the [gamma][Nu]-[Delta] transition; pion photoproduction and the [gamma][Nu]-[Delta] amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p([rvec [gamma

  9. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  10. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  11. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  12. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  13. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  14. Electron emission from materials at low excitation energies

    International Nuclear Information System (INIS)

    Urma, N.; Kijek, M.; Millar, J.J.

    1996-01-01

    Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube

  15. Interactions of quarks and gluons with nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  16. Energy harvesting from human motion: exploiting swing and shock excitations

    International Nuclear Information System (INIS)

    Ylli, K; Hoffmann, D; Willmann, A; Becker, P; Folkmer, B; Manoli, Y

    2015-01-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm 3 a power density of 40 μW cm −3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm −3 for the total device volume of 48 cm 3 . Difficulties and potential improvements are discussed briefly. (paper)

  17. dd →3 Hen Reaction at Intermediate Energies

    International Nuclear Information System (INIS)

    Ladygina, N. B.

    2012-01-01

    The dd → 3 Hen reaction is considered at the energies between 200 and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized 3He wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power T 20 at the zero scattering angle are presented in comparison with the experimental data. (author)

  18. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  19. Spin asymmetries for elastic scattering in krypton at intermediate energies

    International Nuclear Information System (INIS)

    Went, M R; McEachran, R P; Lohmann, Birgit; MacGillivray, W R

    2002-01-01

    Measurements of the spin asymmetry for elastic scattering of spin-polarized electrons from krypton are presented, for incident energies in the range 20-200 eV. The measured spin asymmetries are generally small, and do not exceed 0.25 in magnitude at any energy or angle. The experimental results are compared with calculated values of the Sherman function, obtained by solution of the Dirac-Fock equations. The calculations have been performed with the inclusion of polarization and dynamic distortion potentials, and with the addition of an absorption potential to model inelastic processes. For incident energies of 50, 60 and 65 eV, the calculated values of the Sherman function are shown to be extremely sensitive to the details of the model, with the addition of the absorption potential producing dramatically different results

  20. np elastic scattering analyzing power characteristics at intermediate energies

    International Nuclear Information System (INIS)

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Rodning, N.L.; Wait, G.D.; Ahmad, M.; Cairns, E.B.; Coombes, G.H.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Roy, G.; Soukup, J.; Tkachuk, R.R.; Ye, Y.; Watson, J.W.

    1989-06-01

    Recent measurements of charge symmetry breaking in the np system at 477 MeV, and of A oonn for np elastic scattering at 220, 325 and 425 MeV also yield accurate analyzing power data. These data allow the energy dependence of the analyzing power zero-crossing angle and the slope of the analyzing power at the zero-crossing to be determined. The incident neutron energies span a region where the zero-crossing angle is strongly energy dependent (Ε n n > 350 MeV). The results are compared to current phase shift analysis predictions, recently published LAMPF data, and the predictions of the Bonn and Paris potentials. (Author) 13 refs., 2 tabs., 2 figs

  1. Multimode approximation for {sup 238}U photofission at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Demekhina, N. A., E-mail: demekhina@lnr.jinr.ru [Yerevan Physics Institute (Armenia); Karapetyan, G. S. [Yerevan State University (Armenia)

    2008-01-15

    The yields of products originating from {sup 238}U photofission are measured at the bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.

  2. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.

    Science.gov (United States)

    Kowalski, Karol

    2009-05-21

    In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.

  3. Multipole analyses and photo-decay couplings at intermediate energies

    International Nuclear Information System (INIS)

    Workman, R.L.; Arndt, R.A.; Zhujun Li

    1992-01-01

    The authors describe the results of several multipole analyses of pion-photoproduction data to 2 GeV in the lab photon energy. Comparisons are made with previous analyses. The photo-decay couplings for the delta are examined in detail. Problems in the representation of photoproduction data are discussed, with an emphasis on the recent LEGS data. 16 refs., 4 tabs

  4. Double differential cross sections for methane molecules at intermediate energies

    International Nuclear Information System (INIS)

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Dogan, Mevlut; Okumus, Nimet; Sahlaoui, Mohammed; Benmansour, Houda; Bouamoud, Mammar

    2014-01-01

    Double differential cross sections (DDCS) can be obtained by the measurements of energy and angular distributions of one of the two outgoing electrons by a detector. In this pespective, we used methane molecule as a target that is reasonable to expect to understand ionization mechanisms of polyatomic molecular systems.

  5. Mechanisms of photon scattering on nucleons at intermediate energies

    International Nuclear Information System (INIS)

    L'vov, A.I.

    1992-01-01

    The principal question for studies of photon scattering by nucleons and nuclei is the following: Can photon scattering say something new about the structure of these objects in comparisons with photo- and electroproduction investigations? There is a general reason to believe that it is indeed the case. The Hamiltonian of the electromagnetic interaction has, in general, a piece quadratic in the electromagnetic field (the so-called two-photon seagull) which is seen only in two-photon processes, such as Compton scattering. Although the longitudnal part of this seagull is constrained by the gauge invariance, its transverse part is decoupled from the electromagnetic current and cannot be found in photoabsorption processes. The seagull S μν depends on explicit degrees of freedom included into the Hamiltonian. E.g. the non-relativisitic Schroedinger equation has an effective seagull due to the kinetic energy (p - eA) 2 /2M. Its parent relativistic Dirac equation has no seagull at all but has the same low-energy consequences due to additional degrees of freedom (antiparticles). In low-energy nuclear physics, with explicit meson exchanges and meson clouds (i.e. internal polarizability of the nucleons). By explicitly including the mesons into the Hamiltonian one can remove part of the seagulls. Then the rest of them will be a signal for degrees of freedom invisible in photoabsorption at energies of the considered scale. Some seagulls are related with t-channel exchanges in Compton scattering. The π o -exchange is seen in γp-scattering but has no counterpart in photoproduction off the proton. Thus, a complementary study of one- and two-photon reactions provides a way to look in a region of higher energies where direct studies via photoproduction processes may be hard

  6. Prediction of the transition energies of atomic No and Lr by the intermediate Hamiltonian coupled cluster method

    International Nuclear Information System (INIS)

    Borschevsky, A.; Eliav, E.; Kaldor, U.; Vilkas, M.J.; Ishikawa, Y.

    2007-01-01

    Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm -1 , and the error limits for Lr are therefore put at 700 cm -1 . Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm -1 , are 7p → 8s at 20,100 cm -1 and 7p →p 7d at 28,100 cm -1 . In case of Yb, the calculated ionization potential was within 20 cm -1 of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm -1 . Hence, the error limits of nobelium are set to 800 cm -1

  7. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  8. Coherent pion photoproduction from deuterium at intermediate energies

    International Nuclear Information System (INIS)

    Osland, P.; Rej, A.K.

    1975-12-01

    The coherent photoproduction of neutral pions on deuterons is studied at energies around the (3,3) resonance and discuss the effects of the Fermi motion, rescattering and kinematical approximations. The results are very dependent upon what kinematical approximations one adopts for the impulse approximation term, which dominates up to very large angles. Allowing for this uncertainty in the kinematics, our results are in good agreement with the most recent experimental data

  9. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  10. Magnetic effects in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Ou Li; Li Baoan

    2011-01-01

    The time evolution and space distribution of internal electromagnetic fields in heavy-ion reactions at beam energies between 200 and 2000 MeV/nucleon are studied within an isospin-dependent Boltzmann-Uhling-Uhlenbeck transport model (ibuu11). While the magnetic field can reach about 7x10 16 G, which is significantly higher than the estimated surface magnetic field (∼1x10 15 G) of magnetars, it has almost no effect on nucleon observables because the Lorentz force is normally much weaker than the nuclear force. Very interestingly, however, the magnetic field generated by the projectilelike (targetlike) spectator has a strong focusing and defocusing effect on positive and negative pions at forward (backward) rapidities. Consequently, the differential π - /π + ratio as a function of rapidity is significantly altered by the magnetic field, whereas the total multiplicities of both positive and negative pions remain about the same. At beam energies above about 1 GeV/nucleon, while the integrated ratio of total π - to π + multiplicities is not, the differential π - /π + ratio is sensitive to the density dependence of nuclear symmetry energy E sym (ρ). Our findings suggest that magnetic effects should be carefully considered in future studies of using the differential π - /π + ratio as a probe of the E sym (ρ) at suprasaturation densities.

  11. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies.

    Science.gov (United States)

    Helmich, Benjamin; Hättig, Christof

    2013-08-28

    We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N(5)) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions.

  12. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  13. Relative biological efficiency of intermediate energy neutrons and 60Co rays for induction of chromosomal aberrations in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Sturelid, S.; Bergman, R.

    1976-01-01

    Intermediate energy neutrons are unique in that a considerable fraction of critical interactions and of dose absorbed is not associated with ionization but with atomic collision. It is still unknown to what extent the qualitative difference in primary damage after atomic collision compared to that of ionization and excitation becomes expressed at biological levels. Chromosomal aberrations were studied in Chinese hamster fibroblasts exposed for 5-8 hours at 22 degree C to intermediate energy neutrons, mean energy 8.5 keV, or to 60 Co-gamma rays. RBE at the 10 per cent aberration frequency level in S-phase were 2.2+-0.6 for total aberrations, 2.1+-0.6 for chromatid breaks and 1.8+-0.5 for exchanges. For each chromatid aberration observed after recovery, about 200 bondbreaking atomic collisions besides 3000 primary iniozations should have occured in DNA. However, the extent to which the aberration response is due to atomic collisions is not clear. (author)

  14. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  15. Improvement of the intranuclear cascade code of Bruyeres-le-Chatel (BRIC) at low intermediate energy

    International Nuclear Information System (INIS)

    Duarte, H.

    2003-01-01

    The IntraNuclear cascade code of Bruyeres-le-Chatel called BRIC has been extended to low intermediate energy by taking in account some medium effects that are included in other nuclear dynamics models such as BUU or QMD. The results of BRIC 1.4 with the medium effects are in better agreement with experimental data than those of the first version on a wide range of incident energy, especially at low intermediate energy. We may conclude that no preequilibrium model is necessary between our INC and the deexcitation step. (orig.)

  16. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  17. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  18. Angular evolution of peripheral heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C; Roynette, J.C

    1985-01-01

    Energy spectra and angular distributions of projectile-like fragments have been measured in the vicinity of the grazing angle for the 40 Ar+ 40 Ca and 40 Ar+ 208 Pb reactions at 44MeV/nucleon. Measurements of the 40 Ar+ 40 Ca system at 27MeV/nucleon and 20 Ne+ 208 Pb reaction at 44MeV/nucleon at one angle have also been performed. For fragments with charge and mass close to the projectile numerous deviations from the standard fragmentation model have been observed including rapidly changing shapes of the angular distributions with the fragment mass. Moreover the isotopic distributions and mean fragment velocities are strongly dependent on detection angle. A surface transfer reaction component dominant at the grazing angle can be separated from a second component which cannot be entirely accounted for by a simple fragmentation mechanism

  19. Excitations

    International Nuclear Information System (INIS)

    Dorner, B.

    1996-01-01

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs

  20. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B M.K. [Principal Investigator, ed.; Goetz, J; Lapik, A; Korolija, M; Prakhov, S; Starostin, A [ed.

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular

  1. Z-dependence of Mean Excitation Energies for Second and Third Row Atoms and Their Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens

    2018-01-01

    All mean excitations energies for second and third row atoms and their ions are calculated in the random‐phase approximation using large basis sets. To a very good approximation it turns out that mean excitation energies within an isoelectronic series is a quadratic function of the nuclear charge...

  2. Excitation energy of a helium 3 quasiparticle in the bulk mixture at constant pressure

    International Nuclear Information System (INIS)

    Yim, M.B.

    1981-01-01

    A 3 He quasiparticle excitation energy in bulk mixture at zero pressure and 6% solution is calculated to O(x) using the bulk effective interaction of Yim and Massey. The present 3 He quasiparticle excitation energy is in agreement with the experimental result of Hilton, Scherm and Stirling. (author)

  3. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    International Nuclear Information System (INIS)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen

    2014-01-01

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed

  4. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Blaine [Univ. of Virginia, Charlottesville, VA (United States)

    2017-12-14

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at both the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.

  5. Low-energy consequences of superstring-inspired models with intermediate-mass scales

    International Nuclear Information System (INIS)

    Gabbiani, F.

    1987-01-01

    The phenomenological consequences of implementing intermediate-mass scales in E 6 superstring-inspired models are discussed. Starting from a suitable Calabi-Yau compactification with b 1,1 >1, one gets, after Hosotani breaking, the rank r=5 gauge group SU(3) C x SU(2) L x U(1) Y x U(1) E , that is broken at an intermediate-mass scale down to the standard-model group. The analysis of both the intermediate and the electroweak breaking is performed in the two cases Λ c = M x and Λ c x , where Λ c is the scale at which the hidden sector gauginos condensate. It is performed quantitatively the minimization of the low-energy effective potential and the renormalization group analysis, yielding a viable set of mass spectra and confirming the reliability of the intermediate-breaking scheme

  6. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  7. Biophysics of active vesicle transport, an intermediate step that couples excitation and exocytosis of serotonin in the neuronal soma.

    Directory of Open Access Journals (Sweden)

    Francisco F De-Miguel

    Full Text Available Transmitter exocytosis from the neuronal soma is evoked by brief trains of high frequency electrical activity and continues for several minutes. Here we studied how active vesicle transport towards the plasma membrane contributes to this slow phenomenon in serotonergic leech Retzius neurons, by combining electron microscopy, the kinetics of exocytosis obtained from FM1-43 dye fluorescence as vesicles fuse with the plasma membrane, and a diffusion equation incorporating the forces of local confinement and molecular motors. Electron micrographs of neurons at rest or after stimulation with 1 Hz trains showed cytoplasmic clusters of dense core vesicles at 1.5±0.2 and 3.7±0.3 µm distances from the plasma membrane, to which they were bound through microtubule bundles. By contrast, after 20 Hz stimulation vesicle clusters were apposed to the plasma membrane, suggesting that transport was induced by electrical stimulation. Consistently, 20 Hz stimulation of cultured neurons induced spotted FM1-43 fluorescence increases with one or two slow sigmoidal kinetics, suggesting exocytosis from an equal number of vesicle clusters. These fluorescence increases were prevented by colchicine, which suggested microtubule-dependent vesicle transport. Model fitting to the fluorescence kinetics predicted that 52-951 vesicles/cluster were transported along 0.60-6.18 µm distances at average 11-95 nms(-1 velocities. The ATP cost per vesicle fused (0.4-72.0, calculated from the ratio of the ΔG(process/ΔG(ATP, depended on the ratio of the traveling velocity and the number of vesicles in the cluster. Interestingly, the distance-dependence of the ATP cost per vesicle was bistable, with low energy values at 1.4 and 3.3 µm, similar to the average resting distances of the vesicle clusters, and a high energy barrier at 1.6-2.0 µm. Our study confirms that active vesicle transport is an intermediate step for somatic serotonin exocytosis by Retzius neurons and provides a

  8. Excitation energy and angular momentum of quasiprojectiles produced in the Xe+Sn collisions at incident energies between 25 and 50 MeV/nucleon

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.; Genouin-Duhamel, E.; Vient, E.; Colin, J.; Durand, D.; Auger, G.; Bacri, C.O.; Bellaize, N.; Borderie, B.; Bougault, R.; Bouriquet, B.; Brou, R.; Buchet, P.; Charvet, J.L.; Chbihi, A.; Cussol, D.; Dayras, R.; De Cesare, N.; Demeyer, A.; Dore, D.; Frankland, J.D.; Galichet, E.; Gerlic, E.; Guinet, D.; Hudan, S.; Lautesse, P.; Lavaud, F.; Laville, J.L.; Lecolley, J.F.; Leduc, C.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Normand, J.; Parlog, M.; Pawlowski, P.; Plagnol, E.; Rivet, M.F.; Rosato, E.; Saint-Laurent, F.; Tabacaru, G.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Turzo, K.; Vigilante, M.; Volant, C.; Wieleczko, J.P.

    2001-01-01

    The excitation energy and angular momentum transferred to quasiprojectiles have been measured in the 129 Xe+ nat Sn collisions at bombarding energies between 25 and 50 MeV/nucleon. The excitation energy of quasiprojectiles has been determined from the kinetic energy of all decay products (calorimetry). It increases with the violence of the collision, approaching 10 MeV/nucleon in the most dissipative ones. The angular momentum has been deduced from the kinetic energies and angular distributions of the emitted light charged particles (p, d, t, 3 He and α). The (apparent) spin value decreases with the violence of the collision. Larger spin values are observed at the lowest bombarding energy. Data are compared with the predictions of dynamical and statistical models. They reproduce the data in a quantitative way indicating that large spin values are transferred to quasiprojectiles during the interaction. The results show that the one-body dissipation formalism still applies at intermediate bombarding energies and low-energy dissipations. With the increase of the energy, the data seem to be better described when the two-body interaction is accounted for

  9. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  10. On light cluster production in nucleon induced reactions at intermediate energy

    International Nuclear Information System (INIS)

    Lacroix, D.; Blideanu, V.; Durand, D.

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ( 56 Fe and 208 Pb). (authors)

  11. Uranium target fragmentation by intermediate and high energy 12C and 20Ne ions

    International Nuclear Information System (INIS)

    McGaughey, P.L.; Loveland, W.; Morrissey, D.J.; Aleklett, K.; Seaborg, G.T.

    1985-01-01

    Target fragment formation cross sections for nuclides with 24 12 C and 8.0 and 20.0 GeV 20 Ne with 238 U. Fragment isobaric yields were deduced from these data. The light fragment (A 12 C projectile energy of 1.0 GeV, the n-deficient fragments appear to originate primarily from a fission rather than a spallation process.) The excitation functions of the heavy fragments with 60 60, indicating that the general pattern of yields of these fragments is governed by the excitation energy deposited in the nucleus during the first step of the reaction and the geometry of the collision

  12. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    International Nuclear Information System (INIS)

    Hirakawa, Kazutaka; Segawa, Hiroshi

    2016-01-01

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  13. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)

    2016-11-15

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  14. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  15. Multipulse spectroscopy on the wild-type and YM210W Bacterial Reaction Centre uncovers a new intermediate state in the special pair excited state

    Science.gov (United States)

    Cohen Stuart, T. A.; van Grondelle, R.

    2009-06-01

    The Bacterial Reaction Centre (BRC) has a complex electronic excited state, P ∗, that evolves into subsequent charge separated product states P +H - and P +B -. Pump-dump-probe spectroscopy on the wild-type BRC and on YM210W, a mutant with a stabilized, long-lived P ∗ excited state, has uncovered a new charge-separated state in both BRC's. When P ∗ is dumped, a fraction of its population is transferred to this state that has a strong Stark shift in the accessory bacteriochlorophyll (B M) region which serves as a signature for P + and a lifetime highly comparable to the slow phase of P ∗ decay. This lead us propose this intermediate to be P +/P -.

  16. Theory of inelastic ion-atom scattering at low and intermediate energies

    Science.gov (United States)

    Schmid, G. B.; Garcia, J. D.

    1977-01-01

    Ab initio calculations are presented of inelastic energy loss and ionization phenomena associated with Ar(+)-Ar collisions at small distances of closest approach and for laboratory collision energies ranging from several keV to several hundred keV. Outer-shell excitations are handled statistically; inner-shell excitations are calculated from the viewpoint of quasidiabatic molecular orbital promotion. Auger electron yield, average state of ionization, and average inelastic energy loss are calculated per collision as a function of distance of closest approach of the collision partners for several laboratory collision energies. Average charge-state probabilities per collision partner are calculated as a function of the average inelastic energy loss per atom. It is shown that the structure in the data is due to the underlying structure in the inner-shell independent-electron quasimolecular promotion probabilities.

  17. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  18. Angular dependences of the tensor analyzing powers in the dd→3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd→ 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown

  19. Ionization of multielectronic atoms by proton impact at high and intermediate energies

    International Nuclear Information System (INIS)

    Fainstein, P.D.; Ponce, V.H.; Rivarola, R.D.

    1988-01-01

    In this work, it is studied Ne ionization by proton impact at high and intermediate energies using the CDW-EIS model. Calculations on simple and double differential cross sections are presented. The results are compared to available experimental data. (A.C.A.S.) [pt

  20. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  1. Ordering and low energy excitations in strongly correlated bronzes

    NARCIS (Netherlands)

    Sagara, Dodderi Manjunatha

    2006-01-01

    Summary In any solid system, whether it is superconducting, shows a charge-density-wave behavior, or any other kind of ground state, two aspects drag the attention of the scientific community. They are order and excitations in solids. The ordering may be due to electronic, lattice, spin or orbital

  2. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, T. F.

    2007-01-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO 2 balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented

  3. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  4. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  5. Ioniclike energy structure of neutral core-excited states in free Kr clusters

    International Nuclear Information System (INIS)

    Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2005-01-01

    The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice

  6. A hybrid model for the investigation of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Heide, B.M.

    1995-09-01

    The following topics were dealt with: The coupling of the Botzmann-Uehling-Uhlenbeck (BUU) model with Kopenhagen multifragmentation model realising a new hybrid model, application on 197 Au+ 197 Au reactions between 100 and 250 A.MeV, calculation of the chracteristics of the fragmentation system including mass number, excitation energy, angular momenta, two-particle correlation function

  7. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    Science.gov (United States)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  8. Low-energy excitations in impurity substituted CuGeO3

    International Nuclear Information System (INIS)

    Jones, B. R.; Sushkov, A. B.; Musfeldt, J. L.; Wang, Y. J.; Revcolevschi, A.; Dhalenne, G.

    2001-01-01

    We report far-infrared reflectance measurements of Zn- and Si-doped CuGeO 3 single crystals as a function of applied magnetic field at low temperature. Overall, the low-energy far-infrared spectra are extraordinarily sensitive to the various phase boundaries in the H-T diagram, with the features being especially rich in the low-temperature dimerized state. Zn impurity substitution rapidly collapses the 44 cm -1 zone-boundary spin Peierls gap, although broadened magnetic excitations are observed at the lightest doping level (0.2%) and a remnant is still observable at 0.7% substitution. In a 0.7% Si-doped sample, there is no evidence of the spin gap. Impurity substitution effects on the intensity of the 98 cm -1 zone-folding mode are striking as well. The lightly doped Zn crystals display an enhanced response, and even at intermediate doping levels, the mode intensity is larger than that in the pristine material. The Si-doped sample also displays an increased intensity of the 98 cm -1 mode in the spin Peierls phase relative to the pure material. The observed trends are discussed in terms of the effect of disorder on the spin gap and 98 cm -1 mode, local oscillator strength sum rules, and broken selection rules

  9. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  10. Performance of SOPPA-based methods in the calculation of vertical excitation energies and oscillator strengths

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens

    2015-01-01

    methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...

  11. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  12. Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States.

    Science.gov (United States)

    Tajti, Attila; Szalay, Péter G

    2016-11-08

    Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.

  13. Hadron fragment emission in cluster excitation processes at medium energies

    International Nuclear Information System (INIS)

    Kovacs, Zs.

    1985-12-01

    An extended version of the cluster excitation model is proposed to describe the emission of various particle types in nuclear reactions in a consistent way. At first pion, proton deuteron and triton spectra from neutron-carbon interactions at 545 MeV in the angular region from deg 73 to deg 165 were tried to interpret by the model. The results are compared with model calculations. (author)

  14. Quasi-particle excitations in low energy fission

    International Nuclear Information System (INIS)

    Ashgar, M.; Djebara, M.; Bocquet, J.P.; Brissot, R.; Maurel, M.; Nifenecker, H.; Ristori, C.

    1985-05-01

    Proton odd-even effect for 229 Th(nsub(th),f) and 232 U(nsub(th),f) has been determined with a ΔE-Esub(R) gas telescope. These data indicate that the qp-particle excitation probability at the saddle point is small and most of its results, when the nucleus moves from saddle to scission and the neck ruptures into final fragments. These results are discussed in terms of the different ideas and models

  15. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  16. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    Science.gov (United States)

    Wladyslawski, Mark; Nooijen, Marcel

    equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.

  17. Mean excitation energies for use in Bethe's stopping-power formula

    International Nuclear Information System (INIS)

    Berger, M.J.; Seltzer, S.M.

    1983-01-01

    A review has been made of the mean excitation energies that can be derived from the analysis of stopping-power and range measurements, and from semi-empirical dipole oscillator-strength distributions for gases and dielectric-response functions for solids. On the basis of this review, mean excitation energies have been selected for 43 elemental substances and 54 compounds. Additivity rules have also been considered which allow one to estimate the mean excitation energies for compounds for which no direct data are available. These additivity rules are based on the use of mean excitation energies for atomic constituents which, to a certain extent, take into account the effects of chemical binding and physical aggregation

  18. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  19. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  20. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    International Nuclear Information System (INIS)

    Silver, R.N.

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base

  1. Effect of Optical Excitation Energy on the Red Luminescence of Eu(3+) in GaN

    National Research Council Canada - National Science Library

    Peng, H. Y; Lee, C. W; Everitt, H. O; Lee, D. S; Steckl, A. J; Zavada, J. M

    2005-01-01

    ...)] transition from GaN:Eu. Time-resolved PL measurements revealed that for excitation at the GaN bound exciton energy, the decay transients are almost temperature insensitive between 86 K and 300 K, indicating an efficient...

  2. Investigation of transversal nuclear excitation in 208Pb at excitation energies between 6 MeV and 8 MeV using inelastic electron scattering

    International Nuclear Information System (INIS)

    Frey, R.W.

    1978-01-01

    Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)

  3. Accuracy estimation for intermediate and low energy neutron transport calculation with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi

    1987-02-01

    Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)

  4. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann

    2017-05-01

    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  5. Program TOTELA calculating basic cross sections in intermediate energy region by using systematics

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Niita, Koji

    2000-01-01

    Program TOTELA can calculate neutron- and proton-induced total, elastic scattering and reaction cross sections and angular distribution of elastic scattering in the intermediate energy region from 20 MeV to 3 GeV. The TOTELA adopts the systematics modified from that by Pearlstein to reproduce the experimental data and LA150 evaluation better. The calculated results compared with experimental data and LA150 evaluation are shown in figures. The TOTELA results can reproduce those data almost well. The TOTELA was developed to fill the lack of experimental data of above quantities in the intermediate energy region and to use for production of JENDL High Energy File. In the case that there is no experimental data of above quantities, the optical model parameters can be fitted by using TOTELA results. From this point of view, it is also useful to compare the optical model calculation by using RIPL with TOTELA results, in order to verify the parameter quality. Input data of TOTELA is only atomic and mass numbers of incident particle and target nuclide and input/output file names. The output of TOTELA calculation is in ENDF-6 format used in the intermediate energy nuclear data files. It is easy to modify the main routine by users. Details are written in each subroutine and main routine

  6. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  7. Excitation energy of the lowest 2+ and 3- levels in 32Mg and 146Gd

    International Nuclear Information System (INIS)

    Barranco, M.; Lombard, R.J.

    1978-06-01

    The excitation energy of the lowest 2 + and 3 - levels are calculated for neutron rich Mg-isotopes as well as for N=82 isotones. The calculations are made by assuming quadrupole-quadrupole and octupole-octupole forces. The quasi-particles energies and occupation numbers are taken from the energy density method

  8. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  9. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    Abstract. The effect of external magnetic field on the excited state energies in a spher- ical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic ...

  10. Study of the Neutron-rich Isotope Ar-46 Through Intermediate Energy Coulomb Excitation

    Czech Academy of Sciences Publication Activity Database

    Calinescu, S.; Ceceres, L.; Grévy, S.; Sorlin, O.; Sohler, D.; Stanoiu, M.; Negoita, F.; Clement, E.; Astabatyan, R.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Dombradi, Z.; Franchoo, S.; Garcia, R.; Gillibert, R.; Guerin, H.; Thomas, J. C.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Maslov, V.; Morfouace, P.; Mrázek, Jaromír; Niikura, M.; Perrot, L.; Podolyak, Z.; Petrone, C.; Peniozhkevich, Y.; Roger, T.; Rotaru, F.; Stefan, I.; Vajta, Zs.; Wilson, E.

    2014-01-01

    Roč. 45, č. 2 (2014), s. 199-204 ISSN 0587-4254 Institutional support: RVO:61389005 Keywords : GANIL * detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.850, year: 2014

  11. Selected problems in experimental intermediate energy physics. Final technical report, February 1, 1991--January 31, 1994

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1997-01-01

    A complete description of the research program of the intermediate energy group at the University of Houston may be found in previous progress reports, renewal proposals, and proposals to various accelerator advisory committees. The summaries of activities are presented in the next section. The objectives of the research program are to: (1) investigate selected, forefront problems in experimental intermediate energy physics; (2) educate students in this field of research; and (3) develop the instrumentation necessary to undertake this experimental program. There were three major thrusts of the program: (1) strange particle physics, where a strange quark is embedded in the nuclear medium; (2) muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and (3) measurement of the spin dependent structure function of the neutron and proton

  12. Exclusive study of the formation and the decay of hot nuclei in the intermediate energy domain

    International Nuclear Information System (INIS)

    Saint-Laurent, F.

    1990-01-01

    A brief review of exclusive measurements performed at GANIL in order to study hot nuclei will be given. Heavy-ion induced reactions on heavy targets have been investigated over a wide range of incident energy, using various techniques: - fission fragment angular correlations. - 4 π neutron multiplicity measurements. - light charged particle correlations. In each case, a selection of the most violent collisions can be achieved. For central collisions induced by 40 Ar, a same excitation energy of about 650 MeV is deduced from the totally different and independent sets of data, corresponding to an average temperature of 5 MeV. At 60 MeV/u, this value is quite low as compare to the total available energy for central collisions A tentative explanation based on Landau-Vlasov simulations will be proposed: the excitation energy dissipated in the system could be stored in a highly excited compression mode as well as under a thermal form. Some recent results on the Kr+Au system at 32 MeV/u will be presented indicating that heavier projectiles than 40 Ar can lead to a temperature of the hot system approaching 7 MeV

  13. Influence of donor-donor transport on excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K K; Joshi, H C; Pant, T C [Kumaun University, Nainital (India). Department of Physics

    1989-01-01

    Energy migration and transfer from acriflavine to rhodamine B and malachite green in poly (methylmethacrylate) have been investigated using the decay function analysis. It is found that the influence of energy migration in energy transfer can be described quite convincingly by making use of the theories of Loring, Andersen and Fayer (LAF) and Huber. At high acceptor concentration direct donor-acceptor transfer occurs through Forster mechanism. (author). 17 refs., 5 figs.

  14. Supplement to the report of the Expert Committee 'Intermediate-Energy Physics' 1986-1988/89

    International Nuclear Information System (INIS)

    1990-02-01

    In the supplement to the scientitic report of the sponsoring project of the Federal Ministery for Research and Technology 'Intermediate-Energy Physics' the publications are collected, which have come out in the three years of the sponsoring in the single projects. Essentially only journal articles were taken up, in order to keep the extent of this list surveyable. On the taking up of the manifold of dissertations, diploma theses, and talks generally was abandoned. (orig.) [de

  15. Nuclear structure at intermediate energies: Progress report, January 1-December 31, 1988

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1988-01-01

    This report discusses the progress in the following experiments: Λ Spin Transfer Experiment; Σ 0 Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Measurement of the Imaginary Part of the I=1 /bar N/N S-Wave Scattering Length; Single Pion Production in np Scattering; Measurements of the π + d→Δ ++ n at Intermediate Energy; and PhotoJets from Nuclei

  16. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  17. On light cluster production in nucleon induced reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Blideanu, V.; Durand, D

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ({sup 56}Fe and {sup 208}Pb). (authors)

  18. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  19. Isobar excitations and low energy spectra of light nuclei

    International Nuclear Information System (INIS)

    Czerski, P.

    1984-01-01

    The aim of this investigation is to study the possible influence of inner excitations of nucleons into the Δ(3,3)-resonance on the low lying spectra of light nuclei like 12 C and 16 O. Before we can study the effect of such exotic configurations one has to perform a reliable investigation within the normal nuclear model, which is based on a microscopic theory. This is achieved by performing RPA (Random Phase Approximation) calculations using a realistic residual interaction derived from the Brueckner G-matrix. An efficient parametrisation of the residual interaction is introduced and the reliability of the more phenomenological parametrisations which are generally used is discussed. Within such realistic calculations, the isobar effects are small. (orig.) [de

  20. σ-SCF: A direct energy-targeting method to mean-field excited states.

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  1. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  2. Disintegration of nuclei and formation of composite systems in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Gregoire, C.; Jacquet, D.; Sebille, F.; Vinet, L.; Pi, M.; Suraud, E.; Schuck, P.

    1987-04-01

    In a first part, the Landau-Vlasov dynamical instabilities found in the expansion of an excited nucleus are discussed with their dependence on the initial preparation. In a second part, we show the absence of fusion window when residual interactions are involved. We describe also onset and properties of ineffectual and incomplete fusion for systems like 40 Ar + 27 Al and 238 U near the Fermi energy and 12 C + 139 La at 50 MeV/u

  3. A possible method to produce a polarized antiproton beam at intermediate energies

    International Nuclear Information System (INIS)

    Spinka, H.; Vaandering, E.W.; Hofmann, J.S.

    1994-01-01

    A feasible and conservative design for a medium energy polarized antiproton beam has been presented. The design requires an intense beam of unpolarized antiprotons (≥ 10 7 /sec) from a typical secondary beam line in order to achieve reasonable anti pp elastic scattering count rates. All three beam spin directions can be achieved. Methods were discussed to reverse the spin directions in modest times, and to change to a polarized proton beam if desired. It is expected that experiments with such a beam would have a profound effect on the understanding of the anti NN interaction at intermediate energies

  4. Isovector couplings for nucleon charge-exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Love, W.G.; Nakayama, K.; Franey, M.A.

    1987-01-01

    The isovector parts of the effective nucleon-nucleon interaction are studied by examination of the reaction /sup 14/C(p,n) at intermediate energies near zero momentum transfer with use of recently developed G-matrix and free--t-matrix interactions. The spin-independent coupling (V/sub tau/) exhibits a strong energy and density dependence which, in the case of the G matrix based on the Bonn potential, significantly improves the agreement between calculated values of chemical bondV/sub σ//sub tau//V/sub tau/chemical bond 2 at q = 0 and those recently extracted from the reaction /sup 14/C

  5. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  6. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  7. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.

    1997-01-01

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239 U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  8. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  9. Influence of collision energy and vibrational excitation on the ...

    Indian Academy of Sciences (India)

    tions of potential energy surface (PES) for BrH2 system are more ... rier heights for both the exchange and abstraction are smaller than ... The complete picture on the dynamics of ..... Kurosaki Y and Takayanagi T private communication. 20.

  10. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  11. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  12. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  13. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  14. Competition between excited core states and 1homega single-particle excitations at comparable energies in {sup 207}Pb from photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)

    2009-10-26

    The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.

  15. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  16. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  17. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  18. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  19. Study of excitation energy sharing in heavy ion collisions as a function of their inelasticity

    International Nuclear Information System (INIS)

    Lott, B.

    1986-01-01

    The excitation energy sharing between the fragments of a heavy ion collision has been studied for quasi-elastic and deep inelastic mechanisms. A 32 S beam of 232 MeV incident energy has been used to bombard several targets (S, 58 Ni, 93 Nb). The evaporated charged particle multiplicities have been measured by inclusive measurements of the projectile-like nuclei and exclusive measurements of the two final nuclei. Evaporation calculations using the Hauser-Feshbach formalism allows us to deduce from the multiplicity measurements the projectile-like excitation energy. These results are compatible with the assumption of an equal sharing of excitation energies for quasi-elastic reaction products, and with the assumption of a mass ratio sharing for fully relaxed reaction products. Limiting values for the relaxation time of this mode have been deduced and are in agreement with predictions from the model developed by Randrup [fr

  20. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  1. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  2. Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation

    CERN Multimedia

    We propose to study the evolution of nuclear structure in neutron-­deficient $^{72}$Se by performing a low-­energy Coulomb excitation measurement. Matrix elements will be determined for low-­lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.

  3. σ-SCF: A direct energy-targeting method to mean-field excited states

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  4. Faddeev and Glauber calculations at intermediate energies in a model for n+d scattering

    International Nuclear Information System (INIS)

    Elster, Ch.; Lin, T.; Gloeckle, W.; Jeschonnek, S.

    2008-01-01

    Obtaining cross sections for nuclear reactions at intermediate energies based on the Glauber formulation has a long tradition. Only recently the energy regime of a few hundred MeV has become accessible to ab initio Faddeev calculations of three-body scattering. In order to go to higher energies, the Faddeev equation for three-body scattering is formulated and directly solved without employing a partial wave decomposition. In the simplest form the Faddeev equation for interacting scalar particles is a three-dimensional integral equation in five variables, from which the total cross section, the cross sections for elastic scattering and breakup reactions, as well as differential cross sections are obtained. The same observables are calculated based on the Glauber formulation. The first order Glauber calculation and the Glauber rescattering corrections are compared in detail with the corresponding terms of the Faddeev multiple scattering series for projectile energies between 100 MeV and 2 GeV

  5. Spin observables at intermediate energies: a tool in viewing the nucleus

    International Nuclear Information System (INIS)

    McClelland, J.B.

    1986-01-01

    This paper attempts to summarize some of the advances made in intermediate nuclear physics through measurements of spin observables, notably in the range of bombarding energies from 100 to 1000 MeV. Relative to measurements of cross section, spin observables offer a highly selective filter in viewing the nucleus. Their general utility is found in their sensitivity to particular nuclear transitions and is further augmented by their simple connections to the NN force. The advantage of higher energies is apparent from the dominance of single-step mechanisms even at large energy losses where general nuclear spin responses may be made. Experimentally, this is an energy range where efficient, high-analyzing-power polarimeters can be coupled with high resolution detection techniques. 29 refs., 5 figs

  6. Characteristics of intermediate-energy nucleons emitted from 50 GeV

    International Nuclear Information System (INIS)

    Goyal, D.P.; Singh, S.; Arya, N.S.

    1984-01-01

    The multiplicity and angular distributions of intermediate-energy (grey) nucleons are studied from 50 GeV π - -nucleus data and compared with those available from π - -nucleus and p-nucleus interactions at other energies. The value of is found to be dependent both on the energy as well as on the projectile. The former variation is attributable to kinematics and the latter explainable on the basis of the additive quark model. The angular distribution of grey particles is found to be independent of energy, projectile and target, which supports the view that grey particles are chiefly due to knock-on recoiling protons. The various versions of the cascade model, however, are unable to explain any of the observed features of grey-particle distributions

  7. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  8. Optical energy transport and interactions between the excitations in a coumarin-perylene bisimide dendrimer

    NARCIS (Netherlands)

    Augulis, Ramunas; Pugzlys, Audrius; Hurenkamp, Johannes; Feringa, Ben L.; van Esch, Jan H.; van Loosdrecht, Paul H. M.

    2007-01-01

    Energy transfer properties of novel coumarin-perylene bisimide dendrimer are studied by means of steady state and time-resolved UV/vis spectroscopy. At low donor excitation density fast (transfer rate similar to 10 ps(-1)) and efficient (quantum yield similar to 99.5%) donor-acceptor energy transfer

  9. Excitation and dissociation of molecules by low-energy (0-15 eV) electrons

    International Nuclear Information System (INIS)

    Verhaart, G.J.

    1980-01-01

    The author deals with excitation and dissociation processes which result from the interaction between low-energy (0.15 eV) electrons and molecules. Low-energy electron-impact spectroscopy is used to gain a better knowledge of the electronic structure of halomethanes, ethylene and some of its halogen substituted derivatives, and some more complex organic molecules. (Auth.)

  10. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer ... Dirac cone approximation and hence our conclusions are of qualitative nature. 2. .... make another change of variable to r given by r = ki q/2 to get. G1 (q) = Aq2.

  11. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  12. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  13. Excitation functions for some evaporation residues identified in the interaction of 20Ne and 93Nb at moderate excitation energies

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Rizvi, I.A.; Gupta, Meenal; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2008-01-01

    With the motivation of studying the complete and incomplete fusion reactions, excitation functions for the reactions 93 Nb(Ne, p2n) 110 Sn, 93 Nb(Ne, 2pn) 110 In, 93 Nb(Ne, 2p2n) 109 In, 93 Nb(Ne, αn) 108 In, 93 Nb(Neα2n) 107 In and 93 Nb(Ne, α p n) 107 Cd have been measured at the incident energy ranging from 91.4 MeV - 145 MeV. The well established activation technique followed by off line high purity gamma- ray spectroscopy was employed. The measured excitation functions were compared with the statistical model calculations by using the codes ALICE-91 and Pace-4. The effect of variation of different parameters including level density parameter involved in these codes has also been studied. Excellent agreement was found between theoretical and experimental values in some of the fusion evaporation reaction channels. However, significant enhancement of cross-section observed in α-emission channels may be due to incomplete fusion process. (author)

  14. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  15. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  16. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  17. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    Science.gov (United States)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  18. Energy principle for excitations in plasmas with counterstreaming electron flows

    Science.gov (United States)

    Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman

    2018-05-01

    A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.

  19. Relativistic Energy Density Functionals: Exotic modes of excitation

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-01-01

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  20. Selective excitation, relaxation, and energy channeling in molecular systems

    International Nuclear Information System (INIS)

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems

  1. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2009-01-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  2. Proceedings of the LAMPF workshop on photon and neutral meson physics at intermediate energies

    International Nuclear Information System (INIS)

    Baer, H.W.; Crannell, H.; Peterson, R.J.

    1987-12-01

    This volume contains the Proceedings of the Workshop on ''Photon and Neutral-Meson, Physics at Intermediate Energies,'' held at Los Alamos, New Mexico, January 7 to 9, 1987. The purpose of this workshop was to bring together scientists working in the areas of electromagnetic, heavy-ion, and light hadron physics to discuss both the physics that could be addressed and potential capabilities of new, large intermediate-energy photon detectors. Based on the papers contained in these proceedings, it appears clear that there are a number of important areas that could be addressed with a much higher resolution neutral meson detector. It is also clear that the technical capability for building a neutral meson detector for energies up to 4 GeV with solid angle of approximately 10 mrs and resolution of a few hundred keV now exists. It also appears entirely reasonable to construct such a detector to be easily transportable so that it would become a national facility, available for use at a number of different laboratories. From the many interesting papers presented and from the broad representation of physicists from laboratories in Asia, Canada, Europe, Japan, and the United States, there appears to be a strong case for proceeding with the construction of such a detector

  3. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  4. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  5. A BGO detector array and its application in intermediate energy heavy ion experiments

    International Nuclear Information System (INIS)

    Li Zuyu; Jin Genming; He Zhiyong; Duan Limin; Wu Heyu; Qi Yujin; Luo Qingzheng; Zhang Baoguo; Wen Wanxin; Dai Guangxi

    1996-01-01

    A BGO crystal (Bi 4 Ge 3 O 12 ) as the E detector of ΔE-E for identification of reaction products has been used for detecting the charged particles emitting from the 25 MeV 40 Ar induced reaction. The responses of the BGO crystal to various light charged particles were measured. A close-packed hexagonal array consisting of thirteen ΔE-E telescopes (Si-BGO) has been developed to detect the light charged particles interfering with each other in intermediate-energy heavy-ion induced reactions. Some applications of this telescope array are also described. (orig.)

  6. Intercomparison of codes for intermediate energy nuclear data: The first step

    International Nuclear Information System (INIS)

    Blann, M.; Gruppelaar, H.; Nagel, P.; Rodens, J.

    1994-01-01

    Several weak points of the intermediate energy nuclear data calculated in this exercise are described as introduction to some of the areas needing discussion at this meeting. These include nuclear structure effects on precompound spectra, large variations between codes in predicted total reaction cross sections, and in total neutron and proton multiplicities. INC codes don't reflect correct experimental Q values, and may have difficulties at very low angles due to overestimation of the quasi-elastic peak. We raise questions as to additional reaction properties (beyond n and p spectra) which may need benchmarking

  7. Single electron capture differential cross section in H+ + He collisions at intermediate and high collision energies

    International Nuclear Information System (INIS)

    Abufager, P N; Fainstein, P D; MartInez, A E; Rivarola, R D

    2005-01-01

    The generalized continuum distorted wave-eikonal initial state (CDW-EIS II) approximation is employed to study differential cross sections (DCS) for single electron capture in H + + He collisions at intermediate and high energies. Present results are compared with theoretical calculations obtained using the previous CDW-EIS formulation in order to show the importance of the description of the bound and continuum target states in the entrance and exit channels, respectively. Both DCS are also shown together with other theoretical results and with experimental data

  8. A Monte Carlo method for nuclear evaporation and fission at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Likhachev, V.P.; Mesa, J.; Pina, S.R. de; Arruda-Neto, J.D.T.; Goncalves, M.; Rodriguez, O.

    2003-04-01

    We describe a Monte Carlo method to calculate the characteristics of the competition between particle evaporation and nuclear fission processes taking place in the compound nucleus formed after the intranuclear cascade following the absorption of intermediate energy photons by the nucleus. In this version we include not only neutrons, but also protons and alphas as possible evaporating particles. However, this method allows an ease inclusion of other evaporating particles, as deuteron or heavier clusters. Some results for 237 Np, 238 U, and 232 Th are shown. (author)

  9. A Monte Carlo method for nuclear evaporation and fission at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Tavares, O.A.P.; Duarte, S.B.; Arruda-Neto, J.D.T.; Goncalves, M.; Likhachev, V.P.; Mesa, J.; Oliveira, E.C. de; Pina, S.R. de; Rodriguez, O.

    2003-01-01

    We describe a Monte Carlo method to calculate the characteristics of the competition between particle evaporation and nuclear fission processes taking place in the compound nucleus formed after the intranuclear cascade following the absorption of intermediate energy photons by the nucleus. In this version we include not only neutrons, but also protons and alphas as possible evaporating particles. The present method allows the easy inclusion of other evaporating particles, such as deuteron or heavier clusters. Some fissility results are discussed for the target nuclei 237 Np, 238 U and 232 Th

  10. Quark-exchange effects in a deuteron breakup at intermediate energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Glozman, L.Ya.

    1995-01-01

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the '' internal momentum '' in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs

  11. Quark-exchange effects in a deuteron breakup at intermediate energy.

    Energy Technology Data Exchange (ETDEWEB)

    Kobushkin, A P; Syamtomov, A I; Glozman, L Ya

    1996-12-31

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the `` internal momentum `` in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs.

  12. MCNP6 Fission Cross Section Calculations at Intermediate and High Energies

    OpenAIRE

    Mashnik, Stepan G.; Sierk, Arnold J.; Prael, Richard E.

    2013-01-01

    MCNP6 has been Validated and Verified (V&V) against intermediate- and high-energy fission cross-section experimental data. An error in the calculation of fission cross sections of 181Ta and a few nearby target nuclei by the CEM03.03 event generator in MCNP6 and a "bug: in the calculation of fission cross sections with the GENXS option of MCNP6 while using the LAQGSM03.03 event generator were detected during our V&V work. After fixing both problems, we find that MCNP6 using CEM03.03 and LAQGSM...

  13. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  14. A liquid He-3 target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hassell, D.K.; Abegg, R.; Murdoch, B.T.; van Oers, W.J.H.; Soukup, J.

    1981-04-01

    A liquid 3 He target system with remote instrumentation and handling capabilities has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. Helium-3 gas is liquefied by means of a 4 He cryostat into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approximately 1.6 K. This provides an areal target density of approximately 2.7 x 10 22 He-3 nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (author)

  15. Intermediate-energy particle physics with real photons at the new direct-current accelerator ELSA

    International Nuclear Information System (INIS)

    Menze, D.

    1987-12-01

    The author reviews the physics of intermediate-energy photon interactions with nucleons and light nuclei. After a consideration of the photoproduction of mesons in the framework of the quark model and a description of the different polarization observables he discusses the photoproduction of pions, vector mesons, and kaons. In this connection the decay of baryon resonances of dibaryon resonances by photoexcitation of the deuteron are considered whereby also the polarization observables are described. Finally the photon reactions on three-nucleon systems are considered. (HSI)

  16. Production of nuclei far from the beta stability line using intermediate-energy heavy ions

    International Nuclear Information System (INIS)

    Guerreau, D.

    1986-05-01

    The production of far unstable nuclei using heavy ion accelerators in the intermediate energy domain is reviewed. The various mechanisms responsible for the production of exotic species, mainly the projectile fragmentation and transfer reactions, are discussed, and the first experimental results presented. Results can be summarized as follows: existence of 4 new isotopes 22 C, 23 N, 29 Ne, 30 Ne; indication of bound character of 71 Ni, 72 Ni; clear evidence for bound character of 23 Si, 27 S, 31 Ar, 35 Ca; indications of bound character of 43 V, 46 Mn, 47 Mn, 48 Fe, 50 Co, 52 Co, 52 Ni, 55 Cu, 56 Cu

  17. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  18. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  19. Double excitation of helium in collisions with proton and antiproton impact in the energy range 50-500 keV

    International Nuclear Information System (INIS)

    Purkait, M.

    2009-01-01

    Double-electron excitation processes of helium atoms by proton and antiproton impact have been theoretically investigated using the four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation in the energy range of 50-500 keV. In this formalism, the presence of the projectile in the exit channels is described by distorting the final bound state wave functions with coulomb waves (associated with the projectile-electron interactions). The results are in good agreement with the other theoretical and experimental results. Reasonably better agreements have been found in the intermediate and high energy regions. Contributions to the cross section of the different magnetic sub-shells are also analysed.

  20. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  1. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies.

    Science.gov (United States)

    Anda, André; De Vico, Luca; Hansen, Thorsten

    2017-06-08

    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  2. Excitation-energy-dependent resonances in x-ray emissions under near-threshold electron excitation of the Ce 3d and 4d levels

    International Nuclear Information System (INIS)

    Chamberlain, M.B.; Baun, W.L.

    1975-01-01

    Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range

  3. Verification of MENDL2 and IEAF-2001 Data bases at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Karpikhin, E. I. (Evgeny I.); Zhivun, V. M. (Valery M.); Koldobsky, A. B. (Aleksander B.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Trebukhovsky, Y. V. (Yury V.); Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents results on computer simulations of two experiments whose aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside a 0.8-GeV proton-irradiated 4-cm thick W target and a 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction rates were determined in both experiments. The measured data were compared with results by the LAHET code using several nuclear data bases for the respective excitation functions, namely, ENDF/B6 for cross section of neutrons at energies below 20 MeV and MENDL2 together with MENDL2P for cross sections of protons and neutrons of 20 to 100 MeV energies. The recently developed IEAF-2001 data base that provides neutron cross sections up to 150 MeV was used as well. Simulation-to-experiment results obtained using MENDL2 and IEAF-2001 are presented. The agreement between simulation and experiment was found satisfactory for both data bases. Nevertheless; further studies should be conducted to improve simulations of the production of secondary protons and high-energy neutrons, as well as the high-energy neutron elastic scattering. Our results allow drawing some conclusions concerning the reliability of the transport codes and data bases used to simulate Accelerator Driven Systems (ADS), particularly with Na-cooled W targets. The high-energy threshold excitation functions to be used in activation-based unfolding of neutron spectra inside the ADS can be also inferred from our results.

  4. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard

    2007-01-01

    High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large...... with control muscles, the resting metabolites ATP, phosphocreatine, creatine, and lactate, as well as the resting muscle excitability as measured by M-waves, were unaffected by treatment with BTS plus dantrolene. Following 20 or 30 s of continuous 60-Hz stimulation, BTS-plus-dantrolene-treated muscles showed...... changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...

  5. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  6. Inclusive quasielastic neutrino reactions in 12C and 16O at intermediate energies

    International Nuclear Information System (INIS)

    Singh, S.K.; Oset, E.

    1993-01-01

    Inclusive quasielastic neutrino (antineutrino) reactions on 12 C and 16 O at intermediate energies (50< E<400 MeV) are studied to investigate the effects of the nuclear medium on the total cross section and the energy spectrum of the outgoing leptons. The calculations are done in the local density approximation and various nuclear effects like Pauli blocking, Fermi motion, and strong-interaction renormalizations due to the presence of nucleons are taken into account. The corrections due to Coulomb effects are included which have been hitherto neglected in inclusive reactions. The results presented here are applicable to the inclusive reactions with neutrino beams planned to look for neutrino oscillations in the Los Alamos experiments or the experiments with underground detectors looking for atmospheric or solar flare neutrinos

  7. Progress in applyiong the FKK multistep reaction theory to intermediate-energy data evaluation

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1994-01-01

    Recent developments to the physics modeling in the FKK-GNASH code system are reviewed. We describe modifications to include a linking of multistep direct and multistep compound processes, which are important when the incident energy is less than about 30 MeV. A model for multiple preequilibrium emission is given, and compared with experimental measurements of proton reactions on 90 Zr at 160 MeV. We also give some preliminary observations concerning FKK calculations which use both normal and non-normal DWBA matrix elements. We describe the application of the FKK-GNASH code to a range of nuclear data applications, including intermediate energy reactions of importance in the accelerator transmutation of waste, and fast neutron and proton cancer radiation treatment. We outline areas where further work is needed for the accurate modeling of nuclear reactions using the FKK theory

  8. Intermediate energy heavy ions: An emerging multi-disciplinary research tool

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1988-10-01

    In the ten years that beams of intermediate energy (∼50 MeV/amu≤E≤∼2 GeV/amu) heavy ions (Z≤92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; several such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab

  9. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  10. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  11. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  12. The azimuthally anisotropic emission of unstable light nuclear in the heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    He Zhiyong; Jin Genming; Li Zuyu; Duan Limin; Dai Guangxi; Zhang Baoguo; Wu Heyu; Wen Wanxin; Qi Yujin; Luo Qingzheng

    1996-01-01

    The unstable light nuclei emitted in the interaction of 40 Ar on 197 Au have been detected at energy of 25 MeV/u by using particle-particle correlation measurement at small relative angle. Their in-plane and out-of-plane emission were measured for three bins of experimentally estimated impact parameter. The enhanced in-plane emission for mid-rapidity unstable nuclei is observed. This enhanced in-plane emission becomes stronger with increasing of impact parameter, but changes small with the mass of unstable nuclei. The in-plane enhancement decreases slightly with the energy of excited state of unstable nuclei. For projectile-like unstable nuclei, the in-plane emission dominates as expected

  13. Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He

    International Nuclear Information System (INIS)

    Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay

    2003-01-01

    This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems

  14. Two types of charge transfer excitations in low dimensional cuprates: an electron energy-loss study

    Czech Academy of Sciences Publication Activity Database

    Knupfer, M.; Fink, J.; Drechsler, S.-L.; Hayn, R.; Málek, Jiří; Moskvin, A.S.

    137-140, - (2004), s. 469-473 ISSN 0368-2048 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprates * electronic excitations * electron energy-loss spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.069, year: 2004

  15. Towards an unambiguous determination of the excitation energy of the projectile in heavy-ion reactions?

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A.M.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2002-03-01

    The excitation energy of the quasi-projectiles produced in heavy-ion collisions is determined for the {sup 58}Ni+{sup 197}Au reactions at 52 and 90 AMeV. A new method is proposed for isolating unambiguously the particles evaporated by the source. It consists in observing them at small angles along the flight direction of the source. (authors)

  16. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  17. Convergence of environment polarization effects in multiscale modeling of excitation energies

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; Ruud, Kenneth

    2014-01-01

    We present a systematic investigation of the influence of polarization effects from a surrounding medium on the excitation energies of a chromophore. We use a combined molecular dynamics and polarizable embedding time-dependent density functional theory (PE-TD-DFT) approach for chromophores in pr...

  18. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  19. Intermediate and high energy nuclear reactions at the hadronic structural level

    Energy Technology Data Exchange (ETDEWEB)

    Slowinski, B [Institute of Physics, Warsaw, University of Technology, Poland, Institute of Atomic Energy, Swierk, (Poland)

    1997-12-31

    Form tens of MeV to several hundred of GeV is stretched out quite a large interval of energy when the interaction between hadrons (for instance, pion/nucleon-nucleus and nucleus-nucleus reactions) can be described by the considerably simplified way with still acceptable accuracy. This happens because in this energy region hadrons (i.e. pions, nucleons etc.) remain quasiparticles of nuclear matter mostly without revealing any internal structure, their de Broglie`s wavelength is much shorter as compared to the average intranuclear nucleon`s distance, and the energy transfers in the reaction are, on the average, significantly greater than the binding energy of nucleons inside nuclei. Consequently an approach to the analysis of these phenomena based on simple geometric and probabilistic considerations is justifiable, especially for many practical purposes, in particular, for shielding and dosimetric estimations, material behaviour prediction, as well as for the approximate evaluation of electronuclear breeding effects in different composites of target materials, for nuclear passivation problems and so on. In this work basic physical reasons of such a simplified picture of intermediate and high energy nuclear reactions are presented. The most usual phenomenological models of hadronic multiple emission/production and recent results of the cascade evaporation type models, are also discussed. 2 figs.

  20. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    International Nuclear Information System (INIS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-01-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested

  1. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  2. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  3. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  4. Intermediate- and high-energy reactions of uranium with neon and carbon

    International Nuclear Information System (INIS)

    McGaughey, P.L.

    1982-11-01

    Target fragment production from the interactions of 1.0, 3.0, 4.8, and 12 GeV 12 C and 5.0, 8.0, 20, and 42 GeV 20 Ne with uranium has been measured using off-line gamma-ray spectroscopic techniques. The experimental charge and mass yield distributions are generally consistent with the concepts of limiting fragmentation and factorization at energies of 3.0 GeV and above. The total projectile kinetic energy was found to be the relevant scaling parameter for the comparison of reactions induced by projectiles of different sizes. Light fragments with mass number less than 60 were found to violate limiting fragmentation, and had excitation functions that were strongly increasing with projectile energy until 8.0 to 12.0 GeV. With the 1.0 GeV 12 C beam the pattern of mass yields was quite different from that of all the other reactions, with the normal peak in the fission mass region (80 < A < 145), but with much lower yields below mass number 60 and between mass numbers 145 and 210, indicating that these fragments are formed primarily in very energetic reactions in which large excitation energies are transferred to and significant amounts of mass are removed from the target nucleus. Theoretical predictions of the intra-nuclear cascade, nuclear fireball, and nuclear firestreak models are compared with the experimental results. The intra-nuclear cascade and nuclear firestreak models are both able to predict the general shapes of the experimental distributions, with the exception of the yields for the lightest fragments

  5. Excitation energy partition in 74Ge + 165Ho collision at energy 8.5 MeV/A

    International Nuclear Information System (INIS)

    Blocki, J.; Grotowski, K.; Planeta, R.

    1990-01-01

    The distribution of the excitation energy between both fragments in Heavy Ion Collision has been measured recently for the reaction 74 Ge + 165 Ho at 8.5 MeV/A. One can see from the experimental data a gradual transition from moreless equal partition of the heat for the peripheral collisions (small energy loss) toward equal temperatures in more central collisions (high energy loss). The similar dependence of the heat partition as a function of the energy loss was observed earlier by Vandenbosch et al for the reaction 56 Fe + 238 U at 8.5 MeV/A and by Benton et al for the 56 Fe + 165 Ho for a broad range of energy dissipation. Theoretical calculations leading to the excitation energy division between both fragments have been carried out by Randrup and by Feldmeier. In both calculations the same excitation mechanism was assumed which is the exchange of particles between colliding nuclei. Differences between results are mainly due to the different shape parametrization and calculation of the potential energy. Randrup's results are moving much faster towards equal temperatures limit if one goes to more central collisions. Both models however do not predict the direction of the experimental mass flow for the 56 Fe + 165 Ho system. In the present paper classical dynamical calculations following Feldmeir's approach with some modifications are presented for 74 Ge + 165 Ho system

  6. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  7. Excitation Energies of Superdeformed States in 196Pb: Towards a Systematic Study of the Second Well in Pb Isotopes

    International Nuclear Information System (INIS)

    Wilson, A.N.; Singh, A.K.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Davidson, P.M.; Dracoulis, G.D.; Lane, G.J.; Goergen, A.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Astier, A.; Azaiez, F.; Bourgeois, C.; Bazzacco, D.; Kroell, T.; Rossi-Alvarez, C.; Buforn, N.; Redon, N.

    2005-01-01

    The excitation energy of the lowest-energy superdeformed band in 196 Pb is established using the techniques of time-correlated γ-ray spectroscopy. Together with previous measurements on 192 Pb and 194 Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a 'superdeformed shell gap'

  8. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  9. Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases

    International Nuclear Information System (INIS)

    Szirmai, Gergely; Szepfalusy, Peter; Kis-Szabo, Krisztian

    2003-01-01

    The finite temperature Green's function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23 Na and 87 Rb atoms

  10. Spin-isospin excitations induced by heavy ions at Saturne energies

    International Nuclear Information System (INIS)

    Hennino, T.

    1989-01-01

    Our program on the Spin-Isospin excitations started with the ( 3 He, 3 H) and ( 2 H, 2 He) reactions was extended with the heavy ion beams available at Saturne ( 12 C, 16 0, 20 Ne and 40 Ar) to study systematically the Δ excitation energy region. Projectile-ejectile dependences were measured. The Δ peak shift appears as a common feature in all charge exchange reactions. The first cross section calculations for the ( 12 C, 12 N) reaction are in good quantitative agreement with the data [fr

  11. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group

    Science.gov (United States)

    Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.

    2017-08-01

    We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.

  12. Nucleon charge exchange reaction and antiproton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kronenfeld, J.

    1985-02-01

    This work treats the medium energy nuclear (p,n) charge exchange reaction to analog states and the low energy elastic scattering of antiprotons and investigates the central aspects of a microscopic theory based on multiple-scattering series which are pertinent to these reactions. A two-step term of the Distorted Wave Impulse Approximation (DWIA) in treating the (p,n) reaction, was included. For the very absorptive p-bar interaction with nuclei we conjecture that a partial infinite summation, constituing a renormalization of the single scattering term of the optical potential series provides the dominant feature of this interaction. In this work the excitation of analog states is calculated and it was found that the (p,n) reaction is described fairly well by the DWIA. In the first part of the work the (p,n) reaction in the energy range 100-200 MeV was treated. The DWIA calculations were based on eikonalization. In the second part of the work the p-barA interaction with the selfconsistent scheme mentioned above, for scattering energies 30-120 MeV, was examined. (author)

  13. Raman active high energy excitations in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)

    2017-02-01

    We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  14. Self-energy correction to the hyperfine splitting for excited states

    International Nuclear Information System (INIS)

    Wundt, B. J.; Jentschura, U. D.

    2011-01-01

    The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.

  15. The extended sum-rule model view of light and intermediate mass fragment emission in nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brancus, I.M.; Rebel, H.; Wentz, J.; Corcalciuc, V.

    1989-11-01

    The original sum-rule model worked out by Wilczynski et al. and successfully used for a global description of complete and incomplete fusion reactions has been extended by a term accounting for dissipative processes of the dinuclear system on its way to fusion. When applying to light and heavy ion collisions with various targets at energies in the transitional region, the new term proves to be rather essential for reproducing the element distributions of the fragments emitted from rather asymmetric systems. (orig.) [de

  16. MENDL2 and IEAF-2001 nuclide production yields data bases verification at intermediate energies.

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Zhivun, V. M. (Valery M.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents the results of computer simulation of two experiments which aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside the 0.8-GeV proton-irradiated 4-cm thick W target and 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction were determined in the both experiments. The measured reaction rates were compared with the rates simulated by the LAHET code with the use of several nuclear databases for the respective excitation functions, namely, MENDL2/2P for neutron/proton cross sections up to 100 MeV, and recently developed IEAF-2001 that provides neutron cross sections up to 150 MeV. The comparison between the simulation-to-experiment agreements obtained via the MENDL2 and IEAF-2001 is presented. The agreement between simulation and experiment has been found generally satisfactory for both of the databases. The high-energy threshold excitation functions to be used in the activation-based unfolding of neutron spectra inside the Accelerator Driven Systems (ADS), particularly with Na-cooled W targets, can be inferred from the results.

  17. Intermediate-energy nuclear theory. Progress report, July 1, 1977--June 30, 1978

    International Nuclear Information System (INIS)

    Bryan, R.A.

    1978-03-01

    The research reported has centered on the nucleon-nucleon interaction at medium energies, with especial emphasis on the reaction NN → NNπ up to 800 MeV. Elastic NN scattering near the pion production threshold was also investigated, both through phase-shift analysis of data and theoretical interpretation of the intermediate-range force. The quasi-elastic amplitude N anti N → ππ for 4m/sub pi/ 2 less than or equal to t less than or equal to 50m/sub pi/ 2 was studied because of its bearing on the NN problem; a simple but useful model was developed. Finally, work on the pion-photoproduction reaction γN → πΔ was completed, and the close correspondence with the amplitude NN → NNπ exploited. A list of publications is included

  18. Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Lin, C.D.; Fritsch, W.

    1983-01-01

    In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H + + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported

  19. Systematics of intermediate-energy single-nucleon removal cross sections

    Science.gov (United States)

    Tostevin, J. A.; Gade, A.

    2014-11-01

    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.

  20. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Jipa, Al.; Besliu, C.; Felea, D.; Iliescu, B.; Ristea, O.; Ristea, M.; Calin, C.; Horbuniev, A.; Arsene, I.; Esanu, T.; Ochesanu, S.; Caramarcu, C.; Bordeianu, C.; Rosu, I.; Grossu, V.; Zgura, I.S.; Stan, E.; Mitu, C.; Potlog, M.; Cherciu, M.; Stefan, I.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed taking into account different scales. These scales are related to the fragment sizes. Taking into account the possible different fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained in different experiments performed at the JINR Dubna (Russia), KEK Tsukuba (Japan), GSI Darmstadt (Germany) is done. Results on apparent temperatures, angular distributions, fragment momentum spectra, multiplicities of the intermediate mass fragments are used to analyse the competition between two possible nuclear fragmentation mechanisms, namely: a sudden fragmentation by explosive mechanisms, like shock waves, and a slow fragmentation by the 'fission' of the spectator regions, mainly, because of the interactions with the particles or fragments emitted from the participant region at transverse angles on the incident nucleus, in CMS.Some connections with chaos dynamics and fractal structure of the fragmentation patterns are included. (authors)

  1. Semi-classical approaches for the proton emission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-05-01

    Semi-classical approaches are proposed to study the transition between the one- and two-body processes in intermediate energy heavy ion collisions. The Landau-Vlasov equation is used as a transport equation for nucleons in the nuclear matter. We apply our formalism to the fast proton ejection. On the one hand, the effects of the nucleon-nucleon collisions are studied for the particles which travel through the nucleus cores. On the other hand, the inertial emission turns out to be an important proton emission mechanism. Our results conflict the interpretation of the proton spectra in terms of moving sources. Reasonable agreements with the experimental data are found without reference to any thermal equilibrium

  2. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Jipa, Al; Besliu, C.; Felea, D.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed by taking into account different scales related to the fragment sizes. Considering two fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained was done. Goldhaber formula was improved by analyzing the discrepancies between data and theories concerning the projectile fragmentation. We implied that the projectile fragmentation process would be governed by the distribution of nucleon momenta in the projectile after the collision occurred. We used in our analysis protons from the 4 He + 7 Li at 4.5 GeV/c per nucleon incident momentum, as well as from 40 Ar + 12 C at 213 AMeV bombarding energy. We proved that in order to proceed in analyzing the projectile fragmentation process at intermediate and high energies one has to consider the dependence σ 0 on the apparent temperature of projectile nucleus after the collision took place. The generalized Bertsch correction for light projectile nuclei and fragments was used and the number of spatial correlations between identical nucleons having anticorrelated momenta was found. Thus we found apparent temperature values close to the separation energies of the considered fragments per number of fragments. The temperatures associated to kinetic energy spectra of the projectile fragments were calculated following two methods. The results from Bauer's method were compared with those obtained by fitting the kinetic energy distributions of the projectile fragments in the rest frame of the projectile with a Maxwellian curve. We also accomplished the comparison of the experimental results with similar events simulated with RQMD 2.4. All the results obtained suggested two nuclear fragmentation mechanisms: a sudden fragmentation by explosive mechanisms, like shock waves and a slow fragmentation by the 'fission' of the spectator regions, mainly because of the interactions with the particles or fragments emitted from the

  3. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  4. Lattice Boltzmann simulation for the energy and entropy of excitable systems

    Institute of Scientific and Technical Information of China (English)

    Deng Min-Yi; Tang Guo-Ning; Kong Ling-Jiang; Liu Mu-Ren

    2011-01-01

    The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy, i.e., the internal energy of system is smaller than the energy of self-sustained spiral wave. It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing. Interestingly, although the energy difference between two regular wave states is very small, the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies. In addition, when the unstable spiral wave converts into the spatiotemporal chaos, the internal energy of system decreases, while the spatiotemporal entropy increases, which behaves as the thermodynamic entropy in an isolated system.

  5. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  6. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  7. TH-EF-BRB-07: Novel Hardware and Software Platform for Intermediate Energy 4π Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States); Harrison, M; Boucher, S; McNevin, J; Kutsaev, S; Faillace, L [RadiaBeam Technologies, Santa Monica, CA (United States)

    2016-06-15

    Purpose: To develop a robust and efficient platform for the optimization and robotic delivery of highly noncoplanar intensity modulated radiotherapy, which enables significant reduction of normal tissue toxicity and escalation of tumor dose. Methods: An innovative high-output compact 3 MV linac was designed for mounting onto a commercial robotic system in order to access the entire 4π beam solution space without moving the patient couch. The use of intermediate energy X-rays for radiotherapy was evaluated in comparison to clinical plans delivered using 6 MV X-rays and a state-of-the-art delivery system. Monte Carlo simulations of a 3 MV percent depth dose curve were performed for intermediate energy dose calculation. The beam model was used to create a convolution/superposition-based dose calculation engine for 3MV X-rays. The 4π greedy column generation algorithm was used for optimized beam selection and fluence map optimization. Results: A detailed design of the first 3 MV linac capable of producing a competitively high dose rate of >800 cGy/min at 100 cm was completed and verified through extensive simulation. The complete linac head including a multileaf collimator can access most of the 4π solution space including the posterior orientations without changing the couch height. When compared to 6 MV clinical plans, the proposed 3 MV 4π plans demonstrated significantly better dose compactness and normal tissue sparing in brain, prostate, and partial breast treatment plans. Conclusion: We demonstrate the design of a highly versatile radiotherapy machine to natively deliver non-coplanar 4π radiotherapy without the need to move the patient during treatment. This novel platform is efficient and capable of providing dosimetry that is 30–50% more compact than existing therapy platforms. The new system is projected to be cost effective due to improved treatment time and automation. NIH R43CA183390, NIH R01CA188300.

  8. Performance of Popular XC-Functionals for the Description of Excitation Energies in GFP-Like Chromophore Models

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Rocha-Rinza, Tomás

    2012-01-01

    this task. We present an evaluation of the performance of commonly used XC-functionals for the prediction of excitation energies of GFP-like chromophores. In particular, we have considered the TD-DFT vertical excitation energies of chromophores displaying different charge states. We compare the quality...

  9. Quasielastic knock out of light fragments from 12C and 16O by intermediate energy pions

    International Nuclear Information System (INIS)

    Abramov, B.M.; Borodin, Yu.A.; Bulychev, S.A.

    2006-01-01

    Using 0.72 GeV s -1 pulse π - -meson beam one studied the quasi-elastic knocking out of deuterons and of tritons from 12 C and 16 O nuclei. One derived the quasi-deuteron intranuclear motion pulse distributions, the residual nucleus excitation energy spectra and the effective number of quasi-deuterons. The parameters of quasi-deuteron intranuclear motion pulse distributions are in line with the measurement results for other beams. The effective numbers of quasi-deuterons in nuclei from 6 Li up to 16 O do not depend on the atomic number. One observed knocking out of tritons from the mentioned nuclei enabling to evaluate the cross section of elastic pion-triton backscattering [ru

  10. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  11. Determination of the excitation energy and angular momentum of the quasi-projectiles produced in the heavy ion collisions Xe + Sn

    International Nuclear Information System (INIS)

    Genouin-Duhamel, Emmanuel

    1999-01-01

    This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in 129 Xe + nat Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 ℎ). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed. (author)

  12. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  13. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  14. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    Science.gov (United States)

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  15. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    Science.gov (United States)

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  16. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    International Nuclear Information System (INIS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-01-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process

  17. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  18. Neutron-scattering study of low-energy excitations in triphenyl phosphite

    CERN Document Server

    Mayer, J; Massalska-Arodz, M; Janik, J A; Natkaniec, I; Steinsvoll, O

    2002-01-01

    The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2 theta,omega) and the density of states G(omega) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)

  19. Neutron-scattering study of low-energy excitations in triphenyl phosphite

    International Nuclear Information System (INIS)

    Mayer, J.; Krawczyk, J.; Massalska-Arodz, M.; Janik, J.A.; Natkaniec, I.; Steinsvoll, O.

    2002-01-01

    The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2θ,ω) and the density of states G(ω) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)

  20. Radiative proton capture to the first excited state of sup 29 P nucleus at subbarrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Matulewicz, T; Dabrowska, M; Decowski, P; Kicinska-Habior, M; Sikora, B [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Toke, J [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Somorjai, E [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete

    1985-08-01

    Differential cross sections at 0 deg and 90 deg measured for {sup 28}Si(p,{gamma}{sub 1}){sup 29}P reaction at proton energy range 2.3-2.9 MeV have been analyzed in terms of the direct-semidirect capture model extended by the effective potential approach. Spectroscopic factor of the first excited states of {sup 29}P nucleus was found to be 0.10+-0.05. 9 refs., 1 fig. (author).

  1. Compact alpha-excited sources of low energy x-rays

    International Nuclear Information System (INIS)

    Amlauer, K.; Tuohy, I.

    1976-01-01

    A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed

  2. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  3. Fully differential cross sections for low to intermediate energy perpendicular plane ionization of xenon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: ghanshyam.purohit@spsu.ac.in; Singh, P.; Patidar, V.

    2014-12-15

    Highlights: • We present triply differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms. • The TDCS has been calculated in the modified distorted wave Born approximation formalism. • The effects of target polarization and post collision interaction have also been included. • The polarization potential, higher order effects and PCI has been found to be useful in the description of TDCS. - Abstract: Triple differential cross section (TDCS) results are reported for the perpendicular plane ionization of Xe (5p) at incident electron energies 5 eV, 10 eV, 20 eV, and 40 eV above ionization potential. The modified distorted wave Born approximation formalism with first as well as the second order Born terms has been used to calculate the TDCS. Effects of target polarization and post collision interaction have also been included. We compare the (e, 2e) TDCS results of our calculation with the recent available experimental data and theoretical results and discuss the process contributing to structure seen in the differential cross section. It has been observed from the present study that the second order effect and target polarization make significant contribution in description of collision dynamics of xenon at the low and intermediate energy for the perpendicular emission of electrons.

  4. Fully differential cross sections for low to intermediate energy perpendicular plane ionization of xenon atoms

    International Nuclear Information System (INIS)

    Purohit, G.; Singh, P.; Patidar, V.

    2014-01-01

    Highlights: • We present triply differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms. • The TDCS has been calculated in the modified distorted wave Born approximation formalism. • The effects of target polarization and post collision interaction have also been included. • The polarization potential, higher order effects and PCI has been found to be useful in the description of TDCS. - Abstract: Triple differential cross section (TDCS) results are reported for the perpendicular plane ionization of Xe (5p) at incident electron energies 5 eV, 10 eV, 20 eV, and 40 eV above ionization potential. The modified distorted wave Born approximation formalism with first as well as the second order Born terms has been used to calculate the TDCS. Effects of target polarization and post collision interaction have also been included. We compare the (e, 2e) TDCS results of our calculation with the recent available experimental data and theoretical results and discuss the process contributing to structure seen in the differential cross section. It has been observed from the present study that the second order effect and target polarization make significant contribution in description of collision dynamics of xenon at the low and intermediate energy for the perpendicular emission of electrons

  5. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  6. Electron-positron pair production and bremsstrahlung at intermediate energies in the field of heavy atoms

    International Nuclear Information System (INIS)

    Lee, R.N.; Milstein, A.I.; Strakhovenko, V.M.; Schwartz, O.Ya.

    2006-01-01

    The Coulomb corrections (CC) to the processes of bremsstrahlung and pair production are investigated. The next-to-leading term in the high-energy asymptotics is found. This term becomes very essential in the region of intermediate energies. The influence of screening for CC is small for differential cross section, spectrum, and the total cross section of pair production. The same is true for the spectrum of bremsstrahlung, but not for the differential cross section, where the influence of screening can be very large. The corresponding screening corrections as well as the modification of the differential cross section of bremsstrahlung are found. A comparison of our results for the total cross section of pair production with the experimental data available is performed. This comparison has justified our analytical results and allowed to elaborate a simple ansatz for the next-to-leading correction. The influence of the electron beam shape on CC for bremsstrahlung is investigated. It turns out that the differential cross section is very sensitive to this shape

  7. Studies on the dynamics of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    We use the Quantum Molecular Dynamics model for the investigation of the dynamics of heavy ion collisions at intermediate energies. A detailed comparison between different versions of the models demonstrate the influence of not exactly known parameters in the description of nuclei like interaction range or initial densities and thus describes the limits of predictive power. The dynamics of the reaction are discussed quite similarly in the different models. A radial expansion with a linear velocity profile is found at central collisions. A strong interaction of pions with nuclear matter is reported. This interaction is strongly influenced by the lifetime of baryonic resonances in nuclear matter. These lifetimes depend strongly on the mass distribution of the resonances. These mass distributions are influenced by the momentum distribution in the nuclei. Here the inclusion of the spectral function shows visible effects. These effects influence the energy dissipation in nuclei and thus enter e.g. into the analysis of p + A collisions for the GEDEON project. (author)

  8. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.

  9. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Long-term residual radioactivity in an intermediate-energy proton linac

    Science.gov (United States)

    Blaha, J.; La Torre, F. P.; Silari, M.; Vollaire, J.

    2014-07-01

    A new 160 MeV H- linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities.

  11. Long-term residual radioactivity in an intermediate-energy proton linac

    International Nuclear Information System (INIS)

    Blaha, J.; La Torre, F.P.; Silari, M.; Vollaire, J.

    2014-01-01

    A new 160 MeV H − linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities

  12. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  13. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    Science.gov (United States)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  14. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  15. Accurate adiabatic energy surfaces for the ground and first excited states of He2+

    International Nuclear Information System (INIS)

    Lee, E.P.F.

    1993-01-01

    Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)

  16. Distribution of radiative strength with excitation energy: the E1 and M1 giant resonances

    International Nuclear Information System (INIS)

    Brown, G.E.; Speth, J.

    1979-01-01

    Calculations of the giant dipole resonance in the particle-hole model, employing empirical values for the unperturbed particle and hole energies, have been unsuccessful in pushing the dipole state to a sufficiently high energy. it is argued that unperturbed levels correspondign to an effective mass of m*/m approx. 0.6 to 0.7 should be employed. The couplings of particles and holes to vibrations are the crucial ingredients in these considerations. More generally, it is argued that the effective mass relevant to excitations near the Fermi surface is that corresponding to empirical single-particle levels, m*/m greater than or equal to 1.0. For particle-hole excitations above the Fermi surface, it is a decreasing function of excitation energy, reaching the above values 0.6 to 0.7 for E greater than or equal to 2 dirac constant/b omega, dirac constant/sub omega/ being the shell spacing. This has the consequence of spreading out the M1 strength. A new interpretation of experimental strengths is proposed

  17. Electronic excitation in ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.; Miraglia, J.E.

    1988-01-01

    Theoretical calculations for excitation of hydrogen-like atoms by ion impact at high and intermediate energies, are presented. Impulsive and eikonal wave functions are employed, both normalized. It is studied the dependence on energy and projectil charge (saturation) of cross sections, compared to experimental results. (A.C.A.S.) [pt

  18. Recoil properties of radionuclides formed in photospallation reactions on complex nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Haba, Hiromitsu; Oura, Yasuji; Shibata, Seiichi; Furukawa, Michiaki; Fujiwara, Ichiro

    2001-01-01

    heavy target region, as also found in our recent yield measurements of photospallation and photopion reactions. The ε s values of photon-reaction appear to be slightly lower than those of proton-reactions for nat Ag, nat Ta, and 197 Au. This difference may indicate the lower excitation energy left after the first step in photon-reactions than in proton-reactions. (author)

  19. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  20. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Science.gov (United States)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  1. Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer

    Science.gov (United States)

    Xu, Lan; Xu, Bo

    2015-10-01

    In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.

  2. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1990-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei

  3. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Final report

    International Nuclear Information System (INIS)

    Burleson, G.R.

    1987-01-01

    We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs

  4. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  5. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (comps.)

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I.

  6. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    International Nuclear Information System (INIS)

    Allred, J.C.; Talley, B.

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I

  7. The energy structure and decay channels of the 4p6-shell excited states in Sr

    Science.gov (United States)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  8. Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems

    International Nuclear Information System (INIS)

    Gisslen, L.; Johansson, A.; Stafstroem, S.

    2004-01-01

    We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C 60 . The simulations were performed by solving the time-dependent Schroedinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C 60 , we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C 60 molecules close to the PPV chain

  9. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  10. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  11. [Electron transfer, ionization and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1991-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  12. Resonant states in 13C and 16,17O at high excitation energy

    International Nuclear Information System (INIS)

    Rodrigues, M R D; Borello-Lewin, T; Miyake, H; Duarte, J L M; Rodrigues, C L; Horodynski-Matsushigue, L B; Ukita, G M; Cappuzzello, F; Foti, A; Cavallaro, M; Agodi, C; Cunsolo, A; Carbone, D; Bondi, M; Napoli, M De; Roeder, B T; Linares, R; Lombardo, I

    2014-01-01

    The 9 Be( 6 Li,d) 13 C and 12,13 C( 6 Li,d) 16,17 O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13 C and 15-30 keV for 16 O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θ d = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility

  13. Resonant states in 13C and 16,17O at high excitation energy

    Science.gov (United States)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.

    2014-12-01

    The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.

  14. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  15. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael

    2006-01-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle 3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 μm are generated for field size below 2 x 2 cm 2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle 3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam

  16. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    Science.gov (United States)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael

    2006-05-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  17. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  18. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  19. Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of pi-conjugated molecules

    NARCIS (Netherlands)

    Schmid, S.A.; Abbel, R.J.; Schenning, A.P.H.J.; Meijer, E.W.; Herz, L.M.

    2010-01-01

    We have investigated the extent to which delocalization of the ground-state and excited-state wave functions of a p-conjugated molecule affects the excitation energy transfer (EET) between such molecules. Using femtosecond photoluminescence spectroscopy, we experimentally monitored the EET along

  20. Angular dependences of the tensor analyzing powers in the dd -> sup 3 Hen reaction at intermediate energies

    CERN Document Server

    Ladygin, V P

    2002-01-01

    The tensor analyzing powers A sub y sub y , A sub x sub x , and A sub x sub z in the dd -> sup 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the sup 3 He and deuteron spin structure at short distances is shown

  1. Angular dependences of the tensor analyzing powers in the dd → 3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.; )

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd → 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown [ru

  2. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  3. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  4. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    Science.gov (United States)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  6. Uranium target fragmentation by intermediate and high energy 12C and 20Ne

    International Nuclear Information System (INIS)

    McGaughey, P.L.; Loveland, W.; Morrissey, D.J.; Aleklett, K.; Seaborg, G.T.

    1985-01-01

    The authors report herein the final analysis of the measurement of the target fragment production cross sections for nuclides with 24 less than or equal to A less than or equal to 237 from the interaction of 1.0, 3.0, 4.8, and 12 GeV 12 C and 8.0 and 20.0 GeV 20 Ne with 238 U. Isobaric yield distributions deduced from the nuclidic formation cross sections along with predictions of these distributions made using the nuclear firestreak and intranuclear cascade models are shown. Contrary to a previous report no large yields of fragments with 160 less than or equal to A less than or equal to 200 are observed in any reaction. Both the intranuclear cascade model and the nuclear firestreak model satisfactorily predict the observed yields of fragments with A > 60 indicating the general pattern of yields of these fragments is governed by the excitation energy deposited in the nucleus during the initial projectile-target interaction and the geometry of the collision

  7. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  8. Investigating the fission process at high excitation energies through proton induced reactions on 181Ta

    International Nuclear Information System (INIS)

    Ayyad, Y.; Benlliure, J.; Casajeros, E.; Alvarez Pol, H.; Paradela, C.; Perez-Loureido, D.; Tarrio, D.; Bacquias, A.; Boudard, A.; Kezzar, K.; Leray, S.; Enqvist, T.; Foehr, V.; Kelic, A.; Pleskac, R.

    2010-01-01

    In this work we have investigated the total fission cross section of 181 Ta + 1 H at FRS (Fragment Separator - GSI) at 1, 0.8, 0.5 and 0.3 GeV with a specific setup, providing high accuracy measurements of the cross section values. the comparison of our data with previous results reveals a good agreement at high energies. However the situation remains unclear at lower energies. In general, our results covering a wide range of energy, are smoother. We have also compared the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1) coupled to de-excitation code (ABLAv3p), according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. We have showed that a simple statistical description largely over-predict the measured cross-section. Only a dynamical description of the fission, involving the role of the viscosity of the nuclear matter, provides a realistic result.

  9. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis[Dissertation 17314

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F

    2007-07-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO{sub 2} balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented.

  10. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  11. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  12. A new analysis technique to measure fusion excitation functions with large beam energy dispersions

    Science.gov (United States)

    Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.

    2018-01-01

    Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.

  13. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  14. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  15. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  16. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  17. NO-γ emissions from streamer discharges: direct electron impact excitation versus resonant energy transfer

    International Nuclear Information System (INIS)

    Liu Ningyu; Pasko, Victor P

    2010-01-01

    It has been established that production of NO-γ emission in pulsed corona discharges is dominated by the energy transfer from N 2 (A 3 Σ u + ) to the NO ground state NO(X 2 Π r ) while direct excitation by electron impact is negligible. However, recent studies suggest that the electron impact excitation plays a more important role. In this work, we report modelling results of NO-γ emission associated with streamer discharges using two cross section data sets available in the literature. The first set was originally reported by Mojarrabi et al (1996 Phys. Rev. A 54 2977-82) and later updated by Brunger et al (2000 J. Phys. B: At. Mol. Opt. Phys. 33 809-19); the second set was published by Hayashi (1990 Nonequilibrium Processes in Partially Ionized Gases (NATO Advanced Science Institutes Series, Series B, Physics vol 220) ed M Capitelli and J N Bardsley (New York: Plenum) pp 333-40). According to the results, the role played by the electron impact excitation in the production of NO-γ is drastically different when different cross sections are used. The results indicate that the first data set leads to better agreement with experimental measurements. (fast track communication)

  18. The role of non-elastic nuclear processes for intermediate-energy protons in silicon targets

    Energy Technology Data Exchange (ETDEWEB)

    Hormaza, Joel Mesa, E-mail: jmesa@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Garcia, Cesar E., E-mail: cgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Havana (Cuba); Arruda Neto, Joao D.T.; Rodrigues, Tulio E., E-mail: arruda@if.usp.br, E-mail: tulio@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Schelin, Hugo R.; Denyak, Valery, E-mail: schelin@utfpr.edu.br, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Paschuck, Sergei A.; Evseev, Ivan, E-mail: sergei@utfpr.edu.br, E-mail: evseev@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2013-07-01

    The transportation of energetic ions in bulk matter is of direct interest in several areas including shielding against ions originating from either space radiations or terrestrial accelerators, cosmic ray propagation studies in galactic medium, or radiobiological effects resulting from the work place or clinical exposures. For carcinogenesis, terrestrial radiation therapy, and radiobiological research, knowledge of beam composition and interactions is necessary to properly evaluate the effects on human and animal tissues. For the proper assessment of radiation exposures both reliable transport codes and accurate input parameters are needed. In the last years efforts have been increasing in order to develop more effective models to describe and predict the damages induced by radiation in electronic devices. In this sense, the interaction of protons with those devices, particularly which operate in space, is a topic of paramount importance, mainly because although the majority of them are made with silicon, experimental data on p+Si nuclear processes is very sparse. In this work we have used a new quite sophisticated Monte Carlo multicollisional intranuclear cascade (MCMC) code for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fragmentation/fission in the case of heavy residues, in order to study some observable of nuclear interaction of protons between 100-200 MeV in a {sup 28}Si target. The code has been developed with very recent improvements that take into account Pauli blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission and the inclusion of deuteron, triton and 3He emissions in the evaporation step, which eventually concurs with fragmentation/break-up stage. The fragment mass distributions, as well as the multiplicities and the spectra of secondary

  19. The role of non-elastic nuclear processes for intermediate-energy protons in silicon targets

    International Nuclear Information System (INIS)

    Hormaza, Joel Mesa; Garcia, Cesar E.; Arruda Neto, Joao D.T.; Rodrigues, Tulio E.; Paschuck, Sergei A.; Evseev, Ivan

    2013-01-01

    The transportation of energetic ions in bulk matter is of direct interest in several areas including shielding against ions originating from either space radiations or terrestrial accelerators, cosmic ray propagation studies in galactic medium, or radiobiological effects resulting from the work place or clinical exposures. For carcinogenesis, terrestrial radiation therapy, and radiobiological research, knowledge of beam composition and interactions is necessary to properly evaluate the effects on human and animal tissues. For the proper assessment of radiation exposures both reliable transport codes and accurate input parameters are needed. In the last years efforts have been increasing in order to develop more effective models to describe and predict the damages induced by radiation in electronic devices. In this sense, the interaction of protons with those devices, particularly which operate in space, is a topic of paramount importance, mainly because although the majority of them are made with silicon, experimental data on p+Si nuclear processes is very sparse. In this work we have used a new quite sophisticated Monte Carlo multicollisional intranuclear cascade (MCMC) code for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fragmentation/fission in the case of heavy residues, in order to study some observable of nuclear interaction of protons between 100-200 MeV in a 28 Si target. The code has been developed with very recent improvements that take into account Pauli blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission and the inclusion of deuteron, triton and 3He emissions in the evaporation step, which eventually concurs with fragmentation/break-up stage. The fragment mass distributions, as well as the multiplicities and the spectra of secondary particles

  20. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.